1
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Hadi R, Poddar A, Sonnaila S, Bhavaraju VSM, Agrawal S. Advancing CRISPR-Based Solutions for COVID-19 Diagnosis and Therapeutics. Cells 2024; 13:1794. [PMID: 39513901 PMCID: PMC11545109 DOI: 10.3390/cells13211794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Since the onset of the COVID-19 pandemic, a variety of diagnostic approaches, including RT-qPCR, RAPID, and LFA, have been adopted, with RT-qPCR emerging as the gold standard. However, a significant challenge in COVID-19 diagnostics is the wide range of symptoms presented by patients, necessitating early and accurate diagnosis for effective management. Although RT-qPCR is a precise molecular technique, it is not immune to false-negative results. In contrast, CRISPR-based detection methods for SARS-CoV-2 offer several advantages: they are cost-effective, time-efficient, highly sensitive, and specific, and they do not require sophisticated instruments. These methods also show promise for scalability, enabling diagnostic tests. CRISPR technology can be customized to target any genomic region of interest, making it a versatile tool with applications beyond diagnostics, including therapeutic development. The CRISPR/Cas systems provide precise gene targeting with immense potential for creating next-generation diagnostics and therapeutics. One of the key advantages of CRISPR/Cas-based therapeutics is the ability to perform multiplexing, where different sgRNAs or crRNAs can target multiple sites within the same gene, reducing the likelihood of viral escape mutants. Among the various CRISPR systems, CRISPR/Cas13 and CARVER (Cas13-assisted restriction of viral expression and readout) are particularly promising. These systems can target a broad range of single-stranded RNA viruses, making them suitable for the diagnosis and treatment of various viral diseases, including SARS-CoV-2. However, the efficacy and safety of CRISPR-based therapeutics must be thoroughly evaluated in pre-clinical and clinical settings. While CRISPR biotechnologies have not yet been fully harnessed to control the current COVID-19 pandemic, there is an optimism that the limitations of the CRISPR/Cas system can be overcome soon. This review discusses how CRISPR-based strategies can revolutionize disease diagnosis and therapeutic development, better preparing us for future viral threats.
Collapse
Affiliation(s)
- Roaa Hadi
- Cell and Molecular Biology Program, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Abhishek Poddar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shivakumar Sonnaila
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | | | - Shilpi Agrawal
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
3
|
Zhang J, Xu L, Sheng Z, Zheng J, Chen W, Hu Q, Shen F. Combination-Lock SlipChip Integrating Nucleic Acid Sample Preparation and Isothermal LAMP Amplification for the Detection of SARS-CoV-2. ACS Sens 2024; 9:646-653. [PMID: 38181090 DOI: 10.1021/acssensors.3c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Nucleic acid analysis with an easy-to-use workflow, high specificity and sensitivity, independence of sophisticated instruments, and accessibility outside of the laboratory is highly desirable for the detection and monitoring of infectious diseases. Integration of laboratory-quality sample preparation on a hand-held system is critical for performance. A SlipChip device inspired by the combination lock can perform magnetic bead-based nucleic acid extraction with several clockwise and counterclockwise rotations. A palm-sized base station was developed to assist sample preparation and provide thermal control of isothermal nucleic acid amplification without plug-in power. The loop-mediated isothermal amplification reaction can be performed with a colorimetric method and directly analyzed by the naked eye or with a mobile phone app. This system achieves good bead recovery during the sample preparation workflow and has minimal residue carryover from the lysis and elution buffers. Its performance is comparable to that of the standard laboratory protocol with real-time qPCR amplification methods. The entire workflow is completed in less than 35 min and the device can achieve 500 copies/mL sensitivity. Thirty clinical nasal swab samples were collected and tested with a sensitivity of 95% and a specificity of 100% for SARS-CoV-2. This combination-lock SlipChip provides a promising fast, easy-to-use nucleic acid test with bead-based sample preparation that produces laboratory-quality results for point-of-care settings, especially in home use applications.
Collapse
Affiliation(s)
- Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Zheyi Sheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Jiayi Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Weiyu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
4
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
5
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
6
|
Engineering antiviral immune-like systems for autonomous virus detection and inhibition in mice. Nat Commun 2022; 13:7629. [PMID: 36494373 PMCID: PMC9734111 DOI: 10.1038/s41467-022-35425-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic has demonstrated that viral diseases represent an enormous public health and economic threat to mankind and that individuals with compromised immune systems are at greater risk of complications and death from viral diseases. The development of broad-spectrum antivirals is an important part of pandemic preparedness. Here, we have engineer a series of designer cells which we term autonomous, intelligent, virus-inducible immune-like (ALICE) cells as sense-and-destroy antiviral system. After developing a destabilized STING-based sensor to detect viruses from seven different genera, we have used a synthetic signal transduction system to link viral detection to the expression of multiple antiviral effector molecules, including antiviral cytokines, a CRISPR-Cas9 module for viral degradation and the secretion of a neutralizing antibody. We perform a proof-of-concept study using multiple iterations of our ALICE system in vitro, followed by in vivo functionality testing in mice. We show that dual output ALICESaCas9+Ab system delivered by an AAV-vector inhibited viral infection in herpetic simplex keratitis (HSK) mouse model. Our work demonstrates that viral detection and antiviral countermeasures can be paired for intelligent sense-and-destroy applications as a flexible and innovative method against virus infection.
Collapse
|
7
|
A lab-on-a-chip for the concurrent electrochemical detection of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in saliva and plasma. Nat Biomed Eng 2022; 6:968-978. [PMID: 35941191 PMCID: PMC9361916 DOI: 10.1038/s41551-022-00919-w] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/01/2022] [Indexed: 12/19/2022]
Abstract
Rapid, accurate and frequent detection of the RNA of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and of serological host antibodies to the virus would facilitate the determination of the immune status of individuals who have Coronavirus disease 2019 (COVID-19), were previously infected by the virus, or were vaccinated against the disease. Here we describe the development and application of a 3D-printed lab-on-a-chip that concurrently detects, via multiplexed electrochemical outputs and within 2 h, SARS-CoV-2 RNA in saliva as well as anti-SARS-CoV-2 immunoglobulins in saliva spiked with blood plasma. The device automatedly extracts, concentrates and amplifies SARS-CoV-2 RNA from unprocessed saliva, and integrates the Cas12a-based enzymatic detection of SARS-CoV-2 RNA via isothermal nucleic acid amplification with a sandwich-based enzyme-linked immunosorbent assay on electrodes functionalized with the Spike S1, nucleocapsid and receptor-binding-domain antigens of SARS-CoV-2. Inexpensive microfluidic electrochemical sensors for performing multiplexed diagnostics at the point of care may facilitate the widespread monitoring of COVID-19 infection and immunity. A 3D-printed lab-on-a-chip allows for the concurrent rapid electrochemical detection of SARS-CoV-2 RNA in saliva and of anti-SARS-CoV-2 antibodies in saliva spiked with blood plasma.
Collapse
|
8
|
Rahman MR, Majumder TR, Apu MAI, Paul AK, Afrose A, Dash BK. CRISPR-Based Programmable Nucleic Acid-Binding Protein Technology Can Specifically Detect Fatal Tropical Disease-Causing Pathogens. J Trop Med 2022; 2022:5390685. [PMID: 36199433 PMCID: PMC9529443 DOI: 10.1155/2022/5390685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Diagnostic approaches capable of ultrasensitive pathogen detection from low-volume clinical samples, running without any sophisticated instrument and laboratory setup, are easily field-deployable, inexpensive, and rapid, and are considered ideal for monitoring disease progression and surveillance. However, standard pathogen detection methods, including culture and microscopic observation, antibody-based serologic tests, and primarily polymerase chain reaction (PCR)-oriented nucleic acid screening techniques, have shortcomings that limit their widespread use in responding to outbreaks and regular diagnosis, especially in remote resource-limited settings (RLSs). Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based programmable technology has emerged to challenge the unmet criteria of conventional methods. It consists of CRISPR-associated proteins (Cas) capable of targeting virtually any specific RNA or DNA genome based on the guide RNA (gRNA) sequence. Furthermore, the discovery of programmable trans-cleavage Cas proteins like Cas12a and Cas13 that can collaterally damage reporter-containing single-stranded DNA or RNA upon formation of target Cas-gRNA complex has strengthened this technology with enhanced sensitivity. Current advances, including automated multiplexing, ultrasensitive single nucleotide polymorphism (SNP)-based screening, inexpensive paper-based lateral flow readouts, and ease of use in remote global settings, have attracted the scientific community to introduce this technology in nucleic acid-based precise detection of bacterial and viral pathogens at the point of care (POC). This review highlights CRISPR-Cas-based molecular technologies in diagnosing several tropical diseases, namely malaria, zika, chikungunya, human immunodeficiency virus and acquired immunodeficiency syndrome (HIV-AIDS), tuberculosis (TB), and rabies.
Collapse
Affiliation(s)
- Md. Rashidur Rahman
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Toma Rani Majumder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Aminul Islam Apu
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Alok K. Paul
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Afrina Afrose
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh
| | - Biplab Kumar Dash
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
9
|
Islam MM, Koirala D. Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses. Anal Chim Acta 2022; 1209:339338. [PMID: 35569864 PMCID: PMC8633689 DOI: 10.1016/j.aca.2021.339338] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 01/09/2023]
Abstract
As the COVID-19 pandemic continues to affect human health across the globe rapid, simple, point-of-care (POC) diagnosis of infectious viruses such as SARS-CoV-2 remains challenging. Polymerase chain reaction (PCR)-based diagnosis has risen to meet these demands and despite its high-throughput and accuracy, it has failed to gain traction in the rapid, low-cost, point-of-test settings. In contrast, different emerging isothermal amplification-based detection methods show promise in the rapid point-of-test market. In this comprehensive study of the literature, several promising isothermal amplification methods for the detection of SARS-CoV-2 are critically reviewed that can also be applied to other infectious viruses detection. Starting with a brief discussion on the SARS-CoV-2 structure, its genomic features, and the epidemiology of the current pandemic, this review focuses on different emerging isothermal methods and their advancement. The potential of isothermal amplification combined with the revolutionary CRISPR/Cas system for a more powerful detection tool is also critically reviewed. Additionally, the commercial success of several isothermal methods in the pandemic are highlighted. Different variants of SARS-CoV-2 and their implication on isothermal amplifications are also discussed. Furthermore, three most crucial aspects in achieving a simple, fast, and multiplexable platform are addressed.
Collapse
|
10
|
Zhang Y, Li Z, Milon Essola J, Ge K, Dai X, He H, Xiao H, Weng Y, Huang Y. Biosafety materials: Ushering in a new era of infectious disease diagnosis and treatment with the CRISPR/Cas system. BIOSAFETY AND HEALTH 2022; 4:70-78. [PMID: 35310559 PMCID: PMC8920088 DOI: 10.1016/j.bsheal.2022.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 01/07/2023] Open
Abstract
Despite multiple virus outbreaks over the past decade, including the devastating coronavirus disease 2019 (COVID-19) pandemic, the lack of accurate and timely diagnosis and treatment technologies has wreaked havoc on global biosecurity. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has the potential to address these critical needs for tackling infectious diseases to detect viral nucleic acids and inhibit viral replication. This review summarizes how the CRISPR/Cas system is being utilized for the treatment and diagnosis of infectious diseases with the help of biosafety materials and highlights the design principle and in vivo and in vitro efficacy of advanced biosafety materials used to deal with virus attacks.
Collapse
Affiliation(s)
- Yuquan Zhang
- School of Life Science, School of Medical Technology, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyue Li
- School of Life Science, School of Medical Technology, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Julien Milon Essola
- School of Life Science, School of Medical Technology, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kun Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071000, China
| | - Xuyan Dai
- Hunan Agricultural University, Changsha 410128, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Yuhua Weng
- School of Life Science, School of Medical Technology, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- School of Life Science, School of Medical Technology, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai 519085, China
| |
Collapse
|
11
|
Saivish MV, Gomes da Costa V, de Lima Menezes G, Alves da Silva R, Dutra da Silva GC, Moreli ML, Sacchetto L, Pacca CC, Vasilakis N, Nogueira ML. Rocio Virus: An Updated View on an Elusive Flavivirus. Viruses 2021; 13:2293. [PMID: 34835099 PMCID: PMC8620015 DOI: 10.3390/v13112293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022] Open
Abstract
Rocio virus (ROCV) is a mosquito-borne flavivirus and human pathogen. The virus is indigenous to Brazil and was first detected in 1975 in the Sao Paulo State, and over a period of two years was responsible for several epidemics of meningoencephalitis in coastal communities leading to over 100 deaths. The vast majority of ROCV infections are believed to be subclinical and clinical manifestations can range from uncomplicated fever to fatal meningoencephalitis. Birds are the natural reservoir and amplification hosts and ROCV is maintained in nature in a mosquito-bird-mosquito transmission cycle, primarily involving Psorophora ferox mosquitoes. While ROCV has remained mostly undetected since 1976, in 2011 it re-emerged in Goiás State causing a limited outbreak. Control of ROCV outbreaks depends on sustainable vector control measures and public education. To date there is no specific treatment or licensed vaccine available. Here we provide an overview of the ecology, transmission cycles, epidemiology, pathogenesis, and treatment options, aiming to improve our ability to understand, predict, and ideally avert further ROCV emergence.
Collapse
Affiliation(s)
- Marielena Vogel Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil; (G.C.D.d.S.); (L.S.)
| | - Vivaldo Gomes da Costa
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Gabriela de Lima Menezes
- Núcleo Colaborativo de Biosistemas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (G.d.L.M.); (R.A.d.S.); (M.L.M.)
| | - Roosevelt Alves da Silva
- Núcleo Colaborativo de Biosistemas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (G.d.L.M.); (R.A.d.S.); (M.L.M.)
| | - Gislaine Celestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil; (G.C.D.d.S.); (L.S.)
| | - Marcos Lázaro Moreli
- Núcleo Colaborativo de Biosistemas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (G.d.L.M.); (R.A.d.S.); (M.L.M.)
| | - Livia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil; (G.C.D.d.S.); (L.S.)
| | - Carolina Colombelli Pacca
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
- Instituto Superior de Educação Ceres, Faculdade Faceres, São José do Rio Preto 15090-000, SP, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Sealy Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0610, USA
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil; (G.C.D.d.S.); (L.S.)
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Due to the impact of the COVID-19 pandemic this past year, we have witnessed a significant acceleration in the science, technology, and policy of global health security. This review highlights important progress made toward the mitigation of Zika, Ebola, and COVID-19 outbreaks. These epidemics and their shared features suggest a unified policy and technology agenda that could broadly improve global health security. RECENT FINDINGS Molecular epidemiology is not yet in widespread use, but shows promise toward informing on-the-ground decision-making during outbreaks. Point-of-care (POC) diagnostics have been achieved for each of these threats; however, deployment of Zika and Ebola diagnostics lags behind those for COVID-19. POC metagenomics offers the possibility of identifying novel viruses. Vaccines have been successfully approved for Ebola and COVID-19, due in large part to public-private partnerships and advance purchase commitments. Therapeutics trials conducted during ongoing epidemics have identified effective antibody therapeutics for Ebola, as well as steroids (both inhaled and oral) and a broad-spectrum antiviral for COVID-19. SUMMARY Achieving global health security remains a challenge, though headway has been made over the past years. Promising policy and technology strategies that would increase resilience across emerging viral pathogens should be pursued.
Collapse
Affiliation(s)
| | - Michele Barry
- School of Medicine
- Center for Innovation in Global Health, Stanford University, Stanford, California, USA
| |
Collapse
|
13
|
de Puig H, Lee RA, Najjar D, Tan X, Soeknsen LR, Angenent-Mari NM, Donghia NM, Weckman NE, Ory A, Ng CF, Nguyen PQ, Mao AS, Ferrante TC, Lansberry G, Sallum H, Niemi J, Collins JJ. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. SCIENCE ADVANCES 2021; 7:7/32/eabh2944. [PMID: 34362739 PMCID: PMC8346217 DOI: 10.1126/sciadv.abh2944] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/17/2021] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic highlights the need for diagnostics that can be rapidly adapted and deployed in a variety of settings. Several SARS-CoV-2 variants have shown worrisome effects on vaccine and treatment efficacy, but no current point-of-care (POC) testing modality allows their specific identification. We have developed miSHERLOCK, a low-cost, CRISPR-based POC diagnostic platform that takes unprocessed patient saliva; extracts, purifies, and concentrates viral RNA; performs amplification and detection reactions; and provides fluorescent visual output with only three user actions and 1 hour from sample input to answer out. miSHERLOCK achieves highly sensitive multiplexed detection of SARS-CoV-2 and mutations associated with variants B.1.1.7, B.1.351, and P.1. Our modular system enables easy exchange of assays to address diverse user needs and can be rapidly reconfigured to detect different viruses and variants of concern. An adjunctive smartphone application enables output quantification, automated interpretation, and the possibility of remote, distributed result reporting.
Collapse
Affiliation(s)
- Helena de Puig
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rose A Lee
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Devora Najjar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiao Tan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luis R Soeknsen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Abdul Latif Jameel Clinic for Machine Learning in Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicolaas M Angenent-Mari
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nina M Donghia
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Nicole E Weckman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Audrey Ory
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- College of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Carlos F Ng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Peter Q Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Angelo S Mao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Geoffrey Lansberry
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Hani Sallum
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - James Niemi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Abdul Latif Jameel Clinic for Machine Learning in Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- College of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Köksaldı İÇ, Köse S, Ahan RE, Hacıosmanoğlu N, Şahin Kehribar E, Güngen MA, Baştuğ A, Dinç B, Bodur H, Özkul A, Şeker UÖŞ. SARS-CoV-2 Detection with De Novo-Designed Synthetic Riboregulators. Anal Chem 2021; 93:9719-9727. [PMID: 34192453 PMCID: PMC8265535 DOI: 10.1021/acs.analchem.1c00886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 is a human pathogen and the main cause of COVID-19 disease, announced as a global pandemic by the World Health Organization. COVID-19 is characterized by severe conditions, and early diagnosis can make dramatic changes for both personal and public health. Low-cost, easy-to-use diagnostic capabilities can have a very critical role in controlling the transmission of the disease. Here, we are reporting a state-of-the-art diagnostic tool developed with an in vitro synthetic biology approach by employing engineered de novo riboregulators. Our design coupled with a home-made point-of-care device can detect and report the presence of SARS-CoV-2-specific genes. The presence of SARS-CoV-2-related genes triggers the translation of sfGFP mRNAs, resulting in a green fluorescence output. The approach proposed here has the potential of being a game changer in SARS-CoV-2 diagnostics by providing an easy-to-run, low-cost diagnostic capability.
Collapse
Affiliation(s)
- İlkay Çisil Köksaldı
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Sıla Köse
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Recep Erdem Ahan
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Nedim Hacıosmanoğlu
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Ebru Şahin Kehribar
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Murat Alp Güngen
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Aliye Baştuğ
- Department of Infectious Diseases and Clinical
Microbiology, Health Science University Turkey, Ankara City
Hospital, 06800 Ankara, Turkey
| | - Bedia Dinç
- Department of Infectious Diseases and Clinical
Microbiology, Health Science University Turkey, Ankara City
Hospital, 06800 Ankara, Turkey
| | - Hürrem Bodur
- Department of Infectious Diseases and Clinical
Microbiology, Health Science University Turkey, Ankara City
Hospital, 06800 Ankara, Turkey
| | - Aykut Özkul
- Faculty of Veterinary Medicine, Department of
Virology, Ankara University, 06110 Ankara,
Turkey
- Biotechnology Institute, Ankara
University, 06135 Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| |
Collapse
|
15
|
Marsic T, Ali Z, Tehseen M, Mahas A, Hamdan S, Mahfouz M. Vigilant: An Engineered VirD2-Cas9 Complex for Lateral Flow Assay-Based Detection of SARS-CoV2. NANO LETTERS 2021; 21:3596-3603. [PMID: 33844549 PMCID: PMC8056947 DOI: 10.1021/acs.nanolett.1c00612] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Indexed: 06/01/2023]
Abstract
Rapid, sensitive, and specific point-of-care testing for pathogens is crucial for disease control. Lateral flow assays (LFAs) have been employed for nucleic acid detection, but they have limited sensitivity and specificity. Here, we used a fusion of catalytically inactive SpCas9 endonuclease and VirD2 relaxase for sensitive, specific nucleic acid detection by LFA. In this assay, the target nucleic acid is amplified with biotinylated oligos. VirD2-dCas9 specifically binds the target sequence via dCas9 and covalently binds to a FAM-tagged oligonucleotide via VirD2. The biotin label and FAM tag are detected by a commercially available LFA. We coupled this system, named Vigilant (VirD2-dCas9 guided and LFA-coupled nucleic acid test), to reverse transcription-recombinase polymerase amplification to detect SARS-CoV2 in clinical samples. Vigilant exhibited a limit of detection of 2.5 copies/μL, comparable to CRISPR-based systems, and showed no cross-reactivity with SARS-CoV1 or MERS. Vigilant offers an easy-to-use, rapid, cost-effective, and robust detection platform for SARS-CoV2.
Collapse
Affiliation(s)
- Tin Marsic
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zahir Ali
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ahmed Mahas
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Samir Hamdan
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
16
|
Milhim BHGA, Estofolete CF, da Rocha LC, Liso E, Brienze VMS, Vasilakis N, Terzian ACB, Nogueira ML. Fatal Outcome of Ilheus Virus in the Cerebrospinal Fluid of a Patient Diagnosed with Encephalitis. Viruses 2020; 12:v12090957. [PMID: 32872425 PMCID: PMC7552055 DOI: 10.3390/v12090957] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023] Open
Abstract
Ilheus virus is an arbovirus with the potential for central nervous system involvement. Accurate diagnosis is a challenge due to similar clinical symptoms and serologic cross-reactivity with other flaviviruses. Here, we describe the first documented case of a fatal outcome following the identification of Ilheus virus in the cerebrospinal fluid (CSF) of a patient with cerebral encephalitis in Brazil.
Collapse
Affiliation(s)
- Bruno H. G. A. Milhim
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, 15090-000 São José do Rio Preto, Brazil; (B.H.G.A.M.); (C.F.E.); (L.C.d.R.); (A.C.B.T.)
| | - Cássia F. Estofolete
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, 15090-000 São José do Rio Preto, Brazil; (B.H.G.A.M.); (C.F.E.); (L.C.d.R.); (A.C.B.T.)
| | - Leonardo C. da Rocha
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, 15090-000 São José do Rio Preto, Brazil; (B.H.G.A.M.); (C.F.E.); (L.C.d.R.); (A.C.B.T.)
| | - Elisabete Liso
- Hospital de Base, Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, SP 15090-000 São José do Rio Preto, Brazil; (E.L.); (V.M.S.B.)
| | - Vânia M. S. Brienze
- Hospital de Base, Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, SP 15090-000 São José do Rio Preto, Brazil; (E.L.); (V.M.S.B.)
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA;
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0610, USA
| | - Ana C. B. Terzian
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, 15090-000 São José do Rio Preto, Brazil; (B.H.G.A.M.); (C.F.E.); (L.C.d.R.); (A.C.B.T.)
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, 15090-000 São José do Rio Preto, Brazil; (B.H.G.A.M.); (C.F.E.); (L.C.d.R.); (A.C.B.T.)
- Correspondence: ; Tel.: +55-1798811-0550
| |
Collapse
|