1
|
Raab SA, Pan H, Woodall DW, Hales DA, Sharon EM, Clemmer DE. Laser-Induced Denaturation of Cytochrome c in Electrospray Droplets. Anal Chem 2025; 97:9151-9158. [PMID: 40257962 DOI: 10.1021/acs.analchem.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Structural transitions of the model system cytochrome c (Cyt c) were monitored by ion mobility spectrometry (IMS) and mass spectrometry (MS) paired with two methods to heat proteins: a variable-temperature electrospray ionization (vT-ESI) source to heat the bulk protein solution and a 10.6 μm CO2 laser to rapidly heat ESI droplets containing the protein. Previous evidence from our group suggests that information about time-dependent protein structural transitions can be accessed by irradiating protein droplets of different sizes. In this paper, a new method to control droplet sizes is introduced where the distance between the ESI emitter and laser path is altered to produce larger or smaller droplets, yielding a simple and robust means of accessing different protein unfolding timescales. Herein, increasing the temperature of a solution of Cyt c in water at pH 4 via vT-ESI (from 27 to 80 °C) shifts the distribution of states from a relatively folded ensemble consisting of low charge states to a distribution of elongated structures that are observed as highly charged species. Rapid heating of ESI droplets (containing Cyt c) with a variable-power CO2 laser yields a similar shift in the mass spectra with increasing laser power. To investigate the conformational changes accessible within the lifetime of the heated droplets, four different tip sizes as well as several different distances between the ESI emitter and laser path are studied. Slight changes in droplet size can greatly alter the response of the protein to the laser field. The maximum observable charge state upon laser heating appears to be limited by the size of the ESI droplet prior to entering the laser field. The dependence of these distributions on droplets sizes leads us to propose that laser-induced denaturation in ESI droplets is stopped before an equilibrium distribution of conformers can be reached─providing a means of kinetically trapping ensembles of states. Therefore, we provide a simple correlation between droplet size, percent protein folded, and appropriate experimental distance to suggest a framework for robust studies of protein denaturation in ESI droplets.
Collapse
Affiliation(s)
- Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Hua Pan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Sosnick TR, Baxa MC. Collapse and Protein Folding: Should We Be Surprised That Biothermodynamics Works So Well? Annu Rev Biophys 2025; 54:17-34. [PMID: 39689264 DOI: 10.1146/annurev-biophys-080124-123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A complete understanding of protein function and dynamics requires the characterization of the multiple thermodynamic states, including the denatured state ensemble (DSE). Whereas residual structure in the DSE (as well as in partially folded states) is pertinent in many biological contexts, here we are interested in how such structure affects protein thermodynamics. We examine issues related to chain collapse in light of new developments, focusing on potential complications arising from differences in the DSE's properties under various conditions. Despite some variability in the degree of collapse and structure in the DSE, stability measurements are remarkably consistent between two standard methods, calorimetry and chemical denaturation, as well as with hydrogen-deuterium exchange. This robustness is due in part to the DSEs obtained with different perturbations being thermodynamically equivalent and hence able to serve as a common reference state. An examination of the properties of the DSE points to it as being a highly expanded ensemble with minimal amounts of stable hydrogen bonded structure. These two features are likely to be critical in the broad and successful application of thermodynamics to protein folding. Our review concludes with a discussion of the impact of these findings on folding mechanisms and pathways.
Collapse
Affiliation(s)
- Tobin R Sosnick
- Institute for Biophysical Dynamics and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; ,
| | - Michael C Baxa
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; ,
| |
Collapse
|
3
|
Ka H, Naghinejad M, Amirfiroozy A, Shamsir MS, Parvizpour S, Razmara J. A random forest-based predictive model for classifying BRCA1 missense variants: a novel approach for evaluating the missense mutations effect. J Hum Genet 2025:10.1038/s10038-025-01341-1. [PMID: 40251429 DOI: 10.1038/s10038-025-01341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/31/2024] [Accepted: 04/03/2025] [Indexed: 04/20/2025]
Abstract
The right classification of variants is the key to pre-symptomatic detection of disease and conducting preventive actions. Since BRCA1 has a high incidence and penetrance in breast and ovarian cancers, a high-performance predictive tool can be employed to classify the clinical significance of its variants. Several tools have previously been developed for this purpose which poorly classify the significance in specific cases. The proposed tools commonly assign a score without providing any interpretation behind it. To reach an accurate predictive tool with interpretation abilities, in this study, we propose BRCA1-Forest which works based on random forest as a well-known machine learning technique for making interpretable decisions with high specificity and sensitivity in variants classification. The method involves narrowing down available options until reaching the final decision. To this end, a set of BRCA1 benign and pathogenic missense variants was collected first, and then, the dataset was prepared based on the effect of each variant on the protein sequence. The dataset was enriched by adding physicochemical changes and the conservation score of the amino acid position as pathogenicity criteria. The proposed model was trained based on the dataset to classify the clinical significance of variants. The performance of BRCA1-Forest was compared to four state-of-the-art methods, SIFT, PolyPhen2, CADD, and DANN, in terms of different evaluation metrics including precision, recall, false positive rate (FPR), the area under the receiver operator curve (AUC ROC), the area under the precision-recall curve (AUC-PR), and Mathew correlation coefficient (MCC). The results reveal that the proposed model outperforms the abovementioned tools in all metrics except for recall. The software of BRCA1-Forest is available at https://github.com/HamedKAAC/BRCA1Forest .
Collapse
Affiliation(s)
- Hamed Ka
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran
| | - Maryam Naghinejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Razmara
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Wilson CAM, Corrêa CG. On the free energy of protein folding in optical tweezers experiments. Biophys Rev 2025; 17:231-245. [PMID: 40376413 PMCID: PMC12075763 DOI: 10.1007/s12551-025-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/24/2025] [Indexed: 05/18/2025] Open
Abstract
Free energy is a critical parameter in understanding the equilibrium in chemical reactions. It enables us to determine the equilibrium proportion between the different species in the reaction and to predict in which direction the reaction will proceed if a change is performed in the system. Historically, to calculate this value, bulk experiments were performed where a parameter was altered at a gradual rate to change the population until a new equilibrium was established. In protein folding studies, it is common to vary the temperature or chaotropic agents in order to change the population and then to extrapolate to physiological conditions. Such experiments were time-consuming due to the necessity of ensuring equilibrium and reversibility. Techniques of single-molecule manipulation, such as optical/magnetic tweezers and atomic force microscopy, permit the direct measurement of the work performed by a protein undergoing unfolding/refolding at particular forces. Also, with the development of non-equilibrium free energy theorems (Jarzynski equality, Crooks fluctuation theorem, Bennett acceptance ratio, and overlapping method), it is possible to obtain free energy values in experiments far from equilibrium. This review compares different methodologies and their application in optical tweezers. Interestingly, in many proteins, discrepancies in free energy values obtained through different methods suggest additional complexities in the folding pathway, possibly involving intermediate states such as the molten globule. Further studies are needed to confirm their presence and significance. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-025-01310-0.
Collapse
Affiliation(s)
- Christian A. M. Wilson
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Camila G. Corrêa
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Science, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
5
|
Stofella M, Seetaloo N, St John AN, Paci E, Phillips JJ, Sobott F. Recalibrating Protection Factors Using Millisecond Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 2025; 97:2648-2657. [PMID: 39879324 PMCID: PMC11822740 DOI: 10.1021/acs.analchem.4c03631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a powerful technique to interrogate protein structure and dynamics. With the ability to study almost any protein without a size limit, including intrinsically disordered ones, HDX-MS has shown fast growing importance as a complement to structural elucidation techniques. Current experiments compare two or more related conditions (sequences, interaction partners, excipients, conformational states, etc.) to determine statistically significant differences at a number of fixed time points and highlight areas of changed structural dynamics in the protein. The work presented here builds on the fundamental research performed in the early days of the technique and re-examines exchange rate calculations with the aim of establishing HDX-MS as an absolute and quantitative, rather than relative and qualitative, measurement. We performed millisecond HDX-MS experiments on a mixture of three unstructured peptides (angiotensin, bradykinin, and atrial natriuretic peptide amide rat) and compared experimental deuterium uptake curves with theoretical ones predicted using established exchange rate calculations. With poly-dl-alanine (PDLA) commonly used as a reference,, we find that experimental rates are sometimes faster than theoretically possible, while they agree much better, and are never faster, with the fully unstructured trialanine peptide (3-Ala). Molecular dynamics (MD) simulations confirm the high helical propensity of the longer and partially structured PDLA peptides, which need as few as 15 residues to form a stable helix and are therefore not suitable as an unstructured reference. Reanalysis of previously published data by Weis et al. at 100 mM NaCl however still shows a discrepancy with predictions based on 3-Ala in the absence of salt, highlighting the need for a better understanding of salt effects on exchange rates. Such currently unquantifiable salt effects prevent us from proposing a comprehensive, universal calibration framework at the moment. Nevertheless, an accurate recalibration of intrinsic exchange rate calculations is crucial to enable kinetic modeling of the exchange process and to ultimately allow HDX-MS to move toward a direct link with atomistic structural models.
Collapse
Affiliation(s)
- Michele Stofella
- School
of Molecular and Cellular Biology and Astbury Centre, University of Leeds, Leeds LS2 9JT, U.K.
| | - Neeleema Seetaloo
- School
of Molecular and Cellular Biology and Astbury Centre, University of Leeds, Leeds LS2 9JT, U.K.
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, U.K.
- Department
of Biosciences, University of Exeter, Exeter EX4 4QD, U.K.
| | - Alexander N. St John
- School
of Molecular and Cellular Biology and Astbury Centre, University of Leeds, Leeds LS2 9JT, U.K.
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Università
di Bologna, Bologna 40127, Italy
| | - Jonathan J. Phillips
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, U.K.
- Department
of Biosciences, University of Exeter, Exeter EX4 4QD, U.K.
| | - Frank Sobott
- School
of Molecular and Cellular Biology and Astbury Centre, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
6
|
Walters BT, Patapoff AW, Kiefer JA, Wu P, Wang W. Integrating Hydrogen Exchange with Molecular Dynamics for Improved Ligand Binding Predictions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632795. [PMID: 39868224 PMCID: PMC11761012 DOI: 10.1101/2025.01.13.632795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
We introduce Hydrogen-Exchange Experimental Structure Prediction (HX-ESP), a method that integrates hydrogen exchange (HX) data with molecular dynamics (MD) simulations to accurately predict ligand binding modes, even for targets requiring significant conformational changes. Benchmarking HX-ESP by fitting two ligands to PAK1 and four ligands to MAP4K1 (HPK1), and comparing the results to X-ray crystallography structures, demonstrated that HX-ESP successfully identified binding modes across a range of affinities significantly outperforming flexible docking for ligands necessitating large conformational adjustments. By objectively guiding simulations with experimental HX data, HX-ESP overcomes the long timescales required for binding predictions using traditional MD. This advancement promises to enhance the accuracy of computational modeling in drug discovery, potentially accelerating the development of effective therapeutics.
Collapse
|
7
|
Stofella M, Grimaldi A, Smit JH, Claesen J, Paci E, Sobott F. Computational Tools for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Chem Rev 2024; 124:12242-12263. [PMID: 39481095 PMCID: PMC11565574 DOI: 10.1021/acs.chemrev.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Hydrogen-deuterium exchange (HDX) has become a pivotal method for investigating the structural and dynamic properties of proteins. The versatility and sensitivity of mass spectrometry (MS) made the technique the ideal companion for HDX, and today HDX-MS is addressing a growing number of applications in both academic research and industrial settings. The prolific generation of experimental data has spurred the concurrent development of numerous computational tools, designed to automate parts of the workflow while employing different strategies to achieve common objectives. Various computational methods are available to perform automated peptide searches and identification; different statistical tests have been implemented to quantify differences in the exchange pattern between two or more experimental conditions; alternative strategies have been developed to deconvolve and analyze peptides showing multimodal behavior; and different algorithms have been proposed to computationally increase the resolution of HDX-MS data, with the ultimate aim to provide information at the level of the single residue. This review delves into a comprehensive examination of the merits and drawbacks associated with the diverse strategies implemented by software tools for the analysis of HDX-MS data.
Collapse
Affiliation(s)
- Michele Stofella
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury
Centre for Structural Molecular Biology, University of Leeds, LS2
9JT Leeds, United
Kingdom
| | - Antonio Grimaldi
- Dipartimento
di Fisica e Astronomia, Universita’
di Bologna, 40127 Bologna, Italy
| | - Jochem H. Smit
- Department
of Microbiology and Immunology, Rega Institute for Medical Research,
Laboratory of Molecular Bacteriology, KU
Leuven, 3000 Leuven, Belgium
| | - Jürgen Claesen
- Epidemiology
and Data Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Universita’
di Bologna, 40127 Bologna, Italy
| | - Frank Sobott
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury
Centre for Structural Molecular Biology, University of Leeds, LS2
9JT Leeds, United
Kingdom
| |
Collapse
|
8
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024; 23:100853. [PMID: 39383946 PMCID: PMC11570944 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Kawashima F, Okutsu K, Kohno JY. Hydrogen/Deuterium Exchange Reaction Rate of Cytochrome c Determined by Droplet Collision Atmospheric Pressure Infrared Laser Ablation Mass Spectrometry. J Phys Chem A 2024; 128:7208-7213. [PMID: 39141611 DOI: 10.1021/acs.jpca.4c03597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The hydrogen/deuterium (H/D) exchange rate is an optimal measure for studying the structures and dynamics of hydrogen bonding systems, as it reflects the molecular contact environment and the strength of the hydrogen bonds. A method for rapid measurement of the H/D exchange reaction rates is required to examine the intermolecular environments of molecules in solutions. We developed a droplet collision atmospheric pressure infrared laser ablation mass spectrometry technique for this purpose. We obtained the H/D exchange reaction rate of cytochrome c in a methanol/H2O·D2O solution. We revealed that the first hydration shell of the cytochrome c molecule hinders the penetration of D2O to the surface of the molecule from the rates, which provides a novel method to investigate solution structures by a mass-spectrometric method. The droplet-collision mass spectrometry method developed in the present study can be extended to research on the molecular interactions in solutions, such as the mutual interactions of protein molecules, which are of importance in living cells.
Collapse
Affiliation(s)
- Fusae Kawashima
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kenichi Okutsu
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-Ya Kohno
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
10
|
Abstract
How did specific useful protein sequences arise from simpler molecules at the origin of life? This seemingly needle-in-a-haystack problem has remarkably close resemblance to the old Protein Folding Problem, for which the solution is now known from statistical physics. Based on the logic that Origins must have come only after there was an operative evolution mechanism-which selects on phenotype, not genotype-we give a perspective that proteins and their folding processes are likely to have been the primary driver of the early stages of the origin of life.
Collapse
Affiliation(s)
- Charles D. Kocher
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY11794
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
| |
Collapse
|
11
|
Renawala HK, Chandrababu KB, Smith KJ, D'Addio SM, Topp EM. A Model Study to Assess Fibrillation and Product Stability to Support Peptide Drug Design. Mol Pharm 2024; 21:2223-2237. [PMID: 38552144 DOI: 10.1021/acs.molpharmaceut.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The fibrillation of therapeutic peptides can present significant quality concerns and poses challenges for manufacturing and storage. A fundamental understanding of the mechanisms of fibrillation is critical for the rational design of fibrillation-resistant peptide drugs and can accelerate product development by guiding the selection of solution-stable candidates and formulations. The studies reported here investigated the effects of structural modifications on the fibrillation of a 29-residue peptide (PepA) and two sequence modified variants (PepB, PepC). The C-terminus of PepA was amidated, whereas both PepB and PepC retained the carboxylate, and Ser16 in PepA and PepB was substituted with a helix-stabilizing residue, α-aminoisobutyric acid (Aib), in PepC. In thermal denaturation studies by far-UV CD spectroscopy and fibrillation kinetic studies by fluorescence and turbidity measurements, PepA and PepB showed heat-induced conformational changes and were found to form fibrils, whereas PepC did not fibrillate and showed only minor changes in the CD signal. Pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed a high degree of protection from HD exchange in mature PepA fibrils and its proteolytic fragments, indicating that most of the sequence had been incorporated into the fibril structure and occurred nearly simultaneously throughout the sequence. The effects of the net peptide charge and formulation pH on fibrillation kinetics were investigated. In real-time stability studies of two formulations of PepA at pH's 7.4 and 8.0, analytical methods detected significant changes in the stability of the formulations at different time points during the study, which were not observed during accelerated studies. Additionally, PepA samples were withdrawn from real-time stability and subjected to additional stress (40 °C, continuous shaking) to induce fibrillation; an approach that successfully amplified oligomers or prefibrillar species previously undetected in a thioflavin T assay. Taken together, these studies present an approach to differentiate and characterize fibrillation risk in structurally related peptides under accelerated and real-time conditions, providing a model for rapid, iterative structural design to optimize the stability of therapeutic peptides.
Collapse
Affiliation(s)
- Harshil K Renawala
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karthik B Chandrababu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Katelyn J Smith
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Suzanne M D'Addio
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Elizabeth M Topp
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- National Institute for Bioprocessing Research and Training, Belfield, Blackrock, Co. Dublin A94 X099, Ireland
| |
Collapse
|
12
|
Thomas S, Schulz AM, Leong JM, Zeczycki TN, Garcia BL. The molecular determinants of classical pathway complement inhibition by OspEF-related proteins of Borrelia burgdorferi. J Biol Chem 2024; 300:107236. [PMID: 38552741 PMCID: PMC11066524 DOI: 10.1016/j.jbc.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.
Collapse
Affiliation(s)
- Sheila Thomas
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Anna M Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Tonya N Zeczycki
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
13
|
Bhatia S, Udgaonkar JB. Understanding the heterogeneity intrinsic to protein folding. Curr Opin Struct Biol 2024; 84:102738. [PMID: 38041993 DOI: 10.1016/j.sbi.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023]
Abstract
Relating the native fold of a protein to its amino acid sequence remains a fundamental problem in biology. While computer algorithms have demonstrated recently their prowess in predicting what structure a particular amino acid sequence will fold to, an understanding of how and why a specific protein fold is achieved remains elusive. A major challenge is to define the role of conformational heterogeneity during protein folding. Recent experimental studies, utilizing time-resolved FRET, hydrogen-exchange coupled to mass spectrometry, and single-molecule force spectroscopy, often in conjunction with simulation, have begun to reveal how conformational heterogeneity evolves during folding, and whether an intermediate ensemble of defined free energy consists of different sub-populations of molecules that may differ significantly in conformation, energy and entropy.
Collapse
Affiliation(s)
- Sandhya Bhatia
- Department of Biophysics, Howard Hughes Medical Institute UT Southwestern Medical Center, Dallas 75390, United States. https://twitter.com/Sandhyabhatia_5
| | - Jayant B Udgaonkar
- Department of Biology, Indian Institute of Science Education and Research Pune, Pashan, Pune 41008, India.
| |
Collapse
|
14
|
Casier R, Duhamel J. Appraisal of blob-Based Approaches in the Prediction of Protein Folding Times. J Phys Chem B 2023; 127:8852-8859. [PMID: 37793094 DOI: 10.1021/acs.jpcb.3c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
A series of reports published in the last 3 years has illustrated that a blob-based model (BBM) can predict the folding time of proteins from their primary amino acid (aa) sequence based on three simple rules established to characterize the long-range backbone dynamics (LRBD) of racemic polypeptides. The sole use of LRBD to predict protein folding times with the BBM represents a radical departure from all other prediction methods currently applied to determine protein folding times, which rely instead on parameters such as the structure content, folding kinetics, chain length, amino acid properties, or contact topography of proteins. Furthermore, the built-in modularity of the BBM enables the parametrization and inclusion of new phenomena affecting the LRBD of polypeptides, while its conceptual simplicity makes it an interesting new mathematical tool for studying protein folding. However, its novelty implies that its relationship with many other methods used to predict protein folding times has not been well researched. Consequently, the purpose of this report is to uncover the physical phenomena encountered during protein folding that are best described by the BBM through the identification of parameters that have been recognized over the years as being strong predictors for protein folding, such as protein size, topology, structural class, and folding kinetics. This was accomplished by determining the parameters most strongly correlated with the folding times predicted by the BBM. While the BBM in its present form appears to be a good indicator of the folding times of the vast majority of the 195 proteins considered so far, this report finds that it excels for moderately large proteins that are primarily composed of locally formed structural motifs such as α-helices or for proteins that fold in multiple steps. Altogether, these observations based on the use of the BBM support the notion that proteins fold the way they do because the LRBD of polypeptides is mostly driven by the local interactions experienced between aa's within reach of one another.
Collapse
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
15
|
Nakama T, Rossen A, Ebihara R, Yagi-Utsumi M, Fujita D, Kato K, Sato S, Fujita M. Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages. Chem Sci 2023; 14:2910-2914. [PMID: 36937586 PMCID: PMC10016334 DOI: 10.1039/d2sc05879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Confinement of molecules in a synthetic host can physically isolate even their unstable temporary structures, which has potential for application to protein transient structure analysis. Here we report the NMR snapshot observation of protein unfolding and refolding processes by confining a target protein in a self-assembled coordination cage. With increasing acetonitrile content in CD3CN/H2O media (50 to 90 vol%), the folding structure of a protein sharply denatured at 83 vol%, clearly revealing the regions of initial unfolding. Unfavorable aggregation of the protein leading to irreversible precipitation is completely prevented because of the spatial isolation of the single protein molecule in the cage. When the acetonitrile content reversed (84 to 70 vol%), the once-denatured protein started to regain its original folded structure at 80 vol%, showing that the protein folding/unfolding process can be referred to as a phase transition with hysteresis behavior.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Anouk Rossen
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Risa Ebihara
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Maho Yagi-Utsumi
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Daishi Fujita
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Koichi Kato
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Sota Sato
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| |
Collapse
|
16
|
Yanaka S, Yagi-Utsumi M, Kato K, Kuwajima K. The B domain of protein A retains residual structures in 6 M guanidinium chloride as revealed by hydrogen/deuterium-exchange NMR spectroscopy. Protein Sci 2023; 32:e4569. [PMID: 36659853 PMCID: PMC9926473 DOI: 10.1002/pro.4569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
The characterization of residual structures persistent in unfolded proteins is an important issue in studies of protein folding, because the residual structures present, if any, may form a folding initiation site and guide the subsequent folding reactions. Here, we studied the residual structures of the isolated B domain (BDPA) of staphylococcal protein A in 6 M guanidinium chloride. BDPA is a small three-helix-bundle protein, and until recently its folding/unfolding reaction has been treated as a simple two-state process between the native and the fully unfolded states. We employed a dimethylsulfoxide (DMSO)-quenched hydrogen/deuterium (H/D)-exchange 2D NMR techniques with the use of spin desalting columns, which allowed us to investigate the H/D-exchange behavior of individually identified peptide amide (NH) protons. We obtained H/D-exchange protection factors of the 21 NH protons that form an α-helical hydrogen bond in the native structure, and the majority of these NH protons were significantly protected with a protection factor of 2.0-5.2 in 6 M guanidinium chloride, strongly suggesting that these weakly protected NH protons form much stronger hydrogen bonds under native folding conditions. The results can be used to deduce the structure of an early folding intermediate, when such an intermediate is shown by other methods. Among three native helical regions, the third helix in the C-terminal side was highly protected and stabilized by side-chain salt bridges, probably acting as the folding initiation site of BDPA. The present results are discussed in relation to previous experimental and computational findings on the folding mechanisms of BDPA.
Collapse
Affiliation(s)
- Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Aichi, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Aichi, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Aichi, Japan
| | - Kunihiro Kuwajima
- Department of Physics, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
17
|
Wand AJ. Deep mining of the protein energy landscape. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:020901. [PMID: 37124940 PMCID: PMC10147411 DOI: 10.1063/4.0000180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
For over half a century, it has been known that protein molecules naturally undergo extensive structural fluctuations, and that these internal motions are intimately related to their functional properties. The energy landscape view has provided a powerful framework for describing the various physical states that proteins visit during their lifetimes. This Perspective focuses on the commonly neglected and often disparaged axis of the protein energy landscape: entropy. Initially seen largely as a barrier to functionally relevant states of protein molecules, it has recently become clear that proteins retain considerable conformational entropy in the "native" state, and that this entropy can and often does contribute significantly to the free energy of fundamental protein properties, processes, and functions. NMR spectroscopy, molecular dynamics simulations, and emerging crystallographic views have matured in parallel to illuminate dynamic disorder of the "ground state" of proteins and their importance in not only transiting between biologically interesting structures but also greatly influencing their stability, cooperativity, and contribution to critical properties such as allostery.
Collapse
|
18
|
Renawala HK, Topp EM. Fibrillation of human insulin B-chain by pulsed hydrogen-deuterium exchange mass spectrometry. Biophys J 2022; 121:4505-4516. [PMID: 36325616 PMCID: PMC9748358 DOI: 10.1016/j.bpj.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/15/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin forms amyloid fibrils under slightly destabilizing conditions, and B-chain residues are thought to play an important role in insulin fibrillation. Here, pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS), far-UV circular dichroism spectroscopy, thioflavin T (ThioT) fluorescence, turbidity, and soluble fraction measurements were used to monitor the kinetics and mechanisms of fibrillation of human insulin B-chain (INSB) in acidic solution (1 mg/mL, pH 4.5) under stressed conditions (40°C, continuous shaking). Initially, INSB rapidly formed β-sheet-rich oligomers that were protected from HD exchange and showed weak ThioT binding. Subsequent fibril growth and maturation was accompanied by even greater protection from HD exchange and stronger ThioT binding. With peptic digestion of deuterated INSB, HDX-MS suggested early involvement of the N-terminal (1-11, 1-15) and central (12-15, 16-25) fragments in fibril-forming interactions, whereas the C-terminal fragment (25-30) showed limited involvement. The results provide mechanistic understanding of the intermolecular interactions and structural changes during INSB fibrillation under stressed conditions and demonstrate the application of pulsed HDX-MS to probe peptide fibrillation.
Collapse
Affiliation(s)
- Harshil K Renawala
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Elizabeth M Topp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana; National Institute for Bioprocessing Research and Training, Dublin, Ireland.
| |
Collapse
|
19
|
Smets D, Tsirigotaki A, Smit JH, Krishnamurthy S, Portaliou AG, Vorobieva A, Vranken W, Karamanou S, Economou A. Evolutionary adaptation of the protein folding pathway for secretability. EMBO J 2022; 41:e111344. [PMID: 36031863 PMCID: PMC9713715 DOI: 10.15252/embj.2022111344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 01/15/2023] Open
Abstract
Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen-deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a β-turn in the earliest foldon and by signal peptide-mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.
Collapse
Affiliation(s)
- Dries Smets
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Alexandra Tsirigotaki
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Jochem H Smit
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Srinath Krishnamurthy
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Athina G Portaliou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassia Vorobieva
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Wim Vranken
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Interuniversity Institute of Bioinformatics in BrusselsFree University of BrusselsBrusselsBelgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| |
Collapse
|
20
|
In vitro investigation of protein assembly by combined microscopy and infrared spectroscopy at the nanometer scale. Proc Natl Acad Sci U S A 2022; 119:e2200019119. [PMID: 35914130 PMCID: PMC9371722 DOI: 10.1073/pnas.2200019119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nanoscale structure and dynamics of proteins on surfaces has been extensively studied using various imaging techniques, such as transmission electron microscopy and atomic force microscopy (AFM) in liquid environments. These powerful imaging techniques, however, can potentially damage or perturb delicate biological material and do not provide chemical information, which prevents a fundamental understanding of the dynamic processes underlying their evolution under physiological conditions. Here, we use a platform developed in our laboratory that enables acquisition of infrared (IR) spectroscopy and AFM images of biological material in physiological liquids with nanometer resolution in a cell closed by atomically thin graphene membranes transparent to IR photons. In this work, we studied the self-assembly process of S-layer proteins at the graphene-aqueous solution interface. The graphene acts also as the membrane separating the solution containing the proteins and Ca2+ ions from the AFM tip, thus eliminating sample damage and contamination effects. The formation of S-layer protein lattices and their structural evolution was monitored by AFM and by recording the amide I and II IR absorption bands, which reveal the noncovalent interaction between proteins and their response to the environment, including ionic strength and solvation. Our measurement platform opens unique opportunities to study biological material and soft materials in general.
Collapse
|
21
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
22
|
Frederick AK, Thompson SL, Vakharia ZM, Cherney MM, Lei H, Evenson G, Bowler BE. Effect on intrinsic peroxidase activity of substituting coevolved residues from Ω-loop C of human cytochrome c into yeast iso-1-cytochrome c. J Inorg Biochem 2022; 232:111819. [PMID: 35428021 PMCID: PMC9162143 DOI: 10.1016/j.jinorgbio.2022.111819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 11/15/2022]
Abstract
Naturally-occurring variants of human cytochrome c (Cytc) that induce thrombocytopenia IV occur within Ω-loop C (residues 40-57). These variants enhance the peroxidase activity of human Cytc apparently by facilitating access to the heme by destabilizing Ω-loops C and D (residues 70-85). Given the importance of peroxidase activity in the early stages of apoptosis, we identified three sites with the EVmutation algorithm in or near Ω-loop C that coevolve and differ between yeast iso-1-Cytc and human Cytc. We prepared iso-1-Cytc variants with all possible combinations of the S40T, V57I and N63T substitutions to determine if these residues decrease the peroxidase activity of iso-1-Cytc to that of human Cytc producing an effective off state for a peroxidase signaling switch. At pH 6 and above, all variants significantly decreased peroxidase activity. However, the correlation of peroxidase activity with local and global stability, expected if cooperative unfolding of Ω-loops C and D is required for peroxidase activity, was generally poor. The m-values derived from the guanidine hydrochloride dependence of the kinetics of imidazole binding to horse Cytc, which is well-characterized by native-state hydrogen exchange methods, and K72A/K73A/K79A iso-1-Cytc show that local structural fluctuations and not subglobal cooperative unfolding of Ω-loops C and D are sufficient to permit binding of a small molecule like peroxide to the heme. A 2.46 Å structure of N63T iso-1-Cytc identifies a change to a hydrogen bond network linking Ω-loops C and D that could modulate the local fluctuations needed for the intrinsic peroxidase activity of Cytc.
Collapse
Affiliation(s)
- Ariel K Frederick
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Sidney L Thompson
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Zahra M Vakharia
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Melisa M Cherney
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Haotian Lei
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Garrett Evenson
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Bruce E Bowler
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
23
|
Kuwajima K, Yagi-Utsumi M, Yanaka S, Kato K. DMSO-Quenched H/D-Exchange 2D NMR Spectroscopy and Its Applications in Protein Science. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123748. [PMID: 35744871 PMCID: PMC9230524 DOI: 10.3390/molecules27123748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Hydrogen/deuterium (H/D) exchange combined with two-dimensional (2D) NMR spectroscopy has been widely used for studying the structure, stability, and dynamics of proteins. When we apply the H/D-exchange method to investigate non-native states of proteins such as equilibrium and kinetic folding intermediates, H/D-exchange quenching techniques are indispensable, because the exchange reaction is usually too fast to follow by 2D NMR. In this article, we will describe the dimethylsulfoxide (DMSO)-quenched H/D-exchange method and its applications in protein science. In this method, the H/D-exchange buffer is replaced by an aprotic DMSO solution, which quenches the exchange reaction. We have improved the DMSO-quenched method by using spin desalting columns, which are used for medium exchange from the H/D-exchange buffer to the DMSO solution. This improvement has allowed us to monitor the H/D exchange of proteins at a high concentration of salts or denaturants. We describe methodological details of the improved DMSO-quenched method and present a case study using the improved method on the H/D-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride.
Collapse
Affiliation(s)
- Kunihiro Kuwajima
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence: (K.K.); (K.K.)
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
- Correspondence: (K.K.); (K.K.)
| |
Collapse
|
24
|
Stofella M, Skinner SP, Sobott F, Houwing-Duistermaat J, Paci E. High-Resolution Hydrogen-Deuterium Protection Factors from Sparse Mass Spectrometry Data Validated by Nuclear Magnetic Resonance Measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:813-822. [PMID: 35385652 PMCID: PMC9074100 DOI: 10.1021/jasms.2c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Experimental measurement of time-dependent spontaneous exchange of amide protons with deuterium of the solvent provides information on the structure and dynamical structural variation in proteins. Two experimental techniques are used to probe the exchange: NMR, which relies on different magnetic properties of hydrogen and deuterium, and MS, which exploits the change in mass due to deuteration. NMR provides residue-specific information, that is, the rate of exchange or, analogously, the protection factor (i.e., the unitless ratio between the rate of exchange for a completely unstructured state and the observed rate). MS provides information that is specific to peptides obtained by proteolytic digestion. The spatial resolution of HDX-MS measurements depends on the proteolytic pattern of the protein, the fragmentation method used, and the overlap between peptides. Different computational approaches have been proposed to extract residue-specific information from peptide-level HDX-MS measurements. Here, we demonstrate the advantages of a method recently proposed that exploits self-consistency and classifies the possible sets of protection factors into a finite number of alternative solutions compatible with experimental data. The degeneracy of the solutions can be reduced (or completely removed) by exploiting the additional information encoded in the shape of the isotopic envelopes. We show how sparse and noisy MS data can provide high-resolution protection factors that correlate with NMR measurements probing the same protein under the same conditions.
Collapse
Affiliation(s)
- Michele Stofella
- School
of Molecular and Cellular Biology, University
of Leeds, LS2 9JT Leeds, United Kingdom
- Dipartimento
di Fisica e Astronomia, Università
di Bologna, 40127 Bologna, Italy
| | - Simon P. Skinner
- School
of Molecular and Cellular Biology, University
of Leeds, LS2 9JT Leeds, United Kingdom
| | - Frank Sobott
- School
of Molecular and Cellular Biology, University
of Leeds, LS2 9JT Leeds, United Kingdom
| | | | - Emanuele Paci
- School
of Molecular and Cellular Biology, University
of Leeds, LS2 9JT Leeds, United Kingdom
- Dipartimento
di Fisica e Astronomia, Università
di Bologna, 40127 Bologna, Italy
- (E.P.)
| |
Collapse
|
25
|
Gamage CLD, Weis DD, Walters BT. Identification of Agitation-induced Unfolding Events Causing Aggregation of Monoclonal Antibodies Using Hydrogen Exchange-Mass Spectrometry. J Pharm Sci 2022; 111:2210-2216. [DOI: 10.1016/j.xphs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
26
|
A Maximum Caliber analysis of the Foldon Hypothesis. Proteins 2022; 90:1170-1178. [DOI: 10.1002/prot.26299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 01/28/2023]
|
27
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
28
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
29
|
Devaurs D, Antunes DA, Borysik AJ. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:215-237. [PMID: 35077179 DOI: 10.1021/jasms.1c00328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.
Collapse
Affiliation(s)
- Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77005, United States
| | - Antoni J Borysik
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
30
|
Laganowsky A, Clemmer DE, Russell DH. Variable-Temperature Native Mass Spectrometry for Studies of Protein Folding, Stabilities, Assembly, and Molecular Interactions. Annu Rev Biophys 2021; 51:63-77. [PMID: 34932911 PMCID: PMC9086101 DOI: 10.1146/annurev-biophys-102221-101121] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structures and conformational dynamics of proteins, protein complexes, and their noncovalent interactions with other molecules are controlled specifically by the Gibbs free energy (entropy and enthalpy) of the system. For some organisms, temperature is highly regulated, but the majority of biophysical studies are carried out at room, nonphysiological temperature. In this review, we describe variable-temperature electrospray ionization (vT-ESI) mass spectrometry (MS)-based studies with unparalleled sensitivity, dynamic range, and selectivity for studies of both cold- and heat-induced chemical processes. Such studies provide direct determinations of stabilities, reactivities, and thermodynamic measurements for native and non-native structures of proteins and protein complexes and for protein-ligand interactions. Highlighted in this review are vT-ESI-MS studies that reveal 40 different conformers of chymotrypsin inhibitor 2, a classic two-state (native → unfolded) unfolder, and thermochemistry for a model membrane protein system binding lipid and its regulatory protein. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; ,
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; ,
| |
Collapse
|
31
|
Ng YK, Tajoddin NN, Scrosati PM, Konermann L. Mechanism of Thermal Protein Aggregation: Experiments and Molecular Dynamics Simulations on the High-Temperature Behavior of Myoglobin. J Phys Chem B 2021; 125:13099-13110. [PMID: 34808050 DOI: 10.1021/acs.jpcb.1c07210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Proteins that encounter unfavorable solvent conditions are prone to aggregation, a phenomenon that remains poorly understood. This work focuses on myoglobin (Mb) as a model protein. Upon heating, Mb produces amorphous aggregates. Thermal unfolding experiments at low concentration (where aggregation is negligible), along with centrifugation assays, imply that Mb aggregation proceeds via globally unfolded conformers. This contrasts studies on other proteins that emphasized the role of partially folded structures as aggregate precursors. Molecular dynamics (MD) simulations were performed to gain insights into the mechanism by which heat-unfolded Mb molecules associate with one another. A prerequisite for these simulations was the development of a method for generating monomeric starting structures. Periodic boundary condition artifacts necessitated the implementation of a partially immobilized water layer lining the walls of the simulation box. Aggregation simulations were performed at 370 K to track the assembly of monomeric Mb into pentameric species. Binding events were preceded by multiple unsuccessful encounters. Even after association, protein-protein contacts remained in flux. Binding was mediated by hydrophobic contacts, along with salt bridges that involved hydrophobically embedded Lys residues. Overall, this work illustrates that atomistic MD simulations are well suited for garnering insights into protein aggregation mechanisms.
Collapse
Affiliation(s)
- Yuen Ki Ng
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nastaran N Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
32
|
Scrosati PM, Yin V, Konermann L. Hydrogen/Deuterium Exchange Measurements May Provide an Incomplete View of Protein Dynamics: a Case Study on Cytochrome c. Anal Chem 2021; 93:14121-14129. [PMID: 34644496 DOI: 10.1021/acs.analchem.1c02471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many aspects of protein function rely on conformational fluctuations. Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) provides a window into these dynamics. Despite the widespread use of HDX-MS, it remains unclear whether this technique provides a truly comprehensive view of protein dynamics. HDX is mediated by H-bond-opening/closing events, implying that HDX methods provide an H-bond-centric view. This raises the question if there could be fluctuations that leave the H-bond network unaffected, thereby rendering them undetectable by HDX-MS. We explore this issue in experiments on cytochrome c (cyt c). Compared to the Fe(II) protein, Fe(III) cyt c shows enhanced deuteration on both the distal and proximal sides of the heme. Previous studies have attributed the enhanced dynamics of Fe(III) cyt c to the facile and reversible rupture of the distal M80-Fe(III) bond. Using molecular dynamics (MD) simulations, we conducted a detailed analysis of various cyt c conformers. Our MD data confirm that rupture of the M80-Fe(III) contact triggers major reorientation of the distal Ω loop. Surprisingly, this event takes place with only miniscule H-bonding alterations. In other words, the distal loop dynamics are almost "HDX-silent". Moreover, distal loop movements cannot account for enhanced dynamics on the opposite (proximal) side of the heme. Instead, enhanced deuteration of Fe(III) cyt c is attributed to sparsely populated conformers where both the distal (M80) and proximal (H18) coordination bonds have been ruptured, along with opening of numerous H-bonds on both sides of the heme. We conclude that there can be major structural fluctuations that are only weakly coupled to changes in H-bonding, making them virtually impossible to track by HDX-MS. In such cases, HDX-MS may provide an incomplete view of protein dynamics.
Collapse
Affiliation(s)
- Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Victor Yin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
33
|
Komar AA. A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell. BIOCHEMISTRY (MOSCOW) 2021; 86:976-991. [PMID: 34488574 DOI: 10.1134/s0006297921080083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic code sets the correspondence between the sequence of a given nucleotide triplet in an mRNA molecule, called a codon, and the amino acid that is added to the growing polypeptide chain during protein synthesis. With four bases (A, G, U, and C), there are 64 possible triplet codons: 61 sense codons (encoding amino acids) and 3 nonsense codons (so-called, stop codons that define termination of translation). In most organisms, there are 20 common/standard amino acids used in protein synthesis; thus, the genetic code is redundant with most amino acids (with the exception of Met and Trp) are being encoded by more than one (synonymous) codon. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in mRNA suggested that the specific codon choice might have functional implications beyond coding for amino acid. Observation of nonequivalent use of codons in mRNAs implied a possibility of the existence of auxiliary information in the genetic code. Indeed, it has been found that genetic code contains several layers of such additional information and that synonymous codons are strategically placed within mRNAs to ensure a particular translation kinetics facilitating and fine-tuning co-translational protein folding in the cell via step-wise/sequential structuring of distinct regions of the polypeptide chain emerging from the ribosome at different points in time. This review summarizes key findings in the field that have identified the role of synonymous codons and their usage in protein folding in the cell.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA. .,Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,DAPCEL, Inc., Cleveland, OH 44106, USA
| |
Collapse
|
34
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
35
|
Dass R, Corlianò E, Mulder FAA. The contribution of electrostatics to hydrogen exchange in the unfolded protein state. Biophys J 2021; 120:4107-4114. [PMID: 34370996 PMCID: PMC8510857 DOI: 10.1016/j.bpj.2021.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/20/2021] [Accepted: 08/03/2021] [Indexed: 12/03/2022] Open
Abstract
Although electrostatics have long been recognized to play an important role in hydrogen exchange (HX) with solvent, the quantitative assessment of its magnitude in the unfolded state has hitherto been lacking. This limits the utility of HX as a quantitative method to study protein stability, folding, and dynamics. Using the intrinsically disordered human protein α-synuclein as a proxy for the unfolded state, we show that a hybrid mean-field approach can effectively compute the electrostatic potential at all backbone amide positions along the chain. From the electrochemical potential, a fourfold reduction in hydroxide concentration near the protein backbone is predicted for the C-terminal domain, a prognosis that is in direct agreement with experimentally derived protection factors from NMR spectroscopy. Thus, impeded HX for the C-terminal region of α-synuclein is not the result of intramolecular hydrogen bonding and/or structure formation.
Collapse
Affiliation(s)
- Rupashree Dass
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Enrico Corlianò
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Frans A A Mulder
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
36
|
Baldwin Q, Panagiotou E. The local topological free energy of proteins. J Theor Biol 2021; 529:110854. [PMID: 34358536 DOI: 10.1016/j.jtbi.2021.110854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Protein folding, the process by which proteins attain a 3-dimensional conformation necessary for their function, remains an important unsolved problem in biology. A major gap in our understanding is how local properties of proteins relate to their global properties. In this manuscript, we use the Writhe and Torsion to introduce a new local topological/geometrical free energy that can be associated to 4 consecutive amino acids along the protein backbone. By analyzing a culled protein dataset from the PDB, our results show that high local topological free energy conformations are independent of sequence and may be involved in the rate limiting step in protein folding. By analyzing a set of 2-state single domain proteins, we find that the total local topological free energy of these proteins correlates with the experimentally observed folding rates reported in Plaxco et al. (2000).
Collapse
Affiliation(s)
- Quenisha Baldwin
- Department of Biology, Tuskegee University, 1200 W Montgomery Rd, Tuskegee, AL 36088, USA
| | - Eleni Panagiotou
- Department of Mathematics and SimCenter, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| |
Collapse
|
37
|
A photoswitchable helical peptide with light-controllable interface/transmembrane topology in lipidic membranes. iScience 2021; 24:102771. [PMID: 34286233 PMCID: PMC8273423 DOI: 10.1016/j.isci.2021.102771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022] Open
Abstract
The spontaneous insertion of helical transmembrane (TM) polypeptides into lipid bilayers is driven by three sequential equilibria: solution-to-membrane interface (MI) partition, unstructured-to-helical folding, and MI-to-TM helix insertion. A bottleneck for understanding these three steps is the lack of experimental approaches to perturb membrane-bound hydrophobic polypeptides out of equilibrium rapidly and reversibly. Here, we report on a 24-residues-long hydrophobic α-helical polypeptide, covalently coupled to an azobenzene photoswitch (KCALP-azo), which displays a light-controllable TM/MI equilibrium in hydrated lipid bilayers. FTIR spectroscopy reveals that trans KCALP-azo folds as a TM α-helix (TM topology). After trans-to-cis photoisomerization of the azobenzene moiety with UV light (reversed with blue light), the helical structure of KCALP-azo is maintained, but its helix tilt increased from 32 ± 5° to 79 ± 8°, indication of a reversible TM-to-MI transition. Further analysis indicates that this transition is incomplete, with cis KCALP-azo existing in a ∼90% TM and ∼10% MI mixture. We present an α-helical transmembrane peptide modified with a molecular photoswitch The peptide exhibits reversible photocontrol of its membrane topology A fraction moves to the membrane interface with UV and inserts back with blue light This system will be useful to address the molecular mechanism for membrane insertion
Collapse
|
38
|
Maciuba K, Rajasekaran N, Chen X, Kaiser CM. Co-translational folding of nascent polypeptides: Multi-layered mechanisms for the efficient biogenesis of functional proteins. Bioessays 2021; 43:e2100042. [PMID: 33987870 PMCID: PMC8262109 DOI: 10.1002/bies.202100042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022]
Abstract
The coupling of protein synthesis and folding is a crucial yet poorly understood aspect of cellular protein folding. Over the past few years, it has become possible to experimentally follow and define protein folding on the ribosome, revealing principles that shape co-translational folding and distinguish it from refolding in solution. Here, we highlight some of these recent findings from biochemical and biophysical studies and their potential significance for cellular protein biogenesis. In particular, we focus on nascent chain interactions with the ribosome, interactions within the nascent protein, modulation of translation elongation rates, and the role of mechanical force that accompanies nascent protein folding. The ability to obtain mechanistic insight in molecular detail has set the stage for exploring the intricate process of nascent protein folding. We believe that the aspects discussed here will be generally important for understanding how protein synthesis and folding are coupled and regulated.
Collapse
Affiliation(s)
- Kevin Maciuba
- CMDB Graduate Program, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Bustamante CJ, Chemla YR, Liu S, Wang MD. Optical tweezers in single-molecule biophysics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:25. [PMID: 34849486 PMCID: PMC8629167 DOI: 10.1038/s43586-021-00021-6] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein-nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.
Collapse
Affiliation(s)
- Carlos J. Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Yann R. Chemla
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Michelle D. Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| |
Collapse
|
40
|
The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding. Proc Natl Acad Sci U S A 2021; 118:2026650118. [PMID: 33723082 DOI: 10.1073/pnas.2026650118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The complex between lipoprotein lipase (LPL) and its endothelial receptor (GPIHBP1) is responsible for the lipolytic processing of triglyceride-rich lipoproteins (TRLs) along the capillary lumen, a physiologic process that releases lipid nutrients for vital organs such as heart and skeletal muscle. LPL activity is regulated in a tissue-specific manner by endogenous inhibitors (angiopoietin-like [ANGPTL] proteins 3, 4, and 8), but the molecular mechanisms are incompletely understood. ANGPTL4 catalyzes the inactivation of LPL monomers by triggering the irreversible unfolding of LPL's α/β-hydrolase domain. Here, we show that this unfolding is initiated by the binding of ANGPTL4 to sequences near LPL's catalytic site, including β2, β3-α3, and the lid. Using pulse-labeling hydrogen‒deuterium exchange mass spectrometry, we found that ANGPTL4 binding initiates conformational changes that are nucleated on β3-α3 and progress to β5 and β4-α4, ultimately leading to the irreversible unfolding of regions that form LPL's catalytic pocket. LPL unfolding is context dependent and varies with the thermal stability of LPL's α/β-hydrolase domain (T m of 34.8 °C). GPIHBP1 binding dramatically increases LPL stability (T m of 57.6 °C), while ANGPTL4 lowers the onset of LPL unfolding by ∼20 °C, both for LPL and LPL•GPIHBP1 complexes. These observations explain why the binding of GPIHBP1 to LPL retards the kinetics of ANGPTL4-mediated LPL inactivation at 37 °C but does not fully suppress inactivation. The allosteric mechanism by which ANGPTL4 catalyzes the irreversible unfolding and inactivation of LPL is an unprecedented pathway for regulating intravascular lipid metabolism.
Collapse
|
41
|
Cruzeiro L, Gill AC, Eilbeck JC. Statistical Evidence for a Helical Nascent Chain. Biomolecules 2021; 11:biom11030357. [PMID: 33652806 PMCID: PMC7996779 DOI: 10.3390/biom11030357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 01/15/2023] Open
Abstract
We investigate the hypothesis that protein folding is a kinetic, non-equilibrium process, in which the structure of the nascent chain is crucial. We compare actual amino acid frequencies in loops, α-helices and β-sheets with the frequencies that would arise in the absence of any amino acid bias for those secondary structures. The novel analysis suggests that while specific amino acids exist to drive the formation of loops and sheets, none stand out as drivers for α-helices. This favours the idea that the α-helix is the initial structure of most proteins before the folding process begins.
Collapse
Affiliation(s)
- Leonor Cruzeiro
- CCMAR/CIMAR - Centro de Ciências do Mar, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln LN67DL, UK
| | - J Chris Eilbeck
- Department of Mathematics and Maxwell Institute, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| |
Collapse
|
42
|
Martins PM, Navarro S, Silva A, Pinto MF, Sárkány Z, Figueiredo F, Pereira PJB, Pinheiro F, Bednarikova Z, Burdukiewicz M, Galzitskaya OV, Gazova Z, Gomes CM, Pastore A, Serpell LC, Skrabana R, Smirnovas V, Ziaunys M, Otzen DE, Ventura S, Macedo-Ribeiro S. MIRRAGGE - Minimum Information Required for Reproducible AGGregation Experiments. Front Mol Neurosci 2020; 13:582488. [PMID: 33328883 PMCID: PMC7729192 DOI: 10.3389/fnmol.2020.582488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.
Collapse
Affiliation(s)
- Pedro M Martins
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alexandra Silva
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria F Pinto
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory - Department of Atomic Structure - Composition of Materials, Braga, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Annalisa Pastore
- UK-DRI Centre at King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rostislav Skrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
43
|
Dorčák V, Černocká H, Paleček E. Bovine Serum Albumin Catalysed Hydrogen and Deuterium Evolution at Mercury Electrodes. Chempluschem 2020; 85:1596-1601. [PMID: 33210475 DOI: 10.1002/cplu.202000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/04/2020] [Indexed: 11/09/2022]
Abstract
The hydrogen evolution reaction (HER), catalysed by proteins at mercury electrodes and reflected in chronopotentiometric stripping peak H, provides a label-free and reagentless analytical technique that is sensitive to protein structure. Here we show how the kinetic isotope effect affected the HER catalysed by the protein bovine serum albumin (BSA). We found that the deuteron bond, which is stronger than that of a proton, contributed to less effective transport of deuterons mediated by BSA at the Hg|D2 O interface, and enhanced structural stability of the surface-attached native BSA in D2 O solution. A structural transition was also observed in the surface-attached urea-denatured BSA, and is probably due to the destabilisation of some secondary structural remnants retained by the 17 SS-bonds. Because the catalytically active groups involved in proton or deuteron transfer in native proteins are often exposed towards solutions and their protons exchange almost instantly, no signs of H/D exchange were observed in native BSA using peak H under the given conditions.
Collapse
Affiliation(s)
- Vlastimil Dorčák
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Hana Černocká
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Emil Paleček
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic
| |
Collapse
|
44
|
Exposing the distinctive modular behavior of β-strands and α-helices in folded proteins. Proc Natl Acad Sci U S A 2020; 117:28775-28783. [PMID: 33148805 PMCID: PMC7682573 DOI: 10.1073/pnas.1920455117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although folded proteins are commonly depicted as simplistic combinations of β-strands and α-helices, the actual properties and functions of these secondary-structure elements in their native contexts are just partly understood. The principal reason is that the behavior of individual β- and α-elements is obscured by the global folding cooperativity. In this study, we have circumvented this problem by designing frustrated variants of the mixed α/β-protein S6, which allow the structural behavior of individual β-strands and α-helices to be targeted selectively by stopped-flow kinetics, X-ray crystallography, and solution-state NMR. Essentially, our approach is based on provoking intramolecular "domain swap." The results show that the α- and β-elements have quite different characteristics: The swaps of β-strands proceed via global unfolding, whereas the α-helices are free to swap locally in the native basin. Moreover, the α-helices tend to hybridize and to promote protein association by gliding over to neighboring molecules. This difference in structural behavior follows directly from hydrogen-bonding restrictions and suggests that the protein secondary structure defines not only tertiary geometry, but also maintains control in function and structural evolution. Finally, our alternative approach to protein folding and native-state dynamics presents a generally applicable strategy for in silico design of protein models that are computationally testable in the microsecond-millisecond regime.
Collapse
|
45
|
Engen JR, Botzanowski T, Peterle D, Georgescauld F, Wales TE. Developments in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 2020; 93:567-582. [DOI: 10.1021/acs.analchem.0c04281] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas Botzanowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Florian Georgescauld
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
46
|
Chen X, Rajasekaran N, Liu K, Kaiser CM. Synthesis runs counter to directional folding of a nascent protein domain. Nat Commun 2020; 11:5096. [PMID: 33037221 PMCID: PMC7547688 DOI: 10.1038/s41467-020-18921-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Folding of individual domains in large proteins during translation helps to avoid otherwise prevalent inter-domain misfolding. How folding intermediates observed in vitro for the majority of proteins relate to co-translational folding remains unclear. Combining in vivo and single-molecule experiments, we followed the co-translational folding of the G-domain, encompassing the first 293 amino acids of elongation factor G. Surprisingly, the domain remains unfolded until it is fully synthesized, without collapsing into molten globule-like states or forming stable intermediates. Upon fully emerging from the ribosome, the G-domain transitions to its stable native structure via folding intermediates. Our results suggest a strictly sequential folding pathway initiating from the C-terminus. Folding and synthesis thus proceed in opposite directions. The folding mechanism is likely imposed by the final structure and might have evolved to ensure efficient, timely folding of a highly abundant and essential protein. In vivo experiments and optical tweezers force-spectroscopy measurements assessing the co-translational folding of the G-domain from bacterial elongation factor G reveal a sequential folding pathway initiating from the C-terminus. These results suggest that protein folding and synthesis proceed in opposite directions.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, USA
| | | | - Kaixian Liu
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, USA.,Molecular Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
47
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
48
|
Hodge EA, Benhaim MA, Lee KK. Bridging protein structure, dynamics, and function using hydrogen/deuterium-exchange mass spectrometry. Protein Sci 2020; 29:843-855. [PMID: 31721348 PMCID: PMC7096709 DOI: 10.1002/pro.3790] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Much of our understanding of protein structure and mechanistic function has been derived from static high-resolution structures. As structural biology has continued to evolve it has become clear that high-resolution structures alone are unable to fully capture the mechanistic basis for protein structure and function in solution. Recently Hydrogen/Deuterium-exchange Mass Spectrometry (HDX-MS) has developed into a powerful and versatile tool for structural biologists that provides novel insights into protein structure and function. HDX-MS enables direct monitoring of a protein's structural fluctuations and conformational changes under native conditions in solution even as it is carrying out its functions. In this review, we focus on the use of HDX-MS to monitor these dynamic changes in proteins. We examine how HDX-MS has been applied to study protein structure and function in systems ranging from large, complex assemblies to intrinsically disordered proteins, and we discuss its use in probing conformational changes during protein folding and catalytic function. STATEMENT FOR A BROAD AUDIENCE: The biophysical and structural characterization of proteins provides novel insight into their functionalities. Protein motions, ranging from small scale local fluctuations to larger concerted structural rearrangements, often determine protein function. Hydrogen/Deuterium-exchange Mass Spectrometry (HDX-MS) has proven a powerful biophysical tool capable of probing changes in protein structure and dynamic protein motions that are often invisible to most other techniques.
Collapse
Affiliation(s)
- Edgar A. Hodge
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashington
| | - Mark A. Benhaim
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashington
| | - Kelly K. Lee
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashington
| |
Collapse
|
49
|
Yao H, Wynendaele E, De Spiegeleer B. Thermal sensitivity as a quality control attribute for biotherapeutics: The L-asparaginase case. Drug Test Anal 2019; 12:67-77. [PMID: 31471998 DOI: 10.1002/dta.2691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023]
Abstract
Thermal sensitivity, as a practical measure of thermostability, is an interesting quality attribute that can be used in the quality control (QC) release of biopharmaceuticals. This article investigates circular dichroism (CD) spectroscopy and nano-differential scanning fluorimetry (nano-DSF) to evaluate the thermal stability of E.coli L-asparaginase (L-ASNase) for QC purposes. In CD, molar ellipticity as a function of temperature (from 20 to 80°C) was measured at 222 nm. Different L-ASNase samples dissolved in different diluents were investigated by determining the melting temperature (Tm ) from the first derivative curve as well as the slope of the fitted sigmoidal function of the temperature gradient CD data. The obtained Tm values could be correlated with the L-ASNase sample origin as well as with the pH of the diluent. The Tm values obtained from the CD data were moreover consistent with the Tm values determined by nano-DSF, confirming their reliability. Next to the Tm value, also the slope of the fitted sigmoidal CD-function was able to differentiate different L-ASNase samples, including unstressed from stressed protein. By using both the Tm and the curve slope, the thermal stability of L-ASNase was investigated, demonstrating and recommending the use of this heat-stress characteristic as a QC quality attribute of proteins, which can be applied to detect substandard and falsified proteins.
Collapse
Affiliation(s)
- Han Yao
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Application of millisecond time-resolved solid state NMR to the kinetics and mechanism of melittin self-assembly. Proc Natl Acad Sci U S A 2019; 116:16717-16722. [PMID: 31387974 DOI: 10.1073/pnas.1908006116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Common experimental approaches for characterizing structural conversion processes such as protein folding and self-assembly do not report on all aspects of the evolution from an initial state to the final state. Here, we demonstrate an approach that is based on rapid mixing, freeze-trapping, and low-temperature solid-state NMR (ssNMR) with signal enhancements from dynamic nuclear polarization (DNP). Experiments on the folding and tetramerization of the 26-residue peptide melittin following a rapid pH jump show that multiple aspects of molecular structure can be followed with millisecond time resolution, including secondary structure at specific isotopically labeled sites, intramolecular and intermolecular contacts between specific pairs of labeled residues, and overall structural order. DNP-enhanced ssNMR data reveal that conversion of conformationally disordered melittin monomers at low pH to α-helical conformations at neutral pH occurs on nearly the same timescale as formation of antiparallel melittin dimers, about 6 to 9 ms for 0.3 mM melittin at 24 °C in aqueous solution containing 20% (vol/vol) glycerol and 75 mM sodium phosphate. Although stopped-flow fluorescence data suggest that melittin tetramers form quickly after dimerization, ssNMR spectra show that full structural order within melittin tetramers develops more slowly, in ∼60 ms. Time-resolved ssNMR is likely to find many applications to biomolecular structural conversion processes, including early stages of amyloid formation, viral capsid formation, and protein-protein recognition.
Collapse
|