1
|
Diao HJ, Lin LM, Xu LY, Yao JH, Zheng RC, Zheng YG. Engineering catalytically promiscuous enzymes to serve new functions. Biotechnol Adv 2025:108601. [PMID: 40374085 DOI: 10.1016/j.biotechadv.2025.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Catalytic promiscuity in enzymes refers to their ability to catalyze multiple chemically distinct reactions in addition to their native activity. The increasing discovery of additional enzymes exhibiting catalytic promiscuity has underscored the significance of this trait in nature. The catalytic promiscuity of enzymes offers new avenues for functional redesign. Through protein engineering, existing enzymes can be modified to expand their natural catalytic boundaries. Furthermore, de novo designed artificial enzymes can achieve novel enzymatic reactions, broadening the scope of enzyme-catalyzed applications. Given that catalytic promiscuity plays a fundamental role in enzyme evolution, comprehensive research on its origins and influencing factors is essential. In this review, we comprehensively examine the factors influencing catalytic promiscuity, including variations in substrate binding modes in pre-reaction states, the instability of key high-energy intermediates, and the roles of critical residues in catalytic mechanisms. Moreover, altering the enzyme's catalytic environment can also induce novel types of catalytic reactions, such as light-induced promiscuous reactions catalyzed by cofactor-dependent oxidoreductase enzymes. Additionally, we summarize the current protein engineering technologies and strategies aimed at enhancing the activity and stereoselectivity of target enzymes to meet industrial requirements.
Collapse
Affiliation(s)
- Hong-Juan Diao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Li-Ming Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Li-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jia-Hao Yao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
2
|
Zhang Y, Jindal M, Viswanath S, Sitharam M. A New Discrete-Geometry Approach for Integrative Docking of Proteins Using Chemical Cross-Links. J Chem Inf Model 2025; 65:4576-4592. [PMID: 40299996 DOI: 10.1021/acs.jcim.4c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The structures of protein complexes allow us to understand and modulate the biological functions of the proteins. Integrative docking is a computational method to obtain the structures of a protein complex, given the atomic structures of the constituent proteins along with other experimental data on the complex, such as chemical cross-links or SAXS profiles. Here, we develop a new discrete geometry-based method, wall-EASAL, for integrative rigid docking of protein pairs given the structures of the constituent proteins and chemical cross-links. The method is an adaptation of efficient atlasing and search of assembly landscapes (EASAL), a state-of-the-art discrete geometry method for efficient and exhaustive sampling of macromolecular configurations under pairwise intermolecular distance constraints. We provide a mathematical proof that the method finds a structure satisfying the cross-link constraints under a natural condition satisfied by energy landscapes. We compare wall-EASAL with integrative modeling platform (IMP), a commonly used integrative modeling method, on a benchmark, varying the numbers, types, and sources of input cross-links, and sources of monomer structures. The wall-EASAL method performs similarly to IMP in terms of the average satisfaction of the configurations to the input cross-links and the average similarity of the configurations to their corresponding native structures. But wall-EASAL is more efficient than IMP and more robust against false positive cross-links in the context of binary integrative rigid docking. Although the current study uses cross-links, the method is general and any source of distance constraints can be used for integrative docking with wall-EASAL. However, the current implementation only supports binary rigid protein docking, i.e., assumes that the monomer structures are known and remain rigid. Additionally, the current implementation is deterministic, i.e., it does not account for some uncertainties in the cross-linking data, such as noise in the cross-link distances. Neither of these appears to be a theoretical or algorithmic limitation of the EASAL methodology. Structures from wall-EASAL can be incorporated in methods for modeling large macromolecular assemblies, for example by suggesting rigid bodies or restraints for use in these methods. This will facilitate the characterization of assemblies and cellular neighborhoods at increased efficiency, accuracy, and precision. The wall-EASAL method is available at https://bitbucket.org/geoplexity/easal-dev/src/Crosslink and the benchmark is available at https://github.com/isblab/Integrative_docking_benchmark.
Collapse
Affiliation(s)
- Yichi Zhang
- CISE Department, University of Florida, Gainesville 32611-6120, Florida, United States
| | - Muskaan Jindal
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Shruthi Viswanath
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Meera Sitharam
- CISE Department, University of Florida, Gainesville 32611-6120, Florida, United States
| |
Collapse
|
3
|
Sil S, Datta I, Basu S. Use of AI-methods over MD simulations in the sampling of conformational ensembles in IDPs. Front Mol Biosci 2025; 12:1542267. [PMID: 40264953 PMCID: PMC12011600 DOI: 10.3389/fmolb.2025.1542267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Intrinsically Disordered Proteins (IDPs) challenge traditional structure-function paradigms by existing as dynamic ensembles rather than stable tertiary structures. Capturing these ensembles is critical to understanding their biological roles, yet Molecular Dynamics (MD) simulations, though accurate and widely used, are computationally expensive and struggle to sample rare, transient states. Artificial intelligence (AI) offers a transformative alternative, with deep learning (DL) enabling efficient and scalable conformational sampling. They leverage large-scale datasets to learn complex, non-linear, sequence-to-structure relationships, allowing for the modeling of conformational ensembles in IDPs without the constraints of traditional physics-based approaches. Such DL approaches have been shown to outperform MD in generating diverse ensembles with comparable accuracy. Most models rely primarily on simulated data for training and experimental data serves a critical role in validation, aligning the generated conformational ensembles with observable physical and biochemical properties. However, challenges remain, including dependence on data quality, limited interpretability, and scalability for larger proteins. Hybrid approaches combining AI and MD can bridge the gaps by integrating statistical learning with thermodynamic feasibility. Future directions include incorporating physics-based constraints and learning experimental observables into DL frameworks to refine predictions and enhance applicability. AI-driven methods hold significant promise in IDP research, offering novel insights into protein dynamics and therapeutic targeting while overcoming the limitations of traditional MD simulations.
Collapse
Affiliation(s)
- Souradeep Sil
- Department of Genetics, Osmania University, Hyderabad, India
| | - Ishita Datta
- Department of Genetics and Plant Breeding, Banaras Hindu University, Varanasi, India
| | - Sankar Basu
- Department of Microbiology, Asutosh College (Affiliated with University of Calcutta), Kolkata, India
| |
Collapse
|
4
|
Ludwiczak O, Antczak M, Szachniuk M. Assessing interface accuracy in macromolecular complexes. PLoS One 2025; 20:e0319917. [PMID: 40173387 PMCID: PMC11964455 DOI: 10.1371/journal.pone.0319917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/10/2025] [Indexed: 04/04/2025] Open
Abstract
Accurately predicting the 3D structures of macromolecular complexes is becoming increasingly important for understanding their cellular functions. At the same time, reliably assessing prediction quality remains a significant challenge in bioinformatics. To address this, various methods analyze and evaluate in silico models from multiple perspectives, accounting for both the reconstructed components' structures and their arrangement within the complex. In this work, we introduce Intermolecular Interaction Network Fidelity (I-INF), a normalized similarity measure that quantifies intermolecular interactions in multichain complexes. Adapted from a well-established score in the RNA field, I-INF provides a clear and intuitive way to evaluate the predicted 3D models against a reference structure, with a specific focus on interchain interaction sites. Additionally, we implement the F1 measure to assess interfaces in macromolecular assemblies, further enriching the evaluation framework. Tested on 72 RNA-protein decoys, as well as exemplary DNA-DNA, RNA-RNA, and protein-protein complexes, these measures deliver reliable scores and enable straightforward ranking of predictions. The tool for computing I-INF and F1 is publicly available on Zenodo, facilitating large-scale analysis and integration with other computational systems.
Collapse
Affiliation(s)
- Olgierd Ludwiczak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
5
|
Deng P, Zhang Y, Xu L, Lyu J, Li L, Sun F, Zhang WB, Gao H. Computational discovery and systematic analysis of protein entangling motifs in nature: from algorithm to database. Chem Sci 2025:d4sc08649j. [PMID: 40271025 PMCID: PMC12013726 DOI: 10.1039/d4sc08649j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/29/2025] [Indexed: 04/25/2025] Open
Abstract
Nontrivial protein topology has the potential to revolutionize protein engineering by enabling the manipulation of proteins' stability and dynamics. However, the rarity of topological proteins in nature poses a challenge for their design, synthesis and application, primarily due to the limited number of available entangling motifs as synthetic templates. Discovering these motifs is particularly difficult, as entanglement is a subtle structural feature that is not readily discernible from protein sequences. In this study, we developed a streamlined workflow enabling efficient and accurate identification of structurally reliable and applicable entangling motifs from protein sequences. Through this workflow, we automatically curated a database of 1115 entangling protein motifs from over 100 thousand sequences in the UniProt Knowledgebase. In our database, 73.3% of C2 entangling motifs and 80.1% of C3 entangling motifs exhibited low structural similarity to known protein structures. The entangled structures in the database were categorized into different groups and their functional and biological significance were analyzed. The results were summarized in an online database accessible through a user-friendly web platform, providing researchers with an expanded toolbox of entangling motifs. This resource is poised to significantly advance the field of protein topology engineering and inspire new research directions in protein design and application.
Collapse
Affiliation(s)
- Puqing Deng
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Yuxuan Zhang
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jinyu Lyu
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Linyan Li
- Department of Data Science, City University of Hong Kong Kowloon Hong Kong
| | - Fei Sun
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
- AI for Science (AI4S)-Preferred Program, Shenzhen Graduate School, Peking University Shenzhen 518055 P. R. China
| | - Hanyu Gao
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| |
Collapse
|
6
|
Singh A, Tytarenko AM, Ambati VK, Copeland MM, Kundrotas PJ, Kasyanov PO, Feinberg EA, Vakser IA. GRAMMCell: Docking-based Cell Modeling Resource. J Mol Biol 2025:169085. [PMID: 40133778 DOI: 10.1016/j.jmb.2025.169085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
The environment inside biological cells is densely populated by macromolecules and other cellular components. The crowding has a significant impact on folding and stability of macromolecules, and on kinetics of molecular interactions. Computational approaches to cell modeling, such as molecular dynamics, provide details of macromolecular behavior in concentrated solutions. However, such simulations are either slow, when carried out at atomic resolution, or significantly coarse-grained. Protein docking has been widely used for predicting structures of protein complexes. Systematic docking approaches, such as those based on Fast Fourier Transform (FFT), map the entire intermolecular energy landscape by determining the position and depth of the energy minima. The GRAMMCell web server implements docking-based approach for simulating cell crowded environment by sampling the intermolecular energy landscape generated by GRAMM (Global RAnge Molecular Matching). GRAMM systematically maps the landscape by a spectrum of docking poses corresponding to stable (deep energy minima) and transient (shallow minima) protein interactions. The sampling of these energy landscapes of a large system of proteins is performed in GRAMMCell using highly optimized Markov Chain Monte Carlo protocol. The procedure allows simulation of extra-long trajectories of large, crowded protein systems with atomic resolution accuracy. GRAMMCell is available at https://grammcell.compbio.ku.edu.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Andrii M Tytarenko
- Institute for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Vineeth Kumar Ambati
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Matthew M Copeland
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Pavlo O Kasyanov
- Institute for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Eugene A Feinberg
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
7
|
Hoegen Dijkhof LR, Rönkkö TKE, von Vegesack HC, Lenzing J, Hauser AS. Deep learning in GPCR drug discovery: benchmarking the path to accurate peptide binding. Brief Bioinform 2025; 26:bbaf186. [PMID: 40285358 PMCID: PMC12031724 DOI: 10.1093/bib/bbaf186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Deep learning (DL) methods have drastically advanced structure-based drug discovery by directly predicting protein structures from sequences. Recently, these methods have become increasingly accurate in predicting complexes formed by multiple protein chains. We evaluated these advancements to predict and accurately model the largest receptor family and its cognate peptide hormones. We benchmarked DL tools, including AlphaFold 2.3 (AF2), AlphaFold 3 (AF3), Chai-1, NeuralPLexer, RoseTTAFold-AllAtom, Peptriever, ESMFold, and D-SCRIPT, to predict interactions between G protein-coupled receptors (GPCRs) and their endogenous peptide ligands. Our results showed that structure-aware models outperformed language models in peptide binding classification, with the top-performing model achieving an area under the curve of 0.86 on a benchmark set of 124 ligands and 1240 decoys. Rescoring predicted structures on local interactions further improved the principal ligand discovery among decoy peptides, whereas DL-based approaches did not. We explored a competitive tournament approach for modeling multiple peptides simultaneously on a single GPCR, which accelerates the performance but reduces true-positive recovery. When evaluating the binding poses of 67 recent complexes, AF2 reproduced the correct binding modes in nearly all cases (94%), surpassing those of both AF3 and Chai-1. Confidence scores correlate with structural binding mode accuracy, which provides a guide for interpreting interface predictions. These results demonstrated that DL models can reliably rediscover peptide binders, aid peptide drug discovery, and guide the selection of optimal tools for GPCR-targeted therapies. To this end, we provided a practical guide for selecting the best models for specific applications and an independent benchmarking set for future model evaluation.
Collapse
Affiliation(s)
- Luuk R Hoegen Dijkhof
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Ø, Copenhagen, Denmark
- Center for Pharmaceutical Data Science, University of Copenhagen, Denmark
| | - Teemu K E Rönkkö
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Ø, Copenhagen, Denmark
- Center for Pharmaceutical Data Science, University of Copenhagen, Denmark
| | - Hans C von Vegesack
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Ø, Copenhagen, Denmark
- Center for Pharmaceutical Data Science, University of Copenhagen, Denmark
| | - Jacob Lenzing
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Ø, Copenhagen, Denmark
- Center for Pharmaceutical Data Science, University of Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Ø, Copenhagen, Denmark
- Center for Pharmaceutical Data Science, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Harihar B, Saravanan KM, Gromiha MM, Selvaraj S. Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design. Mol Biotechnol 2025; 67:862-884. [PMID: 38498284 DOI: 10.1007/s12033-024-01119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Inter-residue interactions in protein structures provide valuable insights into protein folding and stability. Understanding these interactions can be helpful in many crucial applications, including rational design of therapeutic small molecules and biologics, locating functional protein sites, and predicting protein-protein and protein-ligand interactions. The process of developing machine learning models incorporating inter-residue interactions has been improved recently. This review highlights the theoretical models incorporating inter-residue interactions in predicting folding and unfolding rates of proteins. Utilizing contact maps to depict inter-residue interactions aids researchers in developing computer models for detecting remote homologs and interface residues within protein-protein complexes which, in turn, enhances our knowledge of the relationship between sequence and structure of proteins. Further, the application of contact maps derived from inter-residue interactions is highlighted in the field of drug discovery. Overall, this review presents an extensive assessment of the significant models that use inter-residue interactions to investigate folding rates, unfolding rates, remote homology, and drug development, providing potential future advancements in constructing efficient computational models in structural biology.
Collapse
Affiliation(s)
- Balasubramanian Harihar
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Konda Mani Saravanan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Michael M Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Samuel Selvaraj
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
9
|
Collins KW, Copeland MM, Kundrotas PJ, Vakser IA. Dockground: The resource expands to protein-RNA interactome. J Mol Biol 2025:169014. [PMID: 39956358 DOI: 10.1016/j.jmb.2025.169014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
RNA is a master regulator of cellular processes and will bind to many different proteins throughout its life cycle. Dysregulation of RNA and RNA-binding proteins can lead to various diseases, including cancer. To better understand molecular mechanisms of the cellular processes, it is important to characterize protein-RNA interactions at the structural level. There is a lack of experimental structures available for protein-RNA complexes due to the RNA inherent flexibility, which complicates the experimental structure determination. The scarcity of structures can be made up for with computational modeling. Dockground is a resource for development and benchmarking of structure-based modeling of protein interactions. It contains datasets focusing on different aspects of protein recognition. The foundation of all the datasets is the database of experimentally determined protein complexes, which previously contained only protein-protein assemblies. To further expand the utility of the Dockground resource, we extended the database to protein-RNA interactions. The new functionalities are available on the Dockground website at https://dockground.compbio.ku.edu/. The database can be searched using a number of criteria, including removal of redundancies at various sequence and structure similarity thresholds. The database updates with new structures from the Protein Data Bank on a weekly basis.
Collapse
Affiliation(s)
- Keeley W Collins
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045
| | - Matthew M Copeland
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045.
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045; Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045.
| |
Collapse
|
10
|
Zeng Q, Chen JN, Dai B, Jiang F, Wu YD. CPconf_score: A Deep Learning Free Energy Function Trained Using Molecular Dynamics Data for Cyclic Peptides. J Chem Theory Comput 2025; 21:991-1000. [PMID: 39801200 DOI: 10.1021/acs.jctc.4c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Accurate structural feature characterization of cyclic peptides (CPs), especially those with less than 10 residues and cis-peptide bonds, is challenging but important for the rational design of bioactive peptides. In this study, we performed high-temperature molecular dynamics (high-T MD) simulations on 250 CPs with random sequences and applied the point-adaptive k-nearest neighbors (PAk) method to estimate the free energies of millions of sampled conformations. Using this data set, we trained a SchNet-based deep learning model, termed CPconf_score, to predict the conformational free energies of CPs. We tested CPconf_score to identify near-native conformations from MD-sampled conformations of 50 CPs from the Cambridge Structural Database. Our method achieved accurate predictions for 41 out of 50 CPs with a backbone RMSD of less than 1.0 Å compared to crystal structures. In comparison, other advanced CP structure prediction tools, such as HighFold and Rosetta, successfully predicted 12 and 19 CPs, respectively.
Collapse
Affiliation(s)
- Qing Zeng
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jia-Nan Chen
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Botao Dai
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Fan Jiang
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Alotaiq N, Dermawan D. Evaluation of Structure Prediction and Molecular Docking Tools for Therapeutic Peptides in Clinical Use and Trials Targeting Coronary Artery Disease. Int J Mol Sci 2025; 26:462. [PMID: 39859178 PMCID: PMC11765240 DOI: 10.3390/ijms26020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
This study evaluates the performance of various structure prediction tools and molecular docking platforms for therapeutic peptides targeting coronary artery disease (CAD). Structure prediction tools, including AlphaFold 3, I-TASSER 5.1, and PEP-FOLD 4, were employed to generate accurate peptide conformations. These methods, ranging from deep-learning-based (AlphaFold) to template-based (I-TASSER 5.1) and fragment-based (PEP-FOLD), were selected for their proven capabilities in predicting reliable structures. Molecular docking was conducted using four platforms (HADDOCK 2.4, HPEPDOCK 2.0, ClusPro 2.0, and HawDock 2.0) to assess binding affinities and interactions. A 100 ns molecular dynamics (MD) simulation was performed to evaluate the stability of the peptide-receptor complexes, along with Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) calculations to determine binding free energies. The results demonstrated that Apelin, a therapeutic peptide, exhibited superior binding affinities and stability across all platforms, making it a promising candidate for CAD therapy. Apelin's interactions with key receptors involved in cardiovascular health were notably stronger and more stable compared to the other peptides tested. These findings underscore the importance of integrating advanced computational tools for peptide design and evaluation, offering valuable insights for future therapeutic applications in CAD. Future work should focus on in vivo validation and combination therapies to fully explore the clinical potential of these therapeutic peptides.
Collapse
Affiliation(s)
- Nasser Alotaiq
- Health Sciences Research Center (HSRC), Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Doni Dermawan
- Department of Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-661 Warsaw, Poland;
| |
Collapse
|
12
|
Zhang Y, Jindal M, Viswanath S, Sitharam M. A new discrete-geometry approach for integrative docking of proteins using chemical crosslinks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.24.619977. [PMID: 39553940 PMCID: PMC11565733 DOI: 10.1101/2024.10.24.619977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The structures of protein complexes allow us to understand and modulate the biological functions of the proteins. Integrative docking is a computational method to obtain the structures of a protein complex, given the atomic structures of the constituent proteins along with other experimental data on the complex, such as chemical crosslinks or SAXS profiles. Here, we develop a new discrete geometry-based method, wall-EASAL, for integrative rigid docking of protein pairs given the structures of the constituent proteins and chemical crosslinks. The method is an adaptation of EASAL (Efficient Atlasing and Search of Assembly Landscapes), a state-of-the-art discrete geometry method for efficient and exhaustive sampling of macromolecular configurations under pairwise inter-molecular distance constraints. We provide a mathematical proof that the method finds a structure satisfying the crosslink constraints under a natural condition satisfied by energy landscapes. We compare wall-EASAL with IMP (Integrative Modeling Platform), a commonly used integrative modeling method, on a benchmark, varying the numbers, types, and sources of input crosslinks, and sources of monomer structures. The wall-EASAL method performs better than IMP in terms of the average satisfaction of the configurations to the input crosslinks and the average similarity of the configurations to their corresponding native structures. The ensembles from IMP exhibit greater variability in these two measures. Further, wall-EASAL is more efficient than IMP. Although the current study uses crosslinks, the method is general and any source of distance constraints can be used for integrative docking with wall-EASAL. However, the current implementation only supports binary rigid protein docking, i.e., assumes that the monomer structures are known and remain rigid. Additionally, the current implementation is deterministic, i.e., it does not account for uncertainties in the crosslinking data beyond using distance bounds. Neither of these appears to be a theoretical or algorithmic limitation of the EASAL methodology. Structures from wall-EASAL can be incorporated in methods for modeling large macromolecular assemblies, for example by suggesting rigid bodies or restraints for use in these methods. This will facilitate the characterization of assemblies and cellular neighborhoods at increased efficiency, accuracy, and precision. The wall-EASAL method is available at https://bitbucket.org/geoplexity/easal-dev/src/Crosslink and the benchmark is available at https://github.com/isblab/Integrative_docking_benchmark.
Collapse
Affiliation(s)
- Yichi Zhang
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| | - Muskaan Jindal
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Shruthi Viswanath
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Meera Sitharam
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| |
Collapse
|
13
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
14
|
Son A, Park J, Kim W, Yoon Y, Lee S, Park Y, Kim H. Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence. Molecules 2024; 29:4626. [PMID: 39407556 PMCID: PMC11477718 DOI: 10.3390/molecules29194626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Sangwoon Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Yongho Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, Prove beyond AI, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
15
|
Draizen EJ, Veretnik S, Mura C, Bourne PE. Deep generative models of protein structure uncover distant relationships across a continuous fold space. Nat Commun 2024; 15:8094. [PMID: 39294145 PMCID: PMC11410806 DOI: 10.1038/s41467-024-52020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/23/2024] [Indexed: 09/20/2024] Open
Abstract
Our views of fold space implicitly rest upon many assumptions that impact how we analyze, interpret and understand protein structure, function and evolution. For instance, is there an optimal granularity in viewing protein structural similarities (e.g., architecture, topology or some other level)? Similarly, the discrete/continuous dichotomy of fold space is central, but remains unresolved. Discrete views of fold space bin similar folds into distinct, non-overlapping groups; unfortunately, such binning can miss remote relationships. While hierarchical systems like CATH are indispensable resources, less heuristic and more conceptually flexible approaches could enable more nuanced explorations of fold space. Building upon an Urfold model of protein structure, here we present a deep generative modeling framework, termed DeepUrfold, for analyzing protein relationships at scale. DeepUrfold's learned embeddings occupy high-dimensional latent spaces that can be distilled for a given protein in terms of an amalgamated representation uniting sequence, structure and biophysical properties. This approach is structure-guided, versus being purely structure-based, and DeepUrfold learns representations that, in a sense, define superfamilies. Deploying DeepUrfold with CATH reveals evolutionarily-remote relationships that evade existing methodologies, and suggests a mostly-continuous view of fold space-a view that extends beyond simple geometric similarity, towards the realm of integrated sequence ↔ structure ↔ function properties.
Collapse
Affiliation(s)
- Eli J Draizen
- School of Data Science, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Stella Veretnik
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Cameron Mura
- School of Data Science, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Philip E Bourne
- School of Data Science, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
Collins KW, Copeland MM, Brysbaert G, Wodak SJ, Bonvin AMJJ, Kundrotas PJ, Vakser IA, Lensink MF. CAPRI-Q: The CAPRI resource evaluating the quality of predicted structures of protein complexes. J Mol Biol 2024; 436:168540. [PMID: 39237205 PMCID: PMC11458157 DOI: 10.1016/j.jmb.2024.168540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 09/07/2024]
Abstract
Protein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches. The community-wide Critical Assessment of Predicted Interactions (CAPRI) has been a catalyst for the development of procedures for the structural modeling of protein assemblies by organizing blind prediction experiments. The predicted structures are assessed against unpublished experimentally determined structures using a set of metrics with proven robustness that have been established in the CAPRI community. In addition, several advanced benchmarking databases provide targets against which users can test docking and assembly modeling software. These include the Protein-Protein Docking Benchmark, the CAPRI Scoreset, and the Dockground database, all developed by members of the CAPRI community. Here we present CAPRI-Q, a stand-alone model quality assessment tool, which can be freely downloaded or used via a publicly available web server. This tool applies the CAPRI metrics to assess the quality of query structures against given target structures, along with other popular quality metrics such as DockQ, TM-score and l-DDT, and classifies the models according to the CAPRI model quality criteria. The tool can handle a variety of protein complex types including those involving peptides, nucleic acids, and oligosaccharides. The source code is freely available from https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q and its web interface through the Dockground resource at https://dockground.compbio.ku.edu/assessment/.
Collapse
Affiliation(s)
- Keeley W Collins
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Matthew M Copeland
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Guillaume Brysbaert
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | | | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, The Netherlands
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA.
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA; Department of Molecular Biology, The University of Kansas, Lawrence, KS 66045, USA.
| | - Marc F Lensink
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France.
| |
Collapse
|
17
|
Chen L, Mondal A, Perez A, Miranda-Quintana RA. Protein Retrieval via Integrative Molecular Ensembles (PRIME) through Extended Similarity Indices. J Chem Theory Comput 2024; 20:6303-6315. [PMID: 38978294 PMCID: PMC11807272 DOI: 10.1021/acs.jctc.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Molecular dynamics (MD) simulations are ideally suited to describe conformational ensembles of biomolecules such as proteins and nucleic acids. Microsecond-long simulations are now routine, facilitated by the emergence of graphical processing units. Clustering, which groups objects based on structural similarity, is typically used to process ensembles, leading to different states, their populations, and the identification of representative structures. A popular pipeline combines hierarchical clustering for clustering and selecting the cluster centroid as representative of the cluster. Here, we propose to improve on this approach, by developing a module-Protein Retrieval via Integrative Molecular Ensembles (PRIME), that consists of tools to improve the prediction of the representative in the most populated cluster using extended continuous similarity. PRIME is integrated with our Molecular Dynamics Analysis with N-ary Clustering Ensembles (MDANCE) package and can be used as a postprocessing tool for arbitrary clustering algorithms, compatible with several MD suites. PRIME predictions produced structures that when aligned to the experimental structure were better superposed (lower RMSD). A further benefit of PRIME is its linear scaling─rather than the traditional O(N2) traditionally associated with comparisons of elements in a set.
Collapse
Affiliation(s)
- Lexin Chen
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Arup Mondal
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Alberto Perez
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Ramón Alain Miranda-Quintana
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
18
|
Planas-Iglesias J, Borko S, Swiatkowski J, Elias M, Havlasek M, Salamon O, Grakova E, Kunka A, Martinovic T, Damborsky J, Martinovic J, Bednar D. AggreProt: a web server for predicting and engineering aggregation prone regions in proteins. Nucleic Acids Res 2024; 52:W159-W169. [PMID: 38801076 PMCID: PMC11223854 DOI: 10.1093/nar/gkae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Recombinant proteins play pivotal roles in numerous applications including industrial biocatalysts or therapeutics. Despite the recent progress in computational protein structure prediction, protein solubility and reduced aggregation propensity remain challenging attributes to design. Identification of aggregation-prone regions is essential for understanding misfolding diseases or designing efficient protein-based technologies, and as such has a great socio-economic impact. Here, we introduce AggreProt, a user-friendly webserver that automatically exploits an ensemble of deep neural networks to predict aggregation-prone regions (APRs) in protein sequences. Trained on experimentally evaluated hexapeptides, AggreProt compares to or outperforms state-of-the-art algorithms on two independent benchmark datasets. The server provides per-residue aggregation profiles along with information on solvent accessibility and transmembrane propensity within an intuitive interface with interactive sequence and structure viewers for comprehensive analysis. We demonstrate AggreProt efficacy in predicting differential aggregation behaviours in proteins on several use cases, which emphasize its potential for guiding protein engineering strategies towards decreased aggregation propensity and improved solubility. The webserver is freely available and accessible at https://loschmidt.chemi.muni.cz/aggreprot/.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Simeon Borko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Swiatkowski
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Matej Elias
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Martin Havlasek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Ondrej Salamon
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Ekaterina Grakova
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Antonín Kunka
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tomas Martinovic
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Martinovic
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
19
|
Nandigrami P, Fiser A. Assessing the functional impact of protein binding site definition. Protein Sci 2024; 33:e5026. [PMID: 38757384 PMCID: PMC11099757 DOI: 10.1002/pro.5026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Many biomedical applications, such as classification of binding specificities or bioengineering, depend on the accurate definition of protein binding interfaces. Depending on the choice of method used, substantially different sets of residues can be classified as belonging to the interface of a protein. A typical approach used to verify these definitions is to mutate residues and measure the impact of these changes on binding. Besides the lack of exhaustive data, this approach also suffers from the fundamental problem that a mutation introduces an unknown amount of alteration into an interface, which potentially alters the binding characteristics of the interface. In this study we explore the impact of alternative binding site definitions on the ability of a protein to recognize its cognate ligand using a pharmacophore approach, which does not affect the interface. The study also shows that methods for protein binding interface predictions should perform above approximately F-score = 0.7 accuracy level to capture the biological function of a protein.
Collapse
Affiliation(s)
- Prithviraj Nandigrami
- Departments of Systems and Computational Biology, and BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Andras Fiser
- Departments of Systems and Computational Biology, and BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
20
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
21
|
Jha K, Kumar A, Bhatnagar K, Patra A, Bhavesh NS, Singh B, Chaudhary S. Modulation of Krüppel-like factors (KLFs) interaction with their binding partners in cancers through acetylation and phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195003. [PMID: 37992989 DOI: 10.1016/j.bbagrm.2023.195003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Post-translational modifications (PTMs) of transcription factors regulate transcriptional activity and play a key role in essentially all biological processes and generate indispensable insight towards biological function including activity state, subcellular localization, protein solubility, protein folding, substrate trafficking, and protein-protein interactions. Amino acids modified chemically via PTMs, function as molecular switches and affect the protein function and characterization and increase the proteome complexity. Krüppel-like transcription factors (KLFs) control essential cellular processes including proliferation, differentiation, migration, programmed cell death and various cancer-relevant processes. We investigated the interactions of KLF group-2 members with their binding partners to assess the role of acetylation and phosphorylation in KLFs on their binding affinity. It was observed that acetylation and phosphorylation at different positions in KLFs have a variable effect on binding with specific partners. KLF2-EP300, KLF4-SP1, KLF6-ATF3, KLF6-JUN, and KLF7-JUN show stabilization upon acetylation or phosphorylation at variable positions. On the other hand, KLF4-CBP, KLF4-EP300, KLF5-CBP, KLF5-WWP1, KLF6-SP1, and KLF7-ATF3 show stabilization or destabilization due to acetylation or phosphorylation at variable positions in KLFs. This provides a molecular explanation of the experimentally observed dual role of KLF group-2 members as a suppressor or activator of cancers in a PTM-dependent manner.
Collapse
Affiliation(s)
- Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| | - Bipin Singh
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India; Centre for Life Sciences, Mahindra University, Bahadurpally, Jeedimetla, Hyderabad, Telangana 500043, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
22
|
Sulea T, Kumar S, Kuroda D. Editorial: Progress and challenges in computational structure-based design and development of biologic drugs. Front Mol Biosci 2024; 11:1360267. [PMID: 38389897 PMCID: PMC10883042 DOI: 10.3389/fmolb.2024.1360267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Sandeep Kumar
- Computational Protein Design and Modeling, Computational Science, Moderna Therapeutics, Cambridge, MA, United States
| | - Daisuke Kuroda
- Research Center of Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
23
|
Stein RA, Mchaourab HS. Rosetta Energy Analysis of AlphaFold2 models: Point Mutations and Conformational Ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556364. [PMID: 37732281 PMCID: PMC10508732 DOI: 10.1101/2023.09.05.556364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
There has been an explosive growth in the applications of AlphaFold2, and other structure prediction platforms, to accurately predict protein structures from a multiple sequence alignment (MSA) for downstream structural analysis. However, two outstanding questions persist in the field regarding the robustness of AlphaFold2 predictions of the consequences of point mutations and the completeness of its prediction of protein conformational ensembles. We combined our previously developed method SPEACH_AF with model relaxation and energetic analysis with Rosetta to address these questions. SPEACH_AF introduces residue substitutions across the MSA and not just within the input sequence. With respect to conformational ensembles, we combined SPEACH_AF and a new MSA subsampling method, AF_cluster, and for a benchmarked set of proteins, we found that the energetics of the conformational ensembles generated by AlphaFold2 correspond to those of experimental structures and explored by standard molecular dynamic methods. With respect to point mutations, we compared the structural and energetic consequences of having the mutation(s) in the input sequence versus in the whole MSA (SPEACH_AF). Both methods yielded models different from the wild-type sequence, with more robust changes when the mutation(s) were in the whole MSA. While our findings demonstrate the robustness of AlphaFold2 in analyzing point mutations and exploring conformational ensembles, they highlight the need for multi parameter structural and energetic analyses of these models to generate experimentally testable hypotheses.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Molecular Physiology and Biophysics and Center for Applied AI in Protein Dynamics Vanderbilt University
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics and Center for Applied AI in Protein Dynamics Vanderbilt University
| |
Collapse
|
24
|
Versini R, Sritharan S, Aykac Fas B, Tubiana T, Aimeur SZ, Henri J, Erard M, Nüsse O, Andreani J, Baaden M, Fuchs P, Galochkina T, Chatzigoulas A, Cournia Z, Santuz H, Sacquin-Mora S, Taly A. A Perspective on the Prospective Use of AI in Protein Structure Prediction. J Chem Inf Model 2024; 64:26-41. [PMID: 38124369 DOI: 10.1021/acs.jcim.3c01361] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
AlphaFold2 (AF2) and RoseTTaFold (RF) have revolutionized structural biology, serving as highly reliable and effective methods for predicting protein structures. This article explores their impact and limitations, focusing on their integration into experimental pipelines and their application in diverse protein classes, including membrane proteins, intrinsically disordered proteins (IDPs), and oligomers. In experimental pipelines, AF2 models help X-ray crystallography in resolving the phase problem, while complementarity with mass spectrometry and NMR data enhances structure determination and protein flexibility prediction. Predicting the structure of membrane proteins remains challenging for both AF2 and RF due to difficulties in capturing conformational ensembles and interactions with the membrane. Improvements in incorporating membrane-specific features and predicting the structural effect of mutations are crucial. For intrinsically disordered proteins, AF2's confidence score (pLDDT) serves as a competitive disorder predictor, but integrative approaches including molecular dynamics (MD) simulations or hydrophobic cluster analyses are advocated for accurate dynamics representation. AF2 and RF show promising results for oligomeric models, outperforming traditional docking methods, with AlphaFold-Multimer showing improved performance. However, some caveats remain in particular for membrane proteins. Real-life examples demonstrate AF2's predictive capabilities in unknown protein structures, but models should be evaluated for their agreement with experimental data. Furthermore, AF2 models can be used complementarily with MD simulations. In this Perspective, we propose a "wish list" for improving deep-learning-based protein folding prediction models, including using experimental data as constraints and modifying models with binding partners or post-translational modifications. Additionally, a meta-tool for ranking and suggesting composite models is suggested, driving future advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Raphaelle Versini
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Sujith Sritharan
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Burcu Aykac Fas
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sana Zineb Aimeur
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Julien Henri
- Sorbonne Université, CNRS, Laboratoire de Biologie, Computationnelle et Quantitative UMR 7238, Institut de Biologie Paris-Seine, 4 Place Jussieu, F-75005 Paris, France
| | - Marie Erard
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Oliver Nüsse
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Patrick Fuchs
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Université de Paris, UFR Sciences du Vivant, 75013 Paris, France
| | - Tatiana Galochkina
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Alexios Chatzigoulas
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Hubert Santuz
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
25
|
Lensink MF, Brysbaert G, Raouraoua N, Bates PA, Giulini M, Honorato RV, van Noort C, Teixeira JMC, Bonvin AMJJ, Kong R, Shi H, Lu X, Chang S, Liu J, Guo Z, Chen X, Morehead A, Roy RS, Wu T, Giri N, Quadir F, Chen C, Cheng J, Del Carpio CA, Ichiishi E, Rodriguez‐Lumbreras LA, Fernandez‐Recio J, Harmalkar A, Chu L, Canner S, Smanta R, Gray JJ, Li H, Lin P, He J, Tao H, Huang S, Roel‐Touris J, Jimenez‐Garcia B, Christoffer CW, Jain AJ, Kagaya Y, Kannan H, Nakamura T, Terashi G, Verburgt JC, Zhang Y, Zhang Z, Fujuta H, Sekijima M, Kihara D, Khan O, Kotelnikov S, Ghani U, Padhorny D, Beglov D, Vajda S, Kozakov D, Negi SS, Ricciardelli T, Barradas‐Bautista D, Cao Z, Chawla M, Cavallo L, Oliva R, Yin R, Cheung M, Guest JD, Lee J, Pierce BG, Shor B, Cohen T, Halfon M, Schneidman‐Duhovny D, Zhu S, Yin R, Sun Y, Shen Y, Maszota‐Zieleniak M, Bojarski KK, Lubecka EA, Marcisz M, Danielsson A, Dziadek L, Gaardlos M, Gieldon A, Liwo A, Samsonov SA, Slusarz R, Zieba K, Sieradzan AK, Czaplewski C, Kobayashi S, Miyakawa Y, Kiyota Y, Takeda‐Shitaka M, Olechnovic K, Valancauskas L, Dapkunas J, Venclovas C, et alLensink MF, Brysbaert G, Raouraoua N, Bates PA, Giulini M, Honorato RV, van Noort C, Teixeira JMC, Bonvin AMJJ, Kong R, Shi H, Lu X, Chang S, Liu J, Guo Z, Chen X, Morehead A, Roy RS, Wu T, Giri N, Quadir F, Chen C, Cheng J, Del Carpio CA, Ichiishi E, Rodriguez‐Lumbreras LA, Fernandez‐Recio J, Harmalkar A, Chu L, Canner S, Smanta R, Gray JJ, Li H, Lin P, He J, Tao H, Huang S, Roel‐Touris J, Jimenez‐Garcia B, Christoffer CW, Jain AJ, Kagaya Y, Kannan H, Nakamura T, Terashi G, Verburgt JC, Zhang Y, Zhang Z, Fujuta H, Sekijima M, Kihara D, Khan O, Kotelnikov S, Ghani U, Padhorny D, Beglov D, Vajda S, Kozakov D, Negi SS, Ricciardelli T, Barradas‐Bautista D, Cao Z, Chawla M, Cavallo L, Oliva R, Yin R, Cheung M, Guest JD, Lee J, Pierce BG, Shor B, Cohen T, Halfon M, Schneidman‐Duhovny D, Zhu S, Yin R, Sun Y, Shen Y, Maszota‐Zieleniak M, Bojarski KK, Lubecka EA, Marcisz M, Danielsson A, Dziadek L, Gaardlos M, Gieldon A, Liwo A, Samsonov SA, Slusarz R, Zieba K, Sieradzan AK, Czaplewski C, Kobayashi S, Miyakawa Y, Kiyota Y, Takeda‐Shitaka M, Olechnovic K, Valancauskas L, Dapkunas J, Venclovas C, Wallner B, Yang L, Hou C, He X, Guo S, Jiang S, Ma X, Duan R, Qui L, Xu X, Zou X, Velankar S, Wodak SJ. Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment. Proteins 2023; 91:1658-1683. [PMID: 37905971 PMCID: PMC10841881 DOI: 10.1002/prot.26609] [Show More Authors] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.
Collapse
Affiliation(s)
- Marc F. Lensink
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | - Guillaume Brysbaert
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | - Nessim Raouraoua
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | - Paul A. Bates
- Biomolecular Modeling LaboratoryThe Francis Crick InstituteLondonUK
| | - Marco Giulini
- Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Rodrigo V. Honorato
- Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Charlotte van Noort
- Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Joao M. C. Teixeira
- Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Alexandre M. J. J. Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouChina
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouChina
| | - Xufeng Lu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouChina
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouChina
| | - Jian Liu
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Zhiye Guo
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Xiao Chen
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Alex Morehead
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Raj S. Roy
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Tianqi Wu
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Nabin Giri
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Farhan Quadir
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Chen Chen
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Jianlin Cheng
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | | | - Eichiro Ichiishi
- International University of Health and Welfare (IUHV Hospital)Nasushiobara‐CityJapan
| | - Luis A. Rodriguez‐Lumbreras
- Instituto de Ciencias de la Vida y del Vino (ICVV)CSIC ‐ Universidad de La Rioja ‐ Gobierno de La RiojaLogronoSpain
- Barcelona Supercomputing Center (BSC)BarcelonaSpain
| | - Juan Fernandez‐Recio
- Instituto de Ciencias de la Vida y del Vino (ICVV)CSIC ‐ Universidad de La Rioja ‐ Gobierno de La RiojaLogronoSpain
- Barcelona Supercomputing Center (BSC)BarcelonaSpain
| | - Ameya Harmalkar
- Dept. of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Lee‐Shin Chu
- Dept. of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Sam Canner
- Dept. of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rituparna Smanta
- Dept. of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jeffrey J. Gray
- Dept. of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hao Li
- School of PhysicsHuazhong University of Science and TechnologyWuhanChina
| | - Peicong Lin
- School of PhysicsHuazhong University of Science and TechnologyWuhanChina
| | - Jiahua He
- School of PhysicsHuazhong University of Science and TechnologyWuhanChina
| | - Huanyu Tao
- School of PhysicsHuazhong University of Science and TechnologyWuhanChina
| | - Sheng‐You Huang
- School of PhysicsHuazhong University of Science and TechnologyWuhanChina
| | - Jorge Roel‐Touris
- Protein Design and Modeling Lab, Dept. of Structural BiologyMolecular Biology Institute of Barcelona (IBMB‐CSIC)BarcelonaSpain
| | | | | | - Anika J. Jain
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Yuki Kagaya
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Harini Kannan
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Dept. of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| | - Tsukasa Nakamura
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Genki Terashi
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Jacob C. Verburgt
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Yuanyuan Zhang
- Dept. of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Zicong Zhang
- Dept. of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Hayato Fujuta
- Dept. of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| | | | - Daisuke Kihara
- Dept. of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | | | | | | | | | | | | | | | - Surendra S. Negi
- Sealy Center for Structural Biology and Molecular BiophysicsUniversity of Texas Medical BranchGalvestonTexasUSA
| | | | | | - Zhen Cao
- King Abdullah University of Science and Technology (KAUST)Saudi Arabia
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST)Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST)Saudi Arabia
- Department of Chemistry and BiologyUniversity of SalernoFiscianoItaly
| | | | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Dept. of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Melyssa Cheung
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Dept. of Chemistry and BiochemistryUniversity of MarylandCollege ParkMarylandUSA
| | - Johnathan D. Guest
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Dept. of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Jessica Lee
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Dept. of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Dept. of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Ben Shor
- School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | - Tomer Cohen
- School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | - Matan Halfon
- School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | | | - Shaowen Zhu
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Rujie Yin
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Yuanfei Sun
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Yang Shen
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Computer Science and EngineeringTexas A&M UniversityCollege StationTexasUSA
- Institute of Biosciences and Technology and Department of Translational Medical SciencesTexas A&M UniversityHoustonTexasUSA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuta Miyakawa
- School of PharmacyKitasato UniversityMinato‐kuTokyoJapan
| | - Yasuomi Kiyota
- School of PharmacyKitasato UniversityMinato‐kuTokyoJapan
| | | | - Kliment Olechnovic
- Institute of Biotechnology, Life Sciences CenterVilnius UniversityVilniusLithuania
| | - Lukas Valancauskas
- Institute of Biotechnology, Life Sciences CenterVilnius UniversityVilniusLithuania
| | - Justas Dapkunas
- Institute of Biotechnology, Life Sciences CenterVilnius UniversityVilniusLithuania
| | - Ceslovas Venclovas
- Institute of Biotechnology, Life Sciences CenterVilnius UniversityVilniusLithuania
| | - Bjorn Wallner
- Bioinformatics Division, Department of Physics, Chemistry, and BiologyLinkoping UniversityLinköpingSweden
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina
- School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneyNew South WalesAustralia
| | - Chengyu Hou
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbinChina
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina
- Shenzhen STRONG Advanced Materials Research Institute Col, LtdShenzhenPeople's Republic of China
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina
| | - Rui Duan
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| | - Liming Qui
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| | - Xianjin Xu
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| | - Xiaoqin Zou
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
- Dept. of Physics and AstronomyUniversity of MissouriColumbiaMissouriUSA
- Dept. of BiochemistryUniversity of MissouriColumbiaMissouriUSA
- Institute for Data Science and InformaticsUniversity of MissouriColumbiaMissouriUSA
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonCambridgeUK
| | | |
Collapse
|
26
|
Ozden B, Kryshtafovych A, Karaca E. The Impact of AI-Based Modeling on the Accuracy of Protein Assembly Prediction: Insights from CASP15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548341. [PMID: 37503072 PMCID: PMC10369898 DOI: 10.1101/2023.07.10.548341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In CASP15, 87 predictors submitted around 11,000 models on 41 assembly targets. The community demonstrated exceptional performance in overall fold and interface contact prediction, achieving an impressive success rate of 90% (compared to 31% in CASP14). This remarkable accomplishment is largely due to the incorporation of DeepMind's AF2-Multimer approach into custom-built prediction pipelines. To evaluate the added value of participating methods, we compared the community models to the baseline AF2-Multimer predictor. In over 1/3 of cases the community models were superior to the baseline predictor. The main reasons for this improved performance were the use of custom-built multiple sequence alignments, optimized AF2-Multimer sampling, and the manual assembly of AF2-Multimer-built subcomplexes. The best three groups, in order, are Zheng, Venclovas and Wallner. Zheng and Venclovas reached a 73.2% success rate over all (41) cases, while Wallner attained 69.4% success rate over 36 cases. Nonetheless, challenges remain in predicting structures with weak evolutionary signals, such as nanobody-antigen, antibody-antigen, and viral complexes. Expectedly, modeling large complexes remains also challenging due to their high memory compute demands. In addition to the assembly category, we assessed the accuracy of modeling interdomain interfaces in the tertiary structure prediction targets. Models on seven targets featuring 17 unique interfaces were analyzed. Best predictors achieved the 76.5% success rate, with the UM-TBM group being the leader. In the interdomain category, we observed that the predictors faced challenges, as in the case of the assembly category, when the evolutionary signal for a given domain pair was weak or the structure was large. Overall, CASP15 witnessed unprecedented improvement in interface modeling, reflecting the AI revolution seen in CASP14.
Collapse
Affiliation(s)
- Burcu Ozden
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Andriy Kryshtafovych
- Protein Structure Prediction Center, Genome and Biomedical Sciences Facilities, University of California, Davis, California, USA
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| |
Collapse
|
27
|
Vakser IA. Prediction of protein interactions is essential for studying biomolecular mechanisms. Proteomics 2023; 23:e2300219. [PMID: 37667816 DOI: 10.1002/pmic.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 09/06/2023]
Abstract
Structural characterization of protein interactions is essential for our ability to understand and modulate physiological processes. Computational approaches to modeling of protein complexes provide structural information that far exceeds capabilities of the existing experimental techniques. Protein structure prediction in general, and prediction of protein interactions in particular, has been revolutionized by the rapid progress in Deep Learning techniques. The work of Schweke et al. (Proteomics 2023, 23, 2200323) presents a community-wide study of an important problem of distinguishing physiological protein-protein complexes/interfaces (experimentally determined or modeled) from non-physiological ones. The authors designed and generated a large benchmark set of physiological and non-physiological homodimeric complexes, and evaluated a large set of scoring functions, as well as AlphaFold predictions, on their ability to discriminate the non-physiological interfaces. The problem of separating physiological interfaces from non-physiological ones is very difficult, largely due to the lack of a clear distinction between the two categories in a crowded environment inside a living cell. Still, the ability to identify key physiologically significant interfaces in the variety of possible configurations of a protein-protein complex is important. The study presents a major data resource and methodological development in this important direction for molecular and cellular biology.
Collapse
Affiliation(s)
- Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
28
|
Wodak SJ, Velankar S. Structural biology: The transformational era. Proteomics 2023; 23:e2200084. [PMID: 37667815 DOI: 10.1002/pmic.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Affiliation(s)
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| |
Collapse
|
29
|
Efraimidis E, Krokidis MG, Exarchos TP, Lazar T, Vlamos P. In Silico Structural Analysis Exploring Conformational Folding of Protein Variants in Alzheimer's Disease. Int J Mol Sci 2023; 24:13543. [PMID: 37686347 PMCID: PMC10487466 DOI: 10.3390/ijms241713543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Accurate protein structure prediction using computational methods remains a challenge in molecular biology. Recent advances in AI-powered algorithms provide a transformative effect in solving this problem. Even though AlphaFold's performance has improved since its release, there are still limitations that apply to its efficacy. In this study, a selection of proteins related to the pathology of Alzheimer's disease was modeled, with Presenilin-1 (PSN1) and its mutated variants in the foreground. Their structural predictions were evaluated using the ColabFold implementation of AlphaFold, which utilizes MMseqs2 for the creation of multiple sequence alignments (MSAs). A higher number of recycles than the one used in the AlphaFold DB was selected, and no templates were used. In addition, prediction by RoseTTAFold was also applied to address how structures from the two deep learning frameworks match reality. The resulting conformations were compared with the corresponding experimental structures, providing potential insights into the predictive ability of this approach in this particular group of proteins. Furthermore, a comprehensive examination was performed on features such as predicted regions of disorder and the potential effect of mutations on PSN1. Our findings consist of highly accurate superpositions with little or no deviation from experimentally determined domain-level models.
Collapse
Affiliation(s)
- Evangelos Efraimidis
- Bioinformatics and Neuroinformatics MSc Program, Hellenic Open University, 26335 Patras, Greece;
| | - Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (T.P.E.)
| | - Themis P. Exarchos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (T.P.E.)
| | - Tamas Lazar
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B1050 Brussels, Belgium;
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, B1050 Brussels, Belgium
| | - Panagiotis Vlamos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (T.P.E.)
| |
Collapse
|
30
|
Rogers JR, Nikolényi G, AlQuraishi M. Growing ecosystem of deep learning methods for modeling protein-protein interactions. Protein Eng Des Sel 2023; 36:gzad023. [PMID: 38102755 DOI: 10.1093/protein/gzad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Numerous cellular functions rely on protein-protein interactions. Efforts to comprehensively characterize them remain challenged however by the diversity of molecular recognition mechanisms employed within the proteome. Deep learning has emerged as a promising approach for tackling this problem by exploiting both experimental data and basic biophysical knowledge about protein interactions. Here, we review the growing ecosystem of deep learning methods for modeling protein interactions, highlighting the diversity of these biophysically informed models and their respective trade-offs. We discuss recent successes in using representation learning to capture complex features pertinent to predicting protein interactions and interaction sites, geometric deep learning to reason over protein structures and predict complex structures, and generative modeling to design de novo protein assemblies. We also outline some of the outstanding challenges and promising new directions. Opportunities abound to discover novel interactions, elucidate their physical mechanisms, and engineer binders to modulate their functions using deep learning and, ultimately, unravel how protein interactions orchestrate complex cellular behaviors.
Collapse
Affiliation(s)
- Julia R Rogers
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Gergő Nikolényi
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|