1
|
Bergman A, Crist AB, Lopez-Maestre H, Blanc H, Castelló-Sanjuán M, Frangeul L, Varet H, Daron J, Merkling SH, Saleh MC, Lambrechts L. Limited impact of the siRNA pathway on transposable element expression in Aedes aegypti. BMC Biol 2025; 23:130. [PMID: 40361089 PMCID: PMC12076837 DOI: 10.1186/s12915-025-02225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Transposable elements (TEs) are DNA sequences that can change their position within a genome. In insects, small RNA pathways are central to the transcriptional and post-transcriptional regulation of TE expression. The Piwi-interacting RNA (piRNA) pathway is particularly important in germline tissues, where it silences TE transcripts via small RNAs of 24-30 nucleotides (nt) in length produced from genomic precursor transcripts as well as through a "ping-pong" amplification cycle. The small interfering RNA (siRNA) pathway helps restrict TE expression in somatic tissues via 21nt small RNAs produced from double-stranded RNA by the endonuclease Dicer2, which guide an RNA-induced silencing complex to degrade complementary RNAs. However, much of this knowledge comes from studies of the model insect Drosophila melanogaster. In the mosquito Aedes aegypti, a medically significant vector species, the siRNA pathway has mainly been investigated in connection with its antiviral role, leaving open whether it also regulates TE expression. RESULTS We investigated the expression of TEs and small RNAs in both somatic and gonadal tissues of a Dicer2 mutant line of Ae. aegypti and its wild-type counterpart. Our results show a modified pattern of TE expression and a decrease in TE-derived 21nt RNAs in the Dicer2 mutant, but no major shift of TE transcript abundance. The lack of a functional siRNA pathway also causes perturbations in piRNA ping-pong signatures and the expression of certain piRNA-associated genes, but without clear evidence for compensation by increased piRNA pathway activity. CONCLUSIONS The mosquito Ae. aegypti produces siRNAs derived from TEs but these lack a critical role in the regulation of TE expression both in somatic and in gonadal tissues.
Collapse
Affiliation(s)
- Alexander Bergman
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France.
| | - Anna B Crist
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Hélène Lopez-Maestre
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Hervé Blanc
- Institut Pasteur, Université Paris Cité, Viruses and RNA Interference Unit, Paris, France
| | - Mauro Castelló-Sanjuán
- Institut Pasteur, Université Paris Cité, Viruses and RNA Interference Unit, Paris, France
| | - Lionel Frangeul
- Institut Pasteur, Université Paris Cité, Viruses and RNA Interference Unit, Paris, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Josquin Daron
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Sarah H Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, Viruses and RNA Interference Unit, Paris, France
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France.
| |
Collapse
|
2
|
Brait N, Hackl T, Lequime S. detectEVE: Fast, Sensitive and Precise Detection of Endogenous Viral Elements in Genomic Data. Mol Ecol Resour 2025; 25:e14083. [PMID: 39936183 PMCID: PMC11969637 DOI: 10.1111/1755-0998.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Endogenous viral elements (EVEs) are fragments of viral genomic material embedded within the host genome. Retroviruses contribute to the majority of EVEs because of their genomic integration during their life cycle; however, the latter can also arise from non-retroviral RNA or DNA viruses, then collectively known as non-retroviral (nr) EVEs. Detecting nrEVEs poses challenges because of their sequence and genomic structural diversity, contributing to the scarcity of specific tools designed for nrEVEs detection. Here, we introduce detectEVE, a user-friendly and open-source tool designed for the accurate identification of nrEVEs in genomic assemblies. detectEVE deviates from other nrEVE detection pipelines, which usually classify sequences in a more rigid manner as either virus-associated or not. Instead, we implemented a scaling system assigning confidence scores to hits in protein sequence similarity searches, using bit score distributions and search hints related to various viral characteristics, allowing for higher sensitivity and specificity. Our benchmarking shows that detectEVE is computationally efficient and accurate, as well as considerably faster than existing approaches, because of its resource-efficient parallel execution. Our tool can help to fill current gaps in both host-associated fields and virus-related studies. This includes (i) enhancing genome annotations with metadata for EVE loci, (ii) conducting large-scale paleo-virological studies to explore deep viral evolutionary histories, and (iii) aiding in the identification of actively expressed EVEs in transcriptomic data, reducing the risk of misinterpretations between exogenous viruses and EVEs.
Collapse
Affiliation(s)
- Nadja Brait
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| | - Thomas Hackl
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
3
|
Feng T, Tong H, Zhang F, Zhang Q, Zhang H, Zhou X, Ruan H, Wu Q, Dai J. Transcriptome study reveals tick immune genes restrict Babesia microti infection. INSECT SCIENCE 2025; 32:457-470. [PMID: 38837613 DOI: 10.1111/1744-7917.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
A systems biology approach was employed to gain insight into tick biology and interactions between vectors and pathogens. Haemaphysalis longicornis serves as one of the primary vectors of Babesia microti, significantly impacting human and animal health. Obtaining more information about their relationship is crucial for a comprehensive understanding of tick and pathogen biology, pathogen transmission dynamics, and potential control strategies. RNA sequencing of uninfected and B. microti-infected ticks resulted in the identification of 15 056 unigenes. Among these, 1 051 were found to be differentially expressed, with 796 being upregulated and 255 downregulated (P < 0.05). Integrated transcriptomics datasets revealed the pivotal role of immune-related pathways, including the Toll, Janus kinase/signal transducer and activator of transcription (JAK-STAT), immunodeficiency, and RNA interference (RNAi) pathways, in response to infection. Consequently, 3 genes encoding critical transcriptional factor Dorsal, Relish, and STAT were selected for RNAi experiments. The knockdown of Dorsal, Relish, and STAT resulted in a substantial increase in Babesia infection levels compared to the respective controls. These findings significantly advanced our understanding of tick-Babesia molecular interactions and proposed novel tick antigens as potential vaccine targets against tick infestations and pathogen transmission.
Collapse
Affiliation(s)
- Tingting Feng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
- Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tong
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Feihu Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Qianqian Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Heng Zhang
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xia Zhou
- School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hang Ruan
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Chen Y, Shi Y, Wang Z, An X, Wei S, Andronis C, Vontas J, Wang JJ, Niu J. dsRNAEngineer: a web-based tool of comprehensive dsRNA design for pest control. Trends Biotechnol 2025; 43:969-983. [PMID: 39924355 DOI: 10.1016/j.tibtech.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
Over the past two decades, many double-stranded (ds)-RNAs have been synthesized to silence target genes for exploration of gene functions in pests. Some of these dsRNAs are lethal to pests, leading to a new category of pesticides. The generation of these environmentally friendly pesticides requires precise in silico design of dsRNA molecules that target pests but not non-pest organisms. Current efforts in dsRNA design focus mainly on the analysis of the target gene sequence, lacking comprehensive analysis of all transcripts of the whole transcriptome per given species, causing low efficiency and imprecise dsRNA target exploration. To address these limitations, we created the dsRNAEngineer online platform (https://dsrna-engineer.cn), which allows comprehensive and rational dsRNA design, incorporating hundreds of pest and non-pest transcriptomes. Developed functionalities include screen-target (screen conserved genes for cotargets of various pest species), on-target, off-target, and multi-target to generate optimal dsRNA for precise pest control.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Yufei Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Ziguo Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Xin An
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Siyu Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Christos Andronis
- Institute Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - John Vontas
- Institute Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece; Agricultural University of Athens, Athens, Greece
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China.
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China.
| |
Collapse
|
5
|
Fadli M, Hisano S, Novoa G, Castón JR, Kondo H, Suzuki N. A capsidless (+)RNA yadokarivirus hosted by a dsRNA virus is infectious as particles, cDNA, and dsRNA. J Virol 2025; 99:e0216624. [PMID: 39945536 PMCID: PMC11915832 DOI: 10.1128/jvi.02166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Capsidless yadokariviruses (members of the order Yadokarivirales) with (+)RNA genomes divert the capsid of their partner icosahedral double-stranded RNA (dsRNA) viruses in different families of the order Ghabrivirales into the replication site. A yadokarivirus, AfSV2, has been reported from a German strain of the ascomycete fungus Aspergillus foetidus coinfected by two dsRNA viruses, a victorivirus (AfSV1, family Pseudototiviridae) and an alternavirus (AfFV, family Alternaviridae). Here, we identified AfSV1 as the partner of AfSV2 in a Japanese A. foetidus strain after showing the infectiousness of AfSV2 in three forms: virus particles (heterocapsid), transforming full-length complementary DNA (cDNA), and purified replicated form (RF) dsRNA that is believed to be inactive as a translational template. Virion transfection of virus-free A. foetidus protoplasts resulted in the generation of two strains infected either by AfSV1 alone or by both AfSV1 and AfSV2. Transformants with AfSV2 full-length cDNA launched AfSV2 infection only in the presence of AfSV1, but not those with AfSV2 RNA-directed RNA polymerase mutant cDNA. The purified fractions containing AfSV2 RF dsRNA also launched infection when transfected into protoplasts infected by AfSV1. Treatment with dsRNA-specific RNase III, but not with proteinase K, S1 nuclease, or DNase I, abolished the infectivity of AfSV2 RF dsRNA. Furthermore, we confirmed the infectiousness of gel-purified AfSV2 RF dsRNA in the presence of AfSV1. Taken together, our results show the unique infectious entity of AfSV2 and the expansion of yadokarivirus partners in the family Pseudototiviridae and provide interesting evolutionary insights.IMPORTANCEThe viral phylum Pisuviricota accommodates members with both double-stranded RNA (dsRNA) and (+)RNA genomes. Some members of the second group display peculiar virus lifestyles. These include (+)RNA yadkariviruses, which are capsidless and highjack the capsid of their partner dsRNA viruses in the order Ghabrivirales of a different phylum Duplornaviricota. We identified the partner dsRNA virus (AfSV1, a victorivirus) of a yadokarivirus (AfSV2) from the ascomycete Aspergillus foetidus. AfSV2 is infectious in the presence of AfSV1 in three forms: purified particles, transforming full-length complementary DNA, and, surprisingly, the purified replicative form dsRNA. These combined results expand yadokarivirus partner viruses to the family Pseudototiviridae and provide evidence for AfSV2 as a unique infectious entity as well as interesting evolutionary insights.
Collapse
Affiliation(s)
- Muhammad Fadli
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Sakae Hisano
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Guy Novoa
- Department of Structure of Macromolecules, Centro Nacional Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Hideki Kondo
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| |
Collapse
|
6
|
Huang G, Liu X, Huang X, Gao C, Wang Z, Li J, Wei X, Yu WH, Wu Y, Liu Y, Feng J, Li Y, Wei F. Adaptive evolution of traits for parasitism and pathogen transmission potential in bat flies. Natl Sci Rev 2025; 12:nwae245. [PMID: 40115433 PMCID: PMC11925017 DOI: 10.1093/nsr/nwae245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 03/23/2025] Open
Abstract
Deciphering the mechanisms underlying the transmission and spillover of zoonoses from reservoir hosts is essential in preventing future global pandemics. Bat flies-obligate blood-feeding ectoparasites of bats-are known carriers of diverse viruses. Here, we conducted a de novo assembly of a chromosome-level genome for the bat fly species Phthiridium sp. Comparative genomic analysis unveiled genes associated with specialized traits, such as the loss of eyes and wings, as well as elongated legs, which have adapted to parasitism on the dense fur of bats. Utilizing small RNA sequencing, we identified a spectrum of known and previously unclassified viruses in bat flies. Notably, experimental evidence indicated that bat flies can also feed on mammalian hosts other than bats, suggesting the potential for the spillover of bat-borne viruses. Furthermore, we demonstrated the role of the bat fly's RNA interference pathway in influencing the diversity and evolution of viruses. In summary, this study not only presents a new genome catalog to unveil the evolutionary mechanisms underpinning bat fly parasitism, but also provides a novel research system that can be used to investigate the mechanisms of cross-species transmission of bat-borne viruses and the co-evolution of bats and viruses.
Collapse
Affiliation(s)
- Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xing Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Gao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhilin Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxia Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaocui Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Hua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yi Wu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130024, China
| | - Yang Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Vu ED, Liu S, Bonning BC. Phasmavirus-derived genome sequences and endogenous viral element identified in the small hive beetle, Aethina tumida Murray. J Invertebr Pathol 2025; 209:108265. [PMID: 39675695 DOI: 10.1016/j.jip.2024.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/19/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
The small hive beetle (SHB), Aethina tumida Murray is an invasive pest of the honey bee. This beetle feeds not only on bee resources within the hive such as honey and pollen, but also on bee brood and dead bees. The impact of this beetle's intimate parasitic association with the honey bee on virus transmission is poorly understood. We aimed to characterize the virome of SHB to identify SHB viruses with potential for use in biological control of this pest. We characterized the virome of SHB by sequencing the transcriptomes and small RNAs of SHB collected from multiple geographical regions: Adult and larval SHB were collected from midwestern- (Illinois, Ohio) and southern- (Florida, Texas) states of the USA, and from South Africa. Small RNAs were sequenced for adult beetles from Florida and Ohio, for larvae from Florida, and for an SHB-derived cell line (BCIRL-AtumEN-1129). Assembled transcripts were annotated by BLASTx. In field-caught adult beetles and adults and larvae from South Africa, the near-complete sequences for all three genomic segments of a putative novel phasmavirus (order: Elliovirales, formerly Bunyavirales) were identified. In addition, transcripts from a partial glycoprotein sequence from a different phasmavirus integrated into the genome of SHB were detected in all samples, including the SHB-derived cell line. Apparent PIWI-interacting RNAs derived from the integrated glycoprotein sequence were also detected. Whether the putative extant phasmavirus replicates in SHB remains to be determined.
Collapse
Affiliation(s)
- Emily D Vu
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Sijun Liu
- ViralSeqID, Ames, IA 50010, United States
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States.
| |
Collapse
|
8
|
Zhang L, Liang Y, Qin J, Liu C, Shang M, Sun X. CDK12 antagonizes a viral suppressor of RNAi to modulate antiviral RNAi in Drosophila. mBio 2025; 16:e0286824. [PMID: 39601580 PMCID: PMC11708023 DOI: 10.1128/mbio.02868-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The primary antiviral immunity in insects is mediated by the RNA interference (RNAi) pathway. To counteract this antiviral RNAi response, viruses employ virulence factors known as viral suppressors of RNAi (VSR). The question of whether host factors can activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression remains unanswered. In this study, cyclin-dependent kinase 12 (CDK12) was identified to interact with B2, a VSR of Flock House virus (FHV), and the critical amino acids responsible for dsRNA binding and dimerization in B2 were essential for this interaction. Silencing of CDK12 facilitated FHV RNA accumulation only in the context of B2, not for FHVΔB2. Notably, CDK12 abrogated the RNAi suppression exerted by B2. Furthermore, the knockdown of CDK12 inhibited the production of vsiRNAs in FHV-infected Drosophila cells. This study revealed that CDK12 mediated a counter-counter-defense strategy against VSR, thereby enhancing antiviral RNAi immunity in Drosophila.IMPORTANCEThe arms race between virus and host immunity is never-ending. This study enhances our understanding of antiviral defenses in insects by uncovering a novel counter-counter-defense mechanism against viral suppressors of RNA interference (VSRs). The RNA interference (RNAi) pathway serves as a primary antiviral response in insects, but viruses, such as Flock House virus (FHV), have evolved VSRs like B2 to disrupt this defense. Our research identifies cyclin-dependent kinase 12 (CDK12) as a critical host factor that interacts with the VSR B2. The discovery that CDK12 can counteract B2-mediated RNAi suppression and stimulate the production of viral small interfering RNAs (vsiRNAs) in FHV-infected Drosophila cells highlights its pivotal role in enhancing antiviral RNAi immunity. This study not only reveals a new dimension of host-virus interactions but also opens avenues for developing strategies to strengthen RNAi-based antiviral defenses.
Collapse
Affiliation(s)
- Liqin Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yu Liang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiayu Qin
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengwei Shang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoming Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Lai Y, Wang S. Epigenetic Regulation in Insect-Microbe Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:293-311. [PMID: 39374433 DOI: 10.1146/annurev-ento-022724-010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insects have evolved diverse interactions with a variety of microbes, such as pathogenic fungi, bacteria, and viruses. The immune responses of insect hosts, along with the dynamic infection process of microbes in response to the changing host environment and defenses, require rapid and fine-tuned regulation of gene expression programs. Epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNA regulation, play important roles in regulating the expression of genes involved in insect immunity and microbial pathogenicity. This review highlights recent discoveries and insights into epigenetic regulatory mechanisms that modulate insect-microbe interactions. A deeper understanding of these regulatory mechanisms underlying insect-microbe interactions holds promise for the development of novel strategies for biological control of insect pests and mitigation of vector-borne diseases.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| | - Sibao Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| |
Collapse
|
10
|
Mao Q, Ye ZX, Yuan JN, Ning C, Chen MN, Xu ZT, Qi YH, Zhang Y, Li T, He YJ, Lu G, Huang HJ, Lu JB, Zhuo JC, Hu QL, Zhang CX, Chen JP, Li JM. Diversity and transmissibility of RNA viruses in the small brown planthopper, Laodelphax striatellus. J Virol 2024; 98:e0019124. [PMID: 39589138 PMCID: PMC11650995 DOI: 10.1128/jvi.00191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/18/2024] [Indexed: 11/27/2024] Open
Abstract
While a considerable number of viruses have been recently discovered in hematophagous insects, there remains insufficient research on virus diversity and their association with phytophagous insect hosts. In this study, we conducted a systematic investigation of the RNA virome in the small brown planthopper (SBPH), Laodelphax striatellus, an important vector of plant viruses. We successfully identified a total of 22 RNA viruses, including 17 novel viruses, from various families. These viruses were prevalent and abundant in SBPH populations, originating from the lab or field, with +ssRNA viruses composing the core SBPH viruses. Subsequent analysis revealed that the overall abundance of RNA viruses in SBPH remained relatively consistent across different developmental stages of the insects, although the titers of individual viruses varied among different insect tissues. This indicates a delicate balance between the viruses and their insect hosts. Interestingly, cross-species experiments confidently indicated that certain SBPH viruses could successfully infect and replicate in two other rice planthopper species (the brown planthopper and the white-backed planthopper) through microinjection. In conclusion, this study provides valuable insights into the RNA virome and its adaptability in a phytophagous insect, contributing to a better understanding of the intimate relationship between viruses and host insects. IMPORTANCE In the last decade, advances in the next-generation sequencing technology have unveiled a vast diversity of viruses in insects, particularly RNA viruses in hematophagous insects. However, research on virus diversity and their association with phytophagous insect hosts remains insufficient. This study presents a comprehensive analysis of the RNA virome in the small brown planthopper (SBPH), Laodelphax striatellus, a critical vector of plant viruses. The results indicated that the +ssRNA viruses, especially picorna-like viruses, comprised the core RNA viruses of SBPH that were prevalent in both laboratory and field populations. Moreover, a delicate balance was observed between the viruses and insect hosts. Significantly, some RNA viruses of SBPH could successfully infect and replicate in two other rice planthopper species belonging to different genera. This study provides valuable insights into the RNA virome and its adaptability in a phytophagous insect.
Collapse
Affiliation(s)
- Qianzhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing-Na Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chao Ning
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Meng-Nan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhong-Tian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ting Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Juan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qing-Ling Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Ritsch M, Brait N, Harvey E, Marz M, Lequime S. Endogenous viral elements: insights into data availability and accessibility. Virus Evol 2024; 10:veae099. [PMID: 39659497 PMCID: PMC11631435 DOI: 10.1093/ve/veae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/19/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Endogenous viral elements (EVEs) are remnants of viral genetic material endogenized into the host genome. They have, in the last decades, attracted attention for their role as potential contributors to pathogenesis, drivers of selective advantage for the host, and genomic remnants of ancient viruses. EVEs have a nuanced and complex influence on both host health and evolution, and can offer insights on the deep evolutionary history of viruses. As an emerging field of research, several factors limit a comprehensive understanding of EVEs: they are currently underestimated and periodically overlooked in studies of the host genome, transcriptome, and virome. The absence of standardized guidelines for ensuring EVE-related data availability and accessibility following the FAIR ('findable, accessible, interoperable, and reusable') principles obstructs our ability to gather and connect information. Here, we discuss challenges to the availability and accessibility of EVE-related data and propose potential solutions. We identified the biological and research focus imbalance between different types of EVEs, and their overall biological complexity as genomic loci with viral ancestry, as potential challenges that can be addressed with the development of a user-oriented identification tool. In addition, reports of EVE identification are scattered between different subfields under different keywords, and EVE sequences and associated data are not properly gathered in databases. While developing an open and dedicated database might be ideal, targeted improvements of generalist databases might provide a pragmatic solution to EVE data and metadata accessibility. The implementation of these solutions, as well as the collective effort by the EVE scientific community in discussing and setting guidelines, is now drastically needed to lead the development of EVE research and offer insights into host-virus interactions and their evolutionary history.
Collapse
Affiliation(s)
- Muriel Ritsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena 07743, Germany
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
| | - Nadja Brait
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| | - Erin Harvey
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena 07743, Germany
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- German Center for Integrative Biodiversity Research (iDiv), Puschstrasse 4, Halle-Jena-Leipzig 04103, Germany
- Michael Stifel Center Jena, Ernst-Abbe-Platz 2, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, Jena, Thüringen 07745, Germany
- Fritz Lipmann Institute-Leibniz Institute on Aging, Beutenbergstraße 11, Jena 07745, Germany
| | - Sebastian Lequime
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| |
Collapse
|
12
|
Wang M, Tang W, Wu C, Chen Y, Li H, Wu P, Qian H, Guo X, Zhang Z. Linc20486 promotes BmCPV replication through inhibiting the transcription of AGO2 and Dicers. J Invertebr Pathol 2024; 206:108170. [PMID: 39173824 DOI: 10.1016/j.jip.2024.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
The silkworm holds pivotal economic importance, serving not only as a primary source of silk but also as a prominent model organism in scientific research. Nonetheless, silkworm farming remains vulnerable to diverse factors, with viral infections posing the gravest threat to the sericulture industry. Among these, the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), a member of the Reoviridae family and the cytoplasmic polyhedrosis virus genus, emerges as a significant pathogen in silkworm production. BmCPV infection primarily induces midgut sepsis in silkworms, spreads rapidly, and can inflict substantial economic losses on sericulture production. Presently, effective strategies for preventing and treating BmCPV infections are lacking. Long non-coding RNA (lncRNA) constitutes a class of RNA molecules with transcripts exceeding 200 nt, playing a crucial role in mediating the interplay between pathogens and host cells. Investigation through high-throughput technology has unveiled that BmCPV infection markedly upregulates the expression of Linc20486. This observation suggests potential involvement of Linc20486 in regulating virus replication. Indeed, as anticipated, knockdown of Linc20486 in cells profoundly impedes BmCPV replication, whereas overexpression significantly enhances virus propagation. To probe into the mechanism underlying Linc20486's impact on virus replication, its effects on autophagy, innate immunity, and RNAi-related pathways were scrutinized. The findings revealed that Linc20486 exerts significant influence on the expression of RNAi pathway-related genes, such as Dicer1, Dicer2 and AGO2. This discovery holds promise for unveiling novel avenues to comprehend and combat BmCPV infections in silkworms.
Collapse
Affiliation(s)
- Mengdong Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Weiming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chengyue Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeping Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Hao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xijie Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhendong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
13
|
Coffman KA, Kauwe AN, Gillette NE, Burke GR, Geib SM. Host range of a parasitoid wasp is linked to host susceptibility to its mutualistic viral symbiont. Mol Ecol 2024; 33:e17485. [PMID: 39080979 DOI: 10.1111/mec.17485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024]
Abstract
Parasitoid wasps are one of the most species-rich groups of animals on Earth, due to their ability to successfully develop as parasites of nearly all types of insects. Unlike most known parasitoid wasps that specialize towards one or a few host species, Diachasmimorpha longicaudata is a generalist that can survive within multiple genera of tephritid fruit fly hosts, including many globally important pest species. Diachasmimorpha longicaudata has therefore been widely released to suppress pest populations as part of biological control efforts in tropical and subtropical agricultural ecosystems. In this study, we investigated the role of a mutualistic poxvirus in shaping the host range of D. longicaudata across three genera of agricultural pest species: two of which are permissive hosts for D. longicaudata parasitism and one that is a nonpermissive host. We found that permissive hosts Ceratitis capitata and Bactrocera dorsalis were highly susceptible to manual virus injection, displaying rapid virus replication and abundant fly mortality. However, the nonpermissive host Zeugodacus cucurbitae largely overcame virus infection, exhibiting substantially lower mortality and no virus replication. Investigation of transcriptional dynamics during virus infection demonstrated hindered viral gene expression and limited changes in fly gene expression within the nonpermissive host compared with the permissive species, indicating that the host range of the viral symbiont may influence the host range of D. longicaudata wasps. These findings also reveal that viral symbiont activity may be a major contributor to the success of D. longicaudata as a generalist parasitoid species and a globally successful biological control agent.
Collapse
Affiliation(s)
- K A Coffman
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - A N Kauwe
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
| | - N E Gillette
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
- College of Agriculture, Forestry and Natural Resource Management, University of Hawai'i at Hilo, Hilo, Hawaii, USA
| | - G R Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - S M Geib
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
| |
Collapse
|
14
|
Hernández-Pelegrín L, Rodríguez-Gómez A, Abelaira AB, Reche MC, Crava C, Lim FS, Bielza P, Herrero S. Rich diversity of RNA viruses in the biological control agent, Orius laevigatus. J Invertebr Pathol 2024; 206:108175. [PMID: 39151645 DOI: 10.1016/j.jip.2024.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Orius laevigatus (Hemiptera, Anthocoridae) is a generalist predator extensively used for the biocontrol of diverse agricultural pests. Previous studies on O. laevigatus have focused on the improvement of insect genetic traits, but little is known about its association with microbes, especially viruses that may influence its production and efficacy. More than 280 RNA viruses have been described in other Hemiptera insects, in line with the continuous discovery of insect-specific viruses (ISVs) boosted by next-generation sequencing. In this study, we characterized the repertoire of RNA viruses associated with O. laevigatus. Its virome comprises 27 RNA viruses, classified within fourteen viral families, of which twenty-three viruses are specific to O. laevigatus and four are likely associated with fungal microbiota. The analysis of viral abundance in five O. laevigatus populations confirmed the presence of simultaneous viral infections and highlighted the ubiquitous presence and high abundance of one solinvivirus and three totiviruses. Moreover, we identified 24 non-retroviral endogenous viral elements (nrEVEs) in the genome of O. laevigatus, suggesting a long-term relationship between the host and its virome. Although no symptoms were described in the insect populations under study, the high diversity of viral species and the high abundance of certain RNA viruses identified indicate that RNA viruses may be significant for the applicability and efficacy of O. laevigatus in biocontrol programs.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Departamento de Genética e Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Amador Rodríguez-Gómez
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Ana Belén Abelaira
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Ma Carmen Reche
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Cristina Crava
- Departamento de Genética e Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Fang Shiang Lim
- Departamento de Genética e Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Pablo Bielza
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Salvador Herrero
- Departamento de Genética e Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
15
|
Chen MN, Ye ZX, Feng KH, Yuan JN, Chen JP, Zhang CX, Li JM, Mao QZ. Genetic Characterization of Two Novel Insect-Infecting Negative-Sense RNA Viruses Identified in a Leaf Beetle, Aulacophora indica. INSECTS 2024; 15:615. [PMID: 39194819 DOI: 10.3390/insects15080615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Herbivorous insects harbor a variety of insect-specific viruses (ISVs) some of which are considered to be valuable biological agents for potential applications in biological defense and control strategies. Leaf beetles with chewing mouthparts are particularly known for their capacity to disrupt plant tissue while feeding, often creating openings that can act as entry points for plant pathogens. In this study, we have identified two new negative-sense RNA viruses infecting the leaf beetle Aulacophora indica, an important member of the Chrysomelidae family. These recently discovered viruses belong to the viral families Nyamiviridae and Chuviridae and have been preliminarily named Aulacophora indica nyami-like virus 1 (AINlV1) and Aulacophora indica chu-like virus 1 (AIClV1), respectively. The complete genomic sequences of these viruses were obtained using rapid amplification of cDNA ends (RACE) techniques. Detailed analysis of their genomic structures has confirmed their similarity to other members within their respective families. Furthermore, analysis of virus-derived small interfering RNA (vsiRNA) demonstrated a high abundance and typical vsiRNA pattern of AINlV1 and AIClV1, offering substantial evidence to support their classification as ISVs. This research enhances our understanding of viral diversity within insects.
Collapse
Affiliation(s)
- Meng-Nan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ke-Hui Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jing-Na Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
Iredale ME, Cobb G, Vu ED, Ghosh S, Ellis JD, Bonning BC. Development of a multiplex real-time quantitative reverse-transcription polymerase chain reaction for the detection of four bee viruses. J Virol Methods 2024; 328:114953. [PMID: 38759872 DOI: 10.1016/j.jviromet.2024.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Viruses in the families Dicistroviridae and Iflaviridae are among the main threats to western honey bees (Apis mellifera) and native bee species. Polymerase chain reaction (PCR) is the gold standard for pathogen detection in bees. However, high throughput screening for bee virus infections in singleplex PCR reactions is cumbersome and limited by the high quantities of sample RNA required. Thus, the development of a sensitive and specific multiplex PCR detection method for screening for multiple viruses simultaneously is necessary. Here, we report the development of a one-step multiplex reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay to detect four viruses commonly encountered in pollinator species. The optimized multiplex RT-qPCR protocol described in this study allows simultaneous detection of two dicistroviruses (Israeli acute paralysis virus and Black queen cell virus) and two iflaviruses (Sacbrood virus and Deformed wing virus) with high efficiency and specificity comparable to singleplex detection assays. This assay provides a broad range of detection and quantification, and the results of virus quantification in this study are similar to those performed in other studies using singleplex detection assays. This method will be particularly useful for data generation from small-bodied insect species that yield low amounts of RNA.
Collapse
Affiliation(s)
- Marley E Iredale
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611, USA.
| | - Galen Cobb
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA
| | - Emily D Vu
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611, USA; Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Saptarshi Ghosh
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611, USA
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611, USA
| |
Collapse
|
17
|
Telengech P, Hyodo K, Ichikawa H, Kuwata R, Kondo H, Suzuki N. Replication of single viruses across the kingdoms, Fungi, Plantae, and Animalia. Proc Natl Acad Sci U S A 2024; 121:e2318150121. [PMID: 38865269 PMCID: PMC11194502 DOI: 10.1073/pnas.2318150121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungusRosellinia necatrix could replicate in protoplasts of the carrot (Daucus carota), Nicotiana benthamiana and Nicotiana tabacum, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution.
Collapse
Affiliation(s)
- Paul Telengech
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama710-0046, Japan
| | - Kiwamu Hyodo
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama710-0046, Japan
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-8634, Japan
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime794-8555, Japan
| | - Hideki Kondo
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama710-0046, Japan
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama710-0046, Japan
| |
Collapse
|
18
|
Sun K, Fu K, Hu T, Shentu X, Yu X. Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. PEST MANAGEMENT SCIENCE 2024; 80:2515-2527. [PMID: 37948321 DOI: 10.1002/ps.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
The potential of insect viruses in the biological control of agricultural pests is well-recognized, yet their practical application faces obstacles such as host specificity, variable virulence, and resource scarcity. High-throughput sequencing (HTS) technologies have significantly advanced our capabilities in discovering and identifying new insect viruses, thereby enriching the arsenal for pest management. Concurrently, progress in reverse genetics has facilitated the development of versatile viral expression vectors. These vectors have enhanced the specificity and effectiveness of insect viruses in targeting specific pests, offering a more precise approach to pest control. This review provides a comprehensive examination of the methodologies employed in the identification of insect viruses using HTS. Additionally, it explores the domain of genetically modified insect viruses and their associated challenges in pest management. The adoption of these cutting-edge approaches holds great promise for developing environmentally sustainable and effective pest control solutions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kang Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tao Hu
- Zhejinag Seed Industry Group Xinchuang Bio-breeding Co., Ltd., Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
19
|
Yuan JN, Ye ZX, Chen MN, Ren PP, Ning C, Sun ZT, Chen JP, Zhang CX, Li JM, Mao Q. Identification and Characterization of Three Novel Solemo-like Viruses in the White-Backed Planthopper, Sogatella furcifera. INSECTS 2024; 15:394. [PMID: 38921109 PMCID: PMC11203538 DOI: 10.3390/insects15060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice black-streaked dwarf virus (SRBSDV), a significant rice virus. In this study, we analyzed WBPH transcriptome data from public sources and identified three novel viruses. These newly discovered viruses belong to the plant-associated viral family Solemoviridae and were tentatively named Sogatella furcifera solemo-like virus 1-3 (SFSolV1-3). Among them, SFSolV1 exhibited a prevalent existence in different laboratory populations, and its complete genome sequence was obtained using rapid amplification of cDNA ends (RACE) approaches. To investigate the antiviral RNA interference (RNAi) response in WBPH, we conducted an analysis of virus-derived small interfering RNAs (vsiRNAs). The vsiRNAs of SFSolV1 and -2 exhibited typical patterns associated with the host's siRNA-mediated antiviral immunity, with a preference for 21- and 22-nt vsiRNAs derived equally from both the sense and antisense genomic strands. Furthermore, we examined SFSolV1 infection and distribution in WBPH, revealing a significantly higher viral load of SFSolV1 in nymphs' hemolymph compared to other tissues. Additionally, in adult insects, SFSolV1 exhibited higher abundance in male adults than in female adults.
Collapse
Affiliation(s)
- Jing-Na Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Meng-Nan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Chao Ning
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Qianzhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| |
Collapse
|
20
|
Imler JL, Cai H, Meignin C, Martins N. Evolutionary immunology to explore original antiviral strategies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230068. [PMID: 38497262 PMCID: PMC10945398 DOI: 10.1098/rstb.2023.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
Over the past 25 years, the field of evolutionary developmental biology (evo-devo) has used genomics and genetics to gain insight on the developmental mechanisms underlying the evolution of morphological diversity of animals. Evo-devo exploits the key insight that conserved toolkits of development (e.g. Hox genes) are used in animals to produce genetic novelties that provide adaptation to a new environment. Like development, immunity is forged by interactions with the environment, namely the microbial world. Yet, when it comes to the study of immune defence mechanisms in invertebrates, interest primarily focuses on evolutionarily conserved molecules also present in humans. Here, focusing on antiviral immunity, we argue that immune genes not conserved in humans represent an unexplored resource for the discovery of new antiviral strategies. We review recent findings on the cGAS-STING pathway and explain how cyclic dinucleotides produced by cGAS-like receptors may be used to investigate the portfolio of antiviral genes in a broad range of species. This will set the stage for evo-immuno approaches, exploiting the investment in antiviral defences made by metazoans over hundreds of millions of years of evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Carine Meignin
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| | - Nelson Martins
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| |
Collapse
|
21
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
22
|
Hong H, Ye Z, Lu G, Feng K, Zhang M, Sun X, Han Z, Jiang S, Wu B, Yin X, Xu S, Li J, Xin X. Characterisation of a Novel Insect-Specific Virus Discovered in Rice Thrips, Haplothrips aculeatus. INSECTS 2024; 15:303. [PMID: 38786859 PMCID: PMC11122063 DOI: 10.3390/insects15050303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Insects constitute the largest proportion of animals on Earth and act as significant reservoirs and vectors in disease transmission. Rice thrips (Haplothrips aculeatus, family Phlaeothripidae) are one of the most common pests in agriculture. In this study, the full genome sequence of a novel Ollusvirus, provisionally named "Rice thrips ollusvirus 1" (RTOV1), was elucidated using transcriptome sequencing and the rapid amplification of cDNA ends (RACE). A homology search and phylogenetic tree analysis revealed that the newly identified virus is a member of the family Aliusviridae (order Jingchuvirales). The genome of RTOV1 contains four predicted open reading frames (ORFs), including a polymerase protein (L, 7590 nt), a glycoprotein (G, 4206 nt), a nucleocapsid protein (N, 2415 nt) and a small protein of unknown function (291 nt). All of the ORFs are encoded by the complementary genome, suggesting that the virus is a negative-stranded RNA virus. Phylogenetic analysis using polymerase sequences suggested that RTOV1 was closely related to ollusvirus 1. Deep small RNA sequencing analysis reveals a significant accumulation of small RNAs derived from RTOV1, indicating that the virus replicated in the insect. According to our understanding, this is the first report of an Ollusvirus identified in a member of the insect family Phlaeothripidae. The characterisation and discovery of RTOV1 is a significant contribution to the understanding of Ollusvirus diversity in insects.
Collapse
Affiliation(s)
- Hao Hong
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.H.); (S.X.)
| | - Zhuangxin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kehui Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mei Zhang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.H.); (S.X.)
| | - Xiaohui Sun
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.H.); (S.X.)
| | - Zhilei Han
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.H.); (S.X.)
| | - Shanshan Jiang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.H.); (S.X.)
| | - Bin Wu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.H.); (S.X.)
| | - Xiao Yin
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.H.); (S.X.)
| | - Shuai Xu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.H.); (S.X.)
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiangqi Xin
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.H.); (S.X.)
| |
Collapse
|
23
|
Salman Hameed M, Ren Y, Tuda M, Basit A, Urooj N. Role of Argonaute proteins in RNAi pathway in Plutella xylostella: A review. Gene 2024; 903:148195. [PMID: 38295911 DOI: 10.1016/j.gene.2024.148195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Argonaute (Ago) proteins act as key elements in RNA interference (RNAi) pathway, orchestrating the intricate machinery of gene regulation within eukaryotic cells. Within the RNAi pathway, small RNA molecules, including microRNA (miRNA), small interfering RNA (siRNA), and PIWI-interacting RNA (piRNA), collaborate with Ago family member proteins such as Ago1, Ago2, and Ago3 to form the RNA-induced silencing complex (RISC). This RISC complex, in turn, either cleaves the target mRNA or inhibits the process of protein translation. The precise contributions of Ago proteins have been well-established in numerous animals and plants, although they still remain unclear in some insect species. This review aims to shed light on the specific roles played by Ago proteins within the RNAi mechanism in a destructive lepidopteran pest, the diamondback moth (Plutella xylostella). Furthermore, we explore the potential of double-stranded RNA (dsRNA)-mediated RNAi as a robust genetic tool in pest management strategies. Through an in-depth examination of Ago proteins and dsRNA-mediated RNAi, this review seeks to contribute to our understanding of innovative approaches for controlling this pest and potentially other insect species of agricultural significance.
Collapse
Affiliation(s)
- Muhammad Salman Hameed
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Yanliang Ren
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Midori Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Abdul Basit
- Institute of Entomology, Guizhou University Guiyang 550025, Guizhou China
| | - Nida Urooj
- Department of Business Administrative, Bahaudin Zakriya University, Multan, Pakistan
| |
Collapse
|
24
|
Pradeu T, Thomma BPHJ, Girardin SE, Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024; 57:613-631. [PMID: 38599162 DOI: 10.1016/j.immuni.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Presidential Fellow, Chapman University, Orange, CA, USA.
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
25
|
Huang P, Yu H, Asad M, Liao J, Lin S, Pang S, Chu X, Yang G. Functional characteristics of Dicer genes in Plutella xylostella. PEST MANAGEMENT SCIENCE 2024; 80:2109-2119. [PMID: 38133081 DOI: 10.1002/ps.7945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Dicer is an endonuclease that belongs to the RNase III family and can specifically recognize and cleave double-stranded RNA (dsRNA). In most insects, there are two Dicer genes, Dicer-1 (Dcr-1) and Dicer-2 (Dcr-2), which are involved in the micro-RNA and small-interfering RNA pathways in many species, respectively. The function of Dicer in Plutella xylostella remains unknown. RESULTS The full-length open reading frames of P. xylostella Dicer-1 (PxDcr-1) and Dicer-2 (PxDcr-2) were cloned and sequenced. Dcr-1 and Dcr-2 proteins shared similar structural domains with the Dicer-Partner Binding Domain (Dicer-PBD) and the double-strand RNA binding domain (dsRBD) present only in Dcr-1. The phylogenetic trees showed that lepidopteran Dcr-1s or Dcr-2s clustered in one branch, with PxDcr-1 in the basal position and PxDcr-2 closest to Plodia interpunctella Dicer. Two homozygous knockout lines, ΔPxDcr-1 and ΔPxDcr-2, were obtained by using the CRISPR-Cas9 technique. The ΔPxDcr-1 strain exhibited a high mortality rate, a low eclosion rate, a low egg-laying rate, a low hatching rate, and a shriveled ovariole without mature eggs. The ΔPxDcr-2 strain showed no significant difference from the wild-type in terms of survival, development and reproduction, but the RNA interference (RNAi) efficiency caused by dsRNA was significantly reduced. CONCLUSION These findings demonstrate the involvement of PxDcr-1 in the development and reproduction of P. xylostella, specifically in the formation of ovarioles and eggs, and PxDcr-2 is indispensable for RNAi. These findings shed light on the function of Dcr-1 and Dcr-2 in Lepidoptera. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengrong Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huihui Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianying Liao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sujie Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Senbo Pang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuemei Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Niu J, Chen R, Wang JJ. RNA interference in insects: the link between antiviral defense and pest control. INSECT SCIENCE 2024; 31:2-12. [PMID: 37162315 DOI: 10.1111/1744-7917.13208] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
RNA interference (RNAi) is a form of gene silencing triggered by double-stranded RNA (dsRNA) that operates in all eukaryotic cells. RNAi has been widely investigated in insects to determine the underlying molecular mechanism, to investigate its role in systemic antiviral defense, and to develop strategies for pest control. When insect cells are infected by viruses, viral dsRNA signatures trigger a local RNAi response to block viral replication and generate virus-derived DNA that confers systemic immunity. RNAi-based insect pest control involves the application of exogenous dsRNA targeting genes essential for insect development or survival, but the efficacy of this approach has limited potency in many pests through a combination of rapid dsRNA degradation, inefficient dsRNA uptake/processing, and ineffective RNAi machinery. This could be addressed by dsRNA screening and evaluation, focusing on dsRNA design and off-target management, as well as dsRNA production and delivery. This review summarizes recent progress to determine the role of RNAi in antiviral defense and as a pest control strategy in insects, addressing gaps between our fundamental understanding of the RNAi mechanism and the exploitation of RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Ruoyu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
27
|
An X, Gu Q, Wang J, Chang T, Zhang W, Wang JJ, Niu J. Insect-specific RNA virus affects the stylet penetration activity of brown citrus aphid (Aphis citricidus) to facilitate its transmission. INSECT SCIENCE 2024; 31:255-270. [PMID: 37358052 DOI: 10.1111/1744-7917.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/27/2023]
Abstract
Sap-sucking insects often transmit plant viruses but also carry insect viruses, which infect insects but not plants. The impact of such insect viruses on insect host biology and ecology is largely unknown. Here, we identified a novel insect-specific virus carried by brown citrus aphid (Aphis citricidus), which we tentatively named Aphis citricidus picornavirus (AcPV). Phylogenetic analysis discovered a monophyletic cluster with AcPV and other unassigned viruses, suggesting that these viruses represent a new family in order Picornavirales. Systemic infection with AcPV triggered aphid antiviral immunity mediated by RNA interference, resulting in asymptomatic tolerance. Importantly, we found that AcPV was transmitted horizontally by secretion of the salivary gland into the feeding sites of plants. AcPV influenced aphid stylet behavior during feeding and increased the time required for intercellular penetration, thus promoting its transmission among aphids with plants as an intermediate site. The gene expression results suggested that this mechanism was linked with transcription of salivary protein genes and plant defense hormone signaling. Together, our results show that the horizontal transmission of AcPV in brown citrus aphids evolved in a manner similar to that of the circulative transmission of plant viruses by insect vectors, thus providing a new ecological perspective on the activity of insect-specific viruses found in aphids and improving the understanding of insect virus ecology.
Collapse
Affiliation(s)
- Xin An
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Qiaoying Gu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jing Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Tengyu Chang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Zhang W, Li R, Li S, Li SY, Niu J, Wang JJ. RNA virus diversity in three parasitoid wasps of tephritid flies: insights from novel and known species. Microbiol Spectr 2023; 11:e0313923. [PMID: 37930041 PMCID: PMC10714968 DOI: 10.1128/spectrum.03139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Parasitoid wasp populations have developed persistent beneficial symbiotic relationships with several viruses through repeated evolution. However, there have been limited reports on RNA viruses in parasitoid wasps of tephritid flies, a significant pest group affecting fruits and vegetables. This study explores the diversity of RNA viruses in three parasitoid wasps of tephritid flies and highlights the potential biological significance of specific viruses in Diachasmimorpha longicaudata. These findings have important implications for the development of sustainable pest management strategies and the enhancement of artificial rearing techniques for parasitoid wasps.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Rong Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Shuai Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Shao-Yang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
29
|
Hernández-Pelegrín L, Ros VID, Herrero S, Crava CM. Non-retroviral Endogenous Viral Elements in Tephritid Fruit Flies Reveal Former Viral Infections Not Related to Known Circulating Viruses. MICROBIAL ECOLOGY 2023; 87:7. [PMID: 38036897 PMCID: PMC10689555 DOI: 10.1007/s00248-023-02310-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
A wide variety of insect-specific non-retroviral RNA viruses specifically infect insects. During viral infection, fragments of viral sequences can integrate into the host genomes creating non-retroviral endogenous viral elements (nrEVEs). Although the exact function of nrEVEs is so far unknown, some studies suggest that nrEVEs may interfere with virus replication by producing PIWI-interacting RNAs (piRNAs) that recognize and degrade viral RNAs through sequence complementarity. In this article, we identified the nrEVEs repertoire of ten species within the dipteran family Tephritidae (true fruit flies), which are considered a major threat to agriculture worldwide. Our results suggest that each of these species contains nrEVEs, although in limited numbers, and that nrEVE integration may have occurred both before and after speciation. Furthermore, the majority of nrEVEs originated from viruses with negative single-stranded RNA genomes and represent structural viral functions. Notably, these nrEVEs exhibit low similarity to currently known circulating viruses. To explore the potential role of nrEVEs, we investigated their transcription pattern and the production of piRNAs in different tissues of Ceratitis capitata. We successfully identified piRNAs that are complementary to the sequence of one nrEVE in C. capitata, thereby highlighting a potential link between nrEVEs and the piRNA pathway. Overall, our results provide valuable insights into the comparative landscape of nrEVEs in true fruit flies, contributing to the understanding of the intimate relation between fruit flies and their past and present viral pathogens.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot (Valencia), Spain
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot (Valencia), Spain
| | - Cristina M Crava
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot (Valencia), Spain.
| |
Collapse
|
30
|
Lu RX, Bhatia S, Simone-Finstrom M, Rueppell O. Quantitative trait loci mapping for survival of virus infection and virus levels in honey bees. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105534. [PMID: 38036199 DOI: 10.1016/j.meegid.2023.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Israeli acute paralysis virus (IAPV) is a highly virulent, Varroa-vectored virus that is of global concern for honey bee health. Little is known about the genetic basis of honey bees to withstand infection with IAPV or other viruses. We set up and analyzed a backcross between preselected honey bee colonies of low and high IAPV susceptibility to identify quantitative trait loci (QTL) associated with IAPV susceptibility. Experimentally inoculated adult worker bees were surveyed for survival and selectively sampled for QTL analysis based on SNPs identified by whole-genome resequencing and composite interval mapping. Additionally, natural titers of other viruses were quantified in the abdomen of these workers via qPCR and also used for QTL mapping. In addition to the full dataset, we analyzed distinct subpopulations of susceptible and non-susceptible workers separately. These subpopulations are distinguished by a single, suggestive QTL on chromosome 6, but we identified numerous other QTL for different abdominal virus titers, particularly in the subpopulation that was not susceptible to IAPV. The pronounced QTL differences between the susceptible and non-susceptible subpopulations indicate either an interaction between IAPV infection and the bees' interaction with other viruses or heterogeneity among workers of a single cohort that manifests itself as IAPV susceptibility and results in distinct subgroups that differ in their interaction with other viruses. Furthermore, our results indicate that low susceptibility of honey bees to viruses can be caused by both, virus tolerance and virus resistance. QTL were partially overlapping among different viruses, indicating a mixture of shared and specific processes that control viruses. Some functional candidate genes are located in the QTL intervals, but their genomic co-localization with numerous genes of unknown function delegates any definite characterization of the underlying molecular mechanisms to future studies.
Collapse
Affiliation(s)
- Robert X Lu
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, T6G 2E9, Canada
| | - Shilpi Bhatia
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, T6G 2E9, Canada; Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA.
| |
Collapse
|
31
|
Choi J, Pakbaz S, Yepes LM, Cieniewicz EJ, Schmitt-Keichinger C, Labarile R, Minutillo SA, Heck M, Hua J, Fuchs M. Grapevine Fanleaf Virus RNA1-Encoded Proteins 1A and 1B Hel Suppress RNA Silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:558-571. [PMID: 36998121 DOI: 10.1094/mpmi-01-23-0008-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Grapevine fanleaf virus (GFLV) (genus Nepovirus, family Secoviridae) causes fanleaf degeneration, one of the most damaging viral diseases of grapevines. Despite substantial advances at deciphering GFLV-host interactions, how this virus overcomes the host antiviral pathways of RNA silencing is poorly understood. In this study, we identified viral suppressors of RNA silencing (VSRs) encoded by GFLV, using fluorescence assays, and tested their capacity at modifying host gene expression in transgenic Nicotiana benthamiana expressing the enhanced green fluorescent protein gene (EGFP). Results revealed that GFLV RNA1-encoded protein 1A, for which a function had yet to be assigned, and protein 1BHel, a putative helicase, reverse systemic RNA silencing either individually or as a fused form (1ABHel) predicted as an intermediary product of RNA1 polyprotein proteolytic processing. The GFLV VSRs differentially altered the expression of plant host genes involved in RNA silencing, as shown by reverse transcription-quantitative PCR. In a co-infiltration assay with an EGFP hairpin construct, protein 1A upregulated NbDCL2, NbDCL4, and NbRDR6, and proteins 1BHel and 1A+1BHel upregulated NbDCL2, NbDCL4, NbAGO1, NbAGO2, and NbRDR6, while protein 1ABHel upregulated NbAGO1 and NbRDR6. In a reversal of systemic silencing assay, protein 1A upregulated NbDCL2 and NbAGO2 and protein 1ABHel upregulated NbDCL2, NbDCL4, and NbAGO1. This is the first report of VSRs encoded by a nepovirus RNA1 and of two VSRs that act either individually or as a predicted fused form to counteract the systemic antiviral host defense, suggesting that GFLV might devise a unique counterdefense strategy to interfere with various steps of the plant antiviral RNA silencing pathways during infection. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jiyeong Choi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Samira Pakbaz
- Plant Pathology Department, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
| | - Luz Marcela Yepes
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Elizabeth Jeannette Cieniewicz
- Deparment of Plant and Environmental Sciences, College of Agriculture, Forestry, and Life Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Corinne Schmitt-Keichinger
- CNRS, IBMP UPR 2357, Université de Strasbourg, 67000 Strasbourg, France
- INRAE, SVQV UMR 1131, Université de Strasbourg, 68000 Colmar, France
| | - Rossella Labarile
- National Research Council (CNR), Institute of Chemical-Physical Processes, Via Amendola 165/A, 70126 Bari, Italy
| | - Serena Anna Minutillo
- International Center for Advanced Mediterranean Agronomic Studies - Institute of Bari (CIHEAM-Bari), 70010 Valenzano, Italy
| | - Michelle Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, U.S.A
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| |
Collapse
|
32
|
Merkling SH, Crist AB, Henrion-Lacritick A, Frangeul L, Couderc E, Gausson V, Blanc H, Bergman A, Baidaliuk A, Romoli O, Saleh MC, Lambrechts L. Multifaceted contributions of Dicer2 to arbovirus transmission by Aedes aegypti. Cell Rep 2023; 42:112977. [PMID: 37573505 DOI: 10.1016/j.celrep.2023.112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/20/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) transmitted by Aedes aegypti mosquitoes are an increasing threat to global health. The small interfering RNA (siRNA) pathway is considered the main antiviral immune pathway of insects, but its effective impact on arbovirus transmission is surprisingly poorly understood. Here, we use CRISPR-Cas9-mediated gene editing in vivo to mutate Dicer2, a gene encoding the RNA sensor and key component of the siRNA pathway. The loss of Dicer2 enhances early viral replication and systemic viral dissemination of four medically significant arboviruses (chikungunya, Mayaro, dengue, and Zika viruses) representing two viral families. However, Dicer2 mutants and wild-type mosquitoes display overall similar levels of vector competence. In addition, Dicer2 mutants undergo significant virus-induced mortality during infection with chikungunya virus. Together, our results define a multifaceted role for Dicer2 in the transmission of arboviruses by Ae. aegypti mosquitoes and pave the way for further mechanistic investigations.
Collapse
Affiliation(s)
- Sarah Hélène Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Anna Beth Crist
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Annabelle Henrion-Lacritick
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Lionel Frangeul
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Elodie Couderc
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Valérie Gausson
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Hervé Blanc
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Alexander Bergman
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Artem Baidaliuk
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Ottavia Romoli
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France.
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France.
| |
Collapse
|
33
|
Mahanta DK, Bhoi TK, Komal J, Samal I, Nikhil RM, Paschapur AU, Singh G, Kumar PVD, Desai HR, Ahmad MA, Singh PP, Majhi PK, Mukherjee U, Singh P, Saini V, Shahanaz, Srinivasa N, Yele Y. Insect-pathogen crosstalk and the cellular-molecular mechanisms of insect immunity: uncovering the underlying signaling pathways and immune regulatory function of non-coding RNAs. Front Immunol 2023; 14:1169152. [PMID: 37691928 PMCID: PMC10491481 DOI: 10.3389/fimmu.2023.1169152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Multicellular organisms are constantly subjected to pathogens that might be harmful. Although insects lack an adaptive immune system, they possess highly effective anti-infective mechanisms. Bacterial phagocytosis and parasite encapsulation are some forms of cellular responses. Insects often defend themselves against infections through a humoral response. This phenomenon includes the secretion of antimicrobial peptides into the hemolymph. Specific receptors for detecting infection are required for the recognition of foreign pathogens such as the proteins that recognize glucans and peptidoglycans, together referred to as PGRPs and βGRPs. Activation of these receptors leads to the stimulation of signaling pathways which further activates the genes encoding for antimicrobial peptides. Some instances of such pathways are the JAK-STAT, Imd, and Toll. The host immune response that frequently accompanies infections has, however, been circumvented by diseases, which may have assisted insects evolve their own complicated immune systems. The role of ncRNAs in insect immunology has been discussed in several notable studies and reviews. This paper examines the most recent research on the immune regulatory function of ncRNAs during insect-pathogen crosstalk, including insect- and pathogen-encoded miRNAs and lncRNAs, and provides an overview of the important insect signaling pathways and effector mechanisms activated by diverse pathogen invaders.
Collapse
Affiliation(s)
- Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE) - Arid Forest Research Institute (ICFRE-AFRI), Jodhpur, Rajasthan, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ipsita Samal
- ICAR-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur, Bihar, India
| | - R. M. Nikhil
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Amit Umesh Paschapur
- Crop Protection Division, Indian Council of Agricultural Research (ICAR)-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Gaurav Singh
- The Directorate of Research, Maharana Pratap Horticultural University, Karnal, Haryana, India
| | - P. V. Dinesh Kumar
- Department of Plant Pathology University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Gujarat, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - P. P. Singh
- Department of Entomology, Tirhut College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - U. Mukherjee
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Pushpa Singh
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Varun Saini
- Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Shahanaz
- Department of Entomology, College of Horticulture Mojerla, Sri Konda Laxman Telengana State Horticultural University, Wanaparthy, Telengana, India
| | - N. Srinivasa
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Yogesh Yele
- School of Crop Health Management Research, Council of Agricultural Research-National Institute of Biotic Stress Management (ICAR)- National Institute of Biotic Stress Management, Raipur, India
| |
Collapse
|
34
|
Liu S, Han Y, Li WX, Ding SW. Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference. Microbiol Mol Biol Rev 2023; 87:e0003522. [PMID: 37052496 PMCID: PMC10304667 DOI: 10.1128/mmbr.00035-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Immune recognition of viral genome-derived double-stranded RNA (dsRNA) molecules and their subsequent processing into small interfering RNAs (siRNAs) in plants, invertebrates, and mammals trigger specific antiviral immunity known as antiviral RNA interference (RNAi). Immune sensing of viral dsRNA is sequence-independent, and most regions of viral RNAs are targeted by virus-derived siRNAs which extensively overlap in sequence. Thus, the high mutation rates of viruses do not drive immune escape from antiviral RNAi, in contrast to other mechanisms involving specific virus recognition by host immune proteins such as antibodies and resistance (R) proteins in mammals and plants, respectively. Instead, viruses actively suppress antiviral RNAi at various key steps with a group of proteins known as viral suppressors of RNAi (VSRs). Some VSRs are so effective in virus counter-defense that potent inhibition of virus infection by antiviral RNAi is undetectable unless the cognate VSR is rendered nonexpressing or nonfunctional. Since viral proteins are often multifunctional, resistance phenotypes of antiviral RNAi are accurately defined by those infection defects of VSR-deletion mutant viruses that are efficiently rescued by host deficiency in antiviral RNAi. Here, we review and discuss in vivo infection defects of VSR-deficient RNA and DNA viruses resulting from the actions of host antiviral RNAi in model systems.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wan-Xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
35
|
Xia Y, Jiang M, Hu X, Wang Q, Qian C, Zhu B, Wei G, Wang L. A Protein Asteroid with PIN Domain in Silkworm Bombyx mori Is Involved in Anti-BmNPV Infection. INSECTS 2023; 14:550. [PMID: 37367365 DOI: 10.3390/insects14060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Nuclease is a type of protein that degrades nucleic acids, which plays an important role in biological processes, including RNA interference efficiency and antiviral immunity. However, no evidence of a link between nuclease and Bombyx mori nucleopolyhedrovirus (BmNPV) infection in silkworm B. mori has been found. In this study, a protein asteroid (BmAst) containing the PIN domain and XPG domain was identified in silkworm B. mori. BmAst gene was highest expressed in hemocytes and fat body of the 5th instar larvae, and high expression in the pupa stage. The transcriptional levels of the BmAst gene in 5th instar larvae were significantly induced by BmNPV or dsRNA. After knocking down BmAst gene expression by specific dsRNA, the proliferation of BmNPV in B. mori was increased significantly, whereas the survival rate of larvae was significantly lower when compared with the control. Our findings indicate that BmAst is involved in silkworm resistance to BmNPV infection.
Collapse
Affiliation(s)
- Yuchen Xia
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Mouzhen Jiang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoxuan Hu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Qing Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Cen Qian
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Baojian Zhu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Guoqing Wei
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Lei Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
36
|
Bobadilla Ugarte P, Barendse P, Swarts DC. Argonaute proteins confer immunity in all domains of life. Curr Opin Microbiol 2023; 74:102313. [PMID: 37023508 DOI: 10.1016/j.mib.2023.102313] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Both eukaryotes and prokaryotes (archaea and bacteria) encode an arsenal of immune systems that protect the host against mobile genetic elements (MGEs) including viruses, plasmids, and transposons. Whereas Argonaute proteins (Agos) are best known for post-transcriptional gene silencing in eukaryotes, in all domains of life, members from the highly diverse Argonaute protein family act as programmable immune systems. To this end, Agos are programmed with small single-stranded RNA or DNA guides to detect and silence complementary MGEs. Across and within the different domains of life, Agos function in distinct pathways and MGE detection can trigger various mechanisms that provide immunity. In this review, we delineate the diverse immune pathways and underlying mechanisms for both eukaryotic Argonautes (eAgos) and prokaryotic Argonautes (pAgos).
Collapse
Affiliation(s)
| | - Patrick Barendse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
37
|
Feng C, Torimaru K, Lim MYT, Chak LL, Shiimori M, Tsuji K, Tanaka T, Iida J, Okamura K. A novel eukaryotic RdRP-dependent small RNA pathway represses antiviral immunity by controlling an ERK pathway component in the black-legged tick. PLoS One 2023; 18:e0281195. [PMID: 36996253 PMCID: PMC10062562 DOI: 10.1371/journal.pone.0281195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/17/2023] [Indexed: 04/01/2023] Open
Abstract
Small regulatory RNAs (sRNAs) are involved in antiviral defense and gene regulation. Although roles of RNA-dependent RNA Polymerases (RdRPs) in sRNA biology are extensively studied in nematodes, plants and fungi, understanding of RdRP homologs in other animals is still lacking. Here, we study sRNAs in the ISE6 cell line, which is derived from the black-legged tick, an important vector of human and animal pathogens. We find abundant classes of ~22nt sRNAs that require specific combinations of RdRPs and sRNA effector proteins (Argonautes or AGOs). RdRP1-dependent sRNAs possess 5'-monophosphates and are mainly derived from RNA polymerase III-transcribed genes and repetitive elements. Knockdown of some RdRP homologs misregulates genes including RNAi-related genes and the regulator of immune response Dsor1. Sensor assays demonstrate that Dsor1 is downregulated by RdRP1 through the 3'UTR that contains a target site of RdRP1-dependent repeat-derived sRNAs. Consistent with viral gene repression by the RNAi mechanism using virus-derived small interfering RNAs, viral transcripts are upregulated by AGO knockdown. On the other hand, RdRP1 knockdown unexpectedly results in downregulation of viral transcripts. This effect is dependent on Dsor1, suggesting that antiviral immunity is enhanced by RdRP1 knockdown through Dsor1 upregulation. We propose that tick sRNA pathways control multiple aspects of immune response via RNAi and regulation of signaling pathways.
Collapse
Affiliation(s)
- Canran Feng
- Nara Institute of Science and Technology, Nara, Japan
| | | | - Mandy Yu Theng Lim
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Li-Ling Chak
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | | | - Kosuke Tsuji
- Nara Institute of Science and Technology, Nara, Japan
| | - Tetsuya Tanaka
- Joint Faculty of Veterinary Medicine, Laboratory of Infectious Diseases, Kagoshima University, Kagoshima, Japan
| | - Junko Iida
- Nara Institute of Science and Technology, Nara, Japan
| | - Katsutomo Okamura
- Nara Institute of Science and Technology, Nara, Japan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
38
|
Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol 2023; 31:181-196. [PMID: 36167769 DOI: 10.1016/j.tim.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Insect sequential development evolves from a simple molt towards complete metamorphosis. Like any multicellular host, insects interact with a complex microbiota. In this review, factors driving the microbiota dynamics were pointed out along their development. Special focus was put on tissue renewal, shift in insect ecology, and microbial interactions. Conversely, how the microbiota modulates its host development through nutrient acquisition, hormonal control, and cellular or tissue differentiation was exemplified. Such modifications might have long-term carry-over effects on insect physiology. Finally, remarkable microbe-driven control of insect behaviors along their life cycle was highlighted. Increasing knowledge of those interactions might offer new insights on how insects respond to their environment as well as perspectives on pest- or vector-control strategies.
Collapse
|
39
|
Iwama RE, Moran Y. Origins and diversification of animal innate immune responses against viral infections. Nat Ecol Evol 2023; 7:182-193. [PMID: 36635343 DOI: 10.1038/s41559-022-01951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/11/2022] [Indexed: 01/14/2023]
Abstract
Immune systems are of pivotal importance to any living organism on Earth, as they protect the organism against deleterious effects of viral infections. Though the current knowledge about these systems is still biased towards the immune response in vertebrates, some studies have focused on the identification and characterization of components of invertebrate antiviral immune systems. Two classic model organisms, the insect Drosophila melanogaster and the nematode Caenorhabditis elegans, were instrumental in the discovery of several important components of the innate immune system, such as the Toll-like receptors and the RNA interference pathway. However, these two model organisms provide only a limited view of the evolutionary history of the immune system, as they both are ecdysozoan protostomes. Recent functional studies in non-classic models such as unicellular holozoans (for example, choanoflagellates), lophotrochozoans (for example, oysters) and cnidarians (for example, sea anemones) have added crucial information for understanding the evolution of antiviral systems, as they revealed unexpected ancestral complexity. This Review aims to summarize this information and present the ancestral nature of the antiviral immune response in animals. We also discuss lineage-specific adaptations and future perspectives for the comparative study of the innate immune system that are essential for understanding its evolution.
Collapse
Affiliation(s)
- Rafael E Iwama
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
40
|
Gangnonngiw W, Kanthong N. Failed shrimp vaccination attempt with yellow head virus (YHV) attenuated in an immortal insect cell line. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100084. [PMID: 36686577 PMCID: PMC9852278 DOI: 10.1016/j.fsirep.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
This short paper on yellow head virus Type-1 (YHV-1) of shrimp describes preliminary research on the potential for using YHV-1 attenuated in insect cells to protect shrimp against yellow head disease (YHD). YHV-1 can cause severe mortality in the cultivated shrimp Penaeus (Penaeus) monodon and Penaeus (Litopenaeus) vannamei. No practical vaccination has been reported. The C6/36 mosquito cell cultures inoculated with YHV-1 become positive by PCR and by immunocytochemistry (immunopositive) for up to 30 split-cell passages. Shrimp injected with homogenates from low-passage cultures die from typical YHV-1 disease while shrimp injected with homogenates from high passage cultures do not, even though they become PCR positive and immunopositive for YHV-1. This suggested that viral attenuation had occurred during insect-cell passaging, and it opened the possibility of using homogenates from high-passage insect cultures as a vaccine against YHV-1. To test this hypothesis, homogenates from 30th-passage, YHV-positive cultures were injected into shrimp followed by challenge with virulent YHV-1. Controls were injected with homogenate from 30th-passage, naive (normal stock) insect-cell cultures. No shrimp mortality occurred following injection of either homogenate, but shrimp injected with the YHV-1 homogenate became both RT-PCR positive and immunopositive. Upon challenge 10 days later with YHV-1, mortality in shrimp injected with naive insect-cell homogenate was 100% within 7 days post-challenge while 100% mortality in the YHV-1 homogenate group did not occur until day 9 post-challenge. Kaplan-Meier log-rank survival analysis revealed that survival curves for the two groups were significantly different (p < 0.001). The cause of delay in mortality may be worthy of further investigation.
Collapse
Affiliation(s)
- Warachin Gangnonngiw
- Centex Shrimp, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand,National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong 1, Klong Luang, Pratum Thani 12120, Thailand
| | - Nipaporn Kanthong
- Department of Biotechnology, Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok, Sriracha, Chonburi 20110, Thailand,Corresponding author.
| |
Collapse
|
41
|
Bai M, Liu ZL, Zhou YY, Xu QX, Liu TX, Tian HG. Influence of diverse storage conditions of double-stranded RNA in vitro on the RNA interference efficiency in vivo insect Tribolium castaneum. PEST MANAGEMENT SCIENCE 2023; 79:45-54. [PMID: 36086883 DOI: 10.1002/ps.7171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A significant variation in RNA interference (RNAi) efficiency hinders further functional gene studies and pest control application in many insects. The available double-stranded RNA (dsRNA) molecules introduced into the target cells are regarded as the crucial factor for efficient RNAi response. However, numerous studies have only focused on dsRNA stability in vivo; it is uncertain whether different dsRNA storage conditions in vitro play a role in variable RNAi efficiency among insects. RESULTS A marker gene cardinal, which leads to white eyes when knocked-down in the red flour beetle Tribolium castaneum, was used to evaluate the effects of RNAi efficiency under different dsRNA storage conditions. We demonstrated that the dsRNA molecule is very stable under typical cryopreservation temperatures (-80 and -20 °C) within 180 days, and RNAi efficiency shows no significant differences under either low temperature. Unexpectedly, while dsRNA molecules were treated with multiple freeze-thaw cycles up to 50 times between -80/-20 °C and room temperature, we discovered that dsRNA integrity and RNAi efficiency were comparable with fresh dsRNA. Finally, when the stability of dsRNA was further measured under refrigerated storage conditions (4 °C), we surprisingly found that dsRNA is still stable within 180 days and can induce an efficient RNAi response as that of initial dsRNA. CONCLUSION Our results indicate that dsRNA is extraordinarily stable under various temperature storage conditions that did not significantly impact RNAi efficiency in vivo insects. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zi-Ling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yu-Yu Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qiu-Xuan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
42
|
Similar Characteristics of siRNAs of Plant Viruses Which Replicate in Plant and Fungal Hosts. BIOLOGY 2022; 11:biology11111672. [PMID: 36421386 PMCID: PMC9687825 DOI: 10.3390/biology11111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary RNA silencing in fungi was shown to confer antiviral defense against plant viruses. In this study, using high-throughput sequencing and bioinformatic analyses, we showed that small interfering RNAs (siRNAs) of cucumber mosaic virus and tobacco mosaic virus (TMV) which replicated in phytopathogenic fungi Rhizoctonia solani and Fusarium graminearum had similarities with viral siRNAs produced in plant hosts in regard to the size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini. Additionally, our results also determined that both F. graminearum DCL1 and DCL2 were involved in the production of TMV siRNAs. Thus, the fungal RNA silencing machineries have adaptive capabilities to recognize and process the genome of invading plant viruses. Abstract RNA silencing is a host innate antiviral mechanism which acts via the synthesis of viral-derived small interfering RNAs (vsiRNAs). We have previously reported the infection of phytopathogenic fungi by plant viruses such as cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV). Furthermore, fungal RNA silencing was shown to suppress plant virus accumulation, but the characteristics of plant vsiRNAs associated with the antiviral response in this nonconventional host remain unknown. Using high-throughput sequencing, we characterized vsiRNA profiles in two plant RNA virus–fungal host pathosystems: CMV infection in phytopathogenic fungus Rhizoctonia solani and TMV infection in phytopathogenic fungus Fusarium graminearum. The relative abundances of CMV and TMV siRNAs in the respective fungal hosts were much lower than those in the respective experimental plant hosts, Nicotiana benthamiana and Nicotiana tabacum. However, CMV and TMV siRNAs in fungi had similar characteristics to those in plants, particularly in their size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini of vsiRNAs. The abundance of TMV siRNAs largely decreased in F. graminearum mutants with a deletion in either dicer-like 1 (dcl1) or dcl2 genes which encode key proteins for the production of siRNAs and antiviral responses. However, deletion of both dcl1 and dcl2 restored TMV siRNA accumulation in F. graminearum, indicating the production of dcl-independent siRNAs with no antiviral function in the absence of the dcl1 and dcl2 genes. Our results suggest that fungal RNA silencing recognizes and processes the invading plant RNA virus genome in a similar way as in plants.
Collapse
|
43
|
Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. Drosophila melanogaster as a model to study innate immune memory. Front Microbiol 2022; 13:991678. [PMID: 36338030 PMCID: PMC9630750 DOI: 10.3389/fmicb.2022.991678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
Over the last decades, research regarding innate immune responses has gained increasing importance. A growing body of evidence supports the notion that the innate arm of the immune system could show memory traits. Such traits are thought to be conserved throughout evolution and provide a survival advantage. Several models are available to study these mechanisms. Among them, we find the fruit fly, Drosophila melanogaster. This non-mammalian model has been widely used for innate immune research since it naturally lacks an adaptive response. Here, we aim to review the latest advances in the study of the memory mechanisms of the innate immune response using this animal model.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Romina Koiffman
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Solomon Tibebu Melkie
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
44
|
Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol 2022; 23:645-662. [PMID: 35710830 DOI: 10.1038/s41580-022-00496-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
RNA silencing is a well-established antiviral immunity system in plants, in which small RNAs guide Argonaute proteins to targets in viral RNA or DNA, resulting in virus repression. Virus-encoded suppressors of silencing counteract this defence system. In this Review, we discuss recent findings about antiviral RNA silencing, including the movement of RNA through plasmodesmata and the differentiation between plant self and viral RNAs. We also discuss the emerging role of RNA silencing in plant immunity against non-viral pathogens. This immunity is mediated by transkingdom movement of RNA into and out of the infected plant cells in vesicles or as extracellular nucleoproteins and, like antiviral immunity, is influenced by the silencing suppressors encoded in the pathogens' genomes. Another effect of RNA silencing on general immunity involves host-encoded small RNAs, including microRNAs, that regulate NOD-like receptors and defence signalling pathways in the innate immunity system of plants. These RNA silencing pathways form a network of processes with both positive and negative effects on the immune systems of plants.
Collapse
Affiliation(s)
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
45
|
Torres TZB, Prince BC, Robison A, Rückert C. Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus. INSECTS 2022; 13:856. [PMID: 36135557 PMCID: PMC9502113 DOI: 10.3390/insects13090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Culex quinquefasciatus mosquitoes are a globally widespread vector of multiple human and animal pathogens, including West Nile virus, Saint Louis encephalitis virus, and lymphatic filariasis. Since the introduction of West Nile virus to the United States in 1999, a cumulative 52,532 cases have been reported to the CDC, including 25,849 (49.2%) neuroinvasive cases and 2456 (5%) deaths. Viral infections elicit immune responses in their mosquito vectors, including the RNA interference (RNAi) pathway considered to be the cornerstone antiviral response in insects. To investigate mosquito host genes involved in pathogen interactions, CRISPR/Cas9-mediated gene-editing can be used for functional studies of mosquito-derived cell lines. Yet, the tools available for the study of Cx. quinquefasciatus-derived (Hsu) cell lines remain largely underdeveloped compared to other mosquito species. In this study, we constructed and characterized a Culex-optimized CRISPR/Cas9 plasmid for use in Hsu cell cultures. By comparing it to the original Drosophila melanogaster CRISPR/Cas9 plasmid, we showed that the Culex-optimized plasmid demonstrated highly efficient editing of the genomic loci of the RNAi proteins Dicer-2 and PIWI4 in Hsu cells. These new tools support our ability to investigate gene targets involved in mosquito antiviral response, and thus the future development of gene-based vector control strategies.
Collapse
|
46
|
An X, Zhang W, Ye C, Smagghe G, Wang JJ, Niu J. Discovery of a widespread presence bunyavirus that may have symbiont-like relationships with different species of aphids. INSECT SCIENCE 2022; 29:1120-1134. [PMID: 34874617 DOI: 10.1111/1744-7917.12989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Aphids are important agricultural pests, vectors of many plant viruses and have sophisticated relationships with symbiotic microorganisms. Abundant asymptomatic RNA viruses have been reported in aphids due to the application of RNA-seq, but aphid-virus interactions remain unclear. Bunyavirales is the most abundant RNA virus order, which can infect mammals, arthropods, and plants. However, many bunyaviruses have specific hosts, such as insects. Here, we discovered 18 viruses from 10 aphid species by RNA-seq. Importantly, a widespread presence bunyavirus, Aphid bunyavirus 1 (ABV-1), was determined to have a wide host range, infecting and replicating in all 10 tested aphid species. ABV-1 may be transmitted horizontally during feeding on plant leaves and vertically through reproduction. In a comparison of the physiological parameters of ABV-1high and ABV-1low strains of pea aphid, higher ABV-1 titers reduced the total nymphal duration and induced the reproduction. Moreover, viral titer significantly affected the lipid and protein contents in pea aphids. In summary, we proposed that ABV-1 may have stable symbiont-like relationships with aphids, and these observations may provide a new direction for studying bunyaviruses in aphids and establishing a model for virus-aphid interactions.
Collapse
Affiliation(s)
- Xin An
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
47
|
de Malmanche H, Hussain M, Marcellin E, Reid S, Asgari S. Knockout of Dicer-2 in the Sf9 cell line enhances the replication of Spodoptera frugiperda rhabdovirus and conditionally increases baculovirus replication. J Gen Virol 2022; 103. [PMID: 36018884 DOI: 10.1099/jgv.0.001779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Sf9 cell line, originally isolated from the ovarian tissue of Spodoptera frugiperda larvae, is widely used in academia and industry for the baculovirus-mediated production of recombinant proteins and virus-like particles. RNA interference (RNAi) is a conserved antiviral pathway present in eukaryotic organisms and is the primary antiviral defence mechanism in insects. Recent evidence has implicated RNAi as an antiviral response to baculovirus infection in Sf9 cells. To test this hypothesis, CRISPR/Cas9 technology was used to disable the RNAi pathway in Sf9 cells by knocking out Dicer-2, the protein responsible for cleaving viral double-stranded RNA precursors into short interfering RNAs. Infection of Dicer-2 knockout Sf9 cells with either the wild-type baculovirus Autographa californica nucleopolyhedrovirus (AcMNPV), recombinant AcMNPV (rAcMNPV) expressing β-galactosidase (β-gal), or rAcMNPV expressing a wasp venom protein (Vn50) at a multiplicity of infection (m.o.i.) of 1 resulted in a modest increase in virus replication compared to control Sf9 cells under adherent culture conditions. In contrast, Dicer-2 knockout Sf9 monolayer or suspension cultures infected by the rAcMNPV expressing β-gal at higher m.o.i.s (3.5 and 20) did not exhibit increases in either viral DNA replication or β-gal production. Intriguingly, during long-term passaging in suspension, Dicer-2 knockout Sf9 cultures underwent transient crashes in cell proliferation and viability. It was discovered that these periods of low growth and viability coincided with a dramatic increase in the RNA levels of S. frugiperda rhabdovirus, a recently identified adventitious virus that persistently infects the Sf9 cell line, suggesting a role for Dicer-2 in managing chronic viral infections in this industrially relevant insect cell line.
Collapse
Affiliation(s)
- Henry de Malmanche
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mazhar Hussain
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Steve Reid
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
48
|
Santos D, Verdonckt TW, Mingels L, Van den Brande S, Geens B, Van Nieuwerburgh F, Kolliopoulou A, Swevers L, Wynant N, Vanden Broeck J. PIWI Proteins Play an Antiviral Role in Lepidopteran Cell Lines. Viruses 2022; 14:1442. [PMID: 35891422 PMCID: PMC9321812 DOI: 10.3390/v14071442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Insect antiviral immunity primarily relies on RNAi mechanisms. While a key role of small interfering (si)RNAs and AGO proteins has been well established in this regard, the situation for PIWI proteins and PIWI-interacting (pi)RNAs is not as clear. In the present study, we investigate whether PIWI proteins and viral piRNAs are involved in the immunity against single-stranded RNA viruses in lepidopteran cells, where two PIWIs are identified (Siwi and Ago3). Via loss- and gain-of-function studies in Bombyx mori BmN4 cells and in Trichoplusia ni High Five cells, we demonstrated an antiviral role of Siwi and Ago3. However, small RNA analysis suggests that viral piRNAs can be absent in these lepidopteran cells. Together with the current literature, our results support a functional diversification of PIWI proteins in insects.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Thomas-Wolf Verdonckt
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Lina Mingels
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Stijn Van den Brande
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Bart Geens
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Gent University, Ottergemsesteenweg 460, 9000 Gent, Belgium;
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 153 10 Athens, Greece; (A.K.); (L.S.)
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 153 10 Athens, Greece; (A.K.); (L.S.)
| | - Niels Wynant
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| |
Collapse
|
49
|
Aripova T, Muratkhodjaev J. A novel concept of human antiviral protection: It's all about RNA (Review). Biomed Rep 2022; 16:29. [PMID: 35251616 PMCID: PMC8889527 DOI: 10.3892/br.2022.1512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/10/2022] [Indexed: 11/06/2022] Open
Abstract
The comparative analysis of the antiviral protective mechanisms, including protozoa and RNA interference in multicellular organisms, has revealed their similarity and provided a basic understanding of adaptive immunity. The present article summarizes the latest studies on RNA-guided gene regulation in human antiviral protection, and its importance. Additionally, the role of both neutralizing antibodies and the interferon system in viral invasion is considered. The interferon system is an additional mechanism for suppressing viral infections in humans, which shifts cells into an 'alarm' mode to attempt to prevent further contagion. The primary task of the human central immune system is to maintain integrity and to protect against foreign organisms. In this review, a novel concept is proposed: Antiviral protection in all organisms can be achieved through an intracellular RNA-guided mechanism. A simple and effective defence against viruses is incorporation of a part of a virus's DNA (spacer) into the hosts chromosomes. Following reinfection, RNA transcripts of this spacer are created to direct nuclease enzymes to destroy the viral genome. This is an example of real-time adaptive immunity potentially possessed by every cell with a full complement of chromosomes, and an indicator that antiviral immunity is not only mediated by the presence of neutralizing antibodies and memory B- and T-cells, but also by the presence of specific spacers in the DNA of individuals who have recovered from a viral infection.
Collapse
Affiliation(s)
- Tamara Aripova
- Institute of Immunology and Human Genomics, Academy of Sciences of Uzbekistan, Tashkent 100060, Uzbekistan
| | - Javdat Muratkhodjaev
- Institute of Immunology and Human Genomics, Academy of Sciences of Uzbekistan, Tashkent 100060, Uzbekistan
- GENEX LLC Pharmaceutical Company, Tashkent 100052, Uzbekistan
| |
Collapse
|
50
|
Hernández-Pelegrín L, Llopis-Giménez Á, Crava CM, Ortego F, Hernández-Crespo P, Ros VID, Herrero S. Expanding the Medfly Virome: Viral Diversity, Prevalence, and sRNA Profiling in Mass-Reared and Field-Derived Medflies. Viruses 2022; 14:v14030623. [PMID: 35337030 PMCID: PMC8955247 DOI: 10.3390/v14030623] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
The Mediterranean fruit fly (medfly), Ceratitis capitata, is an agricultural pest of a wide range of fruits. The advent of high-throughput sequencing has boosted the discovery of RNA viruses infecting insects. In this article, we aim to characterize the RNA virome and viral sRNA profile of medfly. By means of transcriptome mining, we expanded the medfly RNA virome to 13 viruses, including two novel positive ssRNA viruses and the first two novel dsRNA viruses reported for medfly. Our analysis across multiple laboratory-reared and field-collected medfly samples showed the presence of a core RNA virome comprised of Ceratitis capitata iflavirus 2 and Ceratitis capitata negev-like virus 1. Furthermore, field-collected flies showed a higher viral diversity in comparison to the laboratory-reared flies. Based on the small RNA sequencing, we detected small interfering RNAs mapping to all the viruses present in each sample, except for Ceratitis capitata nora virus. Although the identified RNA viruses do not cause obvious symptoms in medflies, the outcome of their interaction may still influence the medfly’s fitness and ecology, becoming either a risk or an opportunity for mass-rearing and SIT applications.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Valencia, Spain; (L.H.-P.); (Á.L.-G.); (C.M.C.)
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Ángel Llopis-Giménez
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Valencia, Spain; (L.H.-P.); (Á.L.-G.); (C.M.C.)
| | - Cristina Maria Crava
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Valencia, Spain; (L.H.-P.); (Á.L.-G.); (C.M.C.)
| | - Félix Ortego
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (F.O.); (P.H.-C.)
| | - Pedro Hernández-Crespo
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (F.O.); (P.H.-C.)
| | - Vera I. D. Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Valencia, Spain; (L.H.-P.); (Á.L.-G.); (C.M.C.)
- Correspondence: ; Tel.: +34-963-54-30-06
| |
Collapse
|