1
|
Kitamura Y, Hu M, Namekawa SH. Broad H3K4me3 domains orchestrate temporal control of gene expression. Cell Res 2025; 35:322-323. [PMID: 40128607 PMCID: PMC12012031 DOI: 10.1038/s41422-025-01104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Affiliation(s)
- Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Lazar-Contes I, Arzate-Mejia RG, Tanwar DK, Steg LC, Uzel K, Feudjio OU, Crespo M, Germain PL, Mansuy IM. Dynamics of transcriptional programs and chromatin accessibility in mouse spermatogonial cells from early postnatal to adult life. eLife 2025; 12:RP91528. [PMID: 40231607 PMCID: PMC11999699 DOI: 10.7554/elife.91528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
In mammals, spermatogonial cells (SPGs) are undifferentiated male germ cells in testis that are quiescent until birth and then self-renew and differentiate to produce spermatogenic cells and functional sperm from early postnatal life throughout adulthood. The transcriptome of SPGs is highly dynamic and timely regulated during postnatal development. We examined if such dynamics involves changes in chromatin organization by profiling the transcriptome and chromatin accessibility of SPGs from early postnatal stages to adulthood in mice using deep RNA-seq, ATAC-seq and computational deconvolution analyses. By integrating transcriptomic and epigenomic features, we show that SPGs undergo massive chromatin remodeling during postnatal development that partially correlates with distinct gene expression profiles and transcription factors (TF) motif enrichment. We identify genomic regions with significantly different chromatin accessibility in adult SPGs that are marked by histone modifications associated with enhancers and promoters. Some of the regions with increased accessibility correspond to transposable element subtypes enriched in multiple TFs motifs and close to differentially expressed genes. Our results underscore the dynamics of chromatin organization in developing germ cells and complement existing datasets on SPGs by providing maps of the regulatory genome at high resolution from the same cell populations at early postnatal, late postnatal and adult stages collected from single individuals.
Collapse
Affiliation(s)
- Irina Lazar-Contes
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Rodrigo G Arzate-Mejia
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Deepak K Tanwar
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Leonard C Steg
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Kerem Uzel
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | | | - Marion Crespo
- ADLIN Science, Pépinière «Genopole Entreprises»EvryFrance
| | - Pierre-Luc Germain
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| |
Collapse
|
3
|
Xu Q, Chen H. Applications of spatial transcriptomics in studying spermatogenesis. Andrology 2025. [PMID: 40202007 DOI: 10.1111/andr.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Spermatogenesis is a complex differentiation process that is facilitated by a series of cellular and molecular events. High-throughput genomics approaches, such as single-cell RNA sequencing, have begun to enable the systematic characterization of these events. However, the loss of tissue context because of tissue disassociations in the single-cell isolation protocols limits our ability to understand the regulation of spermatogenesis and how defects in spermatogenesis lead to infertility. The recent advancement of spatial transcriptomics technologies enables the studying of the molecular signatures of various cell types and their interactions in the native tissue context. In this review, we discuss how spatial transcriptomics has been leveraged to identify spatially variable genes, characterize cellular neighborhood, delineate cell‒cell communications, and detect molecular changes under pathological conditions in the mammalian testis. We believe that spatial transcriptomics, along with other emerging spatially resolved omics assays, can be utilized to further our understanding of the underlying causes of male infertility, and to facilitate the development of new treatment approaches.
Collapse
Affiliation(s)
- Qianlan Xu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Cui L, Nie X, Guo Y, Ren P, Guo Y, Wang X, Li R, Hotaling JM, Cairns BR, Guo J. Single-cell transcriptomic atlas of the human testis across the reproductive lifespan. NATURE AGING 2025; 5:658-674. [PMID: 40033047 PMCID: PMC12003174 DOI: 10.1038/s43587-025-00824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Testicular aging is associated with declining reproductive health, but the molecular mechanisms are unclear. Here we generate a dataset of 214,369 single-cell transcriptomes from testicular cells of 35 individuals aged 21-69, offering a resource for studying testicular aging and physiology. Machine learning analysis reveals a stronger aging response in somatic cells compared to germ cells. Two waves of aging-related changes are identified: the first in peritubular cells of donors in their 30s, marked by increased basement membrane thickness, indicating a priming state for aging. In their 50s, testicular cells exhibit functional changes, including altered steroid metabolism in Leydig cells and immune responses in macrophages. Further analyses reveal the impact of body mass index on spermatogenic capacity as age progresses, particularly after age 45. Altogether, our findings illuminate molecular alterations during testis aging and their relationship with body mass index, providing a foundation for future research and offering potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Lina Cui
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xichen Nie
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- Division of Urology, Department of Surgery, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Yixuan Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Pengcheng Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yifei Guo
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ran Li
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - James M Hotaling
- Division of Urology, Department of Surgery, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Jingtao Guo
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Liu G, Liu D, Zhu M, Zhang M, Li C, Xu X, Pan F. Insulin-like growth factor-1 promotes the testicular sperm production by improving germ cell survival and proliferation in high-fat diet-treated male mice. Andrology 2025; 13:342-358. [PMID: 38639009 PMCID: PMC11815545 DOI: 10.1111/andr.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND A decrease in semen volume among men is comparable to the rising prevalence of obesity worldwide. The anabolic hormone insulin-like growth factor-1 (IGF-1) can promote proliferation and differentiation in cultured mouse spermatogonial stem cells and alleviate abnormal in vitro spermatogenesis. Additionally, serum IGF-1 level is negatively correlated with body mass index. Whereas the role of IGF-1 in the sperm production in obese men remains unclear. OBJECTIVE To investigate the therapeutic effect and potential mechanism of IGF-1 on spermatogenesis of high-fat diet (HFD)-induced obesity mice. METHODS An HFD-induced obesity mouse model was established. Alterations in testicular morphology, sperm count, proliferation, and apoptosis were observed by H&E staining,immunohistochemistry, immunofluorescence, and Western blotting. Exogenous recombinant IGF-1 was administered to obese mice to investigate the correlations between altered testicular IGF-1 levels and sperm production. RESULTS The sperm count was reduced, the testicular structure was disordered, and sex hormone levels were abnormal in HFD-fed mice compared with normal diet-fed mice. The expression of proliferation-related antigens such as proliferating cell nuclear antigen (PCNA) and Ki-67 was decreased, while that of proapoptotic proteins such as c-caspase3 was increased in testes from HFD-fed mice. Most importantly, the phosphorylation of insulin-like growth factor-1 receptor (IGF-1R) in testes was decreased due to reductions in IGF-1 from hepatocytes and Sertoli cells. Recombinant IGF-1 alleviated these functional impairments by promoting IGF-1R, Akt, and Erk1/2 phosphorylation in the testes. CONCLUSIONS Insufficient IGF-1/IGF-1R signaling is intimately linked to damaged sperm production in obese male mice. Exogenous IGF-1 can improve survival and proliferation as well as sperm production. This study provides a novel theoretical basis and a target for the treatment of obese men with oligozoospermia.
Collapse
Affiliation(s)
- Guoqiang Liu
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Di Liu
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Minggang Zhu
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Mingrui Zhang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Chunyang Li
- Department of PathophysiologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyKey Laboratory ofMinistry of Education for Neurological DisordersWuhanHubeiChina
| | - Xiaohong Xu
- Department of PathophysiologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyKey Laboratory ofMinistry of Education for Neurological DisordersWuhanHubeiChina
| | - Feng Pan
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
6
|
Jiang N, Li Y, Yin L, Yuan S, Wang F. The Intricate Functional Networks of Pre-mRNA Alternative Splicing in Mammalian Spermatogenesis. Int J Mol Sci 2024; 25:12074. [PMID: 39596142 PMCID: PMC11594017 DOI: 10.3390/ijms252212074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Spermatogenesis is a highly coordinated process that requires the precise expression of specific subsets of genes in different types of germ cells, controlled both temporally and spatially. Among these genes, those that can exert an indispensable influence in spermatogenesis via participating in alternative splicing make up the overwhelming majority. mRNA alternative-splicing (AS) events can generate various isoforms with distinct functions from a single DNA sequence, based on specific AS codes. In addition to enhancing the finite diversity of the genome, AS can also regulate the transcription and translation of certain genes by directly binding to their cis-elements or by recruiting trans-elements that interact with consensus motifs. The testis, being one of the most complex tissue transcriptomes, undergoes unparalleled transcriptional and translational activity, supporting the dramatic and dynamic transitions that occur during spermatogenesis. Consequently, AS plays a vital role in producing an extensive array of transcripts and coordinating significant changes throughout this process. In this review, we summarize the intricate functional network of alternative splicing in spermatogenesis based on the integration of current research findings.
Collapse
Affiliation(s)
| | | | | | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| |
Collapse
|
7
|
Zhang M, An X, Yuan C, Guo T, Xi B, Liu J, Lu Z. Integration analysis of transcriptome and metabolome revealed the potential mechanism of spermatogenesis in Tibetan sheep (Ovis aries) at extreme high altitude. Genomics 2024; 116:110949. [PMID: 39389270 DOI: 10.1016/j.ygeno.2024.110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Testis has an indispensable function in male reproduction of domestic animals. Numerous genes and metabolites were related to testicular development and spermatogenesis. However, little is known about the biological regulation pathways associated with fecundity in male Tibetan sheep. In this study, Testes were collected from Huoba Tibetan sheep (HB, 4614 m) and Gangba Tibetan sheep (GB, 4401 m) at extreme high altitude, and Alpine Merino sheep (AM, 2500 m, control group) at medium-high altitude, investigating the genes and metabolites levels of them. The histological analysis of testicular tissue using hematoxylin-eosin (HE) staining was performed for Tibetan sheep and Alpine Merino sheep, and the testes of them were analyzed by transcriptomics and metabolomics to explore the potential mechanism of testicular development and spermatogenesis. The statistical results showed that the cross-sectional area of testicular seminiferous tubules, diameter of seminiferous tubules, and spermatogenic epithelium thickness were significantly smaller in HB and GB than in AM (P < 0.05). Overall, 5648 differentially expressed genes (DEGs) and 336 differential metabolites (DMs) were identified in three sheep breeds, which were significantly enriched in spermatogenesis and other related pathways. According to integrated metabolomic and transcriptomic analysis, glycolysis/gluconeogenesis, AMPK signaling pathway, and TCA cycle, were predicted to have dramatic effects on the spermatogenesis of Tibetan sheep. Several genes (including Wnt2, Rab3a, Sox9, Hspa8, and Slc38a2) and metabolites (including L-histidinol, Glucose, Fumaric acid, Malic acid, and Galactose) were significantly enriched in pathways related to testicular development and spermatogenesis, and might affect the reproduction of Tibetan sheep by regulating the acrosome reaction, meiotic gene expression, and the production of sex hormones. Our results provide further understanding of the key genes and metabolites involved in testicular development and spermatogenesis in Tibetan sheep.
Collapse
Affiliation(s)
- Miaoshu Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Binpeng Xi
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
8
|
Ma Y, Chen Y, Li Y, Chen S, Zhu C, Liu Q, Li L, Cao H, Wu Z, Dong W. Seasonal modulation of the testis transcriptome reveals insights into hibernation and reproductive adaptation in Onychostoma macrolepis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2083-2097. [PMID: 38649597 DOI: 10.1007/s10695-024-01335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
The Onychostoma macrolepis have a unique survival strategy, overwintering in caves and returning to the river for reproduction in summer. The current knowledge on the developmental status of its testes during winter and summer is still undiscovered. We performed RNA-seq analysis on O. macrolepis testes between January and June, using the published genome (NCBI, ASM1243209v1). Through KEGG and GO enrichment analysis, we were able to identify 2111 differentially expressed genes (DEGs) and demonstrate their functions in signaling networks associated with the development of organism. At the genomic level, we found that during the overwintering phase, genes associated with cell proliferation (ccnb1, spag5, hdac7) were downregulated while genes linked to testicular fat metabolism (slc27a2, scd, pltp) were upregulated. This indicates suppression of both mitosis and meiosis, thereby inhibiting energy expenditure through genetic regulation of testicular degeneration. Furthermore, in January, we observed the regulation of autophagy and apoptosis (becn1, casp13), which may have the function of protecting reproductive organs and ensuring their maturity for the breeding season. The results provide a basis for the development of specialized feed formulations to regulate the expression of specific genes, or editing of genes during the fish egg stage, to ensure that the testes of O. macrolepis can mature more efficiently after overwintering, thereby enhancing reproductive performance.
Collapse
Affiliation(s)
- Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
9
|
AbuMadighem A, Cohen O, Huleihel M. Elucidating the Transcriptional States of Spermatogenesis-Joint Analysis of Germline and Supporting Cell, Mice and Human, Normal and Perturbed, Bulk and Single-Cell RNA-Seq. Biomolecules 2024; 14:840. [PMID: 39062554 PMCID: PMC11274546 DOI: 10.3390/biom14070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In studying the molecular underpinning of spermatogenesis, we expect to understand the fundamental biological processes better and potentially identify genes that may lead to novel diagnostic and therapeutic strategies toward precision medicine in male infertility. In this review, we emphasized our perspective that the path forward necessitates integrative studies that rely on complementary approaches and types of data. To comprehensively analyze spermatogenesis, this review proposes four axes of integration. First, spanning the analysis of spermatogenesis in the healthy state alongside pathologies. Second, the experimental analysis of model systems (in which we can deploy treatments and perturbations) alongside human data. Third, the phenotype is measured alongside its underlying molecular profiles using known markers augmented with unbiased profiles. Finally, the testicular cells are studied as ecosystems, analyzing the germ cells alongside the states observed in the supporting somatic cells. Recently, the study of spermatogenesis has been advancing using single-cell RNA sequencing, where scientists have uncovered the unique stages of germ cell development in mice, revealing new regulators of spermatogenesis and previously unknown cell subtypes in the testis. An in-depth analysis of meiotic and postmeiotic stages led to the discovery of marker genes for spermatogonia, Sertoli and Leydig cells and further elucidated all the other germline and somatic cells in the testis microenvironment in normal and pathogenic conditions. The outcome of an integrative analysis of spermatogenesis using advanced molecular profiling technologies such as scRNA-seq has already propelled our biological understanding, with additional studies expected to have clinical implications for the study of male fertility. By uncovering new genes and pathways involved in abnormal spermatogenesis, we may gain insights into subfertility or sterility.
Collapse
Affiliation(s)
- Ali AbuMadighem
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ofir Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
10
|
Tirumalasetty MB, Bhattacharya I, Mohiuddin MS, Baki VB, Choubey M. Understanding testicular single cell transcriptional atlas: from developmental complications to male infertility. Front Endocrinol (Lausanne) 2024; 15:1394812. [PMID: 39055054 PMCID: PMC11269108 DOI: 10.3389/fendo.2024.1394812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Spermatogenesis is a multi-step biological process where mitotically active diploid (2n) spermatogonia differentiate into haploid (n) spermatozoa via regulated meiotic programming. The alarming rise in male infertility has become a global concern during the past decade thereby demanding an extensive profiling of testicular gene expression. Advancements in Next-Generation Sequencing (NGS) technologies have revolutionized our empathy towards complex biological events including spermatogenesis. However, despite multiple attempts made in the past to reveal the testicular transcriptional signature(s) either with bulk tissues or at the single-cell, level, comprehensive reviews on testicular transcriptomics and associated disorders are limited. Notably, technologies explicating the genome-wide gene expression patterns during various stages of spermatogenic progression provide the dynamic molecular landscape of testicular transcription. Our review discusses the advantages of single-cell RNA-sequencing (Sc-RNA-seq) over bulk RNA-seq concerning testicular tissues. Additionally, we highlight the cellular heterogeneity, spatial transcriptomics, dynamic gene expression and cell-to-cell interactions with distinct cell populations within the testes including germ cells (Gc), Sertoli cells (Sc), Peritubular cells (PTc), Leydig cells (Lc), etc. Furthermore, we provide a summary of key finding of single-cell transcriptomic studies that have shed light on developmental mechanisms implicated in testicular disorders and male infertility. These insights emphasize the pivotal roles of Sc-RNA-seq in advancing our knowledge regarding testicular transcriptional landscape and may serve as a potential resource to formulate future clinical interventions for male reproductive health.
Collapse
Affiliation(s)
| | - Indrashis Bhattacharya
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, India
| | - Mohammad Sarif Mohiuddin
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, United States
| | - Vijaya Bhaskar Baki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, United States
| |
Collapse
|
11
|
Wu X, Lu M, Yun D, Gao S, Sun F. Long-read single-cell sequencing reveals the transcriptional landscape of spermatogenesis in obstructive azoospermia and Sertoli cell-only patients. QJM 2024; 117:422-435. [PMID: 38192002 DOI: 10.1093/qjmed/hcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/16/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND High-throughput single-cell RNA sequencing (scRNA-seq) is widely used in spermatogenesis. However, it only reveals short reads in germ and somatic cells, limiting the discovery of novel transcripts and genes. AIM This study shows the long-read transcriptional landscape of spermatogenesis in obstructive azoospermia (OA) and Sertoli cell-only patients. DESIGN Single cells were isolated from testicular biopsies of OA and non-obstructive azoospermia (NOA) patients. Cell culture was identified by comparing PacBio long-read single-cell sequencing (OA n = 3, NOA n = 3) with short-read scRNA-seq (OA n = 6, NOA n = 6). Ten germ cell types and eight somatic cell types were classified based on known markers. METHODS PacBio long-read single-cell sequencing, short-read scRNA-seq, polymerase chain reaction. RESULTS A total of 130 426 long-read transcripts (100 517 novel transcripts and 29 909 known transcripts) and 49 508 long-read transcripts (26 002 novel transcripts and 23 506 known transcripts) have been detected in OA and NOA patients, respectively. Moreover, 36 373 and 1642 new genes are identified in OA and NOA patients, respectively. Importantly, specific expressions of long-read transcripts were detected in germ and stomatic cells during normal spermatogenesis. CONCLUSION We have identified total full-length transcripts in OA and NOA, and new genes were found. Furthermore, specific expressed full-length transcripts were detected, and the genomic structure of transcripts was mapped in different cell types. These findings may provide valuable information on human spermatogenesis and the treatment of male infertility.
Collapse
Affiliation(s)
- X Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - M Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - D Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - S Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - F Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Liu X, Wu J, Li M, Zuo F, Zhang G. A Comparative Full-Length Transcriptome Analysis Using Oxford Nanopore Technologies (ONT) in Four Tissues of Bovine Origin. Animals (Basel) 2024; 14:1646. [PMID: 38891695 PMCID: PMC11170998 DOI: 10.3390/ani14111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The transcriptome complexity and splicing patterns in male and female cattle are ambiguous, presenting a substantial obstacle to genomic selection programs that seek to improve productivity, disease resistance, and reproduction in cattle. A comparative transcriptomic analysis using Oxford Nanopore Technologies (ONT) was conducted in bovine testes (TESTs), ovaries (OVAs), muscles (MUSCs), and livers (LIVs). An average of 5,144,769 full-length reads were obtained from each sample. The TESTs were found to have the greatest number of alternative polyadenylation (APA) events involved in processes such as sperm flagellum development and fertilization in male reproduction. In total, 438 differentially expressed transcripts (DETs) were identified in the LIVs in a comparison of females vs. males, and 214 DETs were identified in the MUSCs between females and males. Additionally, 14,735, 36,347, and 33,885 DETs were detected in MUSC vs. LIV, MUSC vs. TEST, and OVA vs. TEST comparisons, respectively, revealing the complexity of the TEST. Gene Set Enrichment Analysis (GSEA) showed that these DETs were mainly involved in the "spermatogenesis", "flagellated sperm motility", "spermatid development", "reproduction", "reproductive process", and "microtubule-based movement" KEGG pathways. Additional studies are necessary to further characterize the transcriptome in different cell types, developmental stages, and physiological conditions in bovines and ascertain the functions of the novel transcripts.
Collapse
Affiliation(s)
- Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
| | - Meichen Li
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| |
Collapse
|
13
|
Chen WB, Zhang MF, Yang F, Hua JL. Applications of single-cell RNA sequencing in spermatogenesis and molecular evolution. Zool Res 2024; 45:575-585. [PMID: 38766742 PMCID: PMC11188606 DOI: 10.24272/j.issn.2095-8137.2024.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/08/2024] [Indexed: 05/22/2024] Open
Abstract
Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation. However, effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult. Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols, which have partially addressed these challenges. In this review, we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data. Furthermore, we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells, delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis, investigating abnormal spermatogenesis in humans, and, ultimately, elucidating the molecular evolution of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Wen-Bo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Meng-Fei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fan Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
14
|
Liu Y, Du M, Li X, Zhang L, Zhao B, Wang N, Dugarjaviin M. Single-Cell Transcriptome Sequencing Reveals Molecular Expression Differences and Marker Genes in Testes during the Sexual Maturation of Mongolian Horses. Animals (Basel) 2024; 14:1258. [PMID: 38731262 PMCID: PMC11082968 DOI: 10.3390/ani14091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to investigate differences in testicular tissue morphology, gene expression, and marker genes between sexually immature (1-year-old) and sexually mature (10-year-old) Mongolian horses. The purposes of our research were to provide insights into the reproductive physiology of male Mongolian horses and to identify potential markers for sexual maturity. The methods we applied included the transcriptomic profiling of testicular cells using single-cell sequencing techniques. Our results revealed significant differences in tissue morphology and gene expression patterns between the two age groups. Specifically, 25 cell clusters and 10 cell types were identified, including spermatogonial and somatic cells. Differential gene expression analysis highlighted distinct patterns related to cellular infrastructure in sexually immature horses and spermatogenesis in sexually mature horses. Marker genes specific to each stage were also identified, including APOA1, AMH, TAC3, INHA, SPARC, and SOX9 for the sexually immature stage, and PRM1, PRM2, LOC100051500, PRSS37, HMGB4, and H1-9 for the sexually mature stage. These findings contribute to a deeper understanding of testicular development and spermatogenesis in Mongolian horses and have potential applications in equine reproductive biology and breeding programs. In conclusion, this study provides valuable insights into the molecular mechanisms underlying sexual maturity in Mongolian horses.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
15
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
16
|
Zhou X, Fang K, Liu Y, Li W, Tan Y, Zhang J, Yu X, Wang G, Zhang Y, Shang Y, Zhang L, Chen CD, Wang S. ZFP541 and KCTD19 regulate chromatin organization and transcription programs for male meiotic progression. Cell Prolif 2024; 57:e13567. [PMID: 37921559 PMCID: PMC10984108 DOI: 10.1111/cpr.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
The successful progression of meiosis prophase I requires integrating information from the structural and molecular levels. In this study, we show that ZFP541 and KCTD19 work in the same genetic pathway to regulate the progression of male meiosis and thus fertility. The Zfp541 and/or Kctd19 knockout male mice show various structural and recombination defects including detached chromosome ends, aberrant localization of chromosome axis components and recombination proteins, and globally altered histone modifications. Further analyses on RNA-seq, ChIP-seq, and ATAC-seq data provide molecular evidence for the above defects and reveal that ZFP541/KCTD19 activates the expression of many genes by repressing several major transcription repressors. More importantly, we reveal an unexpected role of ZFP541/KCTD19 in directly modulating chromatin organization. These results suggest that ZFP541/KCTD19 simultaneously regulates the transcription cascade and chromatin organization to ensure the coordinated progression of multiple events at chromosome structural and biochemical levels during meiosis prophase I.
Collapse
Affiliation(s)
- Xu Zhou
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
| | - Kailun Fang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell Biology, Chinese Academy of SciencesShanghaiChina
| | - Yanlei Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive MedicineShandong UniversityJinanShandongChina
| | - Weidong Li
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
| | - Yingjin Tan
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
| | - Jiaming Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive MedicineShandong UniversityJinanShandongChina
| | - Xiaoxia Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive MedicineShandong UniversityJinanShandongChina
| | - Guoqiang Wang
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
| | - Yanan Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive MedicineShandong UniversityJinanShandongChina
| | - Yongliang Shang
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
| | - Liangran Zhang
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanShandongChina
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell Biology, Chinese Academy of SciencesShanghaiChina
| | - Shunxin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive HealthShandong Technology Innovation Center for Reproductive HealthJinanShandongChina
| |
Collapse
|
17
|
Romeo-Cardeillac C, Trovero MF, Radío S, Smircich P, Rodríguez-Casuriaga R, Geisinger A, Sotelo-Silveira J. Uncovering a multitude of stage-specific splice variants and putative protein isoforms generated along mouse spermatogenesis. BMC Genomics 2024; 25:295. [PMID: 38509455 PMCID: PMC10953240 DOI: 10.1186/s12864-024-10170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.
Collapse
Affiliation(s)
- Carlos Romeo-Cardeillac
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - María Fernanda Trovero
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago Radío
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
| | - Adriana Geisinger
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay.
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11,400, Montevideo, Uruguay.
| | - José Sotelo-Silveira
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay.
- Department of Cell and Molecular Biology, Facultad de Ciencias, UdelaR, 11,400, Montevideo, Uruguay.
| |
Collapse
|
18
|
Zhao YD, Yang CX, Du ZQ. Integrated single cell transcriptome sequencing analysis reveals species-specific genes and molecular pathways for pig spermiogenesis. Reprod Domest Anim 2023; 58:1745-1755. [PMID: 37874861 DOI: 10.1111/rda.14493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Mammalian spermatogenesis is a highly complicated and intricately organized process involving spermatogonia propagation (mitosis) and meiotic differentiation into mature sperm cells (spermiogenesis). In pigs, spermatogonia development and the role of somatic cells in spermatogenesis were previously investigated in detail. However, the characterization of key molecules fundamental to pig spermiogenesis remains less explored. Here we compared spermatogenesis between humans and pigs, focusing on spermiogenesis, by integrative testicular single-cell RNA sequencing (scRNA-seq) analysis. Human and pig testicular cells were clustered into 26 different groups, with cell-type-specific markers and signalling pathways. For spermiogenesis, pseudo-time analysis classified the lineage differentiation routes for round, elongated spermatids and spermatozoa. Moreover, markers and molecular pathways specific to each type of spermatids were examined for humans and pigs, respectively. Furthermore, high-dimensional weighted gene co-expression network analysis (hdWGCNA) identified gene modules specific for each type of human and pig spermatids. Hub genes (pig: SNRPD2.1 related to alternative splicing; human: CATSPERZ, Ca[2+] ion channel) potentially involved in spermiogenesis were also revealed. Taken together, our integrative analysis found that human and pig spermiogeneses involve specific genes and molecular pathways and provided resources and insights for further functional investigation on spermatid maturation and male reproductive ability.
Collapse
Affiliation(s)
- Ya-Dan Zhao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
19
|
Zhao C, Liu X, Liu L, Li J, Liu X, Tao W, Wang D, Wei J. Smoothened mediates medaka spermatogonia proliferation via Gli1-Rgcc-Cdk1 axis†. Biol Reprod 2023; 109:772-784. [PMID: 37552059 DOI: 10.1093/biolre/ioad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
The proliferation of spermatogonia directly affects spermatogenesis and male fertility, but its underlying molecular mechanisms are poorly understood. In this study, Smoothened (Smo), the central transducer of Hedgehog signaling pathway, was characterized in medaka (Oryzias latipes), and its role and underlying mechanisms in the proliferation of spermatogonia were investigated. Smo was highly expressed in spermatogonia. In ex vivo testicular organ culture and a spermatogonial cell line (SG3) derived from medaka mature testis, Smo activation promoted spermatogonia proliferation, while its inhibition induced apoptosis. The expression of glioma-associated oncogene homolog 1 (gli1) and regulator of cell cycle (rgcc) was significantly upregulated in SG3 after Smo activation. Furthermore, Gli1 transcriptionally upregulated the expression of rgcc, and Rgcc overexpression rescued cell apoptosis caused by Smo or Gli1 inhibition. Co-immunoprecipitation assay indicated that Rgcc could interact with cyclin-dependent kinase 1 (Cdk1) to regulate the cell cycle of spermatogonia. Collectively, our study firstly reveals that Smo mediates the proliferation of spermatogonia through Gli1-Rgcc-Cdk1 axis. In addition, Smo and Gli1 are necessary of the survival of spermatogonia. This study deepens our understanding of spermatogonia proliferation and survival at the molecular level, and provides insights into male fertility control and reproductive disease treatment.
Collapse
Affiliation(s)
- Changle Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianeng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyong Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
20
|
François CM, Pihl T, Dunoyer de Segonzac M, Hérault C, Hudry B. Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction. Nat Commun 2023; 14:6737. [PMID: 37872135 PMCID: PMC10593830 DOI: 10.1038/s41467-023-42496-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The molecular mechanisms connecting cellular metabolism with differentiation remain poorly understood. Here, we find that metabolic signals contribute to stem cell differentiation and germline homeostasis during Drosophila melanogaster spermatogenesis. We discovered that external citrate, originating outside the gonad, fuels the production of Acetyl-coenzyme A by germline ATP-citrate lyase (dACLY). We show that this pathway is essential during the final spermatogenic stages, where a high Acetyl-coenzyme A level promotes NatB-dependent N-terminal protein acetylation. Using genetic and biochemical experiments, we establish that N-terminal acetylation shields key target proteins, essential for spermatid differentiation, from proteasomal degradation by the ubiquitin ligase dUBR1. Our work uncovers crosstalk between metabolism and proteome stability that is mediated via protein post-translational modification. We propose that this system coordinates the metabolic state of the organism with gamete production. More broadly, modulation of proteome turnover by circulating metabolites may be a conserved regulatory mechanism to control cell functions.
Collapse
Affiliation(s)
- Charlotte M François
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | | | - Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France.
| |
Collapse
|
21
|
Chang L, Fujii W, Yogo K. The UFMylated ribosome-recognition protein SAYSD1 is predominantly expressed in spermatids but is dispensable for fertility in mice. Biochem Biophys Res Commun 2023; 674:102-108. [PMID: 37419030 DOI: 10.1016/j.bbrc.2023.06.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
SAYSVFN domain-containing protein 1 (SAYSD1) is an evolutionarily conserved membrane protein that has recently been identified as a ubiquitin-fold modifier 1 (UFM1)-conjugated ribosome-recognition protein that plays a critical role in translocation-associated quality control (TAQC). However, its expression and roles in mammals in vivo remain largely unknown. We found that SAYSD1 is predominantly expressed in round and elongating spermatids and localizes in the endoplasmic reticulum (ER) of mouse testes, but not in differentiated spermatozoa. Mice deficient in Saysd1 developed normally post-partum. Furthermore, Saysd1-deficient mice were fertile, with no apparent differences in sperm morphology or motility compared with wild-type sperm, although the cauda epididymis contained slightly less sperm. Expression of the ER stress markers spliced X-box binding protein 1s (XBP1s) and CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP) in the testes was comparable between Saysd1-deficient and wild-type mice. These results suggested that SAYSD1 is involved in sperm production in mice but is dispensable for their development and fertility.
Collapse
Affiliation(s)
- Lei Chang
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Wataru Fujii
- Department of Biomedical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiichiro Yogo
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan; College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
22
|
Pereira R, Sousa M. Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes (Basel) 2023; 14:383. [PMID: 36833310 PMCID: PMC9956255 DOI: 10.3390/genes14020383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Infertility is a major health problem worldwide without an effective therapy or cure. It is estimated to affect 8-12% of couples in the reproductive age group, equally affecting both genders. There is no single cause of infertility, and its knowledge is still far from complete, with about 30% of infertile couples having no cause identified (named idiopathic infertility). Among male causes of infertility, asthenozoospermia (i.e., reduced sperm motility) is one of the most observed, being estimated that more than 20% of infertile men have this condition. In recent years, many researchers have focused on possible factors leading to asthenozoospermia, revealing the existence of many cellular and molecular players. So far, more than 4000 genes are thought to be involved in sperm production and as regulators of different aspects of sperm development, maturation, and function, and all can potentially cause male infertility if mutated. In this review, we aim to give a brief overview of the typical sperm flagellum morphology and compile some of the most relevant information regarding the genetic factors involved in male infertility, with a focus on sperm immotility and on genes related to sperm flagellum development, structure, or function.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
23
|
Bhattacharya I, Dey S, Banerjee A. Revisiting the gonadotropic regulation of mammalian spermatogenesis: evolving lessons during the past decade. Front Endocrinol (Lausanne) 2023; 14:1110572. [PMID: 37124741 PMCID: PMC10140312 DOI: 10.3389/fendo.2023.1110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Spermatogenesis is a multi-step process of male germ cell (Gc) division and differentiation which occurs in the seminiferous tubules of the testes under the regulation of gonadotropins - Follicle Stimulating Hormone (FSH) and Luteinising hormone (LH). It is a highly coordinated event regulated by the surrounding somatic testicular cells such as the Sertoli cells (Sc), Leydig cells (Lc), and Peritubular myoid cells (PTc). FSH targets Sc and supports the expansion and differentiation of pre-meiotic Gc, whereas, LH operates via Lc to produce Testosterone (T), the testicular androgen. T acts on all somatic cells e.g.- Lc, PTc and Sc, and promotes the blood-testis barrier (BTB) formation, completion of Gc meiosis, and spermiation. Studies with hypophysectomised or chemically ablated animal models and hypogonadal (hpg) mice supplemented with gonadotropins to genetically manipulated mouse models have revealed the selective and synergistic role(s) of hormones in regulating male fertility. We here have briefly summarized the present concept of hormonal control of spermatogenesis in rodents and primates. We also have highlighted some of the key critical questions yet to be answered in the field of male reproductive health which might have potential implications for infertility and contraceptive research in the future.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, School of Biological Science, Central University of Kerala, Kasaragod, Kerala, India
- *Correspondence: Arnab Banerjee, ; Indrashis Bhattacharya,
| | - Souvik Dey
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Arnab Banerjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Goa, India
- *Correspondence: Arnab Banerjee, ; Indrashis Bhattacharya,
| |
Collapse
|