1
|
Wong KW, Zeng Y, Tay E, Teo JHJ, Cipta NO, Hamashima K, Yi Y, Liu H, Warrier T, Le MTN, Ng SC, Li QJ, Li H, Loh YH. Nuclear receptor-SINE B1 network modulates expanded pluripotency in blastoids and blastocysts. Nat Commun 2024; 15:10011. [PMID: 39562549 PMCID: PMC11577042 DOI: 10.1038/s41467-024-54381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Embryonic stem cells possess the remarkable ability to self-organize into blastocyst-like structures upon induction. These stem cell-based embryo models serve as invaluable platforms for studying embryogenesis and therapeutic developments. Nevertheless, the specific intrinsic regulators that govern this potential for blastoid formation remain unknown. Here we demonstrate an intrinsic program that plays a crucial role in both blastoids and blastocysts across multiple species. We first establish metrics for grading the resemblance of blastoids to mouse blastocysts, and identify the differential activation of gene regulons involved in lineage specification among various blastoid grades. Notably, abrogation of nuclear receptor subfamily 1, group H, member 2 (Nr1h2) drastically reduces blastoid formation. Nr1h2 activation alone is sufficient to rewire conventional ESC into a distinct pluripotency state, enabling them to form blastoids with enhanced implantation capacity in the uterus and contribute to both embryonic and extraembryonic lineages in vivo. Through integrative multi-omics analyses, we uncover the broad regulatory role of Nr1h2 in the transcriptome, chromatin accessibility and epigenome, targeting genes associated with embryonic lineage and the transposable element SINE-B1. The Nr1h2-centred intrinsic program governs and drives the development of both blastoids and early embryos.
Collapse
Grants
- R03 OD038392 NIH HHS
- U19 AG074879 NIA NIH HHS
- P30 CA015083 NCI NIH HHS
- P30 DK084567 NIDDK NIH HHS
- P50 CA136393 NCI NIH HHS
- National Research Foundation, Singapore (NRF) Investigatorship award [NRFI2018- 02]; National Medical Research Council [NMRC/OFIRG21nov-0088]; Singapore Food Story (SFS) R&D Programme [W22W3D0007]; A*STAR Biomedical Research Council, Central Research Fund, Use-Inspired Basic Research (CRF UIBR); Competitive Research Programme (CRP) [NRF-CRP29-2022-0005]; Industry Alignment Fund - Prepositioning (IAF-PP) [H23J2a0095, H23J2a0097].
- NMRC grant MOH-000937-00 and A*STAR grant C210812003
- M.T.N.L. was supported by the Industry Alignment Fund - Prepositioning (IAF-PP) [H23J2a0097].
- H.L. was supported by grants from the Mayo Clinic Center for Biomedical Discovery, Center for Individualized Medicine, the Mayo Clinic Comprehensive Cancer Center (NIH; P30CA015083), the Mayo Clinic Center for Cell Signaling in Gastroenterology (NIH: P30DK084567), the Mayo Clinic Nutrition Obesity Research Program, the Glenn Foundation for Medical Research, the Eric & Wendy Schmidt Fund for AI Research & Innovation and the National Institutes of Health (NIH; U19AG74879, P50CA136393, R03OD038392).
Collapse
Affiliation(s)
- Ka Wai Wong
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Edison Tay
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jia Hao Jackie Teo
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Nadia Omega Cipta
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yao Yi
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Haijun Liu
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Soon Chye Ng
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Sincere Healthcare Group, Singapore, Republic of Singapore
| | - Qi-Jing Li
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.
- NUS Graduate School's Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
2
|
Lee BK, Kim J. Integrating High-Throughput Approaches and in vitro Human Trophoblast Models to Decipher Mechanisms Underlying Early Human Placenta Development. Front Cell Dev Biol 2021; 9:673065. [PMID: 34150768 PMCID: PMC8206641 DOI: 10.3389/fcell.2021.673065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
The placenta is a temporary but pivotal organ for human pregnancy. It consists of multiple specialized trophoblast cell types originating from the trophectoderm of the blastocyst stage of the embryo. While impaired trophoblast differentiation results in pregnancy disorders affecting both mother and fetus, the molecular mechanisms underlying early human placenta development have been poorly understood, partially due to the limited access to developing human placentas and the lack of suitable human in vitro trophoblast models. Recent success in establishing human trophoblast stem cells and other human in vitro trophoblast models with their differentiation protocols into more specialized cell types, such as syncytiotrophoblast and extravillous trophoblast, has provided a tremendous opportunity to understand early human placenta development. Unfortunately, while high-throughput research methods and omics tools have addressed numerous molecular-level questions in various research fields, these tools have not been widely applied to the above-mentioned human trophoblast models. This review aims to provide an overview of various omics approaches that can be utilized in the study of human in vitro placenta models by exemplifying some important lessons obtained from omics studies of mouse model systems and introducing recently available human in vitro trophoblast model systems. We also highlight some key unknown questions that might be addressed by such techniques. Integrating high-throughput omics approaches and human in vitro model systems will facilitate our understanding of molecular-level regulatory mechanisms underlying early human placenta development as well as placenta-associated complications.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany-State University of New York, Rensselaer, NY, United States
| | - Jonghwan Kim
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
3
|
Morrison CD, Allington TM, Thompson CL, Gilmore HL, Chang JC, Keri RA, Schiemann WP. c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression. Oncotarget 2018; 7:72777-72794. [PMID: 27626309 PMCID: PMC5340126 DOI: 10.18632/oncotarget.11909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
We previously reported that constitutive c-Abl activity (CST-Abl) abrogates the tumorigenicity of triple-negative breast cancer cells through the combined actions of two cellular events: downregulated matrix metalloproteinase (MMP) and upregulated p21Waf1/Cip1 expression. We now find decreased c-Abl expression to be significantly associated with diminished relapse-fee survival in breast cancer patients, particularly those exhibiting invasive and basal phenotypes. Moreover, CST-Abl expression enabled 4T1 cells to persist innocuously in the mammary glands of mice, doing so by exhausting their supply of cancer stem cells. Restoring MMP-9 expression and activity in CST-Abl-expressing 4T1 cells failed to rescue their malignant phenotypes; however, rendering these same cells deficient in p21 expression not only delayed their acquisition of senescent phenotypes, but also partially restored their tumorigenicity in mice. Although 4T1 cells lacked detectable expression of p53, those engineered to express CST-Abl exhibited robust production and secretion of TGF-β1 that engendered the reactivated expression of p53. Mechanistically, TGF-β-mediated p53 expression transpired through the combined actions of Smad1/5/8 and Smad2, leading to the dramatic upregulation of p21 and its stimulation of TNBC senescence. Collectively, we identified a novel c-Abl:p53:p21 signaling axis that functions as a powerful suppressor of mammary tumorigenesis and metastatic progression.
Collapse
Affiliation(s)
- Chevaun D Morrison
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tressa M Allington
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado-Denver, Aurora, CO 80045, USA
| | - Cheryl L Thompson
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hannah L Gilmore
- Department of Pathology, University Hospitals, Case Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jenny C Chang
- Houston Methodist Research Center, Houston, TX 77030, USA
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Alternative SET/TAFI Promoters Regulate Embryonic Stem Cell Differentiation. Stem Cell Reports 2017; 9:1291-1303. [PMID: 28966118 PMCID: PMC5639460 DOI: 10.1016/j.stemcr.2017.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 01/21/2023] Open
Abstract
Embryonic stem cells (ESCs) are regulated by pluripotency-related transcription factors in concert with chromatin regulators. To identify additional stem cell regulators, we screened a library of endogenously labeled fluorescent fusion proteins in mouse ESCs for fluorescence loss during differentiation. We identified SET, which displayed a rapid isoform shift during early differentiation from the predominant isoform in ESCs, SETα, to the primary isoform in differentiated cells, SETβ, through alternative promoters. SETα is selectively bound and regulated by pluripotency factors. SET depletion causes proliferation slowdown and perturbed neuronal differentiation in vitro and developmental arrest in vivo, and photobleaching methods demonstrate SET's role in maintaining a dynamic chromatin state in ESCs. This work identifies an important regulator of pluripotency and early differentiation, which is controlled by alternative promoter usage. We identify SETα to be rapidly downregulated during ESC differentiation SETα is regulated by pluripotency factors and replaced by SETβ during differentiation SETα/SETβ switch is crucial for ESC differentiation SETα regulates chromatin plasticity in ESCs
Collapse
|
5
|
Abstract
The advent of next-generation sequencing has demonstrated that eukaryotic genomes are extremely complex than what were previously thought. Recent studies revealed that in addition to protein-coding genes, nonprotein-coding genes have allocated a large fraction of the genome. Long noncoding RNA (lncRNA) genes are classified as nonprotein-coding genes, serving as a molecular signal, decoy, guide and scaffold. They were suggested to play important roles in chromatin states, epigenetic and posttranscriptional regulation of genes. Aberrant expression of lncRNAs and changes in their structure are associated with a wide spectrum of diseases ranging from different types of cancer and neurodegeneration to ?-thalassaemia. The purpose of this study was to summarize the current progress in understanding the genomic bases and origin of lncRNAs. Moreover, this study focusses on the diverse functions of lncRNAs in normal cells as well as various types of disease to illustrate the potential impacts of lncRNAs on diverse biological processes and their therapeutic significance.
Collapse
|
6
|
Miere C, Devito L, Ilic D. Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton's Jelly into Induced Pluripotent Stem Cells. Methods Mol Biol 2016; 1357:33-44. [PMID: 26246353 DOI: 10.1007/7651_2014_163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In an attempt to bring pluripotent stem cell biology closer to reaching its full potential, many groups have focused on improving reprogramming protocols over the past several years. The episomal modified Sendai virus-based vector has emerged as one of the most practical ones. Here we describe reprogramming of mesenchymal stromal/stem cells (MSC) derived from umbilical cord Wharton's Jelly into induced pluripotent stem cells (iPSC) using genome non-integrating Sendai virus-based vectors. The detailed protocols of iPSC colony cryopreservation (vitrification) and adaption to feeder-free culture conditions are also included.
Collapse
Affiliation(s)
- Cristian Miere
- Stem Cell Laboratories, Assisted Conception Unit, Guy's Hospital, London, UK
| | - Liani Devito
- Stem Cell Laboratories, Assisted Conception Unit, Guy's Hospital, London, UK
| | - Dusko Ilic
- Stem Cell Laboratories, Assisted Conception Unit, Guy's Hospital, London, UK
- Kings College London, Strand, London, WC2R2LS, UK
| |
Collapse
|
7
|
Abstract
Pluripotency is the remarkable capacity of a single cell to engender all the specialized cell types of an adult organism. This property can be captured indefinitely through derivation of self-renewing embryonic stem cells (ESCs), which represent an invaluable platform to investigate cell fate decisions and disease. Recent advances have revealed that manipulation of distinct signaling cues can render ESCs in a uniform "ground state" of pluripotency, which more closely recapitulates the pluripotent naive epiblast. Here we discuss the extrinsic and intrinsic regulatory principles that underpin the nature of pluripotency and consider the emerging spectrum of pluripotent states.
Collapse
Affiliation(s)
- Jamie A Hackett
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK.
| |
Collapse
|
8
|
Abboud N, Morris TM, Hiriart E, Yang H, Bezerra H, Gualazzi MG, Stefanovic S, Guénantin AC, Evans SM, Pucéat M. A cohesin-OCT4 complex mediates Sox enhancers to prime an early embryonic lineage. Nat Commun 2015; 6:6749. [PMID: 25851587 PMCID: PMC5531045 DOI: 10.1038/ncomms7749] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
Short- and long-scales intra- and inter-chromosomal interactions are linked to gene transcription, but the molecular events underlying these structures and how they affect cell fate decision during embryonic development are poorly understood. One of the first embryonic cell fate decisions (that is, mesendoderm determination) is driven by the POU factor OCT4, acting in concert with the high-mobility group genes Sox-2 and Sox-17. Here we report a chromatin-remodelling mechanism and enhancer function that mediate cell fate switching. OCT4 alters the higher-order chromatin structure at both Sox-2 and Sox-17 loci. OCT4 titrates out cohesin and switches the Sox-17 enhancer from a locked (within an inter-chromosomal Sox-2 enhancer/CCCTC-binding factor CTCF/cohesin loop) to an active (within an intra-chromosomal Sox-17 promoter/enhancer/cohesin loop) state. SALL4 concomitantly mobilizes the polycomb complexes at the Soxs loci. Thus, OCT4/SALL4-driven cohesin- and polycombs-mediated changes in higher-order chromatin structure mediate instruction of early cell fate in embryonic cells.
Collapse
Affiliation(s)
- Nesrine Abboud
- INSERM UMR 633, Genopole Evry, University Paris Descartes, 91000 Evry, Paris, France
| | | | - Emilye Hiriart
- INSERM UMR 633, Genopole Evry, University Paris Descartes, 91000 Evry, Paris, France
- INSERM UMR 910, GMGF, Aix-Marseille University, 13885 Marseille, France
| | - Henry Yang
- Cancer Science Institute, National University of Singapore, Singapore 138672, Singapore
| | - Hudson Bezerra
- INSERM UMR 633, Genopole Evry, University Paris Descartes, 91000 Evry, Paris, France
| | | | - Sonia Stefanovic
- INSERM UMR 633, Genopole Evry, University Paris Descartes, 91000 Evry, Paris, France
- INSERM UMR 910, GMGF, Aix-Marseille University, 13885 Marseille, France
| | - Anne-Claire Guénantin
- INSERM UMR 633, Genopole Evry, University Paris Descartes, 91000 Evry, Paris, France
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Medecine and Department of Pharmacology, UCSD, La Jolla, California 92093, California, USA
| | - Michel Pucéat
- INSERM UMR 633, Genopole Evry, University Paris Descartes, 91000 Evry, Paris, France
- INSERM UMR 910, GMGF, Aix-Marseille University, 13885 Marseille, France
| |
Collapse
|
9
|
Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 2015; 516:56-61. [PMID: 25471879 PMCID: PMC4256722 DOI: 10.1038/nature13920] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023]
Abstract
Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs.
Collapse
|
10
|
Enhancing mammary differentiation by overcoming lineage-specific epigenetic modification and signature gene expression of fibroblast-derived iPSCs. Cell Death Dis 2014; 5:e1550. [PMID: 25476898 PMCID: PMC4649828 DOI: 10.1038/cddis.2014.499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that induced pluripotent stem cells (iPSCs) retain a memory of their origin and exhibit biased differentiation potential. This finding reveals a severe limitation in the application of iPSCs to cell-based therapy because it means that certain cell types are not available for reprogramming for patients. Here we show that the iPSC differentiation process is accompanied by profound gene expression and epigenetic modifications that reflect cells' origins. Under typical conditions for mammary differentiation, iPSCs reprogrammed from tail-tip fibroblasts (TF-iPSCs) activated a fibroblast-specific signature that was not compatible with mammary differentiation. Strikingly, under optimized conditions, including coculture with iPSCs derived from the mammary epithelium or in the presence of pregnancy hormones, the fibroblast-specific signature of TF-iPSCs obtained during differentiation was erased and cells displayed a mammary-specific signature with a markedly enhanced ability for mammary differentiation. These findings provide new insights into the precise control of differentiation conditions that may have applications in personalized cell-based therapy.
Collapse
|
11
|
Benevento M, Munoz J. Role of mass spectrometry-based proteomics in the study of cellular reprogramming and induced pluripotent stem cells. Expert Rev Proteomics 2014; 9:379-99. [DOI: 10.1586/epr.12.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
13
|
Lu X, Göke J, Sachs F, Jacques PÉ, Liang H, Feng B, Bourque G, Bubulya PA, Ng HH. SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nat Cell Biol 2013; 15:1141-1152. [PMID: 24013217 DOI: 10.1038/ncb2839] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 08/07/2013] [Indexed: 12/18/2022]
Abstract
Human embryonic stem cells (hESCs) harbour the ability to undergo lineage-specific differentiation into clinically relevant cell types. Transcription factors and epigenetic modifiers are known to play important roles in the maintenance of pluripotency of hESCs. However, little is known about regulation of pluripotency through splicing. In this study, we identify the spliceosome-associated factor SON as a factor essential for the maintenance of hESCs. Depletion of SON in hESCs results in the loss of pluripotency and cell death. Using genome-wide RNA profiling, we identified transcripts that are regulated by SON. Importantly, we confirmed that SON regulates the proper splicing of transcripts encoding for pluripotency regulators such as OCT4, PRDM14, E4F1 and MED24. Furthermore, we show that SON is bound to these transcripts in vivo. In summary, we connect a splicing-regulatory network for accurate transcript production to the maintenance of pluripotency and self-renewal of hESCs.
Collapse
Affiliation(s)
- Xinyi Lu
- Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore.,Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Jonathan Göke
- Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore
| | - Friedrich Sachs
- Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore.,Department of Biochemistry, National University of Singapore, 117597, Singapore
| | - Pierre-Étienne Jacques
- Department of Biology, Université de Sherbrooke, 2500 boulevard de l'Université Sherbrooke, Québec J1K 2R1, Canada
| | - Hongqing Liang
- Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore
| | - Bo Feng
- School of Biomedical Sciences, Lo Kwee Seong Integrated Biomedical Sciences Building, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Guillaume Bourque
- McGill University & Genome Quebec Innovation Center, 740 Dr Penfield Avenue, Montréal, Québec H3A 1A4, Canada
| | - Paula A Bubulya
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435, USA
| | - Huck-Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore.,Department of Biological Sciences, National University of Singapore, 117543, Singapore.,Department of Biochemistry, National University of Singapore, 117597, Singapore.,Graduate School for Integrative Sciences & Engineering, National University of Singapore, 117456, Singapore.,School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
14
|
Ougland R, Lando D, Jonson I, Dahl JA, Moen MN, Nordstrand LM, Rognes T, Lee JT, Klungland A, Kouzarides T, Larsen E. ALKBH1 is a histone H2A dioxygenase involved in neural differentiation. Stem Cells 2013; 30:2672-82. [PMID: 22961808 PMCID: PMC3546389 DOI: 10.1002/stem.1228] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/19/2012] [Indexed: 12/18/2022]
Abstract
AlkB homolog 1 (ALKBH1) is one of nine members of the family of mammalian AlkB homologs. Most Alkbh1(-/-) mice die during embryonic development, and survivors are characterized by defects in tissues originating from the ectodermal lineage. In this study, we show that deletion of Alkbh1 prolonged the expression of pluripotency markers in embryonic stem cells and delayed the induction of genes involved in early differentiation. In vitro differentiation to neural progenitor cells (NPCs) displayed an increased rate of apoptosis in the Alkbh1(-/-) NPCs when compared with wild-type cells. Whole-genome expression analysis and chromatin immunoprecipitation revealed that ALKBH1 regulates both directly and indirectly, a subset of genes required for neural development. Furthermore, our in vitro enzyme activity assays demonstrate that ALKBH1 is a histone dioxygenase that acts specifically on histone H2A. Mass spectrometric analysis demonstrated that histone H2A from Alkbh1(-/-) mice are improperly methylated. Our results suggest that ALKBH1 is involved in neural development by modifying the methylation status of histone H2A.
Collapse
Affiliation(s)
- Rune Ougland
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep 2013; 2:1579-92. [PMID: 23260666 DOI: 10.1016/j.celrep.2012.10.014] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/22/2012] [Accepted: 10/19/2012] [Indexed: 12/28/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) is a process whose mechanistic underpinnings are only beginning to emerge. Here, we applied in-depth quantitative proteomics to monitor proteome changes during the course of reprogramming of fibroblasts to iPSCs. We uncover a two-step resetting of the proteome during the first and last 3 days of reprogramming, with multiple functionally related proteins changing in expression in a highly coordinated fashion. This comprised several biological processes, including changes in the stoichiometry of electron transport-chain complexes, repressed vesicle-mediated transport during the intermediate stage, and an EMT-like process in the late phase. In addition, we demonstrate that the nucleoporin Nup210 is essential for reprogramming by its permitting of rapid cellular proliferation and subsequent progression through MET. Along with the identification of proteins expressed in a stage-specific manner, this study provides a rich resource toward an enhanced mechanistic understanding of cellular reprogramming.
Collapse
|
16
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
17
|
Oct4 and the small molecule inhibitor, SC1, regulates Tet2 expression in mouse embryonic stem cells. Mol Biol Rep 2012; 40:2897-906. [PMID: 23254757 DOI: 10.1007/s11033-012-2305-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/19/2012] [Indexed: 12/21/2022]
Abstract
The ten eleven translocation (Tet) family of proteins includes three members (Tet1-3), all of which have the capacity to convert 5-methylcytosine to 5-hydroxymethylcytosine in a 2-oxoglutarate- and Fe(II)-dependent manner. Tet1 and Tet2 are highly expressed in undifferentiated embryonic stem cells (ESCs), and this expression decreases upon differentiation. Notably, the expression patterns of Tet1 and Tet2 in ESCs parallels that of pluripotency genes. To date, however, the mechanisms underlying the regulation of Tet gene expression in ESCs remain largely unexplored. Here we report that the pluripotency transcription factor, Oct4, directly regulates the expression of Tet2. Using RNAi, real time quantitative PCR, dual-luciferase reporter assays and electrophoretic mobility shift assays, we show that Oct4 promotes Tet2 transcription by binding to consensus sites in the proximal promoter region. Furthermore, we explored the role of the small molecule inhibitor, SC1 (pluripotin) on Tet gene expression. We show that SC1 promotes Tet3 expression, but represses Tet1 and Tet2 expression. Our findings indicate that Tet2 are crucial downstream targets of the pluripotency factor Oct4, and highlight a role for Oct4 in the regulation of DNA methylation in ESCs. In addition, these findings also provide a new insight into drug-mediated gene regulation.
Collapse
|
18
|
Wan M, Liang J, Xiong Y, Shi F, Zhang Y, Lu W, He Q, Yang D, Chen R, Liu D, Barton M, Songyang Z. The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. J Biol Chem 2012; 288:5039-48. [PMID: 23239880 DOI: 10.1074/jbc.m112.424515] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Embryonic stem (ES) cells exhibit general characteristics of open chromatin, a state that may be necessary for ES cells to efficiently self-renew while remaining poised for differentiation. Histone H3K4 and H3K9 trimethylation associate as a general rule, with open and silenced chromatin, respectively, for ES cell pluripotency maintenance. However, how histone modifications are regulated to maintain open chromatin in ES cells remains largely unknown. Here, we demonstrate that trithorax protein Ash2l, homologue of the Drosophila Ash2 (absent, small, homeotic-2) protein, is a key regulator of open chromatin in ES cells. Consistent with Ash2l being a core subunit of mixed lineage leukemia methyltransferase complex, RNAi knockdown of Ash2l was sufficient to reduce H3K4 methylation levels and drive ES cells to a silenced chromatin state with high H3K9 trimethylation. Genome-wide ChIP-seq analysis indicated that Ash2l is recruited to target loci through two distinct modes and enriched at a family of genes implicated in open chromatin regulation, including chromatin remodeler Cdh7, transcription factor c-Myc, and H3K9 demethylase Kdm4c. Our results underscore the importance of Ash2l in open chromatin regulation and provide insight into how the open chromatin landscape is maintained in ES cells.
Collapse
Affiliation(s)
- Ma Wan
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510275 Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hu Q, Rosenfeld MG. Epigenetic regulation of human embryonic stem cells. Front Genet 2012; 3:238. [PMID: 23133442 PMCID: PMC3488762 DOI: 10.3389/fgene.2012.00238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/17/2012] [Indexed: 11/13/2022] Open
Abstract
Recently, there has been tremendous progress in characterizing the transcriptional network regulating human embryonic stem cells (hESCs; MacArthur etal., 2009; Loh etal., 2011), including those signaling events mediated by Oct4, Nanog, and Sox2. There is growing interest in the epigenetic machinery involved in hESC self-renewal and differentiation. In general, epigenetic regulation includes chromatin reorganization, DNA modification, and histone modification, which are not directly related to alterations in DNA sequences. Various protein complexes, including Polycomb, trithorax, nucleosome remodeling deacetylase, SWI/SNF, and Oct4, have been shown to play critical roles in epigenetic control of hESC physiology. Hence, we will formally review recent advances in unraveling the multifaceted role of epigenetic regulation in hESC self-renewal and induced differentiation, particularly with respect to chromatin remodeling and DNA methylation events. Elucidating the molecular mechanisms underlying the maintenance/differentiation of hESCs and reprogramming of somatic cells will greatly strengthen our capacity to generate various types of cells to treat human diseases.
Collapse
Affiliation(s)
- Qidong Hu
- School/Department of Medicine, Howard Hughes Medical Institute, University of California San Diego, CA, USA
| | | |
Collapse
|
20
|
Abstract
The boundaries of embryonic stem cell (ESC) research have extended considerably in recent years in several important ways. Alongside a deeper understanding of the pluripotent state, ESCs have been successfully integrated into various fields, such as genomics, epigenetics, and disease modeling. Significant progress in cell fate control has pushed directed differentiation and tissue engineering further than ever before and promoted clinical trials. The geographical distribution of research activity has also expanded, especially for human ESCs. This review outlines these developments and future challenges that remain.
Collapse
|
21
|
Abstract
Endothelial cells display remarkable phenotypic heterogeneity. An important goal is to elucidate the scope and mechanisms of endothelial heterogeneity and to use this information to develop vascular bed-specific therapies. We reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. We draw on the field of nonlinear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation.
Collapse
Affiliation(s)
- Erzsébet Ravasz Regan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
22
|
Keung AJ, Asuri P, Kumar S, Schaffer DV. Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr Biol (Camb) 2012; 4:1049-58. [PMID: 22854634 DOI: 10.1039/c2ib20083j] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells (hPSCs) are of great interest in biology and medicine due to their ability to self-renew and differentiate into any adult or fetal cell type. Important efforts have identified biochemical factors, signaling pathways, and transcriptional networks that regulate hPSC biology. However, recent work investigating the effect of biophysical cues on mammalian cells and adult stem cells suggests that the mechanical properties of the microenvironment, such as stiffness, may also regulate hPSC behavior. While several studies have explored this mechanoregulation in mouse embryonic stem cells (mESCs), it has been challenging to extrapolate these findings and thereby explore their biomedical implications in hPSCs. For example, it remains unclear whether hPSCs can be driven down a given tissue lineage by providing tissue-mimetic stiffness cues. Here we address this open question by investigating the regulation of hPSC neurogenesis by microenvironmental stiffness. We find that increasing extracellular matrix (ECM) stiffness in vitro increases hPSC cell and colony spread area but does not alter self-renewal, in contrast to past studies with mESCs. However, softer ECMs with stiffnesses similar to that of neural tissue promote the generation of early neural ectoderm. This mechanosensitive increase in neural ectoderm requires only a short 5-day soft stiffness "pulse", which translates into downstream increases in both total neurons as well as therapeutically relevant dopaminergic neurons. These findings further highlight important differences between mESCs and hPSCs and have implications for both the design of future biomaterials as well as our understanding of early embryonic development.
Collapse
Affiliation(s)
- Albert J Keung
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
23
|
Pandian GN, Nakano Y, Sato S, Morinaga H, Bando T, Nagase H, Sugiyama H. A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts. Sci Rep 2012; 2:544. [PMID: 22848790 PMCID: PMC3408130 DOI: 10.1038/srep00544] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/09/2012] [Indexed: 12/23/2022] Open
Abstract
Cellular reprogramming involves profound alterations in genome-wide gene expression that is precisely controlled by a hypothetical epigenetic code. Small molecules have been shown to artificially induce epigenetic modifications in a sequence independent manner. Recently, we showed that specific DNA binding hairpin pyrrole-imidazole polyamides (PIPs) could be conjugated with chromatin modifying histone deacetylase inhibitors like SAHA to epigenetically activate certain pluripotent genes in mouse fibroblasts. In our steadfast progress to improve the efficiency of SAHA-PIPs, we identified a novel compound termed, δ that could dramatically induce the endogenous expression of Oct-3/4 and Nanog. Genome-wide gene analysis suggests that in just 24 h and at nM concentration, δ induced multiple pluripotency-associated genes including Rex1 and Cdh1 by more than ten-fold. δ treated MEFs also rapidly overcame the rate-limiting step of epithelial transition in cellular reprogramming by switching “” the complex transcriptional gene network.
Collapse
Affiliation(s)
- Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Comment on: Hong SH, et al. Cell Stem Cell 2011; 9:24-36.
Collapse
|
25
|
Pandian GN, Sugiyama H. Programmable genetic switches to control transcriptional machinery of pluripotency. Biotechnol J 2012; 7:798-809. [DOI: 10.1002/biot.201100361] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/30/2012] [Accepted: 03/26/2012] [Indexed: 12/30/2022]
|
26
|
Zheng X, Dumitru R, Lackford BL, Freudenberg JM, Singh AP, Archer TK, Jothi R, Hu G. Cnot1, Cnot2, and Cnot3 maintain mouse and human ESC identity and inhibit extraembryonic differentiation. Stem Cells 2012; 30:910-22. [PMID: 22367759 PMCID: PMC3787717 DOI: 10.1002/stem.1070] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Embryonic stem cell (ESC) identity and self-renewal is maintained by extrinsic signaling pathways and intrinsic gene regulatory networks. Here, we show that three members of the Ccr4-Not complex, Cnot1, Cnot2, and Cnot3, play critical roles in maintaining mouse and human ESC identity as a protein complex and inhibit differentiation into the extraembryonic lineages. Enriched in the inner cell mass of blastocysts, these Cnot genes are highly expressed in ESC and downregulated during differentiation. In mouse ESCs, Cnot1, Cnot2, and Cnot3 are important for maintenance in both normal conditions and the 2i/LIF medium that supports the ground state pluripotency. Genetic analysis indicated that they do not act through known self-renewal pathways or core transcription factors. Instead, they repress the expression of early trophectoderm (TE) transcription factors such as Cdx2. Importantly, these Cnot genes are also necessary for the maintenance of human ESCs, and silencing them mainly lead to TE and primitive endoderm differentiation. Together, our results indicate that Cnot1, Cnot2, and Cnot3 represent a novel component of the core self-renewal and pluripotency circuitry conserved in mouse and human ESCs.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- Laboratory of Molecular Carcinogenesis and Research Triangle Park, North Carolina, USA
| | - Raluca Dumitru
- Laboratory of Molecular Carcinogenesis and Research Triangle Park, North Carolina, USA
| | - Brad L. Lackford
- Laboratory of Molecular Carcinogenesis and Research Triangle Park, North Carolina, USA
| | - Johannes M. Freudenberg
- Biostatistic Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Ajeet P. Singh
- Laboratory of Molecular Carcinogenesis and Research Triangle Park, North Carolina, USA
| | - Trevor K. Archer
- Laboratory of Molecular Carcinogenesis and Research Triangle Park, North Carolina, USA
| | - Raja Jothi
- Biostatistic Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Guang Hu
- Laboratory of Molecular Carcinogenesis and Research Triangle Park, North Carolina, USA
| |
Collapse
|
27
|
Freudenberg JM, Ghosh S, Lackford BL, Yellaboina S, Zheng X, Li R, Cuddapah S, Wade PA, Hu G, Jothi R. Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Nucleic Acids Res 2012; 40:3364-77. [PMID: 22210859 PMCID: PMC3333871 DOI: 10.1093/nar/gkr1253] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 01/04/2023] Open
Abstract
The TET family of FE(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) promote DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which they further oxidize into 5-formylcytosine and 5-carboxylcytosine. Tet1 is robustly expressed in mouse embryonic stem cells (mESCs) and has been implicated in mESC maintenance. Here we demonstrate that, unlike genetic deletion, RNAi-mediated depletion of Tet1 in mESCs led to a significant reduction in 5hmC and loss of mESC identity. The differentiation phenotype due to Tet1 depletion positively correlated with the extent of 5hmC loss. Meta-analyses of genomic data sets suggested interaction between Tet1 and leukemia inhibitory factor (LIF) signaling. LIF signaling is known to promote self-renewal and pluripotency in mESCs partly by opposing MAPK/ERK-mediated differentiation. Withdrawal of LIF leads to differentiation of mESCs. We discovered that Tet1 depletion impaired LIF-dependent Stat3-mediated gene activation by affecting Stat3's ability to bind to its target sites on chromatin. Nanog overexpression or inhibition of MAPK/ERK signaling, both known to maintain mESCs in the absence of LIF, rescued Tet1 depletion, further supporting the dependence of LIF/Stat3 signaling on Tet1. These data support the conclusion that analysis of mESCs in the hours/days immediately following efficient Tet1 depletion reveals Tet1's normal physiological role in maintaining the pluripotent state that may be subject to homeostatic compensation in genetic models.
Collapse
Affiliation(s)
- Johannes M. Freudenberg
- Systems Biology Section, Biostatistics Branch, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA and Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Swati Ghosh
- Systems Biology Section, Biostatistics Branch, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA and Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Brad L. Lackford
- Systems Biology Section, Biostatistics Branch, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA and Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Sailu Yellaboina
- Systems Biology Section, Biostatistics Branch, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA and Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Xiaofeng Zheng
- Systems Biology Section, Biostatistics Branch, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA and Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Ruifang Li
- Systems Biology Section, Biostatistics Branch, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA and Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Suresh Cuddapah
- Systems Biology Section, Biostatistics Branch, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA and Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Paul A. Wade
- Systems Biology Section, Biostatistics Branch, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA and Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Guang Hu
- Systems Biology Section, Biostatistics Branch, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA and Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Raja Jothi
- Systems Biology Section, Biostatistics Branch, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA and Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| |
Collapse
|