1
|
Feng X, Tachiyama S, He J, Zhu S, Zhao H, Botting JM, Liu Y, Chen Y, Hua C, Lara-Tejero M, Baker MAB, Gao X, Liu J, Gao B. The architecture, assembly, and evolution of a complex flagellar motor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638559. [PMID: 40027708 PMCID: PMC11870540 DOI: 10.1101/2025.02.19.638559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bacterial flagella drive motility in many species, likely including the last bacterial common ancestor 1,2 . Knowledge of flagellar assembly and function has mainly come from studies of Escherichia coli and Salmonella enterica , which have simple flagellar motors 3-7 . However, most flagellated bacteria possess complex motors with unique, species-specific adaptations whose mechanisms and evolution remain largely unexplored 8-10 . Here, we deploy a multidisciplinary approach to build a near-complete model of the flagellar motor in Campylobacter jejuni , revealing its remarkable complexity in architecture and composition. We identify an E-ring around the MS-ring, a periplasmic cage with two distinctive conformations, and an intricate interaction network between the E-ring and cage. These scaffolds play critical roles in stabilizing and regulating 17 torque-generating stator complexes for optimal motility. In-depth evolutionary analyses uncover the ancient origin and prevalence of the E-ring in flagellated species of the domain Bacteria as well as a unique exaptation of type IV pili components PilMNOPQF in the ancestral motor of the phylum Campylobacterota . Collectively, our studies reveal novel mechanisms of assembly and function in complex flagellar motors and shed light on the evolution of flagella and modern bacterial species.
Collapse
|
2
|
Sheenu, Jain D. Transcription Regulation of Flagellins: A Structural Perspective. Biochemistry 2025; 64:770-781. [PMID: 39874281 DOI: 10.1021/acs.biochem.4c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors. Expression of late flagellar genes requires the complete assembly of the flagellar basal body and hook. The extracellular segment of the flagellum, termed filament, is composed of self-assembling flagellin subunits encoded by the fliC gene and harbors potent antigenic epitopes. Structural studies have illuminated the molecular mechanisms underlying its assembly and its regulation at the transcription level. σ28, a key subunit of the RNA polymerase complex, binds to specific promoter sequences to initiate transcription of late flagellar genes, while its activity is controlled by the antisigma factor FlgM. This review summarizes current insights into the structural characterization of flagellins across various bacterial species, their transcription by σ28, and the structural mechanism controlling σ28 activity through FlgM. Additionally, we highlight the regulation of flagellin gene expression via transcription factors and their post-transcriptional regulation, providing a comprehensive overview of the intricate mechanisms that support bacterial motility and adaptation.
Collapse
Affiliation(s)
- Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
3
|
McArthur SJ, Umeda K, Kodera N. Nano-Scale Video Imaging of Motility Machinery by High-Speed Atomic Force Microscopy. Biomolecules 2025; 15:257. [PMID: 40001560 PMCID: PMC11852755 DOI: 10.3390/biom15020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Motility is a vital aspect of many forms of life, with a wide range of highly conserved as well as highly unique systems adapted to the needs of various organisms and environments. While many motility systems are well studied using structural techniques like X-ray crystallography and electron microscopy, as well as fluorescence microscopy methodologies, it is difficult to directly determine the relationship between the shape and movement of a motility system due to a notable gap in spatiotemporal resolution. Bridging this gap as well as understanding the dynamic molecular movements that underpin motility mechanisms has been challenging. The advent of high-speed atomic force microscopy (HS-AFM) has provided a new window into understanding these nano-scale machines and the dynamic processes underlying motility. In this review, we highlight some of the advances in this field, ranging from reconstituted systems and purified higher-order supramolecular complexes to live cells, in both prokaryotic and eukaryotic contexts.
Collapse
Affiliation(s)
- Steven John McArthur
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan and Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
4
|
Zhuang XY, Lo CJ. Decoding Bacterial Motility: From Swimming States to Patterns and Chemotactic Strategies. Biomolecules 2025; 15:170. [PMID: 40001473 PMCID: PMC11853445 DOI: 10.3390/biom15020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
The bacterial flagellum serves as a crucial propulsion apparatus for motility and chemotaxis. Bacteria employ complex swimming patterns to perform essential biological tasks. These patterns involve transitions between distinct swimming states, driven by flagellar motor rotation, filament polymorphism, and variations in flagellar arrangement and configuration. Over the past two decades, advancements in fluorescence staining technology applied to bacterial flagella have led to the discovery of diverse bacterial movement states and intricate swimming patterns. This review provides a comprehensive overview of nano-filament observation methodologies, swimming states, swimming patterns, and the physical mechanisms underlying chemotaxis. These novel insights and ongoing research have the potential to inspire the design of innovative active devices tailored for operation in low-Reynolds-number environments.
Collapse
Affiliation(s)
- Xiang-Yu Zhuang
- Department of Physics and Center for Complex Systems, National Central University, Zhongli, Taoyuan 32001, Taiwan
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan
| | - Chien-Jung Lo
- Department of Physics and Center for Complex Systems, National Central University, Zhongli, Taoyuan 32001, Taiwan
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
5
|
Dos Santos SJ, Copeland C, Macklaim JM, Reid G, Gloor GB. Vaginal metatranscriptome meta-analysis reveals functional BV subgroups and novel colonisation strategies. MICROBIOME 2024; 12:271. [PMID: 39709449 DOI: 10.1186/s40168-024-01992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The application of '-omics' technologies to study bacterial vaginosis (BV) has uncovered vast differences in composition and scale between the vaginal microbiomes of healthy and BV patients. Compared to amplicon sequencing and shotgun metagenomic approaches focusing on a single or few species, investigating the transcriptome of the vaginal microbiome at a system-wide level can provide insight into the functions which are actively expressed and differential between states of health and disease. RESULTS We conducted a meta-analysis of vaginal metatranscriptomes from three studies, split into exploratory (n = 42) and validation (n = 297) datasets, accounting for the compositional nature of sequencing data and differences in scale between healthy and BV microbiomes. Conducting differential expression analyses on the exploratory dataset, we identified a multitude of strategies employed by microbes associated with states of health and BV to evade host cationic antimicrobial peptides (CAMPs); putative mechanisms used by BV-associated species to resist and counteract the low vaginal pH; and potential approaches to disrupt vaginal epithelial integrity so as to establish sites for adherence and biofilm formation. Moreover, we identified several distinct functional subgroups within the BV population, distinguished by genes involved in motility, chemotaxis, biofilm formation and co-factor biosynthesis. After defining molecular states of health and BV in the validation dataset using KEGG orthology terms rather than community state types, differential expression analysis confirmed earlier observations regarding CAMP resistance and compromising epithelial barrier integrity in healthy and BV microbiomes and also supported the existence of motile vs. non-motile subgroups in the BV population. These findings were independent of the enzyme classification system used (KEGG or EggNOG). CONCLUSIONS Our findings highlight a need to focus on functional rather than taxonomic differences when considering the role of microbiomes in disease and identify pathways for further research as potential BV treatment targets. Video Abstract.
Collapse
Affiliation(s)
- Scott J Dos Santos
- Department of Biochemistry, Western University, Middlesex Drive, London, N6G 2V4, Ontario, Canada
| | - Clara Copeland
- Department of Biochemistry, Western University, Middlesex Drive, London, N6G 2V4, Ontario, Canada
| | - Jean M Macklaim
- Department of Biochemistry, Western University, Middlesex Drive, London, N6G 2V4, Ontario, Canada
| | - Gregor Reid
- Lawson Health Research Institute, 268 Grosvenor Street, London, N6A 4V2, Ontario, Canada
| | - Gregory B Gloor
- Department of Biochemistry, Western University, Middlesex Drive, London, N6G 2V4, Ontario, Canada.
| |
Collapse
|
6
|
Szczepaniak J, Webby MN. The Tol Pal system integrates maintenance of the three layered cell envelope. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:46. [PMID: 39843782 PMCID: PMC11721397 DOI: 10.1038/s44259-024-00065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025]
Abstract
The rapid emergence of antibiotic-resistant superbugs poses a significant global health threat. Gram-negative bacteria are the primary culprits due to their robust, tripartite cell envelope. This review explores the emerging role of the trans-envelope Tol-Pal system in maintaining envelope integrity, by connecting envelope layers and serving as a protein interaction hub. Targeting the Tol-Pal system offers a promising approach for the development of novel envelope-disrupting antimicrobials.
Collapse
Affiliation(s)
- Joanna Szczepaniak
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | - Melissa N Webby
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
7
|
Tan J, Zhang L, Zhou X, Han S, Zhou Y, Zhu Y. Structural basis of the bacterial flagellar motor rotational switching. Cell Res 2024; 34:788-801. [PMID: 39179739 PMCID: PMC11528121 DOI: 10.1038/s41422-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
The bacterial flagellar motor is a huge bidirectional rotary nanomachine that drives rotation of the flagellum for bacterial motility. The cytoplasmic C ring of the flagellar motor functions as the switch complex for the rotational direction switching from counterclockwise to clockwise. However, the structural basis of the rotational switching and how the C ring is assembled have long remained elusive. Here, we present two high-resolution cryo-electron microscopy structures of the C ring-containing flagellar basal body-hook complex from Salmonella Typhimurium, which are in the default counterclockwise state and in a constitutively active CheY mutant-induced clockwise state, respectively. In both complexes, the C ring consists of four subrings, but is in two different conformations. The CheY proteins are bound into an open groove between two adjacent protomers on the surface of the middle subring of the C ring and interact with the FliG and FliM subunits. The binding of the CheY protein induces a significant upward shift of the C ring towards the MS ring and inward movements of its protomers towards the motor center, which eventually remodels the structures of the FliG subunits and reverses the orientations and surface electrostatic potential of the αtorque helices to trigger the counterclockwise-to-clockwise rotational switching. The conformational changes of the FliG subunits reveal that the stator units on the motor require a relocation process in the inner membrane during the rotational switching. This study provides unprecedented molecular insights into the rotational switching mechanism and a detailed overall structural view of the bacterial flagellar motors.
Collapse
Affiliation(s)
- Jiaxing Tan
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling Zhang
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingtong Zhou
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siyu Han
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yongqun Zhu
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Center for Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Tătulea-Codrean M, Lauga E. Physical mechanism reveals bacterial slowdown above a critical number of flagella. J R Soc Interface 2024; 21:20240283. [PMID: 39503268 PMCID: PMC11539103 DOI: 10.1098/rsif.2024.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 11/09/2024] Open
Abstract
Numerous studies have explored the link between bacterial swimming and the number of flagella, a distinguishing feature of motile multi-flagellated bacteria. We revisit this open question using augmented slender-body theory simulations, in which we resolve the full hydrodynamic interactions within a bundle of helical filaments rotating and translating in synchrony. Unlike previous studies, our model considers the full torque-speed relationship of the bacterial flagellar motor, revealing its significant impact on multi-flagellated swimming. Because the viscous load per motor decreases with the flagellar number, the bacterial flagellar motor transitions from the high-load to the low-load regime at a critical number of filaments, leading to bacterial slowdown as further flagella are added to the bundle. We explain the physical mechanism behind the observed slowdown as an interplay between the load-dependent generation of torque by the motor, and the load-reducing cooperativity between flagella, which consists of both hydrodynamic and non-hydrodynamic components. The theoretically predicted critical number of flagella is remarkably close to the values reported for the model organism Escherichia coli. Our model further predicts that the critical number of flagella increases with viscosity, suggesting that bacteria can enhance their swimming capacity by growing more flagella in more viscous environments, consistent with empirical observations.
Collapse
Affiliation(s)
- Maria Tătulea-Codrean
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, UK
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, UK
| |
Collapse
|
9
|
Zhu S, He R, Zhang R, Yuan J. Mechanosensitive dose response of the bacterial flagellar motor. Phys Rev E 2024; 110:054402. [PMID: 39690685 DOI: 10.1103/physreve.110.054402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/02/2024] [Indexed: 12/19/2024]
Abstract
The bacterial flagellar motor is both chemo- and mechanosensitive. It is sensitive to the intracellular concentration of the chemotaxis response regulator CheY-P and to external load conditions. The motor's dose-response curve, which represents the probability of the motor rotating clockwise (CW bias) as a function of CheY-P concentration, characterizes its chemical sensitivity. However, it remains unclear how this dose-response curve depends on the load conditions. Here, we measured the dose-response curves of the motor under various load conditions. Surprisingly, we found that the dose-response curve exhibited minimal changes with load at low CW biases, but shifted leftward with higher sensitivity to CheY-P concentration at high CW biases when the load increased. This observation contradicts previous model predictions that incorporated the effect of stator-rotor interaction on motor switching. Through the development of an Ising-type model for the coupled chemo- and mechanosensitivity of the flagellar switch, we revealed that the mechanism underlying the mechanosensitive dose response is the synergistic interplay between the adaptive remodeling of the motor switch complex and the nonequilibrium effect of the stator-rotor interaction.
Collapse
|
10
|
Ridone P, Baker MAB. Hybrid Exb/Mot stators require substitutions distant from the chimeric pore to power flagellar rotation. J Bacteriol 2024; 206:e0014024. [PMID: 39283106 PMCID: PMC11500575 DOI: 10.1128/jb.00140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/09/2024] [Indexed: 10/01/2024] Open
Abstract
Powered by ion transport across the cell membrane, conserved ion-powered rotary motors (IRMs) drive bacterial motility by generating torque on the rotor of the bacterial flagellar motor. Homologous heteroheptameric IRMs have been structurally characterized in ion channels such as Tol/Ton/Exb/Gld, and most recently in phage defense systems such as Zor. Functional stator complexes synthesized from chimeras of PomB/MotB (PotB) have been used to study flagellar rotation at low ion-motive force achieved via reduced external sodium concentration. The function of such chimeras is highly sensitive to the location of the fusion site, and these hybrid proteins have thus far been arbitrarily designed. To date, no chimeras have been constructed using interchange of components from Tol/Ton/Exb/Gld and other ion-powered motors with more distant homology. Here, we synthesized chimeras of MotAB, PomAPotB, and ExbBD to assess their capacity for cross-compatibility. We generated motile strains powered by stator complexes with B-subunit chimeras. This motility was further optimized by directed evolution. Whole-genome sequencing of these strains revealed that motility-enhancing residue changes occurred in the A-subunit and at the peptidoglycan binding domain of the B-unit, which could improve motility. Overall, our work highlights the complexity of stator architecture and identifies the challenges associated with the rational design of chimeric IRMs. IMPORTANCE Ion-powered rotary motors (IRMs) underpin the rotation of one of nature's oldest wheels, the flagellar motor. Recent structures show that this complex appears to be a fundamental molecular module with diverse biological utility where electrical energy is coupled to torque. Here, we attempted to rationally design chimeric IRMs to explore the cross-compatibility of these ancient motors. We succeeded in making one working chimera of a flagellar motor and a non-flagellar transport system protein. This had only a short hybrid stretch in the ion-conducting channel, and function was subsequently improved through additional substitutions at sites distant from this hybrid pore region. Our goal was to test the cross-compatibility of these homologous systems and highlight challenges arising when engineering new rotary motors.
Collapse
Affiliation(s)
- Pietro Ridone
- School of Biotechnology and Biomolecular Sciences, UNSW, Kensington, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences, UNSW, Kensington, Australia
| |
Collapse
|
11
|
Manson MD. A very versatile molecular machine. J Bacteriol 2024; 206:e0035124. [PMID: 39347553 PMCID: PMC11500496 DOI: 10.1128/jb.00351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
In this issue (J Bacteriol. 206: e0014024, https://doi.org/10.1128/jb.00140-24), Ridone and Baker describe hybrids between two 5:2 heteroheptameric ion-powered motors. Chimeras were constructed between stator units of a bacterial flagellum and ExbBD of the Ton outer-membrane transport system. Only one of the 14 hybrids supported swimming in Escherichia coli. Three additional residue changes at sites distant from the hybrid region enhanced motility. This work suggests that flagellar stator units and ExbBD share an ancestor that diverged during evolution to perform different tasks.
Collapse
Affiliation(s)
- Michael D. Manson
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Kubo S, Okada Y, Takada S. Theoretical insights into rotary mechanism of MotAB in the bacterial flagellar motor. Biophys J 2024; 123:3587-3599. [PMID: 39262115 PMCID: PMC11494522 DOI: 10.1016/j.bpj.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
Many bacteria enable locomotion by rotating their flagellum. It has been suggested that this rotation is realized by the rotary motion of the stator unit, MotAB, which is driven by proton transfer across the membrane. Recent cryo-electron microscopy studies have revealed a 5:2 MotAB configuration, in which a MotB dimer is encircled by a ring-shaped MotA pentamer. Although the structure implicates the rotary motion of the MotA wheel around the MotB axle, the molecular mechanisms of rotary motion and how they are coupled with proton transfer across the membrane remain elusive. In this study, we built a structure-based computational model for Campylobacter jejuni MotAB, conducted comprehensive protonation-state-dependent molecular dynamics simulations, and revealed a plausible proton-transfer-coupled rotation pathway. The model assumes rotation-dependent proton transfer, in which proton uptake from the periplasmic side to the conserved aspartic acid in MotB is followed by proton hopping to the MotA proton-carrying site, followed by proton export to the CP. We suggest that, by maintaining two of the proton-carrying sites of MotA in the deprotonated state, the MotA pentamer robustly rotates by ∼36° per proton transfer across the membrane. Our results provide a structure-based mechanistic model of the rotary motion of MotAB in bacterial flagellar motors and provide insights into various ion-driven rotary molecular motors.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Cell Biology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan; Department of Physics, Graduate School of Science, the University of Tokyo, Tokyo, Japan; Universal Biology Institute and International Research Center for Neurointelligence, the University of Tokyo, Tokyo, Japan; Laboratory for Cell Polarity Regulation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Daddi-Moussa-Ider A, Tjhung E, Pradas M, Richter T, Menzel AM. Rotational dynamics of a disk in a thin film of weakly nematic fluid subject to linear friction. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:58. [PMID: 39322774 PMCID: PMC11424714 DOI: 10.1140/epje/s10189-024-00452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Dynamics at low Reynolds numbers experiences recent revival in the fields of biophysics and active matter. While in bulk isotropic fluids it is exhaustively studied, this is less so in anisotropic fluids and in confined situations. Here, we combine the latter two by studying the rotation of a disk-like inclusion in a uniaxially anisotropic, globally oriented, incompressible two-dimensional fluid film. In terms of a perturbative expansion in parameters that quantify anisotropies in viscosity and in additional linear friction with a supporting substrate or other type of confinement, we derive analytical expressions for the resulting hydrodynamic flow and pressure fields as well as for the resistance and mobility coefficients of the rotating disk. It turns out that, in contrast to translational motion, the solutions remain well-behaved also in the absence of the additional linear friction. Comparison with results from finite-element simulations shows very good agreement with those from our analytical calculations. Besides applications to describe technological systems, for instance, in the area of microfluidics and thin cells of aligned nematic liquid crystals, our solutions are important for quantitative theoretical approaches to fluid membranes and thin films in general featuring a preferred direction.
Collapse
Affiliation(s)
| | - Elsen Tjhung
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Marc Pradas
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Thomas Richter
- Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| |
Collapse
|
14
|
Halte M, Andrianova EP, Goosmann C, Chevance FFV, Hughes KT, Zhulin IB, Erhardt M. FlhE functions as a chaperone to prevent formation of periplasmic flagella in Gram-negative bacteria. Nat Commun 2024; 15:5921. [PMID: 39004688 PMCID: PMC11247099 DOI: 10.1038/s41467-024-50278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The bacterial flagellum, which facilitates motility, is composed of ~20 structural proteins organized into a long extracellular filament connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Flagellum assembly is regulated by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various building blocks. Here, we use epifluorescence, super-resolution, and transmission electron microscopy to show that the absence of a periplasmic protein (FlhE) prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella in Salmonella enterica. The periplasmic flagella disrupt cell wall synthesis, leading to a loss of normal cell morphology resulting in cell lysis. We propose that FlhE functions as a periplasmic chaperone to control assembly of the periplasmic rod, thus preventing formation of periplasmic flagella.
Collapse
Affiliation(s)
- Manuel Halte
- Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| | | | - Christian Goosmann
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Kelly T Hughes
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Igor B Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Marc Erhardt
- Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
15
|
Lewis JM, Jebeli L, Coulon PML, Lay CE, Scott NE. Glycoproteomic and proteomic analysis of Burkholderia cenocepacia reveals glycosylation events within FliF and MotB are dispensable for motility. Microbiol Spectr 2024; 12:e0034624. [PMID: 38709084 PMCID: PMC11237607 DOI: 10.1128/spectrum.00346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Across the Burkholderia genus O-linked protein glycosylation is highly conserved. While the inhibition of glycosylation has been shown to be detrimental for virulence in Burkholderia cepacia complex species, such as Burkholderia cenocepacia, little is known about how specific glycosylation sites impact protein functionality. Within this study, we sought to improve our understanding of the breadth, dynamics, and requirement for glycosylation across the B. cenocepacia O-glycoproteome. Assessing the B. cenocepacia glycoproteome across different culture media using complementary glycoproteomic approaches, we increase the known glycoproteome to 141 glycoproteins. Leveraging this repertoire of glycoproteins, we quantitively assessed the glycoproteome of B. cenocepacia using Data-Independent Acquisition (DIA) revealing the B. cenocepacia glycoproteome is largely stable across conditions with most glycoproteins constitutively expressed. Examination of how the absence of glycosylation impacts the glycoproteome reveals that the protein abundance of only five glycoproteins (BCAL1086, BCAL2974, BCAL0525, BCAM0505, and BCAL0127) are altered by the loss of glycosylation. Assessing ΔfliF (ΔBCAL0525), ΔmotB (ΔBCAL0127), and ΔBCAM0505 strains, we demonstrate the loss of FliF, and to a lesser extent MotB, mirror the proteomic effects observed in the absence of glycosylation in ΔpglL. While both MotB and FliF are essential for motility, we find loss of glycosylation sites in MotB or FliF does not impact motility supporting these sites are dispensable for function. Combined this work broadens our understanding of the B. cenocepacia glycoproteome supporting that the loss of glycoproteins in the absence of glycosylation is not an indicator of the requirement for glycosylation for protein function. IMPORTANCE Burkholderia cenocepacia is an opportunistic pathogen of concern within the Cystic Fibrosis community. Despite a greater appreciation of the unique physiology of B. cenocepacia gained over the last 20 years a complete understanding of the proteome and especially the O-glycoproteome, is lacking. In this study, we utilize systems biology approaches to expand the known B. cenocepacia glycoproteome as well as track the dynamics of glycoproteins across growth phases, culturing media and in response to the loss of glycosylation. We show that the glycoproteome of B. cenocepacia is largely stable across conditions and that the loss of glycosylation only impacts five glycoproteins including the motility associated proteins FliF and MotB. Examination of MotB and FliF shows, while these proteins are essential for motility, glycosylation is dispensable. Combined this work supports that B. cenocepacia glycosylation can be dispensable for protein function and may influence protein properties beyond stability.
Collapse
Affiliation(s)
- Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Pauline M L Coulon
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Catrina E Lay
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
16
|
Kion-Crosby W, Barquist L. Network depth affects inference of gene sets from bacterial transcriptomes using denoising autoencoders. BIOINFORMATICS ADVANCES 2024; 4:vbae066. [PMID: 39027639 PMCID: PMC11256956 DOI: 10.1093/bioadv/vbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 07/20/2024]
Abstract
Summary The increasing number of publicly available bacterial gene expression data sets provides an unprecedented resource for the study of gene regulation in diverse conditions, but emphasizes the need for self-supervised methods for the automated generation of new hypotheses. One approach for inferring coordinated regulation from bacterial expression data is through neural networks known as denoising autoencoders (DAEs) which encode large datasets in a reduced bottleneck layer. We have generalized this application of DAEs to include deep networks and explore the effects of network architecture on gene set inference using deep learning. We developed a DAE-based pipeline to extract gene sets from transcriptomic data in Escherichia coli, validate our method by comparing inferred gene sets with known pathways, and have used this pipeline to explore how the choice of network architecture impacts gene set recovery. We find that increasing network depth leads the DAEs to explain gene expression in terms of fewer, more concisely defined gene sets, and that adjusting the width results in a tradeoff between generalizability and biological inference. Finally, leveraging our understanding of the impact of DAE architecture, we apply our pipeline to an independent uropathogenic E.coli dataset to identify genes uniquely induced during human colonization. Availability and implementation https://github.com/BarquistLab/DAE_architecture_exploration.
Collapse
Affiliation(s)
- Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080 Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
17
|
Strnad M, Koizumi N, Nakamura S, Vancová M, Rego ROM. It's not all about flagella - sticky invasion by pathogenic spirochetes. Trends Parasitol 2024; 40:378-385. [PMID: 38523038 DOI: 10.1016/j.pt.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Pathogenic spirochetes cause a range of serious human diseases such as Lyme disease (LD), syphilis, leptospirosis, relapsing fever (RF), and periodontal disease. Motility is a critical virulence factor for spirochetes. From the mechanical perspective of the infection, it has been widely believed that flagella are the sole key players governing the migration and dissemination of these pathogens in the host. Here, we highlight the important contribution of spirochetal surface-exposed adhesive molecules and their dynamic interactions with host molecules in the process of infection, specifically in spirochetal swimming and crawling migration. We believe that these recent findings overturn the prevailing view depicting the spirochetal body to be just an inert elastic bag, which does not affect spirochetal cell locomotion.
Collapse
Affiliation(s)
- Martin Strnad
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic.
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Marie Vancová
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| |
Collapse
|
18
|
Halte M, Andrianova EP, Goosmann C, Chevance FFV, Hughes KT, Zhulin IB, Erhardt M. FlhE functions as a chaperone to prevent formation of periplasmic flagella in Gram-negative bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584431. [PMID: 38558991 PMCID: PMC10979839 DOI: 10.1101/2024.03.11.584431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The bacterial flagellum is an organelle utilized by many Gram-negative bacteria to facilitate motility. The flagellum is composed of a several µm long, extracellular filament that is connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Composed of ∼20 structural proteins, ranging from a few subunits to several thousand building blocks, the flagellum is a paradigm of a complex macromolecular structure that utilizes a highly regulated assembly process. This process is governed by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various flagellar building blocks in order to produce a functional flagellum. Using epifluorescence, super-resolution STED and transmission electron microscopy, we discovered that in Salmonella , the absence of one periplasmic protein, FlhE, prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella. The periplasmic flagella disrupt cell wall synthesis, leading to a loss of the standard cell morphology resulting in cell lysis. We propose a model where FlhE functions as a periplasmic chaperone to control assembly of the periplasmic rod to prevent formation of periplasmic flagella. Our results highlight that bacteria evolved sophisticated regulatory mechanisms to control proper flagellar assembly and minor deviations from this highly regulated process can cause dramatic physiological consequences.
Collapse
|
19
|
Bhatt S, Raj SMP, Faridi N, Pathak D, Agarwal A, Mishra SP. Development of antibody to virulence factor flagellin and its evaluation in screening Ralstonia pseudosolanacearum. Braz J Microbiol 2024; 55:809-821. [PMID: 38233641 PMCID: PMC10920531 DOI: 10.1007/s42770-023-01235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
The bacterial wilt disease caused by Ralstonia pseudosolanacearum presents a notable economic risk to a variety of crucial crops worldwide. During preliminary isolation of this phytopathogen, several colonies of other saprophytic bacteria may be mistaken with it. So, the present study aims to address this issue by proposing the application of immunogenic proteins, particularly flagellin (FliC), to enable a rapid and early identification of bacterial wilt. In this study, a novel approach is unveiled for the early detection of R. pseudosolanacearum. The study exploits the immunogenic attributes of flagellin (FliC), by generating polyclonal antibodies against recombinant FliC within model organisms-rabbits and mice. The efficacy of these antibodies is meticulously assessed through discerning techniques, including DAS-ELISA and Western blot analyses, which elucidate their remarkable specificity in identifying various R. pseudosolanacearum strains. Furthermore, the introduction of antibody-coated latex agglutinating reagents offers an additional layer of confirmation, substantiating the feasibility of establishing a laboratory-based toolkit for swift screening and unambiguous identification of the bacterial wilt pathogen. This study presents a significant stride toward enhancing early diagnostic capabilities, potentially revolutionizing agricultural practices by safeguarding crop yield and quality through proactive pathogen detection and mitigation strategies.
Collapse
Affiliation(s)
- Shalini Bhatt
- P P Savani University, Surat, Gujarat, 394125, India.
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Haldwani, Nainital, Uttarakhand, 263139, India.
| | - S Merwyn P Raj
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Haldwani, Nainital, Uttarakhand, 263139, India
| | - Neha Faridi
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Haldwani, Nainital, Uttarakhand, 263139, India
| | - Dinesh Pathak
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Haldwani, Nainital, Uttarakhand, 263139, India
| | - Ankur Agarwal
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Haldwani, Nainital, Uttarakhand, 263139, India
| | - Shraddha P Mishra
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Haldwani, Nainital, Uttarakhand, 263139, India
| |
Collapse
|
20
|
Tan X, Zhang M, Liu S, Xiao X, Zhang Y, Jian H. Prophage enhances the ability of deep-sea bacterium Shewanella psychrophila WP2 to utilize D-amino acid. Microbiol Spectr 2024; 12:e0326323. [PMID: 38170979 PMCID: PMC10845958 DOI: 10.1128/spectrum.03263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Prophages are prevalent in the marine bacterial genomes and reshape the physiology and metabolism of their hosts. However, whether and how prophages influence the microbial degradation of D-amino acids (D-AAs), which is one of the widely distributed recalcitrant dissolved organic matters (RDOMs) in the ocean, remain to be explored. In this study, we addressed this issue in a representative marine bacterium, Shewanella psychrophila WP2 (WP2), and its integrated prophage SP1. Notably, compared to the WP2 wild-type strain, the SP1 deletion mutant of WP2 (WP2ΔSP1) exhibited a significantly lower D-glutamate (D-Glu) consumption rate and longer lag phase when D-Glu was used as the sole nitrogen source. The subsequent transcriptome analysis identified 1,523 differentially expressed genes involved in diverse cellular processes, especially that multiple genes related to inorganic nitrogen metabolism were highly upregulated. In addition, the dynamic profiles of ammonium, nitrate, and nitrite were distinct between the culture media of WP2 and WP2ΔSP1. Finally, we provide evidence that SP1 conferred a competitive advantage to WP2 when D-Glu was used as the sole nitrogen source and SP1-like phages may be widely distributed in the global ocean. Taken together, these findings offer novel insight into the influences of prophages on host metabolism and RDOM cycling in marine environments.IMPORTANCEThis work represents the first exploration of the impact of prophages on the D-amino acid (D-AA) metabolism of deep-sea bacteria. By using S. psychrophila WP2 and its integrated prophage SP1 as a representative system, we found that SP1 can significantly increase the catabolism rate of WP2 to D-glutamate and produce higher concentrations of ammonium, resulting in faster growth and competitive advantages. Our findings not only deepen our understanding of the interaction between deep-sea prophages and hosts but also provide new insights into the ecological role of prophages in refractory dissolved organic matter and the nitrogen cycle in deep oceans.
Collapse
Affiliation(s)
- Xiaoli Tan
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Mujie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| |
Collapse
|
21
|
Rivera Vazquez J, Trujillo E, Williams J, She F, Getahun F, Callaghan MM, Coon JJ, Amador-Noguez D. Lipid membrane remodeling and metabolic response during isobutanol and ethanol exposure in Zymomonas mobilis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:14. [PMID: 38281959 PMCID: PMC10823705 DOI: 10.1186/s13068-023-02450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Recent engineering efforts have targeted the ethanologenic bacterium Zymomonas mobilis for isobutanol production. However, significant hurdles remain due this organism's vulnerability to isobutanol toxicity, adversely affecting its growth and productivity. The limited understanding of the physiological impacts of isobutanol on Z. mobilis constrains our ability to overcome these production barriers. RESULTS We utilized a systems-level approach comprising LC-MS/MS-based lipidomics, metabolomics, and shotgun proteomics, to investigate how exposure to ethanol and isobutanol impact the lipid membrane composition and overall physiology of Z. mobilis. Our analysis revealed significant and distinct alterations in membrane phospholipid and fatty acid composition resulting from ethanol and isobutanol exposure. Notably, ethanol exposure increased membrane cyclopropane fatty acid content and expression of cyclopropane fatty acid (CFA) synthase. Surprisingly, isobutanol decreased cyclopropane fatty acid content despite robust upregulation of CFA synthase. Overexpression of the native Z. mobilis' CFA synthase increased cyclopropane fatty acid content in all phospholipid classes and was associated with a significant improvement in growth rates in the presence of added ethanol and isobutanol. Heterologous expression of CFA synthase from Clostridium acetobutylicum resulted in a near complete replacement of unsaturated fatty acids with cyclopropane fatty acids, affecting all lipid classes. However, this did not translate to improved growth rates under isobutanol exposure. Correlating with its greater susceptibility to isobutanol, Z. mobilis exhibited more pronounced alterations in its proteome, metabolome, and overall cell morphology-including cell swelling and formation of intracellular protein aggregates -when exposed to isobutanol compared to ethanol. Isobutanol triggered a broad stress response marked by the upregulation of heat shock proteins, efflux transporters, DNA repair systems, and the downregulation of cell motility proteins. Isobutanol also elicited widespread dysregulation of Z. mobilis' primary metabolism evidenced by increased levels of nucleotide degradation intermediates and the depletion of biosynthetic and glycolytic intermediates. CONCLUSIONS This study provides a comprehensive, systems-level evaluation of the impact of ethanol and isobutanol exposure on the lipid membrane composition and overall physiology of Z. mobilis. These findings will guide engineering of Z. mobilis towards the creation of isobutanol-tolerant strains that can serve as robust platforms for the industrial production of isobutanol from lignocellulosic sugars.
Collapse
Affiliation(s)
- Julio Rivera Vazquez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Edna Trujillo
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Genome Center of Wisconsin, Madison, WI, USA
| | - Jonathan Williams
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Fukang She
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Fitsum Getahun
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Melanie M Callaghan
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Morgridge Institute for Research, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Liu X, Tachiyama S, Zhou X, Mathias RA, Bonny SQ, Khan MF, Xin Y, Roujeinikova A, Liu J, Ottemann KM. Bacterial flagella hijack type IV pili proteins to control motility. Proc Natl Acad Sci U S A 2024; 121:e2317452121. [PMID: 38236729 PMCID: PMC10823254 DOI: 10.1073/pnas.2317452121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024] Open
Abstract
Bacterial flagella and type IV pili (TFP) are surface appendages that enable motility and mechanosensing through distinct mechanisms. These structures were previously thought to have no components in common. Here, we report that TFP and some flagella share proteins PilO, PilN, and PilM, which we identified as part of the Helicobacter pylori flagellar motor. H. pylori mutants lacking PilO or PilN migrated better than wild type in semisolid agar because they continued swimming rather than aggregated into microcolonies, mimicking the TFP-regulated surface response. Like their TFP homologs, flagellar PilO/PilN heterodimers formed a peripheral cage that encircled the flagellar motor. These results indicate that PilO and PilN act similarly in flagella and TFP by differentially regulating motility and microcolony formation when bacteria encounter surfaces.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA95064
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Xiaotian Zhou
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Rommel A. Mathias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | - Sharmin Q. Bonny
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Mohammad F. Khan
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Yue Xin
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA95064
| |
Collapse
|
23
|
Zhu S, Sun X, Li Y, Feng X, Gao B. The common origin and degenerative evolution of flagella in Actinobacteria. mBio 2023; 14:e0252623. [PMID: 38019005 PMCID: PMC10746217 DOI: 10.1128/mbio.02526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Flagellar motility plays an important role in the environmental adaptation of bacteria and is found in more than 50% of known bacterial species. However, this important characteristic is sparsely distributed within members of the phylum Actinobacteria, which constitutes one of the largest bacterial groups. It is unclear why this important fitness organelle is absent in most actinobacterial species and the origin of flagellar genes in other species. Here, we present detailed analyses of the evolution of flagellar genes in Actinobacteria, in conjunction with the ecological distribution and cell biological features of major actinobacterial lineages, and the co-evolution of signal transduction systems. The results presented in addition to clarifying the puzzle of sporadic distribution of flagellar motility in Actinobacteria, also provide important insights into the evolution of major lineages within this phylum.
Collapse
Affiliation(s)
- Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian Sun
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Yuqian Li
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Xueyin Feng
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| |
Collapse
|
24
|
You Y, Ye F, Mao W, Yang H, Lai J, Deng S. An overview of the structure and function of the flagellar hook FlgE protein. World J Microbiol Biotechnol 2023; 39:126. [PMID: 36941455 DOI: 10.1007/s11274-023-03568-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
The flagellum is an important organelle for the survival of bacteria and consists of a basal body, hook, and filament. The FlgE protein is the subunit of the hook that connects the basal body and the filament and determines the motility of bacteria. Also, flgE gene plays an essential role in flagellar biosynthesis, swimming ability and biofilm formation. Although the intact flagella and the major component filament have been extensively studied, so far, little is known about the comprehensive understanding of flagellar hook and FlgE. Here in this review, we summarize the structures of flagellar hook and its subunit FlgE in various species and physiological functions of FlgE, including the hook assembly, the structural characteristics of flagellar hook, the mechanical properties of hook, and the similarities and differences between FlgE (hook) and FlgG (distal rod), with special attention on the interaction of FlgE with other molecules, the antigenicity and pro-inflammatory effect of FlgE, and cross-linking of FlgE in spirochetes. We hope our summary of this review could provide a better understanding of the FlgE protein and provide some useful information for developing new effective antibacterial drugs in the future work.
Collapse
Affiliation(s)
- Yu You
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Fei Ye
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Mao
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Yang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jijia Lai
- Department of Laboratory Medicine, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, 610041, China
| | - Shun Deng
- Sichuan Province Orthopedic Hospital, 132 West First Section First Ring Road, Chengdu, 610041, China
| |
Collapse
|
25
|
Jia Y, Wang Z, Zhu S, Wang Z, Liu Y. Disinfectants facilitate the transformation of exogenous antibiotic resistance genes via multiple pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114678. [PMID: 36857920 DOI: 10.1016/j.ecoenv.2023.114678] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The prevalence and spread of multidrug-resistant (MDR) bacteria pose a global challenge to public health. Natural transformation is one of the essential ways for horizontal transfer of antibiotic resistance genes (ARGs). Although disinfectants are frequently used during COVID-19, little is known about whether these disinfectants are associated with the transformation of plasmid-borne ARGs. In our study, we assessed the effect of some disinfectants on bacterial transformation using resistance plasmids as extracellular DNA and E. coli DH5α as the recipient bacteria. The results showed that these disinfectants at environmentally relevant concentrations, including benzalkonium bromide (BB), benzalkonium chloride (BC) and polyhexamethylene guanidine hydrochloride (PHMG), significantly enhanced the transformation of plasmid-encoded ARGs. Furthermore, we investigated the mechanisms underlying the promotive effect of disinfectants on transformation. We revealed that the addition of disinfectants significantly increased the membrane permeability and promoted membrane-related genes expression. Moreover, disinfectants led to the boosted bacterial respiration, ATP production and flagellum motility, as well as increased expression of bacterial secretion system-related genes. Together, our findings shed insights into the spread of ARGs through bacterial transformation and indicate potential risks associated with the widespread use of disinfectants.
Collapse
Affiliation(s)
- Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zeyu Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuyao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
26
|
Zhuang XY, Tseng CK, Lo CJ. Live-Cell Imaging of the Assembly and Ejection Processes of the Bacterial Flagella by Fluorescence Microscopy. Methods Mol Biol 2023; 2646:35-42. [PMID: 36842104 DOI: 10.1007/978-1-0716-3060-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Bacterial flagella are molecular machines used for motility and chemotaxis. The flagellum consists of a thin extracellular helical filament as a propeller, a short hook as a universal joint, and a basal body as a rotary motor. The filament is made up of more than 20,000 flagellin molecules and can grow to several micrometers long but only 20 nanometers thick. The regulation of flagellar assembly and ejection is important for bacterial environmental adaptation. However, due to the technical difficulty to observe these nanostructures in live cells, our understanding of the flagellar growth and loss is limited. In the last three decades, the development of fluorescence microscopy and fluorescence labeling of specific cellular structure has made it possible to perform the real-time observation of bacterial flagellar assembly and ejection processes. Furthermore, flagella are not only critical for bacterial motility but also important antigens stimulating host immune responses. The complete understanding of bacterial flagellar production and ejection is valuable for understanding macromolecular self-assembly, cell adaptation, and pathogen-host interactions.
Collapse
Affiliation(s)
- Xiang-Yu Zhuang
- Department of Physics, National Central University, Taoyuan, Taiwan
| | - Chao-Kai Tseng
- Department of Physics, National Central University, Taoyuan, Taiwan
| | - Chien-Jung Lo
- Department of Physics, National Central University, Taoyuan, Taiwan. .,Center for Complex Systems, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
27
|
Kurniyati K, Chang Y, Guo W, Liu J, Malkowski MG, Li C. Anti-σ 28 Factor FlgM Regulates Flagellin Gene Expression and Flagellar Polarity of Treponema denticola. J Bacteriol 2023; 205:e0046322. [PMID: 36715541 PMCID: PMC9945498 DOI: 10.1128/jb.00463-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/07/2023] [Indexed: 01/31/2023] Open
Abstract
FlgM, an antagonist of FliA (also known as σ28), inhibits transcription of bacterial class 3 flagellar genes. It does so primarily through binding to free σ28 to prevent it from forming a complex with core RNA polymerase. We recently identified an FliA homolog (FliATd) in the oral spirochete Treponema denticola; however, its antagonist FlgM remained uncharacterized. Herein, we provide several lines of evidence that TDE0201 functions as an antagonist of FliATd. TDE0201 is structurally similar to FlgM proteins, although its sequence is not conserved. Heterologous expression of TDE0201 in Escherichia coli inhibits its flagellin gene expression and motility. Biochemical and mutational analyses demonstrate that TDE0201 binds to FliATd and prevents it from binding to the σ28-dependent promoter. Deletions of flgM genes typically enhance bacterial class 3 flagellar gene expression; however, deletion of TDE0201 has an opposite effect (e.g., the mutant has a reduced level of flagellins). Follow-up studies revealed that deletion of TDE0201 leads to FliATd turnover, which in turn impairs the expression of flagellin genes. Swimming plate, cell tracking, and cryo-electron tomography analyses further disclosed that deletion of TDE0201 impairs spirochete motility and alters flagellar number and polarity: i.e., instead of having bipolar flagella, the mutant has flagella only at one end of cells. Collectively, these results indicate that TDE0201 is a FlgM homolog but acts differently from its counterparts in other bacteria. IMPORTANCE Spirochetes are a group of bacteria that cause several human diseases. A unique aspect of spirochetes is that they have bipolar periplasmic flagella (PFs), which bestow on the spirochetes a unique spiral shape and distinct swimming behaviors. While the structure and function of PFs have been extensively studied in spirochetes, the molecular mechanism that regulates the PFs' morphogenesis and assembly is poorly understood. In this report, FlgM, an anti-σ28 factor, is identified and functionally characterized in the oral spirochete Treponema denticola. Our results show that FlgM regulates the number and polarity of PFs via a unique mechanism. Identification of FliA and FlgM in T. denticola sets a benchmark to investigate their roles in other spirochetes.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Michael G. Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, New York, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
28
|
Akahoshi DT, Natwick DE, Yuan W, Lu W, Collins SR, Bevins CL. Flagella-driven motility is a target of human Paneth cell defensin activity. PLoS Pathog 2023; 19:e1011200. [PMID: 36821624 PMCID: PMC9990921 DOI: 10.1371/journal.ppat.1011200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/07/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
In the mammalian intestine, flagellar motility can provide microbes competitive advantage, but also threatens the spatial segregation established by the host at the epithelial surface. Unlike microbicidal defensins, previous studies indicated that the protective activities of human α-defensin 6 (HD6), a peptide secreted by Paneth cells of the small intestine, resides in its remarkable ability to bind microbial surface proteins and self-assemble into protective fibers and nets. Given its ability to bind flagellin, we proposed that HD6 might be an effective inhibitor of bacterial motility. Here, we utilized advanced automated live cell fluorescence imaging to assess the effects of HD6 on actively swimming Salmonella enterica in real time. We found that HD6 was able to effectively restrict flagellar motility of individual bacteria. Flagellin-specific antibody, a classic inhibitor of flagellar motility that utilizes a mechanism of agglutination, lost its activity at low bacterial densities, whereas HD6 activity was not diminished. A single amino acid variant of HD6 that was able to bind flagellin, but not self-assemble, lost ability to inhibit flagellar motility. Together, these results suggest a specialized role of HD6 self-assembly into polymers in targeting and restricting flagellar motility.
Collapse
Affiliation(s)
- Douglas T. Akahoshi
- Department of Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Dean E. Natwick
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
29
|
Schwanbeck J, Oehmig I, Groß U, Bohne W. Clostridioides difficile minimal nutrient requirements for flagellar motility. Front Microbiol 2023; 14:1172707. [PMID: 37065145 PMCID: PMC10098170 DOI: 10.3389/fmicb.2023.1172707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
As many gastro-intestinal pathogens, the majority of Clostridioides difficile strains express flagella together with a complete chemotaxis system. The resulting swimming motility is likely contributing to the colonization success of this important pathogen. In contrast to the well investigated general energy metabolism of C. difficile, little is known about the metabolic requirements for maintaining the ion motive force across the membrane, which in turn powers the flagellar motor. We studied here systematically the effect of various amino acids and carbohydrates on the swimming velocity of C. difficile using video microscopy in conjunction with a software based quantification of the swimming speed. Removal of individual amino acids from the medium identified proline and cysteine as the most important amino acids that power swimming motility. Glycine, which is as proline one of the few amino acids that are reduced in Stickland reactions, was not critical for swimming motility. This suggests that the ion motive force that powers the flagellar motor, is critically depending on proline reduction. A maximal and stable swimming motility was achieved with only four compounds, including the amino acids proline, cysteine and isoleucine together with a single, but interchangeable carbohydrate source such as glucose, succinate, mannose, ribose, pyruvate, trehalose, or ethanolamine. We expect that the identified "minimal motility medium" will be useful in future investigations on the flagellar motility and chemotactic behavior in C. difficile, particularly for the unambiguous identification of chemoattractants.
Collapse
Affiliation(s)
- Julian Schwanbeck
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Ines Oehmig
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- Uwe Groß,
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- *Correspondence: Wolfgang Bohne,
| |
Collapse
|
30
|
Li Q. Geometric basis of action potential of skeletal muscle cells and neurons. Open Life Sci 2022; 17:1191-1199. [PMID: 36185399 PMCID: PMC9482420 DOI: 10.1515/biol-2022-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/15/2022] Open
Abstract
Although we know something about single-cell neuromuscular junctions, it is still unclear how multiple skeletal muscle cells coordinate to complete intricate spatial curve movement. Here, we hypothesize that skeletal muscle cell populations with action potentials are aligned according to curved manifolds in space (a curved shape in space). When a specific motor nerve impulse is transmitted, the skeletal muscle also moves according to the corresponding shape (manifolds). The action potential of motor nerve fibers has the characteristics of a time curve manifold, and this time-manifold curve of motor nerve fibers comes from the visual cortex in which spatial geometric manifolds are formed within the synaptic connection of neurons. This spatial geometric manifold of the synaptic connection of neurons originates from spatial geometric manifolds outside nature that are transmitted to the brain through the cone cells and ganglion cells of the retina. The essence of life is that life is an object that can move autonomously, and the essence of life's autonomous movement is the movement of proteins. Theoretically, because of the infinite diversity of geometric manifold shapes in nature, the arrangement and combination of 20 amino acids should have infinite diversity, and the geometric manifold formed by the protein three-dimensional spatial structure should also have infinite diversity.
Collapse
Affiliation(s)
- Qing Li
- Department of Function, ShiJiaZhuang Traditional Chinese Medical Hospital, No. 233, ZhongShan West Road, ShiJiaZhuang, HeBei Province 050051, China
| |
Collapse
|
31
|
A multi-state dynamic process confers mechano-adaptation to a biological nanomachine. Nat Commun 2022; 13:5327. [PMID: 36088344 PMCID: PMC9464220 DOI: 10.1038/s41467-022-33075-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Adaptation is a defining feature of living systems. The bacterial flagellar motor adapts to changes in the external mechanical load by adding or removing torque-generating (stator) units. But the molecular mechanism behind this mechano-adaptation remains unclear. Here, we combine single motor eletrorotation experiments and theoretical modeling to show that mechano-adaptation of the flagellar motor is enabled by multiple mechanosensitive internal states. Dwell time statistics from experiments suggest the existence of at least two bound states with a high and a low unbinding rate, respectively. A first-passage-time analysis of a four-state model quantitatively explains the experimental data and determines the transition rates among all four states. The torque generated by bound stator units controls their effective unbinding rate by modulating the transition between the bound states, possibly via a catch bond mechanism. Similar force-mediated feedback enabled by multiple internal states may apply to adaptation in other macromolecular complexes. Combining experiments with modeling, Wadhwa et al. propose a model for mechano-adaptation in the bacterial flagellar motor, finding that load-dependent transitions between multiple internal states govern the binding and unbinding of subunits.
Collapse
|
32
|
Kurniyati K, Chang Y, Liu J, Li C. Transcriptional and functional characterizations of multiple flagellin genes in spirochetes. Mol Microbiol 2022; 118:175-190. [PMID: 35776658 PMCID: PMC9481697 DOI: 10.1111/mmi.14959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
The flagellar filament is a helical propeller for bacterial locomotion. In external flagellates, the filaments are mostly homopolymers of a single flagellin protein. By contrast, the flagellar filaments of spirochetes are mostly heteropolymers of multiple flagellin proteins. This report seeks to investigate the role of multiple flagellin proteins using the oral spirochete Treponema denticola as a model. First, biochemical and genetic studies uncover that the flagellar filaments of T. denticola mainly comprise four proteins, FlaA, FlaB1, FlaB2, and FlaB3, in a defined stoichiometry. Second, transcriptional analyses reveal that the genes encoding these four proteins are regulated by two different transcriptional factors, sigma28 and sigma70 . Third, loss-of-function studies demonstrate that each individual flagellin protein contributes to spirochete motility, but none of them is absolutely required. Last, we provide genetic and structural evidence that FlaA forms a "seam"-like structure around the core and that deletion of individual flagellin protein alters the flagellar homeostasis. Collectively, these results demonstrate that T. denticola has evolved a unique mechanism to finely regulate its flagellar filament gene expression and assembly which renders the organelle with the right number, shape, strength, and structure for its distinct motility.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Craniofacial Molecular Biology, School of DentistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Yunjie Chang
- Microbial Sciences InstituteYale UniversityWest HavenConnecticutUSA
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Jun Liu
- Microbial Sciences InstituteYale UniversityWest HavenConnecticutUSA
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, School of DentistryVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Microbiology and Immunology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
33
|
Armitage JP. Swimming Using a Unidirectionally Rotating, Single Stopping Flagellum in the Alpha Proteobacterium Rhodobacter sphaeroides. Front Microbiol 2022; 13:893524. [PMID: 35722353 PMCID: PMC9198570 DOI: 10.3389/fmicb.2022.893524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Rhodobacter sphaeroides has 2 flagellar operons, one, Fla2, encoding a polar tuft that is not expressed under laboratory conditions and a second, Fla1, encoding a single randomly positioned flagellum. This single flagellum, unlike the flagella of other species studied, only rotates in a counterclockwise direction. Long periods of smooth swimming are punctuated by short stops, caused by the binding of one of 3 competing CheY homologs to the motor. During a stop, the motor is locked, not freely rotating, and the flagellar filament changes conformation to a short wavelength, large amplitude structure, reforming into a driving helix when the motor restarts. The cell has been reoriented during the brief stop and the next period of smooth swimming is a new direction.
Collapse
Affiliation(s)
- Judith P Armitage
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Homma M, Kojima S. The Periplasmic Domain of the Ion-Conducting Stator of Bacterial Flagella Regulates Force Generation. Front Microbiol 2022; 13:869187. [PMID: 35572622 PMCID: PMC9093738 DOI: 10.3389/fmicb.2022.869187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
The bacterial flagellar stator is a unique ion-conducting membrane protein complex composed of two kinds of proteins, the A subunit and the B subunit. The stator couples the ion-motive force across the membrane into rotational force. The stator becomes active only when it is incorporated into the flagellar motor. The periplasmic region of the B subunit positions the stator by using the peptidoglycan-binding (PGB) motif in its periplasmic C-terminal domain to attach to the cell wall. Functional studies based on the crystal structures of the C-terminal domain of the B subunit (MotBC or PomBC) reveal that a dramatic conformational change in a characteristic α-helix allows the stator to conduct ions efficiently and bind to the PG layer. The plug and the following linker region between the transmembrane (TM) and PG-binding domains of the B subunit function in regulating the ion conductance. In Vibrio spp., the transmembrane protein FliL and the periplasmic MotX and MotY proteins also contribute to the motor function. In this review, we describe the functional and structural changes which the stator units undergo to regulate the activity of the stator to drive flagellar rotation.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
35
|
Thormann KM. Dynamic Hybrid Flagellar Motors-Fuel Switch and More. Front Microbiol 2022; 13:863804. [PMID: 35495728 PMCID: PMC9039648 DOI: 10.3389/fmicb.2022.863804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Flagellar motors are intricate rotating nanomachines that are powered by transmembrane ion gradients. The stator complexes are the powerhouses of the flagellar motor: They convert a transmembrane ion gradient, mainly of H+ or Na+, into rotation of the helical flagellar filament. They are thus essential for motor function. The number of stators synchronously engaged in the motor is surprisingly dynamic and depends on the load and the environmental concentration of the corresponding coupling ion. Thus, the rotor-stator interactions determine an important part of the properties of the motor. Numerous bacteria have been identified as possessing more than one set of stators, and some species have been demonstrated to use these different stators in various configurations to modify motor functions by dynamic in-flight swapping. Here, we review knowledge of the properties, the functions, and the evolution of these hybrid motors and discuss questions that remain unsolved.
Collapse
Affiliation(s)
- Kai M Thormann
- Fachbereich für Chemie und Biologie, Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
36
|
Akahoshi DT, Bevins CL. Flagella at the Host-Microbe Interface: Key Functions Intersect With Redundant Responses. Front Immunol 2022; 13:828758. [PMID: 35401545 PMCID: PMC8987104 DOI: 10.3389/fimmu.2022.828758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Many bacteria and other microbes achieve locomotion via flagella, which are organelles that function as a swimming motor. Depending on the environment, flagellar motility can serve a variety of beneficial functions and confer a fitness advantage. For example, within a mammalian host, flagellar motility can provide bacteria the ability to resist clearance by flow, facilitate access to host epithelial cells, and enable travel to nutrient niches. From the host’s perspective, the mobility that flagella impart to bacteria can be associated with harmful activities that can disrupt homeostasis, such as invasion of epithelial cells, translocation across epithelial barriers, and biofilm formation, which ultimately can decrease a host’s reproductive fitness from a perspective of natural selection. Thus, over an evolutionary timescale, the host developed a repertoire of innate and adaptive immune countermeasures that target and mitigate this microbial threat. These countermeasures are wide-ranging and include structural components of the mucosa that maintain spatial segregation of bacteria from the epithelium, mechanisms of molecular recognition and inducible responses to flagellin, and secreted effector molecules of the innate and adaptive immune systems that directly inhibit flagellar motility. While much of our understanding of the dynamics of host-microbe interaction regarding flagella is derived from studies of enteric bacterial pathogens where flagella are a recognized virulence factor, newer studies have delved into host interaction with flagellated members of the commensal microbiota during homeostasis. Even though many aspects of flagellar motility may seem innocuous, the host’s redundant efforts to stop bacteria in their tracks highlights the importance of this host-microbe interaction.
Collapse
|
37
|
Flagellin outer domain dimerization modulates motility in pathogenic and soil bacteria from viscous environments. Nat Commun 2022; 13:1422. [PMID: 35301306 PMCID: PMC8931119 DOI: 10.1038/s41467-022-29069-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/24/2022] [Indexed: 12/01/2022] Open
Abstract
Flagellar filaments function as the propellers of the bacterial flagellum and their supercoiling is key to motility. The outer domains on the surface of the filament are non-critical for motility in many bacteria and their structures and functions are not conserved. Here, we show the atomic cryo-electron microscopy structures for flagellar filaments from enterohemorrhagic Escherichia coli O157:H7, enteropathogenic E. coli O127:H6, Achromobacter, and Sinorhizobium meliloti, where the outer domains dimerize or tetramerize to form either a sheath or a screw-like surface. These dimers are formed by 180° rotations of half of the outer domains. The outer domain sheath (ODS) plays a role in bacterial motility by stabilizing an intermediate waveform and prolonging the tumbling of E. coli cells. Bacteria with these ODS and screw-like flagellar filaments are commonly found in soil and human intestinal environments of relatively high viscosity suggesting a role for the dimerization in these environments. It has been suggested that the outer domains of bacterial flagellins are not needed for motility. Here, the authors show that flagellar filament outer domains from some bacteria have unique structures which can alter the motility of the bacteria.
Collapse
|
38
|
Analysis of HubP-dependent cell pole protein targeting in Vibrio cholerae uncovers novel motility regulators. PLoS Genet 2022; 18:e1009991. [PMID: 35020734 PMCID: PMC8789113 DOI: 10.1371/journal.pgen.1009991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/25/2022] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
In rod-shaped bacteria, the emergence and maintenance of long-axis cell polarity is involved in key cellular processes such as cell cycle, division, environmental sensing and flagellar motility among others. Many bacteria achieve cell pole differentiation through the use of polar landmark proteins acting as scaffolds for the recruitment of functional macromolecular assemblies. In Vibrio cholerae a large membrane-tethered protein, HubP, specifically interacts with proteins involved in chromosome segregation, chemotaxis and flagellar biosynthesis. Here we used comparative proteomics, genetic and imaging approaches to identify additional HubP partners and demonstrate that at least six more proteins are subject to HubP-dependent polar localization. These include a cell-wall remodeling enzyme (DacB), a likely chemotaxis sensory protein (HlyB), two presumably cytosolic proteins of unknown function (VC1210 and VC1380) and two membrane-bound proteins, named here MotV and MotW, that exhibit distinct effects on chemotactic motility. We show that while both ΔmotW and ΔmotV mutants retain monotrichous flagellation, they present significant to severe motility defects when grown in soft agar. Video-tracking experiments further reveal that ΔmotV cells can swim in liquid environments but are unable to tumble or penetrate a semisolid matrix, whereas a motW deletion affects both tumbling frequency and swimming speed. Motility suppressors and gene co-occurrence analyses reveal co-evolutionary linkages between MotV, a subset of non-canonical CheV proteins and flagellar C-ring components FliG and FliM, whereas MotW regulatory inputs appear to intersect with specific c-di-GMP signaling pathways. Together, these results reveal an ever more versatile role for the landmark cell pole organizer HubP and identify novel mechanisms of motility regulation. Cell polarity is the result of controlled asymmetric distribution of protein macrocomplexes, genetic material, membrane lipids and cellular metabolites, and can play crucial physiological roles not only in multicellular organisms but also in unicellular bacteria. In the opportunistic cholera pathogen Vibrio cholerae, the polar landmark protein HubP tethers key actors in chromosome segregation, chemotaxis and flagellar biosynthesis and thus converts the cell pole into an important functional microdomain for cell proliferation, environmental sensing and adaptation between free-living and pathogenic life-styles. Using a comparative proteomics approach, we here-in present a comprehensive analysis of HubP-dependent cell pole protein sorting and identify novel HubP partners including ones likely involved in cell wall remodeling (DacB), chemotaxis (HlyB) and motility regulation (MotV and MotW). Unlike previous studies which have identified early roles for HubP in flagellar assembly, functional, genetic and phylogenetic analyses of its MotV and MotW partners suggest a direct role in flagellar rotary mechanics and provide new insights into the coevolution and functional interdependence of chemotactic signaling, bacterial motility and biofilm formation.
Collapse
|
39
|
Rieu M, Krutyholowa R, Taylor NMI, Berry RM. A new class of biological ion-driven rotary molecular motors with 5:2 symmetry. Front Microbiol 2022; 13:948383. [PMID: 35992645 PMCID: PMC9389320 DOI: 10.3389/fmicb.2022.948383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Several new structures of three types of protein complexes, obtained by cryo-electron microscopy (cryo-EM) and published between 2019 and 2021, identify a new family of natural molecular wheels, the "5:2 rotary motors." These span the cytoplasmic membranes of bacteria, and their rotation is driven by ion flow into the cell. They consist of a pentameric wheel encircling a dimeric axle within the cytoplasmic membrane of both Gram-positive and gram-negative bacteria. The axles extend into the periplasm, and the wheels extend into the cytoplasm. Rotation of these wheels has never been observed directly; it is inferred from the symmetry of the complexes and from the roles they play within the larger systems that they are known to power. In particular, the new structure of the stator complex of the Bacterial Flagellar Motor, MotA5B2, is consistent with a "wheels within wheels" model of the motor. Other 5:2 rotary motors are believed to share the core rotary function and mechanism, driven by ion-motive force at the cytoplasmic membrane. Their structures diverge in their periplasmic and cytoplasmic parts, reflecting the variety of roles that they perform. This review focuses on the structures of 5:2 rotary motors and their proposed mechanisms and functions. We also discuss molecular rotation in general and its relation to the rotational symmetry of molecular complexes.
Collapse
Affiliation(s)
- Martin Rieu
- Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building University of Oxford, Oxford, United Kingdom
| | - Roscislaw Krutyholowa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nicholas M. I. Taylor
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Nicholas M. I. Taylor,
| | - Richard M. Berry
- Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building University of Oxford, Oxford, United Kingdom
- *Correspondence: Richard M. Berry,
| |
Collapse
|
40
|
Matilla MA, Velando F, Monteagudo-Cascales E, Krell T. Flagella, Chemotaxis and Surface Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:185-221. [DOI: 10.1007/978-3-031-08491-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Xu J, Wang J, Liu A, Zhang Y, Gao X. Structural and Functional Analysis of SsaV Cytoplasmic Domain and Variable Linker States in the Context of the InvA-SsaV Chimeric Protein. Microbiol Spectr 2021; 9:e0125121. [PMID: 34851139 PMCID: PMC8635156 DOI: 10.1128/spectrum.01251-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
The type III secretion (T3S) injectisome is a syringe-like protein-delivery nanomachine widely utilized by Gram-negative bacteria. It can deliver effector proteins directly from bacteria into eukaryotic host cells, which is crucial for the bacterial-host interaction. Intracellular pathogen Salmonella enterica serovar Typhimurium encodes two sets of T3S injectisomes from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), which are critical for its host invasion and intracellular survival, respectively. The inner membrane export gate protein, SctV (InvA in SPI-1 and SsaV in SPI-2), is the largest component of the injectisome and is essential for assembly and function of T3SS. Here, we report the 2.11 Å cryo-EM structure of the SsaV cytoplasmic domain (SsaVC) in the context of a full-length SctV chimera consisting of the transmembrane region of InvA, the linker of SsaV (SsaVL) and SsaVC. The structural analysis shows that SsaVC exists in a semi-open state and SsaVL exhibits two major orientations, implying a highly dynamic process of SsaV for the substrate selection and secretion in a full-length context. A biochemical assay indicates that SsaVL plays an essential role in maintaining the nonameric state of SsaV. This study offers near atomic-level insights into how SsaVC and SsaVL facilitate the assembly and function of SsaV and may lead to the development of potential anti-virulence therapeutics against T3SS-mediated bacterial infection. IMPORTANCE Type III secretion system (T3SS) is a multicomponent nanomachine and a critical virulence factor for a wide range of Gram-negative bacterial pathogens. It can deliver numbers of effectors into the host cell to facilitate the bacterial host infection. Export gate protein SctV, as one of the engines of T3SS, is at the center of T3SS assembly and function. In this study, we show the high-resolution atomic structure of the cytosolic domain of SctV in the nonameric state with variable linker conformations. Our first observation of conformational changes of the linker region of SctV and the semi-open state of the cytosolic domain of SctV in the full-length context further support that the substrate selection and secretion process of SctV is highly dynamic. These findings have important implications for the development of therapeutic strategies targeting SctV to combat T3SS-mediated bacterial infection.
Collapse
Affiliation(s)
- Jinghua Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiuqing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aijun Liu
- Shanghai Fifth People's Hospital and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhang
- Shanghai Fifth People's Hospital and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
42
|
Lin TS, Kojima S, Fukuoka H, Ishijima A, Homma M, Lo CJ. Stator Dynamics Depending on Sodium Concentration in Sodium-Driven Bacterial Flagellar Motors. Front Microbiol 2021; 12:765739. [PMID: 34899649 PMCID: PMC8661058 DOI: 10.3389/fmicb.2021.765739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial flagellar motor (BFM) is a large membrane-spanning molecular rotary machine for swimming motility. Torque is generated by the interaction between the rotor and multiple stator units powered by ion-motive force (IMF). The number of bound stator units is dynamically changed in response to the external load and the IMF. However, the detailed dynamics of stator unit exchange process remains unclear. Here, we directly measured the speed changes of sodium-driven chimeric BFMs under fast perfusion of different sodium concentration conditions using computer-controlled, high-throughput microfluidic devices. We found the sodium-driven chimeric BFMs maintained constant speed over a wide range of sodium concentrations by adjusting stator units in compensation to the sodium-motive force (SMF) changes. The BFM has the maximum number of stator units and is most stable at 5 mM sodium concentration rather than higher sodium concentration. Upon rapid exchange from high to low sodium concentration, the number of functional stator units shows a rapidly excessive reduction and then resurrection that is different from predictions of simple absorption model. This may imply the existence of a metastable hidden state of the stator unit during the sudden loss of sodium ions.
Collapse
Affiliation(s)
- Tsai-Shun Lin
- Department of Physics and Center for Complex Systems, National Central University, Taoyuan City, Taiwan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hajime Fukuoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Akihiko Ishijima
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Chien-Jung Lo
- Department of Physics and Center for Complex Systems, National Central University, Taoyuan City, Taiwan
| |
Collapse
|
43
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
44
|
Putative Spanner Function of the Vibrio PomB Plug Region in the Stator Rotation Model for Flagellar Motor. J Bacteriol 2021; 203:e0015921. [PMID: 34096782 DOI: 10.1128/jb.00159-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial flagella are the best-known rotational organelles in the biological world. The spiral-shaped flagellar filaments that extend from the cell surface rotate like a screw to create a propulsive force. At the base of the flagellar filament lies a protein motor that consists of a stator and a rotor embedded in the membrane. The stator is composed of two types of membrane subunits, PomA (similar to MotA in Escherichia coli) and PomB (similar to MotB in E. coli), which are energy converters that assemble around the rotor to couple rotation with the ion flow. Recently, stator structures, where two MotB molecules are inserted into the center of a ring made of five MotA molecules, were reported. This structure inspired a model in which the MotA ring rotates around the MotB dimer in response to ion influx. Here, we focus on the Vibrio PomB plug region, which is involved in flagellar motor activation. We investigated the plug region using site-directed photo-cross-linking and disulfide cross-linking experiments. Our results demonstrated that the plug interacts with the extracellular short loop region of PomA, which is located between transmembrane helices 3 and 4. Although the motor stopped rotating after cross-linking, its function recovered after treatment with a reducing reagent that disrupted the disulfide bond. Our results support the hypothesis, which has been inferred from the stator structure, that the plug region terminates the ion influx by blocking the rotation of the rotor as a spanner. IMPORTANCE The biological flagellar motor resembles a mechanical motor. It is composed of a stator and a rotor. The force is transmitted to the rotor by the gear-like stator movements. It has been proposed that the pentamer of MotA subunits revolves around the axis of the B subunit dimer in response to ion flow. The plug region of the B subunit regulates the ion flow. Here, we demonstrated that the ion flow was terminated by cross-linking the plug region of PomB with PomA. These findings support the rotation hypothesis and explain the role of the plug region in blocking the rotation of the stator unit.
Collapse
|
45
|
Hu H, Santiveri M, Wadhwa N, Berg HC, Erhardt M, Taylor NMI. Structural basis of torque generation in the bi-directional bacterial flagellar motor. Trends Biochem Sci 2021; 47:160-172. [PMID: 34294545 DOI: 10.1016/j.tibs.2021.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The flagellar stator unit is an oligomeric complex of two membrane proteins (MotA5B2) that powers bi-directional rotation of the bacterial flagellum. Harnessing the ion motive force across the cytoplasmic membrane, the stator unit operates as a miniature rotary motor itself to provide torque for rotation of the flagellum. Recent cryo-electron microscopic (cryo-EM) structures of the stator unit provided novel insights into its assembly, function, and subunit stoichiometry, revealing the ion flux pathway and the torque generation mechanism. Furthermore, in situ cryo-electron tomography (cryo-ET) studies revealed unprecedented details of the interactions between stator unit and rotor. In this review, we summarize recent advances in our understanding of the structure and function of the flagellar stator unit, torque generation, and directional switching of the motor.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Navish Wadhwa
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Marc Erhardt
- Institut für Biologie/Bakterienphysiologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
46
|
Interplay between OmpA and RpoN Regulates Flagellar Synthesis in Stenotrophomonas maltophilia. Microorganisms 2021; 9:microorganisms9061216. [PMID: 34199787 PMCID: PMC8229486 DOI: 10.3390/microorganisms9061216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 01/17/2023] Open
Abstract
OmpA, which encodes outer membrane protein A (OmpA), is the most abundant transcript in Stenotrophomonas maltophilia based on transcriptome analyses. The functions of OmpA, including adhesion, biofilm formation, drug resistance, and immune response targets, have been reported in some microorganisms, but few functions are known in S. maltophilia. This study aimed to elucidate the relationship between OmpA and swimming motility in S. maltophilia. KJΔOmpA, an ompA mutant, displayed compromised swimming and failure of conjugation-mediated plasmid transportation. The hierarchical organization of flagella synthesis genes in S. maltophilia was established by referencing the Pseudomonas aeruginosa model and was confirmed using mutant construction, qRT-PCR, and functional assays. Distinct from the P. aeruginosa model, rpoN, rather than fleQ and fliA, was at the top of the flagellar regulatory cascade in S. maltophilia. To elucidate the underlying mechanism responsible for ΔompA-mediated swimming compromise, transcriptome analysis of KJ and KJΔOmpA was performed and revealed rpoN downregulation in KJΔOmpA as the key element. The involvement of rpoN in ΔompA-mediated swimming compromise was verified using rpoN complementation, qRT-PCR, and function assays. Collectively, OmpA, which contributes to bacterial conjugation and swimming, is a promising target for adjuvant design in S. maltophilia.
Collapse
|
47
|
Nordstedt NP, Jones ML. Genomic Analysis of Serratia plymuthica MBSA-MJ1: A Plant Growth Promoting Rhizobacteria That Improves Water Stress Tolerance in Greenhouse Ornamentals. Front Microbiol 2021; 12:653556. [PMID: 34046022 PMCID: PMC8144289 DOI: 10.3389/fmicb.2021.653556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
48
|
Kojima S, Kajino H, Hirano K, Inoue Y, Terashima H, Homma M. Role of the N- and C-terminal regions of FliF, the MS ring component in Vibrio flagellar basal body. J Bacteriol 2021; 203:JB.00009-21. [PMID: 33619151 PMCID: PMC8092156 DOI: 10.1128/jb.00009-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
The MS ring is a part of the flagellar basal body and formed by 34 subunits of FliF, which consists of a large periplasmic region and two transmembrane segments connected to the N- and C-terminal regions facing the cytoplasm. A cytoplasmic protein, FlhF, which determines the position and number of the basal body, supports MS ring formation in the membrane in Vibrio species. In this study, we constructed FliF deletion mutants that lack 30 or 50 residues from the N-terminus (ΔN30 and ΔN50), and 83 (ΔC83) or 110 residues (ΔC110) at the C-terminus. The N-terminal deletions were functional and conferred motility of Vibrio cells, whereas the C-terminal deletions were nonfunctional. The mutants were expressed in Escherichia coli to determine whether an MS ring could still be assembled. When co-expressing ΔN30FliF or ΔN50FliF with FlhF, fewer MS rings were observed than with the expression of wild-type FliF, in the MS ring fraction, suggesting that the N-terminus interacts with FlhF. MS ring formation is probably inefficient without FlhF. The deletion of the C-terminal cytoplasmic region did not affect the ability of FliF to form an MS ring because a similar number of MS rings were observed for ΔC83FliF as with wild-type FliF, although further deletion of the second transmembrane segment (ΔC110FliF) abolished it. These results suggest that the terminal regions of FliF have distinct roles; the N-terminal region for efficient MS ring formation and the C-terminal region for MS ring function. The second transmembrane segment is indispensable for MS ring assembly.ImportanceThe bacterial flagellum is a supramolecular architecture involved in cell motility. At the base of the flagella, a rotary motor that begins to construct an MS ring in the cytoplasmic membrane comprises 34 transmembrane proteins (FliF). Here, we investigated the roles of the N and C terminal regions of FliF, which are MS rings. Unexpectedly, the cytoplasmic regions of FliF are not indispensable for the formation of the MS ring, but the N-terminus appears to assist in ring formation through recruitment of FlhF, which is essential for flagellar formation. The C-terminus is essential for motor formation or function.
Collapse
Affiliation(s)
- Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Hiroki Kajino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuna Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
49
|
Tan J, Zhang X, Wang X, Xu C, Chang S, Wu H, Wang T, Liang H, Gao H, Zhou Y, Zhu Y. Structural basis of assembly and torque transmission of the bacterial flagellar motor. Cell 2021; 184:2665-2679.e19. [PMID: 33882274 DOI: 10.1016/j.cell.2021.03.057] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
The bacterial flagellar motor is a supramolecular protein machine that drives rotation of the flagellum for motility, which is essential for bacterial survival in different environments and a key determinant of pathogenicity. The detailed structure of the flagellar motor remains unknown. Here we present an atomic-resolution cryoelectron microscopy (cryo-EM) structure of the bacterial flagellar motor complexed with the hook, consisting of 175 subunits with a molecular mass of approximately 6.3 MDa. The structure reveals that 10 peptides protruding from the MS ring with the FlgB and FliE subunits mediate torque transmission from the MS ring to the rod and overcome the symmetry mismatch between the rotational and helical structures in the motor. The LP ring contacts the distal rod and applies electrostatic forces to support its rotation and torque transmission to the hook. This work provides detailed molecular insights into the structure, assembly, and torque transmission mechanisms of the flagellar motor.
Collapse
Affiliation(s)
- Jiaxing Tan
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; The MOE Key Laboratory for Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China.
| | - Xiaofei Wang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; The MOE Key Laboratory for Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Caihuang Xu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hangjun Wu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ting Wang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; The MOE Key Laboratory for Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huihui Liang
- Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haichun Gao
- Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Zhou
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; The MOE Key Laboratory for Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongqun Zhu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; The MOE Key Laboratory for Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
50
|
Wadhwa N, Tu Y, Berg HC. Mechanosensitive remodeling of the bacterial flagellar motor is independent of direction of rotation. Proc Natl Acad Sci U S A 2021; 118:e2024608118. [PMID: 33876769 PMCID: PMC8054018 DOI: 10.1073/pnas.2024608118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Motility is important for the survival and dispersal of many bacteria, and it often plays a role during infections. Regulation of bacterial motility by chemical stimuli is well studied, but recent work has added a new dimension to the problem of motility control. The bidirectional flagellar motor of the bacterium Escherichia coli recruits or releases torque-generating units (stator units) in response to changes in load. Here, we show that this mechanosensitive remodeling of the flagellar motor is independent of direction of rotation. Remodeling rate constants in clockwise rotating motors and in counterclockwise rotating motors, measured previously, fall on the same curve if plotted against torque. Increased torque decreases the off rate of stator units from the motor, thereby increasing the number of active stator units at steady state. A simple mathematical model based on observed dynamics provides quantitative insight into the underlying molecular interactions. The torque-dependent remodeling mechanism represents a robust strategy to quickly regulate output (torque) in response to changes in demand (load).
Collapse
Affiliation(s)
- Navish Wadhwa
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138;
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142
| | - Yuhai Tu
- T. J. Watson Research Center, IBM, Yorktown Heights, NY 10598
| | - Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142
| |
Collapse
|