1
|
Staveland BR, Oberschulte J, Berger B, Minarik T, Kim-McManus O, Willie JT, Brunner P, Dastjerdi M, Lin JJ, Hsu M, Knight RT. Circuit dynamics of approach-avoidance conflict in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630927. [PMID: 39803433 PMCID: PMC11722433 DOI: 10.1101/2024.12.31.630927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Debilitating anxiety is pervasive in the modern world. Choices to approach or avoid are common in everyday life and excessive avoidance is a cardinal feature of anxiety disorders. Here, we used intracranial EEG to define a distributed prefrontal-limbic circuit supporting approach and avoidance. Presurgical epilepsy patients (n=20) performed a continuous-choice, approach-avoidance conflict decision-making task inspired by the arcade game Pac-Man, where patients trade-off harvesting rewards against potential losses from attack by the ghost. As patients approached increasing rewards and threats, we found evidence of a limbic circuit mediated by increased theta power in the hippocampus, amygdala, orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC), that drops rapidly during avoidance. Theta band connectivity within this circuit and with the lateral prefrontal cortex increases during approach and falls during avoidance, and amygdala and lateral frontal activity granger-caused the theta oscillations in both the OFC and ACC. Importantly, the degree of network connectivity predicted how long patients approach, with enhanced network synchronicity extending approach times. Finally, when threat is imminent, the system dynamically switches to a sustained increase in high-frequency activity (70-150Hz) in the middle frontal gyrus (MFG), tracking the degree of threat. The results provide evidence for a distributed prefrontal-limbic circuit, mediated by theta oscillations and high frequency activity, underlying approach-avoidance conflict in humans.
Collapse
Affiliation(s)
- Brooke R Staveland
- Helen Wills Neuroscience Institute, UC Berkeley
- Departments of Psychology and Neuroscience, UC Berkeley
| | | | - Barbara Berger
- Helen Wills Neuroscience Institute, UC Berkeley
- Departments of Psychology and Neuroscience, UC Berkeley
| | - Tamas Minarik
- Helen Wills Neuroscience Institute, UC Berkeley
- Departments of Psychology and Neuroscience, UC Berkeley
| | - Olivia Kim-McManus
- Department of Neurosciences, UC San Diego
- Division of Neurology, Rady Children's Hospital
| | - Jon T Willie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- National Center for Adaptive Neurotechnologies
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- National Center for Adaptive Neurotechnologies
| | | | - Jack J Lin
- Department of Neurology, UC Davis
- Center for Mind and Brain, UC Davis
| | - Ming Hsu
- Helen Wills Neuroscience Institute, UC Berkeley
- Center for Mind and Brain, UC Davis
| | - Robert T Knight
- Helen Wills Neuroscience Institute, UC Berkeley
- Departments of Psychology and Neuroscience, UC Berkeley
| |
Collapse
|
2
|
Lupinsky D, Nasseef MT, Parent C, Craig K, Diorio J, Zhang TY, Meaney MJ. Resting-state fMRI reveals altered functional connectivity associated with resilience and susceptibility to chronic social defeat stress in mouse brain. Mol Psychiatry 2025:10.1038/s41380-025-02897-2. [PMID: 39984680 DOI: 10.1038/s41380-025-02897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/23/2025]
Abstract
Chronic stress is a causal antecedent condition for major depressive disorder and associates with altered patterns of neural connectivity. There are nevertheless important individual differences in susceptibility to chronic stress. How functional connectivity (FC) amongst interconnected, depression-related brain regions associates with resilience and susceptibility to chronic stress is largely unknown. We used resting-state functional magnetic resonance imaging (rs-fMRI) to examine FC between established depression-related regions in susceptible (SUS) and resilient (RES) adult mice following chronic social defeat stress (CSDS). Seed-seed FC analysis revealed that the ventral dentate gyrus (vDG) exhibited the greatest number of FC group differences with other stress-related limbic brain regions. SUS mice showed greater FC between the vDG and subcortical regions compared to both control (CON) or RES groups. Whole brain vDG seed-voxel analysis supported seed-seed findings in SUS mice but also indicated significantly decreased FC between the vDG and anterior cingulate area compared to CON mice. Interestingly, RES mice exhibited enhanced FC between the vDG and anterior cingulate area compared to SUS mice. Moreover, RES mice showed greater FC between the infralimbic prefrontal cortex and the nucleus accumbens shell compared to CON mice. These findings indicate unique differences in FC patterns in phenotypically distinct SUS and RES mice that could represent a neurobiological basis for depression, anxiety, and negative-coping behaviors that are associated with exposure to chronic stress.
Collapse
Affiliation(s)
- Derek Lupinsky
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada
| | - Md Taufiq Nasseef
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada
- Department of Mathematics, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Carine Parent
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada
| | - Kelly Craig
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Josie Diorio
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Tie-Yuan Zhang
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada.
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada.
| | - Michael J Meaney
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada.
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Brain-Body Initiative, Agency for Science, Technology & Research, Singapore, Singapore.
| |
Collapse
|
3
|
Páscoa dos Santos F, Verschure PFMJ. Excitatory-inhibitory homeostasis and bifurcation control in the Wilson-Cowan model of cortical dynamics. PLoS Comput Biol 2025; 21:e1012723. [PMID: 39761317 PMCID: PMC11737862 DOI: 10.1371/journal.pcbi.1012723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/16/2025] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Although the primary function of excitatory-inhibitory (E-I) homeostasis is the maintenance of mean firing rates, the conjugation of multiple homeostatic mechanisms is thought to be pivotal to ensuring edge-of-bifurcation dynamics in cortical circuits. However, computational studies on E-I homeostasis have focused solely on the plasticity of inhibition, neglecting the impact of different modes of E-I homeostasis on cortical dynamics. Therefore, we investigate how the diverse mechanisms of E-I homeostasis employed by cortical networks shape oscillations and edge-of-bifurcation dynamics. Using the Wilson-Cowan model, we explore how distinct modes of E-I homeostasis maintain stable firing rates in models with varying levels of input and how it affects circuit dynamics. Our results confirm that E-I homeostasis can be leveraged to control edge-of-bifurcation dynamics and that some modes of homeostasis maintain mean firing rates under higher levels of input by modulating the distance to the bifurcation. Additionally, relying on multiple modes of homeostasis ensures stable activity while keeping oscillation frequencies within a physiological range. Our findings tie relevant features of cortical networks, such as E-I balance, the generation of gamma oscillations, and edge-of-bifurcation dynamics, under the framework of firing-rate homeostasis, providing a mechanistic explanation for the heterogeneity in the distance to the bifurcation found across cortical areas. In addition, we reveal the functional benefits of relying upon different homeostatic mechanisms, providing a robust method to regulate network dynamics with minimal perturbation to the generation of gamma rhythms and explaining the correlation between inhibition and gamma frequencies found in cortical networks.
Collapse
Affiliation(s)
- Francisco Páscoa dos Santos
- Eodyne Systems SL, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Paul F. M. J. Verschure
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Makino Y, Wang Y, McHugh TJ. Multi-regional control of amygdalar dynamics reliably reflects fear memory age. Nat Commun 2024; 15:10283. [PMID: 39653694 PMCID: PMC11628566 DOI: 10.1038/s41467-024-54273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
The basolateral amygdala (BLA) is crucial for the encoding and expression of fear memory, yet it remains unexplored how neural activity in this region is dynamically influenced by distributed circuits across the brain to facilitate expression of fear memory of different ages. Using longitudinal multisite electrophysiological recordings in male mice, we find that the recall of older contextual fear memory is accompanied by weaker, yet more rhythmic, BLA gamma activity which is distally entrained by theta oscillations in both the hippocampal CA1 and the anterior cingulate cortex. Computational modeling with Light Gradient Boosting Machine using extracted oscillatory features from these three regions, as well as with Transformer using raw local field potentials, accurately classified remote from recent memory recall primarily based on BLA gamma and CA1 theta. These results demonstrate in a non-biased manner that multi-regional control of BLA activity serves as reliable neural signatures for memory age-dependent recall mechanisms.
Collapse
Affiliation(s)
- Yuichi Makino
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- International Research Center for Neurointelligence, UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Yi Wang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
| |
Collapse
|
5
|
Garagnani M. On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper. Cogn Neurodyn 2024; 18:3383-3400. [PMID: 39712129 PMCID: PMC11655761 DOI: 10.1007/s11571-023-10061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2024] Open
Abstract
The ability to coactivate (or "superpose") multiple conceptual representations is a fundamental function that we constantly rely upon; this is crucial in complex cognitive tasks requiring multi-item working memory, such as mental arithmetic, abstract reasoning, and language comprehension. As such, an artificial system aspiring to implement any of these aspects of general intelligence should be able to support this operation. I argue here that standard, feed-forward deep neural networks (DNNs) are unable to implement this function, whereas an alternative, fully brain-constrained class of neural architectures spontaneously exhibits it. On the basis of novel simulations, this proof-of-concept article shows that deep, brain-like networks trained with biologically realistic Hebbian learning mechanisms display the spontaneous emergence of internal circuits (cell assemblies) having features that make them natural candidates for supporting superposition. Building on previous computational modelling results, I also argue that, and offer an explanation as to why, in contrast, modern DNNs trained with gradient descent are generally unable to co-activate their internal representations. While deep brain-constrained neural architectures spontaneously develop the ability to support superposition as a result of (1) neurophysiologically accurate learning and (2) cortically realistic between-area connections, backpropagation-trained DNNs appear to be unsuited to implement this basic cognitive operation, arguably necessary for abstract thinking and general intelligence. The implications of this observation are briefly discussed in the larger context of existing and future artificial intelligence systems and neuro-realistic computational models.
Collapse
Affiliation(s)
- Max Garagnani
- Department of Computing, Goldsmiths – University of London, London, UK
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Azocar VH, Petersson P, Fuentes R, Fuentealba JA. Differential phase-amplitude coupling in nucleus accumbens and orbitofrontal cortex reflects decision-making during a delay discounting task. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111064. [PMID: 38917880 DOI: 10.1016/j.pnpbp.2024.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The impulsive choice is characterized by the preference for a small immediate reward over a bigger delayed one. The mechanisms underlying impulsive choices are linked to the activity in the Nucleus Accumbens (NAc), the orbitofrontal cortex (OFC), and the dorsolateral striatum (DLS). While the study of functional connectivity between brain areas has been key to understanding a variety of cognitive processes, it remains unclear whether functional connectivity differentiates impulsive-control decisions. METHODS To study the functional connectivity both between and within NAc, OFC, and DLS during a delay discounting task, we concurrently recorded local field potential in NAc, OFC, and DLS in rats. We then quantified the degree of phase-amplitude coupling (PAC), coherence, and Granger Causality between oscillatory activities in animals exhibiting either a high (HI) or low (LI) tendency for impulsive choices. RESULTS Our results showed a differential pattern of PAC during decision-making in OFC and NAc, but not in DLS. While theta-gamma PAC in OFC was associated with self-control decisions, a higher delta-gamma PAC in both OFC and NAc biased decisions toward impulsive choices in both HI and LI groups. Furthermore, during the reward event, Granger Causality analysis indicated a stronger NAc➔OFC gamma contribution in the HI group, while the LI group showed a higher OFC➔NAc gamma contribution. CONCLUSIONS The overactivity in NAc during reward in the HI group suggests that exacerbated contribution of NAcCore can lead to an overvaluation of reward that biases the behavior toward the impulsive choice.
Collapse
Affiliation(s)
- V H Azocar
- School of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile; Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - P Petersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - R Fuentes
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - J A Fuentealba
- School of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
7
|
Dimcea DAM, Petca RC, Dumitrașcu MC, Șandru F, Mehedințu C, Petca A. Postpartum Depression: Etiology, Treatment, and Consequences for Maternal Care. Diagnostics (Basel) 2024; 14:865. [PMID: 38732283 PMCID: PMC11083152 DOI: 10.3390/diagnostics14090865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Postpartum depression (PPD) is a disabling condition that has recently shown an increase in prevalence, becoming an essential public health problem. This study is a qualitative review summarizing the most frequent risk factors associated with PPD, evaluating molecular aspects of PPD and current approaches to detect and prevent PPD. The most prevalent risk factors were detected in the areas of economic and social factors, obstetrical history, lifestyle, and history of mental illness. Research on the genetic basis for PPD has taken place in recent years to identify the genes responsible for establishing targeted therapeutic methods and understanding its pathogenesis. The most frequently studied candidate gene was the serotonin transporter gene (SERT) associated with PPD. Among biological studies, antidepressants and psychological interventions provided the most evidence of successful intervention. The obstetrician can serve an essential role in screening for and treating PPD. Postpartum women with risk factors should be screened using the Edinburgh Postnatal Depression Scale (EPDS), but, at the moment, there are no prevention programs in Europe. In conclusion, data from this review increase concerns among this vulnerable population and can be used to design a screening tool for high-risk pregnant women and create a prevention program.
Collapse
Affiliation(s)
- Daiana Anne-Marie Dimcea
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.A.-M.D.); (M.C.D.); (C.M.); (A.P.)
| | - Răzvan-Cosmin Petca
- Department of Urology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 050659 Bucharest, Romania
| | - Mihai Cristian Dumitrașcu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.A.-M.D.); (M.C.D.); (C.M.); (A.P.)
- Department of Obstetrics and Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Florica Șandru
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Dermatology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Claudia Mehedințu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.A.-M.D.); (M.C.D.); (C.M.); (A.P.)
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011171 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.A.-M.D.); (M.C.D.); (C.M.); (A.P.)
- Department of Obstetrics and Gynecology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
8
|
Poggi G, Klaus F, Pryce CR. Pathophysiology in cortico-amygdala circuits and excessive aversion processing: the role of oligodendrocytes and myelination. Brain Commun 2024; 6:fcae140. [PMID: 38712320 PMCID: PMC11073757 DOI: 10.1093/braincomms/fcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Stress-related psychiatric illnesses, such as major depressive disorder, anxiety and post-traumatic stress disorder, present with alterations in emotional processing, including excessive processing of negative/aversive stimuli and events. The bidirectional human/primate brain circuit comprising anterior cingulate cortex and amygdala is of fundamental importance in processing emotional stimuli, and in rodents the medial prefrontal cortex-amygdala circuit is to some extent analogous in structure and function. Here, we assess the comparative evidence for: (i) Anterior cingulate/medial prefrontal cortex<->amygdala bidirectional neural circuits as major contributors to aversive stimulus processing; (ii) Structural and functional changes in anterior cingulate cortex<->amygdala circuit associated with excessive aversion processing in stress-related neuropsychiatric disorders, and in medial prefrontal cortex<->amygdala circuit in rodent models of chronic stress-induced increased aversion reactivity; and (iii) Altered status of oligodendrocytes and their oligodendrocyte lineage cells and myelination in anterior cingulate/medial prefrontal cortex<->amygdala circuits in stress-related neuropsychiatric disorders and stress models. The comparative evidence from humans and rodents is that their respective anterior cingulate/medial prefrontal cortex<->amygdala circuits are integral to adaptive aversion processing. However, at the sub-regional level, the anterior cingulate/medial prefrontal cortex structure-function analogy is incomplete, and differences as well as similarities need to be taken into account. Structure-function imaging studies demonstrate that these neural circuits are altered in both human stress-related neuropsychiatric disorders and rodent models of stress-induced increased aversion processing. In both cases, the changes include altered white matter integrity, albeit the current evidence indicates that this is decreased in humans and increased in rodent models. At the cellular-molecular level, in both humans and rodents, the current evidence is that stress disorders do present with changes in oligodendrocyte lineage, oligodendrocytes and/or myelin in these neural circuits, but these changes are often discordant between and even within species. Nonetheless, by integrating the current comparative evidence, this review provides a timely insight into this field and should function to inform future studies-human, monkey and rodent-to ascertain whether or not the oligodendrocyte lineage and myelination are causally involved in the pathophysiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
| | - Federica Klaus
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. Cereb Cortex 2024; 34:bhad427. [PMID: 38041253 PMCID: PMC10793570 DOI: 10.1093/cercor/bhad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023] Open
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown, CT 06459, USA
| | - James E Kragel
- Dept. of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ethan A Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley C Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Joshua P Aronson
- Dept. of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Barbara C Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Robert E Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Michael R Sperling
- Dept. of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Sameer A Sheth
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Sharma H, Azouz R. Global and local neuronal coding of tactile information in the barrel cortex. Front Neurosci 2024; 17:1291864. [PMID: 38249584 PMCID: PMC10796699 DOI: 10.3389/fnins.2023.1291864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024] Open
Abstract
During tactile sensation in rodents, the whisker movements across surfaces give rise to intricate whisker motions that encompass discrete and transient stick-slip events, effectively conveying valuable information regarding surface properties. These surface characteristics are transformed into cortical neuronal responses. This study examined the coding strategies underlying these transformations in rat whiskers. We found that changes in surface coarseness modified the number and magnitude of stick-slip events, which in turn both modulated properties of neuronal responses. Global changes in the number of stick-slip events primarily affected neuronal discharge rates and the degree of neuronal synchronization. In contrast, local changes in the magnitude of stick-slip events affected the transformation of these kinematic and kinetic characteristics into neuronal discharges. Most cortical neurons exhibited surface coarseness selectivity through global and local stick-slip event properties. However, this selectivity varied across coding strategies in the same neurons, given that each coding strategy reflected different aspects of changes in whisker-surface interactions. The degree of spatial similarity in surface coarseness preference in adjacently recorded neurons differed among these coding strategies. Adjacently recorded neurons exhibited the same surface coarseness preference in their firing rates but not through other coding strategies. Through these results, we were able to show that local stick-slip event properties contribute to texture discrimination, complementing and surpassing global coding in this context. These findings suggest that the representation of surface coarseness in the cortex may rely on concurrent coding strategies that integrate tactile information across different spatiotemporal scales.
Collapse
Affiliation(s)
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Southern District, Israel
| |
Collapse
|
11
|
Mohapatra AN, Peles D, Netser S, Wagner S. Synchronized LFP rhythmicity in the social brain reflects the context of social encounters. Commun Biol 2024; 7:2. [PMID: 38168971 PMCID: PMC10761981 DOI: 10.1038/s42003-023-05728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Mammalian social behavior is highly context-sensitive. Yet, little is known about the mechanisms that modulate social behavior according to its context. Recent studies have revealed a network of mostly limbic brain regions which regulates social behavior. We hypothesize that coherent theta and gamma rhythms reflect the organization of this network into functional sub-networks in a context-dependent manner. To test this concept, we simultaneously record local field potential (LFP) from multiple social brain regions in adult male mice performing three social discrimination tasks. While LFP rhythmicity across all tasks is dominated by a global internal state, the pattern of theta coherence between the various regions reflect the behavioral task more than other variables. Moreover, Granger causality analysis implicate the ventral dentate gyrus as a main player in coordinating the context-specific rhythmic activity. Thus, our results suggest that the pattern of coordinated rhythmic activity within the network reflects the subject's social context.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel.
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel
| |
Collapse
|
12
|
Fide E, Yerlikaya D, Güntekin B, Babiloni C, Yener GG. Coherence in event-related EEG oscillations in patients with Alzheimer's disease dementia and amnestic mild cognitive impairment. Cogn Neurodyn 2023; 17:1621-1635. [PMID: 37974589 PMCID: PMC10640558 DOI: 10.1007/s11571-022-09920-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Working memory performances are based on brain functional connectivity, so that connectivity may be deranged in individuals with mild cognitive impairment (MCI) and patients with dementia due to Alzheimer's disease (ADD). Here we tested the hypothesis of abnormal functional connectivity as revealed by the imaginary part of coherency (ICoh) at electrode pairs from event-related electroencephalographic oscillations in ADD and MCI patients. Methods The study included 43 individuals with MCI, 43 with ADD, and 68 demographically matched healthy controls (HC). Delta, theta, alpha, beta, and gamma bands event-related ICoh was measured during an oddball paradigm. Inter-hemispheric, midline, and intra-hemispheric ICoh values were compared in ADD, MCI, and HC groups. Results The main results of the present study can be summarized as follows: (1) A significant increase of midline frontal and temporal theta coherence in the MCI group as compared to the HC group; (2) A significant decrease of theta, delta, and alpha intra-hemispheric coherence in the ADD group as compared to the HC and MCI groups; (3) A significant decrease of theta midline coherence in the ADD group as compared to the HC and MCI groups; (4) Normal inter-hemispheric coherence in the ADD and MCI groups. Conclusions Compared with the MCI and HC, the ADD group showed disrupted event-related intra-hemispheric and midline low-frequency band coherence as an estimate of brain functional dysconnectivity underlying disabilities in daily living. Brain functional connectivity during attention and short memory demands is relatively resilient in elderly subjects even with MCI (with preserved abilities in daily activities), and it shows reduced efficiency at multiple operating oscillatory frequencies only at an early stage of ADD. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09920-0.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele of Cassino, Cassino, Italy
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
13
|
Bertocchi I, Rocha-Almeida F, Romero-Barragán MT, Cambiaghi M, Carretero-Guillén A, Botta P, Dogbevia GK, Treviño M, Mele P, Oberto A, Larkum ME, Gruart A, Sprengel R, Delgado-García JM, Hasan MT. Pre- and postsynaptic N-methyl-D-aspartate receptors are required for sequential printing of fear memory engrams. iScience 2023; 26:108050. [PMID: 37876798 PMCID: PMC10590821 DOI: 10.1016/j.isci.2023.108050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The organization of fear memory involves the participation of multiple brain regions. However, it is largely unknown how fear memory is formed, which circuit pathways are used for "printing" memory engrams across brain regions, and the role of identified brain circuits in memory retrieval. With advanced genetic methods, we combinatorially blocked presynaptic output and manipulated N-methyl-D-aspartate receptor (NMDAR) in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) before and after cued fear conditioning. Further, we tagged fear-activated neurons during associative learning for optogenetic memory recall. We found that presynaptic mPFC and postsynaptic BLA NMDARs are required for fear memory formation, but not expression. Our results provide strong evidence that NMDAR-dependent synaptic plasticity drives multi-trace systems consolidation for the sequential printing of fear memory engrams from BLA to mPFC and, subsequently, to the other regions, for flexible memory retrieval.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Florbela Rocha-Almeida
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, km. 1 41013 Seville, Spain
| | | | - Marco Cambiaghi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Alejandro Carretero-Guillén
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Paolo Botta
- CNS drug development, Copenhagen, Capital Region, Denmark
| | - Godwin K. Dogbevia
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Health Canada, 70 Colombine Driveway, Ottawa, ON K1A0K9, Canada
| | - Mario Treviño
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Paolo Mele
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Alessandra Oberto
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Matthew E. Larkum
- NeuroCure, Charité-Universitatsmedizin, Virchowweg 6, 10117 Berlin, Germany
| | - Agnes Gruart
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, km. 1 41013 Seville, Spain
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | - Mazahir T. Hasan
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, Barrio Sarriena, s/n, 48940 Leioa, Spain
- Ikerbasque – Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
14
|
Sandoval IK, Ngoh G, Wu J, Crowley MJ, Rutherford HJV. EEG coherence before and after giving birth. Brain Res 2023; 1816:148468. [PMID: 37336317 DOI: 10.1016/j.brainres.2023.148468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
During pregnancy and the postpartum period, changes in brain volume and in motivational, sensory, cognitive, and emotional processes have been described. However, to date, longitudinal modifications of brain function have been understudied. To explore regional cortical coupling, in pregnancy and at 3 months postpartum, we analyzed resting-state electroencephalographic (EEG) coherence in the delta, theta, alpha1, alpha2, beta1, and beta2 frequency bands across frontal and parietal regions of the maternal brain (Fp1, Fp2, F3, F4, P3, and P4). We found that from pregnancy to the postpartum period, mothers showed less intrahemispheric EEG coherence between the frontal and parietal regions in the alpha1 and alpha2 bands, as well as greater interhemispheric EEG coherence between frontopolar regions in the beta2 band. These changes suggest decreased inhibition of neural circuits. These neurophysiological changes may represent an adaptive process characteristic of motherhood.
Collapse
Affiliation(s)
| | - Gwendolyn Ngoh
- Yale Child Study Center, Yale University, New Haven, CT, USA
| | - Jia Wu
- Yale Child Study Center, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
15
|
Sun Y, Qian L, Xu L, Hunt S, Sah P. Somatostatin neurons in the central amygdala mediate anxiety by disinhibition of the central sublenticular extended amygdala. Mol Psychiatry 2023; 28:4163-4174. [PMID: 33005027 DOI: 10.1038/s41380-020-00894-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022]
Abstract
Fear and anxiety are two defensive emotional states evoked by threats in the environment. Fear can be initiated by either imminent or future threats, but experimentally, it is typically studied as a phasic response initiated by imminent danger that subsides when the threats is removed. In contrast, anxiety is a sustained response, initiated by imagined or potential threats. The central amygdala (CeA) is a key structure active during both fear and anxiety but thought to engage different neural systems. Fear responses are triggered by activation of somatostatin (SOM) expressing neurons in the lateral division of the CeA (CeL), and downstream projections from the medial division. Anxiety responses engage the central extended amygdala that includes the CeA, central sublenticular extended amygdala (SLEAc) and bed nucleus of the stria terminalis, but the nature of connections between these regions is not understood. Here using a combination of tract tracing, electrophysiology, and behavioral analysis in mice, we show that a population of SOM+ neurons in the CeL project to the SLEAc where they inhibit local GABAergic interneurons. Optogenetic activation of this input to the SLEAc has no effect on movement, but is anxiogenic in both open field and elevated plus maze. Our results define the inhibitory connections between CeL and SLEAc and establish a specific CeL to SLEAc projection as a circuit element in mediating anxiety.
Collapse
Affiliation(s)
- Yajie Sun
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lei Qian
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Li Xu
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sarah Hunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
16
|
Pendeliuk VS, Melnick IV. Excitatory synchronization of rat hippocampal interneurons during network activation in vitro. Front Cell Neurosci 2023; 17:1129991. [PMID: 36970420 PMCID: PMC10034414 DOI: 10.3389/fncel.2023.1129991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionHippocampal interneurons (INs) are known to synchronize their electrical activity via mechanisms, which are poorly defined due to immense complexity of neural tissue but seem to depend on local cell interactions and intensity of network activity.MethodsHere, synchronization of INs was studied using paired patch-clamp recordings in a simplified culture model with intact glutamate transmission. The level of network activity was moderately elevated by field electric stimulation, which is probably an analogue of afferent processing in situ.ResultsEven in baseline conditions, ∼45% of spontaneous inhibitory postsynaptic currents (sIPSCs) resulting from firing of individual presynaptic INs coincided between cells within ±1 ms due to simple divergence of inhibitory axons. Brief network activation induced an appearance of ‘hypersynchronous’ (∼80%) population sIPSCs occurring in response to coherent discharges of several INs with jitter ±4 ms. Notably, population sIPSCs were preceded by transient inward currents (TICs). Those were excitatory events capable to synchronize firing of INs, in this respect being reminiscent of so-called fast prepotentials observed in studies on pyramidal neurons. TICs also had network properties consisting of heterogeneous components: glutamate currents, local axonal and dendritic spikelets, and coupling electrotonic currents likely via gap junctions; putative excitatory action of synaptic gamma-aminobutyric acid (GABA) was not involved. The appearance of population excitatory-inhibitory sequences could be initiated and reproduced by firing of a single excitatory cell reciprocally connected with one IN.DiscussionOur data demonstrate that synchronization of INs is initiated and dominated by glutamatergic mechanisms, which recruit, in a whole-sale manner, into supporting action other excitatory means existing in a given neural system.
Collapse
Affiliation(s)
- Viktoria S. Pendeliuk
- Hospital of Urgent Medical Care, Department of Surgery No. 4, NAMS of Ukraine, Kiev, Ukraine
| | - Igor V. Melnick
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, Kiev, Ukraine
- *Correspondence: Igor V. Melnick,
| |
Collapse
|
17
|
Optogenetic Suppression of Lateral Septum Somatostatin Neurons Enhances Hippocampus Cholinergic Theta Oscillations and Local Synchrony. Brain Sci 2022; 13:brainsci13010001. [PMID: 36671983 PMCID: PMC9856160 DOI: 10.3390/brainsci13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
The septal complex regulates both motivated and innate behaviors, chiefly by the action of its diverse population of long-range projection neurons. A small population of somatostatin-expressing GABAergic cells in the lateral septum projects deep into subcortical regions, yet on its way it also targets neighboring medial septum neurons that profusely innervate cortical targets by ascending synaptic pathways. Here, we used optogenetic stimulation and extracellular recordings in acutely anesthetized transgenic mice to show that lateral septum somatostatin neurons can disinhibit the cholinergic septo-hippocampal pathway, thus enhancing the amplitude and synchrony of theta oscillations while depressing sharp-wave ripple episodes in the dorsal hippocampus. These results suggest that septal somatostatin cells can recruit ascending cholinergic pathways to promote hippocampal theta oscillations.
Collapse
|
18
|
Haikonen J, Englund J, Amarilla SP, Kharybina Z, Shintyapina A, Kegler K, Garcia MS, Atanasova T, Taira T, Hartung H, Lauri SE. Aberrant cortical projections to amygdala GABAergic neurons contribute to developmental circuit dysfunction following early life stress. iScience 2022; 26:105724. [PMID: 36582824 PMCID: PMC9792886 DOI: 10.1016/j.isci.2022.105724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Early life stress (ELS) results in enduring dysfunction of the corticolimbic circuitry, underlying emotional and social behavior. However, the neurobiological mechanisms involved remain elusive. Here, we have combined viral tracing and electrophysiological techniques to study the effects of maternal separation (MS) on frontolimbic connectivity and function in young (P14-21) rats. We report that aberrant prefrontal inputs to basolateral amygdala (BLA) GABAergic interneurons transiently increase the strength of feed-forward inhibition in the BLA, which raises LTP induction threshold in MS treated male rats. The enhanced GABAergic activity after MS exposure associates with lower functional synchronization within prefrontal-amygdala networks in vivo. Intriguingly, no differences in these parameters were detected in females, which were also resistant to MS dependent changes in anxiety-like behaviors. Impaired plasticity and synchronization during the sensitive period of circuit refinement may contribute to long-lasting functional changes in the prefrontal-amygdaloid circuitry that predispose to neuropsychiatric conditions later on in life.
Collapse
Affiliation(s)
- Joni Haikonen
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Jonas Englund
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Shyrley Paola Amarilla
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Zoia Kharybina
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Alexandra Shintyapina
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Kristel Kegler
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marta Saez Garcia
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tsvetomira Atanasova
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Henrike Hartung
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Sari E. Lauri
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland,Corresponding author
| |
Collapse
|
19
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
20
|
Zheng J, Skelin I, Lin JJ. Neural computations underlying contextual processing in humans. Cell Rep 2022; 40:111395. [PMID: 36130515 PMCID: PMC9552771 DOI: 10.1016/j.celrep.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Context shapes our perception of facial expressions during everyday social interactions. We interpret a person’s face in a hostile situation negatively and judge the same face under pleasant circumstances positively. Critical to our adaptive fitness, context provides situation-specific framing to resolve ambiguity and guide our interpersonal behavior. This context-specific modulation of facial expression is thought to engage the amygdala, hippocampus, and orbitofrontal cortex; however, the underlying neural computations remain unknown. Here we use human intracranial electroencephalograms (EEGs) directly recorded from these regions and report bidirectional theta-gamma interactions within the amygdala-hippocampal network, facilitating contextual processing. Contextual information is subsequently represented in the orbitofrontal cortex, where a theta phase shift binds context and face associations within theta cycles, endowing faces with contextual meanings at behavioral timescales. Our results identify theta phase shifts as mediating associations between context and face processing, supporting flexible social behavior. Context influences our perception of facial expressions. Zheng et al. show that contextual modulation of faces relies on medial temporal lobe-orbitofrontal cortex communications in humans. High gamma bursts occur in rhythm with theta oscillations, with cross-regional theta-gamma phase shifts binding context-face associations.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.
| | - Ivan Skelin
- Department of Neurology, University of California, Davis, Davis, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
| | - Jack J Lin
- Department of Neurology, University of California, Davis, Davis, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| |
Collapse
|
21
|
Sun J, Wang H, Jiang J. Euler common spatial pattern modulated with cross-frequency coupling. Knowl Inf Syst 2022. [DOI: 10.1007/s10115-022-01750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Bhattarai JP, Etyemez S, Jaaro-Peled H, Janke E, Leon Tolosa UD, Kamiya A, Gottfried JA, Sawa A, Ma M. Olfactory modulation of the medial prefrontal cortex circuitry: Implications for social cognition. Semin Cell Dev Biol 2022; 129:31-39. [PMID: 33975755 PMCID: PMC8573060 DOI: 10.1016/j.semcdb.2021.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Olfactory dysfunction is manifested in a wide range of neurological and psychiatric diseases, and often emerges prior to the onset of more classical symptoms and signs. From a behavioral perspective, olfactory deficits typically arise in conjunction with impairments of cognition, motivation, memory, and emotion. However, a conceptual framework for explaining the impact of olfactory processing on higher brain functions in health and disease remains lacking. Here we aim to provide circuit-level insights into this question by synthesizing recent advances in olfactory network connectivity with other cortical brain regions such as the prefrontal cortex. We will focus on social cognition as a representative model for exploring and critically evaluating the relationship between olfactory cortices and higher-order cortical regions in rodent models. Although rodents do not recapitulate all dimensions of human social cognition, they have experimentally accessible neural circuits and well-established behavioral tests for social motivation, memory/recognition, and hierarchy, which can be extrapolated to other species including humans. In particular, the medial prefrontal cortex (mPFC) has been recognized as a key brain region in mediating social cognition in both rodents and humans. This review will highlight the underappreciated connectivity, both anatomical and functional, between the olfactory system and mPFC circuitry, which together provide a neural substrate for olfactory modulation of social cognition and social behaviors. We will provide future perspectives on the functional investigation of the olfactory-mPFC circuit in rodent models and discuss how to translate such animal research to human studies.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Semra Etyemez
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Usuy D Leon Tolosa
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Atsushi Kamiya
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Neuroscience, Biomedical Engineering, and Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Ma L, Patel M. Mechanism of carbachol-induced 40 Hz gamma oscillations and the effects of NMDA activation on oscillatory dynamics in a model of the CA3 subfield of the hippocampus. J Theor Biol 2022; 548:111200. [PMID: 35716721 DOI: 10.1016/j.jtbi.2022.111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Gamma oscillations are a prominent feature of various neural systems, including the CA3 subfield of the hippocampus. In CA3, in vitro carbachol application induces ∼40 Hz gamma oscillations in the network of glutamatergic excitatory pyramidal neurons (PNs) and local GABAergic inhibitory neurons (INs). Activation of NMDA receptors within CA3 leads to an increase in the frequency of carbachol-induced oscillations to ∼60 Hz, a broadening of the distribution of individual oscillation cycle frequencies, and a decrease in the time lag between PN and IN spike bursts. In this work, we develop a biophysical integrate-and-fire model of the CA3 subfield, we show that the dynamics of our model are in concordance with physiological observations, and we provide computational support for the hypothesis that the 'E-I' mechanism is responsible for the emergence of ∼40 Hz gamma oscillations in the absence of NMDA activation. We then incorporate NMDA receptors into our CA3 model, and we show that our model exhibits the increase in gamma oscillation frequency, broadening of the cycle frequency distribution, and decrease in the time lag between PN and IN spike bursts observed experimentally. Remarkably, we find an inverse relationship in our model between the net NMDA current delivered to PNs and INs in an oscillation cycle and cycle frequency. Furthermore, we find a disparate effect of NMDA receptors on PNs versus INs - we show that NMDA receptors on INs tend to increase oscillation frequency, while NMDA receptors on PNs tend to slightly decrease or not affect oscillation frequency. We find that these observations can be explained if NMDA activity above a threshold level causes a shift in the mechanism underlying gamma oscillations; in the absence of NMDA receptors, the 'E-I' mechanism is primarily responsible for the generation of gamma oscillations (at 40 Hz), while when NMDA receptors are active, the mechanism of gamma oscillations shifts to the 'I-I' mechanism, and we argue that within the 'I-I' regime (which displays a higher baseline oscillation frequency of ∼60 Hz), slight changes in the level of NMDA activity are inversely related to cycle frequency.
Collapse
Affiliation(s)
- Linda Ma
- Department of Mathematics, William & Mary, United States.
| | - Mainak Patel
- Department of Mathematics, William & Mary, United States.
| |
Collapse
|
24
|
Csorba BA, Krause MR, Zanos TP, Pack CC. Long-range cortical synchronization supports abrupt visual learning. Curr Biol 2022; 32:2467-2479.e4. [PMID: 35523181 DOI: 10.1016/j.cub.2022.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/08/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
Visual plasticity declines sharply after the critical period, yet we easily learn to recognize new faces and places, even as adults. Such learning is often characterized by a "moment of insight," an abrupt and dramatic improvement in recognition. The mechanisms that support abrupt learning are unknown, but one hypothesis is that they involve changes in synchronization between brain regions. To test this hypothesis, we used a behavioral task in which non-human primates rapidly learned to recognize novel images and to associate them with specific responses. Simultaneous recordings from inferotemporal and prefrontal cortices revealed a transient synchronization of neural activity between these areas that peaked around the moment of insight. Synchronization was strongest between inferotemporal sites that encoded images and reward-sensitive prefrontal sites. Moreover, its magnitude intensified gradually over image exposures, suggesting that abrupt learning is the culmination of a search for informative signals within a circuit linking sensory information to task demands.
Collapse
Affiliation(s)
- Bennett A Csorba
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Matthew R Krause
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Christopher C Pack
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
25
|
John SR, Dagash W, Mohapatra AN, Netser S, Wagner S. Distinct dynamics of theta and gamma rhythmicity during social interaction suggest differential mode of action in the medial amygdala of SD rats and C57BL/6J mice. Neuroscience 2022; 493:69-80. [DOI: 10.1016/j.neuroscience.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
|
26
|
Ibarra-Lecue I, Haegens S, Harris AZ. Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Front Neural Circuits 2022; 16:846905. [PMID: 35310550 PMCID: PMC8931663 DOI: 10.3389/fncir.2022.846905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
A century worth of research has linked multiple cognitive, perceptual and behavioral states to various brain oscillations. However, the mechanistic roles and circuit underpinnings of these oscillations remain an area of active study. In this review, we argue that the advent of optogenetic and related systems neuroscience techniques has shifted the field from correlational to causal observations regarding the role of oscillations in brain function. As a result, studying brain rhythms associated with behavior can provide insight at different levels, such as decoding task-relevant information, mapping relevant circuits or determining key proteins involved in rhythmicity. We summarize recent advances in this field, highlighting the methods that are being used for this purpose, and discussing their relative strengths and limitations. We conclude with promising future approaches that will help unravel the functional role of brain rhythms in orchestrating the repertoire of complex behavior.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Saskia Haegens
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Alexander Z. Harris
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
27
|
Idaji MJ, Zhang J, Stephani T, Nolte G, Müller KR, Villringer A, Nikulin VV. Harmoni: a Method for Eliminating Spurious Interactions due to the Harmonic Components in Neuronal Data. Neuroimage 2022; 252:119053. [PMID: 35247548 DOI: 10.1016/j.neuroimage.2022.119053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
Cross-frequency synchronization (CFS) has been proposed as a mechanism for integrating spatially and spectrally distributed information in the brain. However, investigating CFS in Magneto- and Electroencephalography (MEG/EEG) is hampered by the presence of spurious neuronal interactions due to the non-sinusoidal waveshape of brain oscillations. Such waveshape gives rise to the presence of oscillatory harmonics mimicking genuine neuronal oscillations. Until recently, however, there has been no methodology for removing these harmonics from neuronal data. In order to address this long-standing challenge, we introduce a novel method (called HARMOnic miNImization - Harmoni) that removes the signal components which can be harmonics of a non-sinusoidal signal. Harmoni's working principle is based on the presence of CFS between harmonic components and the fundamental component of a non-sinusoidal signal. We extensively tested Harmoni in realistic EEG simulations. The simulated couplings between the source signals represented genuine and spurious CFS and within-frequency phase synchronization. Using diverse evaluation criteria, including ROC analyses, we showed that the within- and cross-frequency spurious interactions are suppressed significantly, while the genuine activities are not affected. Additionally, we applied Harmoni to real resting-state EEG data revealing intricate remote connectivity patterns which are usually masked by the spurious connections. Given the ubiquity of non-sinusoidal neuronal oscillations in electrophysiological recordings, Harmoni is expected to facilitate novel insights into genuine neuronal interactions in various research fields, and can also serve as a steppingstone towards the development of further signal processing methods aiming at refining within- and cross-frequency synchronization in electrophysiological recordings.
Collapse
Affiliation(s)
- Mina Jamshidi Idaji
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany; Machine Learning Group, Technical University of Berlin, Berlin, Germany.
| | - Juanli Zhang
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Tilman Stephani
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany.
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus-Robert Müller
- Machine Learning Group, Technical University of Berlin, Berlin, Germany; Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea; Max Planck Institute for Informatics, Saarbrücken, Germany; Google Research, Brain Team, USA
| | - Arno Villringer
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V Nikulin
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia; Neurophysics Group, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Lambert PM, Lu X, Zorumski CF, Mennerick S. Physiological markers of rapid antidepressant effects of allopregnanolone. J Neuroendocrinol 2022; 34:e13023. [PMID: 34423498 PMCID: PMC8807818 DOI: 10.1111/jne.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023]
Abstract
The rise of ketamine and brexanolone as rapid antidepressant treatments raises the question of common mechanisms. Both drugs act without the long onset time of traditional antidepressants such as selective serotonin reuptake inhibitors. The drugs also share the interesting feature of benefit that persists beyond the initial drug lifetime. Here, we briefly review literature on functional changes that may mark the triggering mechanism of rapid antidepressant actions. Because ketamine has a longer history of study as a rapid antidepressant, we use this literature as a template to guide hypotheses about common action. Brexanolone has the complication of being a formulation of a naturally occurring neurosteroid; thus, endogenous levels need to be considered when studying the impact of exogenous administration. We conclude that network disinhibition and increased high-frequency oscillations are candidates to mediate acute triggering effects of rapid antidepressants.
Collapse
Affiliation(s)
- Peter M Lambert
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| |
Collapse
|
29
|
Fernandez-Leon JA, Engelke DS, Aquino-Miranda G, Goodson A, Rasheed MN, Do Monte FH. Neural correlates and determinants of approach-avoidance conflict in the prelimbic prefrontal cortex. eLife 2021; 10:74950. [PMID: 34913438 PMCID: PMC8853658 DOI: 10.7554/elife.74950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022] Open
Abstract
The recollection of environmental cues associated with threat or reward allows animals to select the most appropriate behavioral responses. Neurons in the prelimbic (PL) cortex respond to both threat- and reward-associated cues. However, it remains unknown whether PL regulates threat-avoidance vs. reward-approaching responses when an animals’ decision depends on previously associated memories. Using a conflict model in which male Long–Evans rats retrieve memories of shock- and food-paired cues, we observed two distinct phenotypes during conflict: (1) rats that continued to press a lever for food (Pressers) and (2) rats that exhibited a complete suppression in food seeking (Non-pressers). Single-unit recordings revealed that increased risk-taking behavior in Pressers is associated with persistent food-cue responses in PL, and reduced spontaneous activity in PL glutamatergic (PLGLUT) neurons during conflict. Activating PLGLUT neurons in Pressers attenuated food-seeking responses in a neutral context, whereas inhibiting PLGLUT neurons in Non-pressers reduced defensive responses and increased food approaching during conflict. Our results establish a causal role for PLGLUT neurons in mediating individual variability in memory-based risky decision-making by regulating threat-avoidance vs. reward-approach behaviors.
Collapse
Affiliation(s)
| | - Douglas S Engelke
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| | - Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| | | | - Maria N Rasheed
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| |
Collapse
|
30
|
Gallagher NM, Dzirasa K, Carlson D. Directed Spectral Measures Improve Latent Network Models Of Neural Populations. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2021; 34:7421-7435. [PMID: 35602911 PMCID: PMC9122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Systems neuroscience aims to understand how networks of neurons distributed throughout the brain mediate computational tasks. One popular approach to identify those networks is to first calculate measures of neural activity (e.g. power spectra) from multiple brain regions, and then apply a linear factor model to those measures. Critically, despite the established role of directed communication between brain regions in neural computation, measures of directed communication have been rarely utilized in network estimation because they are incompatible with the implicit assumptions of the linear factor model approach. Here, we develop a novel spectral measure of directed communication called the Directed Spectrum (DS). We prove that it is compatible with the implicit assumptions of linear factor models, and we provide a method to estimate the DS. We demonstrate that latent linear factor models of DS measures better capture underlying brain networks in both simulated and real neural recording data compared to available alternatives. Thus, linear factor models of the Directed Spectrum offer neuroscientists a simple and effective way to explicitly model directed communication in networks of neural populations.
Collapse
Affiliation(s)
| | - Kafui Dzirasa
- Howard Hughes Medical Institute, Department of Psychiatry and Behavioral Sciences, Department of Neurobiology, Duke University, Durham, NC 27710
| | - David Carlson
- Department of Biostatistics and Bioinformatics, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708
| |
Collapse
|
31
|
Wirt RA, Crew LA, Ortiz AA, McNeela AM, Flores E, Kinney JW, Hyman JM. Altered theta rhythm and hippocampal-cortical interactions underlie working memory deficits in a hyperglycemia risk factor model of Alzheimer's disease. Commun Biol 2021; 4:1036. [PMID: 34480097 PMCID: PMC8417282 DOI: 10.1038/s42003-021-02558-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease associated with dysregulated glucose and insulin levels and an increased risk of developing Alzheimer's disease (AD) later in life. It is thought that chronic hyperglycemia leads to neuroinflammation and tau hyperphosphorylation in the hippocampus leading to cognitive decline, but effects on hippocampal network activity are unknown. A sustained hyperglycemic state was induced in otherwise healthy animals and subjects were then tested on a spatial delayed alternation task while recording from the hippocampus and anterior cingulate cortex (ACC). Hyperglycemic animals performed worse on long delay trials and had multiple electrophysiological differences throughout the task. We found increased delta power and decreased theta power in the hippocampus, which led to altered theta/delta ratios at the end of the delay period. Cross frequency coupling was significantly higher in multiple bands and delay period hippocampus-ACC theta coherence was elevated, revealing hypersynchrony. The highest coherence values appeared long delays on error trials for STZ animals, the opposite of what was observed in controls, where lower delay period coherence was associated with errors. Consistent with previous investigations, we found increases in phosphorylated tau in STZ animals' hippocampus and cortex, which might account for the observed oscillatory and cognitive changes.
Collapse
Affiliation(s)
- Ryan A Wirt
- Interdisciplinary Program in Neuroscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Lauren A Crew
- Interdisciplinary Program in Neuroscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Andrew A Ortiz
- Interdisciplinary Program in Neuroscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Adam M McNeela
- Interdisciplinary Program in Neuroscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Emmanuel Flores
- Interdisciplinary Program in Neuroscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jefferson W Kinney
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, USA
| | - James M Hyman
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
32
|
Kerkenberg N, Wachsmuth L, Zhang M, Schettler C, Ponimaskin E, Faber C, Baune BT, Zhang W, Hohoff C. Brain microstructural changes in mice persist in adulthood and are modulated by the palmitoyl acyltransferase ZDHHC7. Eur J Neurosci 2021; 54:5951-5967. [PMID: 34355442 DOI: 10.1111/ejn.15415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
For a long time, mice have been classified as adults with completely mature brains at 8 weeks of age, but recent research suggests that developmental brain changes occur for up to 6 months. In particular, adolescence coincides with dramatic changes of neuronal structure and function in the brain that influence the connectivity between areas like hippocampus and medial prefrontal cortex (mPFC). Neuronal development and plasticity are regulated in part by the palmitoyl acyltransferase ZDHHC7, which modulates structural connectivity between hippocampus and mPFC. The aim of the current study was to investigate whether developmental changes take place in hippocampus and mPFC microstructure even after 8 weeks of age and whether deficiency of ZDHHC7 impacts such age-dependent alterations. Altogether, 46 mice at 11, 14 or 17 weeks of age with a genetic Zdhhc7 knockout (KO) or wild type (WT) were analysed with neuroimaging and diffusion tensor-based fibre tractography. The hippocampus and mPFC regions were compared regarding fibre metrics, supplemented by volumetric and immunohistological analyses of the hippocampus. In WT animals, we identified age-dependent changes in hippocampal fibre lengths that followed a U-shaped pattern, whereas in mPFC, changes were linear. In Zdhhc7-deficient animals, the fibre statistics were reduced in both regions, whereas the hippocampus volume and the intensities of myelin and neurofilament were higher in 11-week-old KO mice compared to WTs. Our results confirmed ongoing changes of microstructure in mice up to 17 weeks old and demonstrate that deleting the Zdhhc7 gene impairs fibre development, suggesting that palmitoylation is important in this process.
Collapse
Affiliation(s)
- Nicole Kerkenberg
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Mingyue Zhang
- Department of Mental Health, University of Münster, Münster, Germany
| | | | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Cornelius Faber
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.,Clinic of Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.,Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.,Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Mental Health, University of Münster, Münster, Germany
| |
Collapse
|
33
|
Tomar A, Polygalov D, McHugh TJ. Differential Impact of Acute and Chronic Stress on CA1 Spatial Coding and Gamma Oscillations. Front Behav Neurosci 2021; 15:710725. [PMID: 34354574 PMCID: PMC8329706 DOI: 10.3389/fnbeh.2021.710725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic and acute stress differentially affect behavior as well as the structural integrity of the hippocampus, a key brain region involved in cognition and memory. However, it remains unclear if and how the facilitatory effects of acute stress on hippocampal information coding are disrupted as the stress becomes chronic. To examine this, we compared the impact of acute and chronic stress on neural activity in the CA1 subregion of male mice subjected to a chronic immobilization stress (CIS) paradigm. We observed that following first exposure to stress (acute stress), the spatial information encoded in the hippocampus sharpened, and the neurons became increasingly tuned to the underlying theta oscillations in the local field potential (LFP). However, following repeated exposure to the same stress (chronic stress), spatial tuning was poorer and the power of both the slow-gamma (30–50 Hz) and fast-gamma (55–90 Hz) oscillations, which correlate with excitatory inputs into the region, decreased. These results support the idea that acute and chronic stress differentially affect neural computations carried out by hippocampal circuits and suggest that acute stress may improve cognitive processing.
Collapse
Affiliation(s)
- Anupratap Tomar
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
34
|
Cruces-Solis H, Babaev O, Ali H, Piletti Chatain C, Mykytiuk V, Balekoglu N, Wenger S, Krueger-Burg D. Altered theta and beta oscillatory synchrony in a genetic mouse model of pathological anxiety. FASEB J 2021; 35:e21585. [PMID: 33960026 DOI: 10.1096/fj.202002028rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/11/2022]
Abstract
While the neural circuits mediating normal, adaptive defensive behaviors have been extensively studied, substantially less is currently known about the network mechanisms by which aberrant, pathological anxiety is encoded in the brain. Here we investigate in mice how deletion of Neuroligin-2 (Nlgn2), an inhibitory synapse-specific adhesion protein that has been associated with pathological anxiety and other psychiatric disorders, alters the communication between key brain regions involved in mediating defensive behaviors. To this end, we performed multi-site simultaneous local field potential (LFP) recordings from the basolateral amygdala (BLA), centromedial amygdala (CeM), bed nucleus of the stria terminalis (BNST), prefrontal cortex (mPFC) and ventral hippocampus (vHPC) in an open field paradigm. We found that LFP power in the vHPC was profoundly increased and was accompanied by an abnormal modulation of the synchrony of theta frequency oscillations particularly in the vHPC-mPFC-BLA circuit. Moreover, deletion of Nlgn2 increased beta and gamma frequency synchrony across the network, and this increase was associated with increased center avoidance. Local deletion of Nlgn2 in the vHPC and BLA revealed that they encode distinct aspects of this avoidance phenotype, with vHPC linked to immobility and BLA linked to a reduction in exploratory activity. Together, our data demonstrate that alterations in long-range functional connectivity link synaptic inhibition to abnormal defensive behaviors, and that both exaggerated activation of normal defensive circuits and recruitment of fundamentally distinct mechanisms contribute to this phenotype. Nlgn2 knockout mice therefore represent a highly relevant model to study the role of inhibitory synaptic transmission in the circuits underlying anxiety disorders.
Collapse
Affiliation(s)
- Hugo Cruces-Solis
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Olga Babaev
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Heba Ali
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Carolina Piletti Chatain
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Vasyl Mykytiuk
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Nursen Balekoglu
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sally Wenger
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Ventral tegmental area GABA neurons mediate stress-induced blunted reward-seeking in mice. Nat Commun 2021; 12:3539. [PMID: 34112787 PMCID: PMC8192742 DOI: 10.1038/s41467-021-23906-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/21/2021] [Indexed: 11/08/2022] Open
Abstract
Decreased pleasure-seeking (anhedonia) forms a core symptom of depression. Stressful experiences precipitate depression and disrupt reward-seeking, but it remains unclear how stress causes anhedonia. We recorded simultaneous neural activity across limbic brain areas as mice underwent stress and discovered a stress-induced 4 Hz oscillation in the nucleus accumbens (NAc) that predicts the degree of subsequent blunted reward-seeking. Surprisingly, while previous studies on blunted reward-seeking focused on dopamine (DA) transmission from the ventral tegmental area (VTA) to the NAc, we found that VTA GABA, but not DA, neurons mediate stress-induced blunted reward-seeking. Inhibiting VTA GABA neurons disrupts stress-induced NAc oscillations and rescues reward-seeking. By contrast, mimicking this signature of stress by stimulating NAc-projecting VTA GABA neurons at 4 Hz reproduces both oscillations and blunted reward-seeking. Finally, we find that stress disrupts VTA GABA, but not DA, neural encoding of reward anticipation. Thus, stress elicits VTA-NAc GABAergic activity that induces VTA GABA mediated blunted reward-seeking.
Collapse
|
36
|
Ahmed A, Misrani A, Tabassum S, Yang L, Long C. Minocycline inhibits sleep deprivation-induced aberrant microglial activation and Keap1-Nrf2 expression in mouse hippocampus. Brain Res Bull 2021; 174:41-52. [PMID: 34087360 DOI: 10.1016/j.brainresbull.2021.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/26/2022]
Abstract
Sleep deprivation (SD) is a hallmark of modern society and associated with many neuropsychiatric disorders, including depression and anxiety. However, the cellular and molecular mechanisms underlying SD-associated depression and anxiety remain elusive. Does the neuroinflammation play a role in mediating the effects of SD? In this study, we investigated SD-induced cellular and molecular alterations in the hippocampus and asked whether treatment with an anti-inflammatory drug, minocycline, could attenuate these alterations. We found that SD animals exhibit activated microglia and decreased levels of Keap1 and Nrf2 (antioxidant and anti-inflammatory factors) in the hippocampus. In vivo local field potential recordings show decreased theta and beta oscillations, but increased high gamma oscillations, as a result of SD. Behavioral analysis revealed increased immobility time in the forced swim and tail suspension tests, and decreased sucrose intake in SD mice, all indicative of depressive-like behavior. Moreover, open field test and elevated plus maze test results indicated that SD increases anxiety-like behavior. Interestingly, treatment with the microglial modulator minocycline prevented SD-induced microglial activation, restored Keap1 and Nrf2 levels, normalized neuronal oscillations, and alleviated depressive-like and anxiety-like behavior. The present study reveals that microglial activation and Keap1-Nrf2 signaling play a crucial role in SD-induced behavioral alteration, and that minocycline treatment has a protective effect on these alterations.
Collapse
Affiliation(s)
- Adeel Ahmed
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China.
| |
Collapse
|
37
|
Perumal MB, Sah P. Inhibitory Circuits in the Basolateral Amygdala in Aversive Learning and Memory. Front Neural Circuits 2021; 15:633235. [PMID: 33994955 PMCID: PMC8120102 DOI: 10.3389/fncir.2021.633235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Neural circuits in the basolateral amygdala (BLA) play a pivotal role in the learning and memory formation, and processing of emotionally salient experiences, particularly aversive ones. A diverse population of GABAergic neurons present in the BLA orchestrate local circuits to mediate emotional memory functions. Targeted manipulation of GABAergic neuronal subtypes has shed light on cell-type specific functional roles in the fear learning and memory, revealing organizing principles for the operation of inhibitory circuit motifs in the BLA.
Collapse
Affiliation(s)
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Joint Center for Neuroscience and Neural Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
38
|
Zirkle J, Rubchinsky LL. Noise effect on the temporal patterns of neural synchrony. Neural Netw 2021; 141:30-39. [PMID: 33857688 DOI: 10.1016/j.neunet.2021.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023]
Abstract
Neural synchrony in the brain is often present in an intermittent fashion, i.e., there are intervals of synchronized activity interspersed with intervals of desynchronized activity. A series of experimental studies showed that this kind of temporal patterning of neural synchronization may be very specific and may be correlated with behaviour (even if the average synchrony strength is not changed). Prior studies showed that a network with many short desynchronized intervals may be functionally different from a network with few long desynchronized intervals as it may be more sensitive to synchronizing input signals. In this study, we investigated the effect of channel noise on the temporal patterns of neural synchronization. We employed a small network of conductance-based model neurons that were mutually connected via excitatory synapses. The resulting dynamics of the network was studied using the same time-series analysis methods as used in prior experimental and computational studies. While it is well known that synchrony strength generally degrades with noise, we found that noise also affects the temporal patterning of synchrony. Noise, at a sufficient intensity (yet too weak to substantially affect synchrony strength), promotes dynamics with predominantly short (although potentially very numerous) desynchronizations. Thus, channel noise may be one of the mechanisms contributing to the short desynchronization dynamics observed in multiple experimental studies.
Collapse
Affiliation(s)
- Joel Zirkle
- Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Leonid L Rubchinsky
- Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
39
|
Ruby NF. Suppression of Circadian Timing and Its Impact on the Hippocampus. Front Neurosci 2021; 15:642376. [PMID: 33897354 PMCID: PMC8060574 DOI: 10.3389/fnins.2021.642376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
In this article, I describe the development of the disruptive phase shift (DPS) protocol and its utility for studying how circadian dysfunction impacts memory processing in the hippocampus. The suprachiasmatic nucleus (SCN) of the Siberian hamster is a labile circadian pacemaker that is easily rendered arrhythmic (ARR) by a simple manipulation of ambient lighting. The DPS protocol uses room lighting to administer a phase-advancing signal followed by a phase-delaying signal within one circadian cycle to suppress clock gene rhythms in the SCN. The main advantage of this model for inducing arrhythmia is that the DPS protocol is non-invasive; circadian rhythms are eliminated while leaving the animals neurologically and genetically intact. In the area of learning and memory, DPS arrhythmia produces much different results than arrhythmia by surgical ablation of the SCN. As I show, SCN ablation has little to no effect on memory. By contrast, DPS hamsters have an intact, but arrhythmic, SCN which produces severe deficits in memory tasks that are accompanied by fragmentation of electroencephalographic theta oscillations, increased synaptic inhibition in hippocampal circuits, and diminished responsiveness to cholinergic signaling in the dentate gyrus of the hippocampus. The studies reviewed here show that DPS hamsters are a promising model for translational studies of adult onset circadian dysfunction in humans.
Collapse
Affiliation(s)
- Norman F. Ruby
- Biology Department, Stanford University, Stanford, CA, United States
| |
Collapse
|
40
|
Powell D, Haddad SA, Gorur-Shandilya S, Marder E. Coupling between fast and slow oscillator circuits in Cancer borealis is temperature-compensated. eLife 2021; 10:60454. [PMID: 33538245 PMCID: PMC7889077 DOI: 10.7554/elife.60454] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Coupled oscillatory circuits are ubiquitous in nervous systems. Given that most biological processes are temperature-sensitive, it is remarkable that the neuronal circuits of poikilothermic animals can maintain coupling across a wide range of temperatures. Within the stomatogastric ganglion (STG) of the crab, Cancer borealis, the fast pyloric rhythm (~1 Hz) and the slow gastric mill rhythm (~0.1 Hz) are precisely coordinated at ~11°C such that there is an integer number of pyloric cycles per gastric mill cycle (integer coupling). Upon increasing temperature from 7°C to 23°C, both oscillators showed similar temperature-dependent increases in cycle frequency, and integer coupling between the circuits was conserved. Thus, although both rhythms show temperature-dependent changes in rhythm frequency, the processes that couple these circuits maintain their coordination over a wide range of temperatures. Such robustness to temperature changes could be part of a toolbox of processes that enables neural circuits to maintain function despite global perturbations.
Collapse
Affiliation(s)
- Daniel Powell
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Sara A Haddad
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | | | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| |
Collapse
|
41
|
Jung F, Carlén M. Neuronal oscillations and the mouse prefrontal cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:337-372. [PMID: 33785151 DOI: 10.1016/bs.irn.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The mouse prefrontal cortex (PFC) encompasses a collection of agranual brain regions in the rostral neocortex and is considered to be critically involved in the neuronal computations underlying intentional behaviors. Flexible behavioral responses demand coordinated integration of sensory inputs with state, goal and memory information in brain-wide neuronal networks. Neuronal oscillations are proposed to provide a temporal scaffold for coordination of neuronal network activity and routing of information. In the present book chapter, we review findings on the role neuronal oscillations in prefrontal functioning, with a specific focus on research in mice. We discuss discoveries pertaining to local prefrontal processing, as well to interactions with other brain regions. We also discuss how the recent discovery of brain-wide respiration-entrained rhythms (RR) warrant re-evaluation of certain findings on slow oscillations (<10Hz) in prefrontal functioning.
Collapse
Affiliation(s)
- Felix Jung
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Marie Carlén
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
42
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
43
|
Cannabis use and posttraumatic stress disorder comorbidity: Epidemiology, biology and the potential for novel treatment approaches. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:143-193. [PMID: 33648669 DOI: 10.1016/bs.irn.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cannabis use is increasing among some demographics in the United States and is tightly linked to anxiety, trauma, and stress reactivity at the epidemiological and biological level. Stress-coping motives are highly cited reasons for cannabis use. However, with increased cannabis use comes the increased susceptibility for cannabis use disorder (CUD). Indeed, CUD is highly comorbid with posttraumatic stress disorder (PTSD). Importantly, endogenous cannabinoid signaling systems play a key role in the regulation of stress reactivity and anxiety regulation, and preclinical data suggest deficiencies in this signaling system could contribute to the development of stress-related psychopathology. Furthermore, endocannabinoid deficiency states, either pre-existing or induced by trauma exposure, could provide explanatory insights into the high rates of comorbid cannabis use in patients with PTSD. Here we review clinical and preclinical literature related to the cannabis use-PTSD comorbidity, the role of endocannabinoids in the regulation of stress reactivity, and potential therapeutic implications of recent work in this area.
Collapse
|
44
|
Franzmeier N, Ren J, Damm A, Monté-Rubio G, Boada M, Ruiz A, Ramirez A, Jessen F, Düzel E, Rodríguez Gómez O, Benzinger T, Goate A, Karch CM, Fagan AM, McDade E, Buerger K, Levin J, Duering M, Dichgans M, Suárez-Calvet M, Haass C, Gordon BA, Lim YY, Masters CL, Janowitz D, Catak C, Wolfsgruber S, Wagner M, Milz E, Moreno-Grau S, Teipel S, Grothe MJ, Kilimann I, Rossor M, Fox N, Laske C, Chhatwal J, Falkai P, Perneczky R, Lee JH, Spottke A, Boecker H, Brosseron F, Fliessbach K, Heneka MT, Nestor P, Peters O, Fuentes M, Menne F, Priller J, Spruth EJ, Franke C, Schneider A, Westerteicher C, Speck O, Wiltfang J, Bartels C, Araque Caballero MÁ, Metzger C, Bittner D, Salloway S, Danek A, Hassenstab J, Yakushev I, Schofield PR, Morris JC, Bateman RJ, Ewers M. The BDNF Val66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer's disease. Mol Psychiatry 2021; 26:614-628. [PMID: 30899092 PMCID: PMC6754794 DOI: 10.1038/s41380-019-0404-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 02/14/2019] [Indexed: 01/29/2023]
Abstract
In Alzheimer's disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aβ) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aβ, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aβ-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Jinyi Ren
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Alexander Damm
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Gemma Monté-Rubio
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain
| | - Mercè Boada
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Agustín Ruiz
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Alfredo Ramirez
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Frank Jessen
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Emrah Düzel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Octavio Rodríguez Gómez
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Tammie Benzinger
- grid.4367.60000 0001 2355 7002Department of Radiology, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA
| | - Alison Goate
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Celeste M. Karch
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA
| | - Anne M. Fagan
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Eric McDade
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Katharina Buerger
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Duering
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Martin Dichgans
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Suárez-Calvet
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.430077.7Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia Spain ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brian A. Gordon
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychological and Brain Sciences, Washington University, St. Louis, MO USA
| | - Yen Ying Lim
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Colin L. Masters
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Daniel Janowitz
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Cihan Catak
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Steffen Wolfsgruber
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Wagner
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Esther Milz
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Sonia Moreno-Grau
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Stefan Teipel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, University Hospital Rostock, Rostock, Germany
| | - Michel J Grothe
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Ingo Kilimann
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Martin Rossor
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Nick Fox
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Christoph Laske
- grid.428620.aHertie Institute for Clinical Brain Research, Tübingen, Germany ,grid.424247.30000 0004 0438 0426Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer Chhatwal
- grid.38142.3c000000041936754XMassachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Peter Falkai
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Perneczky
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.7445.20000 0001 2113 8111Neuroepidemiology and Ageing Research Unit, School of Public Health, The Imperial College of Science, Technology and Medicine, London, UK
| | - Jae-Hong Lee
- grid.413967.e0000 0001 0842 2126Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Annika Spottke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Neurology, University of Bonn, Bonn, Germany
| | - Henning Boecker
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Radiology, University of Bonn, Bonn, Germany
| | - Frederic Brosseron
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Fliessbach
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T. Heneka
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Peter Nestor
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Oliver Peters
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Manuel Fuentes
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Felix Menne
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Josef Priller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Eike J. Spruth
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Christiana Franke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Anja Schneider
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christine Westerteicher
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Speck
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Magdeburg, Germany ,grid.452320.20000 0004 0404 7236Center for Behavioral Brain Sciences, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department for Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, Germany
| | - Jens Wiltfang
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany ,grid.7311.40000000123236065iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Miguel Ángel Araque Caballero
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Coraline Metzger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Bittner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stephen Salloway
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Adrian Danek
- grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jason Hassenstab
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Igor Yakushev
- grid.6936.a0000000123222966Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Peter R. Schofield
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Barker Street Randwick, Sydney, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - John C. Morris
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Randall J. Bateman
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
| |
Collapse
|
45
|
Loewke AC, Garrett A, Steiger A, Fisher N, Heller HC, Colas D, Ruby NF. Loss of Circadian Timing Disrupts Theta Episodes during Object Exploration. Clocks Sleep 2020; 2:523-535. [PMID: 33271811 PMCID: PMC7711584 DOI: 10.3390/clockssleep2040038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022] Open
Abstract
This study examined whether theta oscillations were compromised by the type of circadian disruption that impairs hippocampal-dependent memory processes. In prior studies on Siberian hamsters, we developed a one-time light treatment that eliminated circadian timing in the central pacemaker, the suprachiasmatic nucleus (SCN). These arrhythmic animals had impaired hippocampal-dependent memory whereas animals made arrhythmic with SCN lesions did not. The current study examined whether theta oscillations are compromised by the same light treatment that produced memory impairments in these animals. We found that both methods of inducing circadian-arrhythmia shortened theta episodes in the EEG by nearly 50%. SCN-lesioned animals, however, exhibited a 3-fold increase in the number of theta episodes and more than doubled the total time that theta dominated the EEG compared to SCN-intact circadian-arrhythmic animals. Video tracking showed that changes in theta were paralleled by similar changes in exploration behavior. These results suggest that the circadian-arrhythmic SCN interferes with hippocampal memory encoding by fragmenting theta oscillations. SCN-lesioned animals can, however, compensate for the shortened theta episodes by increasing their frequency. Implications for rhythm coherence and theta sequence models of memory formation are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Norman F. Ruby
- Biology Department, Stanford University, Stanford, CA 94305, USA; (A.C.L.); (A.G.); (A.S.); (N.F.); (H.C.H.); (D.C.)
| |
Collapse
|
46
|
Brief Report: Classification of Autistic Traits According to Brain Activity Recoded by fNIRS Using ε-Complexity Coefficients. J Autism Dev Disord 2020; 51:3380-3390. [PMID: 33206269 DOI: 10.1007/s10803-020-04793-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Individuals with ASD have been shown to have different pattern of functional connectivity. In this study, brain activity of participants with many and few autistic traits, was recorded using an fNIRS device, as participants preformed an interpersonal synchronization task. This type of task involves synchronization and functional connectivity of different brain regions. A novel method for assessing signal complexity, using ε-complexity coefficients, applied for the first i.e. on fNIRS recording, was used to classify brain recording of participants with many/few autistic traits. Successful classification was achieved implying that this method may be useful for classification of fNIRS recordings and that there is a difference in brain activity between participants with low and high autistic traits as they perform an interpersonal synchronization task.
Collapse
|
47
|
Rodriguez-Romaguera J, Ung RL, Nomura H, Otis JM, Basiri ML, Namboodiri VM, Zhu X, Robinson JE, van den Munkhof HE, McHenry JA, Eckman LE, Kosyk O, Jhou TC, Kash TL, Bruchas MR, Stuber GD. Prepronociceptin-Expressing Neurons in the Extended Amygdala Encode and Promote Rapid Arousal Responses to Motivationally Salient Stimuli. Cell Rep 2020; 33:108362. [PMID: 33176134 PMCID: PMC8136285 DOI: 10.1016/j.celrep.2020.108362] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/18/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Motivational states consist of cognitive, emotional, and physiological components controlled by multiple brain regions. An integral component of this neural circuitry is the bed nucleus of the stria terminalis (BNST). Here, we identify that neurons within BNST that express the gene prepronociceptin (PnocBNST) modulate rapid changes in physiological arousal that occur upon exposure to motivationally salient stimuli. Using in vivo two-photon calcium imaging, we find that PnocBNST neuronal responses directly correspond with rapid increases in pupillary size when mice are exposed to aversive and rewarding odors. Furthermore, optogenetic activation of these neurons increases pupillary size and anxiety-like behaviors but does not induce approach, avoidance, or locomotion. These findings suggest that excitatory responses in PnocBNST neurons encode rapid arousal responses that modulate anxiety states. Further histological, electrophysiological, and single-cell RNA sequencing data reveal that PnocBNST neurons are composed of genetically and anatomically identifiable subpopulations that may differentially tune rapid arousal responses to motivational stimuli.
Collapse
Affiliation(s)
- Jose Rodriguez-Romaguera
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Randall L. Ung
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Hiroshi Nomura
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA
| | - James M. Otis
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Marcus L. Basiri
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Vijay M.K. Namboodiri
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Xueqi Zhu
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA
| | - J. Elliott Robinson
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Hanna E. van den Munkhof
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Jenna A. McHenry
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Louisa E.H. Eckman
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Oksana Kosyk
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Thomas C. Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Thomas L. Kash
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC 72599, USA,Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 72599, USA
| | - Michael R. Bruchas
- Department of Anesthesiology, Washington University Pain Center, Department of Neuroscience, Division of Biology & Biomedical Sciences; and Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Garret D. Stuber
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Center, University of North Carolina, Chapel Hill, NC 72599, USA,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC 72599, USA,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 72599, USA,Correspondence:
| |
Collapse
|
48
|
Schoepfer KJ, Xu Y, Wilber AA, Wu W, Kabbaj M. Sex differences and effects of the estrous stage on hippocampal-prefrontal theta communications. Physiol Rep 2020; 8:e14646. [PMID: 33230976 PMCID: PMC7683809 DOI: 10.14814/phy2.14646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 11/28/2022] Open
Abstract
Effective communication between the mammalian hippocampus and neocortex is essential to certain cognitive-behavioral tasks critical to survival in a changing environment. Notably, functional synchrony between local field potentials (LFPs) of the ventral hippocampus (vHPC) and the medial prefrontal cortex (mPFC) within the theta band (4-12 Hz) underlies innate avoidance behavior during approach-avoidance conflict tasks in male rodents. However, the physiology of vHPC-mPFC communications in females remains unestablished. Furthermore, little is known about how mPFC subdivisions functionally interact in the theta band with hippocampal subdivisions in both sexes in the absence of task demand. Given the established roles of biological sex and gonadal hormone status on innate avoidance behaviors and neuronal excitability, here, we characterize the effects of biological sex and female estrous stage on hippocampal-prefrontal (HPC-mPFC) theta signaling in freely moving female and male rats. LFPs from vHPC, dorsal hippocampus (dHPC), mPFC-prelimbic (PrL), and mPFC-infralimbic (IL) were simultaneously recorded during spontaneous exploration of a familiar arena. Data suggest that theta phase and power in vHPC preferentially synchronize with PrL; conversely, dHPC and IL preferentially synchronize. Males displayed greater vHPC-PrL theta synchrony than females, despite similar regional frequency band power and inter-regional coherence. Additionally, several significant estrous-linked changes in HPC-mPFC theta dynamics were observed. These findings support the hypothesis that HPC-mPFC theta signaling is sensitive to both biological sex and female estrous stage. These findings establish novel research avenues concerning sex as a biological variable and effects of gonadal hormone status on HPC-mPFC network activity as it pertains to threat evaluation biomarkers.
Collapse
Affiliation(s)
- Kristin J. Schoepfer
- Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFLUSA
| | - Yiqi Xu
- Department of StatisticsFlorida State UniversityTallahasseeFLUSA
| | - Aaron A. Wilber
- Department of PsychologyFlorida State UniversityTallahasseeFLUSA
| | - Wei Wu
- Department of StatisticsFlorida State UniversityTallahasseeFLUSA
| | - Mohamed Kabbaj
- Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFLUSA
| |
Collapse
|
49
|
Hsiao K, Noble C, Pitman W, Yadav N, Kumar S, Keele GR, Terceros A, Kanke M, Conniff T, Cheleuitte-Nieves C, Tolwani R, Sethupathy P, Rajasethupathy P. A Thalamic Orphan Receptor Drives Variability in Short-Term Memory. Cell 2020; 183:522-536.e19. [PMID: 32997977 DOI: 10.1016/j.cell.2020.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/09/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
Working memory is a form of short-term memory that involves maintaining and updating task-relevant information toward goal-directed pursuits. Classical models posit persistent activity in prefrontal cortex (PFC) as a primary neural correlate, but emerging views suggest additional mechanisms may exist. We screened ∼200 genetically diverse mice on a working memory task and identified a genetic locus on chromosome 5 that contributes to a substantial proportion (17%) of the phenotypic variance. Within the locus, we identified a gene encoding an orphan G-protein-coupled receptor, Gpr12, which is sufficient to drive substantial and bidirectional changes in working memory. Molecular, cellular, and imaging studies revealed that Gpr12 enables high thalamus-PFC synchrony to support memory maintenance and choice accuracy. These findings identify an orphan receptor as a potent modifier of short-term memory and supplement classical PFC-based models with an emerging thalamus-centric framework for the mechanistic understanding of working memory.
Collapse
Affiliation(s)
- Kuangfu Hsiao
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Chelsea Noble
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Wendy Pitman
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Suraj Kumar
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | | | - Andrea Terceros
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tara Conniff
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | | | - Ravi Tolwani
- Comparative Bioscience Center, The Rockefeller University, New York, NY 10065, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
50
|
Lo MC, Younk R, Widge AS. Paired Electrical Pulse Trains for Controlling Connectivity in Emotion-Related Brain Circuitry. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2721-2730. [PMID: 33048668 DOI: 10.1109/tnsre.2020.3030714] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurostimulation therapies for psychiatric disorders often have limited clinical efficacy. The limited efficacy might arise from a mismatch between therapy and disease mechanisms. Mental disorders are believed to arise from communication breakdown in distributed brain circuits, and thus altering connectivity between brain regions might be an effective way to restore normal brain communication. Synchronized neural oscillations (coherence) and synaptic strength are two common measures of brain connectivity. In this work, we developed an electrical stimulation method for altering narrow-frequency-band (theta, 5-8 Hz) coherence and synaptic strength. We tested this method in a circuit between infralimbic cortex (IL) and basolateral amygdala (BLA), which is broadly implicated in fear regulation. 6 Hz pulse trains were delivered into IL and BLA with various inter-train lags. These paired trains induced long-lasting synaptic strength change and a brief coherence enhancement in the IL-BLA circuit. This enhancement was specific to the "top-down" (IL-to-BLA) direction, and only occurred when the IL and BLA pulse trains had a relative lag of 180° (83 ms). Since the IL-BLA connection is known to be highly relevant to fear regulation, this method provides a tool to study the relationship between brain connectivity and fear behaviors. Further, it may be a new approach to study the relative roles of synaptic strength and oscillatory synchrony in brain network communication.
Collapse
|