1
|
Li B, He Q, Chang J, Yang B, Tang X, He Y, Guan T, Zhou G. Toward efficient slide-level grading of liver biopsy via explainable deep learning framework. Med Biol Eng Comput 2025; 63:1435-1449. [PMID: 39806118 DOI: 10.1007/s11517-024-03266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
In the context of chronic liver diseases, where variability in progression necessitates early and precise diagnosis, this study addresses the limitations of traditional histological analysis and the shortcomings of existing deep learning approaches. A novel patch-level classification model employing multi-scale feature extraction and fusion was developed to enhance the grading accuracy and interpretability of liver biopsies, analyzing 1322 cases across various staining methods. The study also introduces a slide-level aggregation framework, comparing different diagnostic models, to efficiently integrate local histological information. Results from extensive validation show that the slide-level model consistently achieved high F1 scores, notably 0.9 for inflammatory activity and steatosis, and demonstrated rapid diagnostic capabilities with less than one minute per slide on average. The patch-level model also performed well, with an F1 score of 0.64 for ballooning and 0.99 for other indicators, and proved transferable to public datasets. The conclusion drawn is that the proposed analytical framework offers a reliable basis for the diagnosis and treatment of chronic liver diseases, with the added benefit of robust interpretability, suggesting its practical utility in clinical settings.
Collapse
Affiliation(s)
- Bingchen Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Qiming He
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Jing Chang
- Pathology Department, Beijing Youan Hospital, Capital Medical University, Beijing, 100000, China
| | - Bo Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Xi Tang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Yonghong He
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Tian Guan
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China.
| | - Guangde Zhou
- Pathology Department, Beijing Youan Hospital, Capital Medical University, Beijing, 100000, China.
| |
Collapse
|
2
|
Klauschen F, Dippel J, Müller KR. [Foundation models in pathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2025; 46:152-155. [PMID: 40272536 DOI: 10.1007/s00292-025-01429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
Foundation models prepare neural networks for applications in specific domains, such as speech applications or image analysis, through self-supervised pretraining. These models can be adapted for specific applications, such as histopathological diagnostics. While adaptation still requires supervised training, AI applications based on foundation models achieve significantly better prediction accuracy with fewer training data compared to conventional approaches. This article introduces the topic and provides an overview of foundation models in pathology.
Collapse
Affiliation(s)
- Frederick Klauschen
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland.
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Deutschland.
- Bayerisches Zentrum für Krebsforschung (BZKF), München, Deutschland.
| | - Jonas Dippel
- Machine Learning Group, Technische Universität Berlin, Berlin, Deutschland
- Aignostics GmbH, Berlin, Deutschland
| | - Klaus-Robert Müller
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Deutschland
- Machine Learning Group, Technische Universität Berlin, Berlin, Deutschland
- Department of Artificial Intelligence, Korea University, Seoul, Südkorea
- Max-Planck-Institut für Informatik, Saarbrücken, Deutschland
| |
Collapse
|
3
|
Rahnfeld J, Naouar M, Kalweit G, Boedecker J, Dubruc E, Kalweit M. A comparative study of explainability methods for whole slide classification of lymph node metastases using vision transformers. PLOS DIGITAL HEALTH 2025; 4:e0000792. [PMID: 40233316 PMCID: PMC11999707 DOI: 10.1371/journal.pdig.0000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/17/2025] [Indexed: 04/17/2025]
Abstract
Recent advancements in deep learning have shown promise in enhancing the performance of medical image analysis. In pathology, automated whole slide imaging has transformed clinical workflows by streamlining routine tasks and diagnostic and prognostic support. However, the lack of transparency of deep learning models, often described as black boxes, poses a significant barrier to their clinical adoption. This study evaluates various explainability methods for Vision Transformers, assessing their effectiveness in explaining the rationale behind their classification predictions on histopathological images. Using a Vision Transformer trained on the publicly available CAMELYON16 dataset comprising of 399 whole slide images of lymph node metastases of patients with breast cancer, we conducted a comparative analysis of a diverse range of state-of-the-art techniques for generating explanations through heatmaps, including Attention Rollout, Integrated Gradients, RISE, and ViT-Shapley. Our findings reveal that Attention Rollout and Integrated Gradients are prone to artifacts, while RISE and particularly ViT-Shapley generate more reliable and interpretable heatmaps. ViT-Shapley also demonstrated faster runtime and superior performance in insertion and deletion metrics. These results suggest that integrating ViT-Shapley-based heatmaps into pathology reports could enhance trust and scalability in clinical workflows, facilitating the adoption of explainable artificial intelligence in pathology.
Collapse
Affiliation(s)
- Jens Rahnfeld
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- University of Freiburg, Freiburg, Germany
| | - Mehdi Naouar
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- University of Freiburg, Freiburg, Germany
| | - Gabriel Kalweit
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- University of Freiburg, Freiburg, Germany
| | - Joschka Boedecker
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools, Freiburg, Germany
| | - Estelle Dubruc
- Department of Pathology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maria Kalweit
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Finzel B. Current methods in explainable artificial intelligence and future prospects for integrative physiology. Pflugers Arch 2025; 477:513-529. [PMID: 39994035 PMCID: PMC11958383 DOI: 10.1007/s00424-025-03067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/26/2025]
Abstract
Explainable artificial intelligence (XAI) is gaining importance in physiological research, where artificial intelligence is now used as an analytical and predictive tool for many medical research questions. The primary goal of XAI is to make AI models understandable for human decision-makers. This can be achieved in particular through providing inherently interpretable AI methods or by making opaque models and their outputs transparent using post hoc explanations. This review introduces XAI core topics and provides a selective overview of current XAI methods in physiology. It further illustrates solved and discusses open challenges in XAI research using existing practical examples from the medical field. The article gives an outlook on two possible future prospects: (1) using XAI methods to provide trustworthy AI for integrative physiological research and (2) integrating physiological expertise about human explanation into XAI method development for useful and beneficial human-AI partnerships.
Collapse
Affiliation(s)
- Bettina Finzel
- Cognitive Systems, University of Bamberg, Weberei 5, 96047, Bamberg, Germany.
| |
Collapse
|
5
|
Houssein EH, Mohsen S, Emam MM, Abdel Samee N, Alkanhel RI, Younis EMG. Leveraging explainable artificial intelligence for emotional label prediction through health sensor monitoring. CLUSTER COMPUTING 2025; 28:86. [DOI: 10.1007/s10586-024-04804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 01/03/2025]
|
6
|
Wan H, Tian H, Wu C, Zhao Y, Zhang D, Zheng Y, Li Y, Duan X. Development of a Disease Model for Predicting Postoperative Delirium Using Combined Blood Biomarkers. Ann Clin Transl Neurol 2025. [PMID: 40095318 DOI: 10.1002/acn3.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVE Postoperative delirium, a common neurocognitive complication after surgery and anesthesia, requires early detection for potential intervention. Herein, we constructed a multidimensional postoperative delirium risk-prediction model incorporating multiple demographic parameters and blood biomarkers to enhance prediction accuracy. METHODS We included 555 patients undergoing radical surgery for colorectal cancer. Demographic characteristics and lipid profiles were collected preoperatively, and perioperative anesthesia and surgical conditions were recorded; blood biomarkers were measured before and after surgery. The 3D-CAM scale was used to assess postoperative delirium occurrence within 3 days after surgery. Patients were divided into the postoperative delirium (N = 100) and non-postoperative delirium (N = 455) groups. Based on machine learning, linear and nine non-linear models were developed and compared to select the optimal model. Shapley value-interpretation methods and mediation analysis were used to assess feature importance and interaction. RESULTS The median age of the participants was 65 years (interquartile range: 56-71 years; 57.8% male). Among the 10 machine-learning models, the random forest model performed the best (validation cohort, area under the receiver operating characteristic curve of 0.795 [0.704-0.885]). Lipid profile (total cholesterol, triglycerides, and trimethylamine-N-oxide) levels were identified as key postoperative delirium predictors. Mediation analysis further confirmed mediating effects among total cholesterol, trimethylamine-N-oxide, and postoperative delirium; a nomogram model was developed as a web-based tool for external validation and use by other clinicians. INTERPRETATION Blood biomarkers are crucial in predicting postoperative delirium and aid anesthesiologists in identifying its risks in a timely manner. This model facilitates personalized perioperative management and reduces the occurrence of postoperative delirium. TRIAL REGISTRATION ChiCTR2300075723.
Collapse
Affiliation(s)
- Hengjun Wan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Huaju Tian
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Operating Room, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Cheng Wu
- Department of Anesthesiology, Hejiang People's Hospital, Luzhou, Sichuan, China
| | - Yue Zhao
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Operating Room, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Daiying Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Operating Room, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yujie Zheng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Department of Anesthesiology, Hejiang People's Hospital, Luzhou, Sichuan, China
| | - Xiaoxia Duan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Pantanowitz L, Pearce T, Abukhiran I, Hanna M, Wheeler S, Soong TR, Tafti AP, Pantanowitz J, Lu MY, Mahmood F, Gu Q, Rashidi HH. Nongenerative Artificial Intelligence in Medicine: Advancements and Applications in Supervised and Unsupervised Machine Learning. Mod Pathol 2025; 38:100680. [PMID: 39675426 DOI: 10.1016/j.modpat.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
The use of artificial intelligence (AI) within pathology and health care has advanced extensively. We have accordingly witnessed an increased adoption of various AI tools that are transforming our approach to clinical decision support, personalized medicine, predictive analytics, automation, and discovery. The familiar and more reliable AI tools that have been incorporated within health care thus far fall mostly under the nongenerative AI domain, which includes supervised and unsupervised machine learning (ML) techniques. This review article explores how such nongenerative AI methods, rooted in traditional rules-based systems, enhance diagnostic accuracy, efficiency, and consistency within medicine. Key concepts and the application of supervised learning models (ie, classification and regression) such as decision trees, support vector machines, linear and logistic regression, K-nearest neighbor, and neural networks are explained along with the newer landscape of neural network-based nongenerative foundation models. Unsupervised learning techniques, including clustering, dimensionality reduction, and anomaly detection, are also discussed for their roles in uncovering novel disease subtypes or identifying outliers. Technical details related to the application of nongenerative AI algorithms for analyzing whole slide images are also highlighted. The performance, explainability, and reliability of nongenerative AI models essential for clinical decision-making is also reviewed, as well as challenges related to data quality, model interpretability, and risk of data drift. An understanding of which AI-ML models to employ and which shortcomings need to be addressed is imperative to safely and efficiently leverage, integrate, and monitor these traditional AI tools in clinical practice and research.
Collapse
Affiliation(s)
- Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.
| | - Thomas Pearce
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Ibrahim Abukhiran
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew Hanna
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - T Rinda Soong
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Ahmad P Tafti
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Health Informatics, School of Health and Rehabilitation Services, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Ming Y Lu
- Department of Pathology, Massachusetts General Brigham Hospital, Harvard Medical School, Boston, Massachusetts; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Faisal Mahmood
- Department of Pathology, Massachusetts General Brigham Hospital, Harvard Medical School, Boston, Massachusetts; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Qiangqiang Gu
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Hooman H Rashidi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
Benfatto S, Sill M, Jones DTW, Pfister SM, Sahm F, von Deimling A, Capper D, Hovestadt V. Explainable artificial intelligence of DNA methylation-based brain tumor diagnostics. Nat Commun 2025; 16:1787. [PMID: 39979307 PMCID: PMC11842776 DOI: 10.1038/s41467-025-57078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
We have recently developed a machine learning classifier that enables fast, accurate, and affordable classification of brain tumors based on genome-wide DNA methylation profiles that is widely employed in the clinic. Neuro-oncology research would benefit greatly from understanding the underlying artificial intelligence decision process, which currently remains unclear. Here, we describe an interpretable framework to explain the classifier's decisions. We show that functional genomic regions of various sizes are predominantly employed to distinguish between different tumor classes, ranging from enhancers and CpG islands to large-scale heterochromatic domains. We detect a high degree of genomic redundancy, with many genes distinguishing individual tumor classes, explaining the robustness of the classifier and revealing potential targets for further therapeutic investigation. We anticipate that our resource will build up trust in machine learning in clinical settings, foster biomarker discovery and development of compact point-of-care assays, and enable further epigenome research of brain tumors. Our interpretable framework is accessible to the research community via an interactive web application ( https://hovestadtlab.shinyapps.io/shinyMNP/ ).
Collapse
Affiliation(s)
- Salvatore Benfatto
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Sill
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David T W Jones
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Hovestadt
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Nilsson A, Meimetis N, Lauffenburger DA. Towards an interpretable deep learning model of cancer. NPJ Precis Oncol 2025; 9:46. [PMID: 39948231 PMCID: PMC11825879 DOI: 10.1038/s41698-025-00822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer is a manifestation of dysfunctional cell states. It emerges from an interplay of intrinsic and extrinsic factors that disrupt cellular dynamics, including genetic and epigenetic alterations, as well as the tumor microenvironment. This complexity can make it challenging to infer molecular causes for treating the disease. This may be addressed by system-wide computer models of cells, as they allow rapid generation and testing of hypotheses that would be too slow or impossible to perform in the laboratory and clinic. However, so far, such models have been impeded by both experimental and computational limitations. In this perspective, we argue that they can now be achieved using deep learning algorithms to integrate omics data and prior knowledge of molecular networks. Such models would have many applications in precision oncology, e.g., for identifying drug targets and biomarkers, predicting resistance mechanisms and toxicity effects of drugs, or simulating cell-cell interactions in the microenvironment.
Collapse
Affiliation(s)
- Avlant Nilsson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- Department of Cell and Molecular Biology, SciLifeLab, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos Meimetis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Newton PM, Jones S. Education and Training Assessment and Artificial Intelligence. A Pragmatic Guide for Educators. Br J Biomed Sci 2025; 81:14049. [PMID: 39973890 PMCID: PMC11837776 DOI: 10.3389/bjbs.2024.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
The emergence of ChatGPT and similar new Generative AI tools has created concern about the validity of many current assessment methods in higher education, since learners might use these tools to complete those assessments. Here we review the current evidence on this issue and show that for assessments like essays and multiple-choice exams, these concerns are legitimate: ChatGPT can complete them to a very high standard, quickly and cheaply. We consider how to assess learning in alternative ways, and the importance of retaining assessments of foundational core knowledge. This evidence is considered from the perspective of current professional regulations covering the professional registration of Biomedical Scientists and their Health and Care Professions Council (HCPC) approved education providers, although it should be broadly relevant across higher education.
Collapse
Affiliation(s)
- Philip M. Newton
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Sue Jones
- Institute of Biomedical Science, London, United Kingdom
| |
Collapse
|
11
|
Hofman P, Ourailidis I, Romanovsky E, Ilié M, Budczies J, Stenzinger A. Artificial intelligence for diagnosis and predictive biomarkers in Non-Small cell lung cancer Patients: New promises but also new hurdles for the pathologist. Lung Cancer 2025; 200:108110. [PMID: 39879785 DOI: 10.1016/j.lungcan.2025.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/09/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
The rapid development of artificial intelligence (AI) based tools in pathology laboratories has brought forward unlimited opportunities for pathologists. Promising AI applications used for accomplishing diagnostic, prognostic and predictive tasks are being developed at a high pace. This is notably true in thoracic oncology, given the significant and rapid therapeutic progress made recently for lung cancer patients. Advances have been based on drugs targeting molecular alterations, immunotherapies, and, more recently antibody-drug conjugates which are soon to be introduced. For over a decade, many proof-of-concept studies have explored the use of AI algorithms in thoracic oncology to improve lung cancer patient care. However, despite the enthusiasm in this domain, the set-up and use of AI algorithms in daily practice of thoracic pathologists has not been operative until now, due to several constraints. The purpose of this review is to describe the potential but also the current barriers of AI applications in routine thoracic pathology for non-small cell lung cancer patient care and to suggest practical solutions for rapid future implementation.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, FHU OncoAge, Biobank BB-0033-00025, IRCAN, Côte d'Azur University, 30 avenue de la voie romaine 06002 Nice cedex 01, France.
| | - Iordanis Ourailidis
- Institute of Pathology Heidelberg, University Hospital Heidelberg, In Neuenheimer Feld 224 69120 Heidelberg, Germany
| | - Eva Romanovsky
- Institute of Pathology Heidelberg, University Hospital Heidelberg, In Neuenheimer Feld 224 69120 Heidelberg, Germany
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, FHU OncoAge, Biobank BB-0033-00025, IRCAN, Côte d'Azur University, 30 avenue de la voie romaine 06002 Nice cedex 01, France
| | - Jan Budczies
- Institute of Pathology Heidelberg, University Hospital Heidelberg, In Neuenheimer Feld 224 69120 Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology Heidelberg, University Hospital Heidelberg, In Neuenheimer Feld 224 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Keyl J, Keyl P, Montavon G, Hosch R, Brehmer A, Mochmann L, Jurmeister P, Dernbach G, Kim M, Koitka S, Bauer S, Bechrakis N, Forsting M, Führer-Sakel D, Glas M, Grünwald V, Hadaschik B, Haubold J, Herrmann K, Kasper S, Kimmig R, Lang S, Rassaf T, Roesch A, Schadendorf D, Siveke JT, Stuschke M, Sure U, Totzeck M, Welt A, Wiesweg M, Baba HA, Nensa F, Egger J, Müller KR, Schuler M, Klauschen F, Kleesiek J. Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence. NATURE CANCER 2025; 6:307-322. [PMID: 39885364 PMCID: PMC11864985 DOI: 10.1038/s43018-024-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025]
Abstract
Despite advances in precision oncology, clinical decision-making still relies on limited variables and expert knowledge. To address this limitation, we combined multimodal real-world data and explainable artificial intelligence (xAI) to introduce AI-derived (AID) markers for clinical decision support. We used xAI to decode the outcome of 15,726 patients across 38 solid cancer entities based on 350 markers, including clinical records, image-derived body compositions, and mutational tumor profiles. xAI determined the prognostic contribution of each clinical marker at the patient level and identified 114 key markers that accounted for 90% of the neural network's decision process. Moreover, xAI enabled us to uncover 1,373 prognostic interactions between markers. Our approach was validated in an independent cohort of 3,288 patients with lung cancer from a US nationwide electronic health record-derived database. These results show the potential of xAI to transform the assessment of clinical variables and enable personalized, data-driven cancer care.
Collapse
Affiliation(s)
- Julius Keyl
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
- Institute of Pathology, University Hospital Essen (AöR), Essen, Germany
| | - Philipp Keyl
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Grégoire Montavon
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Machine Learning Group, Technical University of Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - René Hosch
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
| | - Alexander Brehmer
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
| | - Liliana Mochmann
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Philipp Jurmeister
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gabriel Dernbach
- Machine Learning Group, Technical University of Berlin, Berlin, Germany
| | - Moon Kim
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
| | - Sven Koitka
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (AöR), Essen, Germany
| | - Sebastian Bauer
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
| | - Nikolaos Bechrakis
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Ophthalmology, University Hospital Essen (AöR), Essen, Germany
| | - Michael Forsting
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
| | - Dagmar Führer-Sakel
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen (AöR), Essen, Germany
| | - Martin Glas
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Viktor Grünwald
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Urology, University Hospital Essen (AöR), Essen, Germany
| | - Boris Hadaschik
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Urology, University Hospital Essen (AöR), Essen, Germany
| | - Johannes Haubold
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Nuclear Medicine, University Hospital Essen (AöR), Essen, Germany
| | - Stefan Kasper
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
| | - Rainer Kimmig
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- Department of Gynecology and Obstetrics, University Hospital Essen (AöR), Essen, Germany
| | - Stephan Lang
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Otorhinolaryngology, University Hospital Essen (AöR), Essen, Germany
| | - Tienush Rassaf
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen (AöR), Essen, Germany
| | - Alexander Roesch
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Dermatology, University Hospital Essen (AöR), Essen, Germany
| | - Dirk Schadendorf
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Dermatology, University Hospital Essen (AöR), Essen, Germany
- Research Alliance Ruhr, Research Center One Health, University of Duisburg-Essen, Essen, Germany
| | - Jens T Siveke
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen (AöR), University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Martin Stuschke
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Radiotherapy, University Hospital Essen (AöR), Essen, Germany
| | - Ulrich Sure
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen (AöR), Essen, Germany
| | - Matthias Totzeck
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen (AöR), Essen, Germany
| | - Anja Welt
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
| | - Marcel Wiesweg
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Felix Nensa
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (AöR), Essen, Germany
- Medical Faculty, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany
| | - Jan Egger
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany
| | - Klaus-Robert Müller
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- Machine Learning Group, Technical University of Berlin, Berlin, Germany.
- Department of Artificial Intelligence, Korea University, Seoul, South Korea.
- MPI for Informatics, Saarbrücken, Germany.
| | - Martin Schuler
- Department of Medical Oncology, University Hospital Essen (AöR), Essen, Germany.
- Medical Faculty, University of Duisburg-Essen, Essen, Germany.
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany.
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany.
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Berlin partner site, Berlin, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Munich partner site, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Jens Kleesiek
- Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany.
- Medical Faculty, University of Duisburg-Essen, Essen, Germany.
- West German Cancer Center, University Hospital Essen (AöR), Essen, Germany.
- German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany.
| |
Collapse
|
13
|
Fountzilas E, Pearce T, Baysal MA, Chakraborty A, Tsimberidou AM. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit Med 2025; 8:75. [PMID: 39890986 PMCID: PMC11785769 DOI: 10.1038/s41746-025-01471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025] Open
Abstract
The confluence of new technologies with artificial intelligence (AI) and machine learning (ML) analytical techniques is rapidly advancing the field of precision oncology, promising to improve diagnostic approaches and therapeutic strategies for patients with cancer. By analyzing multi-dimensional, multiomic, spatial pathology, and radiomic data, these technologies enable a deeper understanding of the intricate molecular pathways, aiding in the identification of critical nodes within the tumor's biology to optimize treatment selection. The applications of AI/ML in precision oncology are extensive and include the generation of synthetic data, e.g., digital twins, in order to provide the necessary information to design or expedite the conduct of clinical trials. Currently, many operational and technical challenges exist related to data technology, engineering, and storage; algorithm development and structures; quality and quantity of the data and the analytical pipeline; data sharing and generalizability; and the incorporation of these technologies into the current clinical workflow and reimbursement models.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St Luke's Clinic, Panorama, Thessaloniki, Greece
| | | | - Mehmet A Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, USA
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, USA.
| |
Collapse
|
14
|
Esders M, Schnake T, Lederer J, Kabylda A, Montavon G, Tkatchenko A, Müller KR. Analyzing Atomic Interactions in Molecules as Learned by Neural Networks. J Chem Theory Comput 2025; 21:714-729. [PMID: 39792788 PMCID: PMC11780731 DOI: 10.1021/acs.jctc.4c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for robust chemical modeling such as stable molecular dynamics (MD). To go beyond accuracy, we use explainable artificial intelligence (XAI) techniques to develop a general analysis framework for atomic interactions and apply it to the SchNet and PaiNN neural network models. We compare these interactions with a set of fundamental chemical principles to understand how well the models have learned the underlying physicochemical concepts from the data. We focus on the strength of the interactions for different atomic species, how predictions for intensive and extensive quantum molecular properties are made, and analyze the decay and many-body nature of the interactions with interatomic distance. Models that deviate too far from known physical principles produce unstable MD trajectories, even when they have very high energy and force prediction accuracy. We also suggest further improvements to the ML architectures to better account for the polynomial decay of atomic interactions.
Collapse
Affiliation(s)
- Malte Esders
- BIFOLD—Berlin
Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Machine
Learning Group, Berlin Institute of Technology, 10587 Berlin, Germany
| | - Thomas Schnake
- BIFOLD—Berlin
Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Machine
Learning Group, Berlin Institute of Technology, 10587 Berlin, Germany
| | - Jonas Lederer
- BIFOLD—Berlin
Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Machine
Learning Group, Berlin Institute of Technology, 10587 Berlin, Germany
| | - Adil Kabylda
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Grégoire Montavon
- BIFOLD—Berlin
Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Machine
Learning Group, Berlin Institute of Technology, 10587 Berlin, Germany
- Department
of Mathematics and Computer Science, Free
University of Berlin, 14195 Berlin, Germany
| | - Alexandre Tkatchenko
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Klaus-Robert Müller
- BIFOLD—Berlin
Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Machine
Learning Group, Berlin Institute of Technology, 10587 Berlin, Germany
- Google
Deepmind, 10963 Berlin, Germany
- Department
of Artificial Intelligence, Korea University, 136-713 Seoul, Korea
- Max
Planck Institute for Informatics, 66123 Saarbrücken, Germany
| |
Collapse
|
15
|
Hilborne LH, Chambliss AB. Diagnostic Stewardship-Our Past, Our Current Status, and Future Promise. J Appl Lab Med 2025; 10:200-204. [PMID: 39749438 DOI: 10.1093/jalm/jfae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Lee H Hilborne
- Professor of Pathology and Laboratory Medicine, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Senior Medical Director, Medical Affairs, Quest Diagnostics, Secaucus, NJ, United States
| | - Allison B Chambliss
- Associate Clinical Professor, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Pentimalli TM, Karaiskos N, Rajewsky N. Challenges and Opportunities in the Clinical Translation of High-Resolution Spatial Transcriptomics. ANNUAL REVIEW OF PATHOLOGY 2025; 20:405-432. [PMID: 39476415 DOI: 10.1146/annurev-pathmechdis-111523-023417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pathology has always been fueled by technological advances. Histology powered the study of tissue architecture at single-cell resolution and remains a cornerstone of clinical pathology today. In the last decade, next-generation sequencing has become informative for the targeted treatment of many diseases, demonstrating the importance of genome-scale molecular information for personalized medicine. Today, revolutionary developments in spatial transcriptomics technologies digitalize gene expression at subcellular resolution in intact tissue sections, enabling the computational analysis of cell types, cellular phenotypes, and cell-cell communication in routinely collected and archival clinical samples. Here we review how such molecular microscopes work, highlight their potential to identify disease mechanisms and guide personalized therapies, and provide guidance for clinical study design. Finally, we discuss remaining challenges to the swift translation of high-resolution spatial transcriptomics technologies and how integration of multimodal readouts and deep learning approaches is bringing us closer to a holistic understanding of tissue biology and pathology.
Collapse
Affiliation(s)
- Tancredi Massimo Pentimalli
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
| | - Nikos Karaiskos
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- National Center for Tumor Diseases, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
17
|
Liu Y, Li H, Zhu Z, Chen C, Zhang X, Jin G, Li H. RSDCNet: An efficient and lightweight deep learning model for benign and malignant pathology detection in breast cancer. Digit Health 2025; 11:20552076251336286. [PMID: 40297351 PMCID: PMC12035010 DOI: 10.1177/20552076251336286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Background Breast cancer is a leading malignant tumor among women globally, with its pathological classification into benign or malignant directly influencing treatment strategies and prognosis. Traditional diagnostic methods, reliant on manual interpretation, are not only time-intensive and subjective but also susceptible to variability based on the pathologist's expertise and workload. Consequently, the development of an efficient, automated, and precise pathological detection method is crucial. Methods This study introduces RSDCNet, an enhanced lightweight neural network architecture designed for the automatic detection of benign and malignant breast cancer pathology. Utilizing the BreakHis dataset, which comprises 9109 microscopic images of breast tumors including various differentiation levels of benign and malignant samples, RSDCNet integrates depthwise separable convolution and SCSE modules. This integration aims to reduce model parameters while enhancing key feature extraction capabilities, thereby achieving both lightweight design and high efficiency. Results RSDCNet demonstrated superior performance across multiple evaluation metrics in the classification task. The model achieved an accuracy of 0.9903, a recall of 0.9897, an F1 score of 0.9888, and a precision of 0.9879, outperforming established deep learning models such as EfficientNet, RegNet, HRNet, and ViT. Notably, RSDCNet's parameter count stood at just 1,199,662, significantly lower than HRNet's 19,254,102 and ViT's 85,800,194, highlighting its enhanced resource efficiency. Conclusion The RSDCNet model presented in this study excels in the efficient and accurate classification of benign and malignant breast cancer pathology. Compared to traditional methods and other leading models, RSDCNet not only reduces computational resource consumption but also offers improved feature extraction and clinical interpretability. This advancement provides substantial technical support for the intelligent diagnosis of breast cancer, paving the way for more effective treatment planning and prognosis assessment.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Haipeng Li
- Department of Mental Health, Bengbu Medical University, Bengbu, Anhui, China
| | - Zhu Zhu
- Department of Electrocardiograph (ECG), The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Chen Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaojing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Gongsheng Jin
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Hongtao Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
18
|
Sagiv C, Hadar O, Najjar A, Pahnke J. Artificial intelligence in surgical pathology - Where do we stand, where do we go? EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:109541. [PMID: 39694737 DOI: 10.1016/j.ejso.2024.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Surgical and neuropathologists continuously search for new and disease-specific features, such as independent predictors of tumor prognosis or determinants of tumor entities and sub-entities. This is a task where artificial intelligence (AI)/machine learning (ML) systems could significantly contribute to help with tumor outcome prediction and the search for new diagnostic or treatment stratification biomarkers. AI systems are increasingly integrated into routine pathology workflows to improve accuracy, reproducibility, productivity and to reveal difficult-to-see features in complicated histological slides, including the quantification of important markers for tumor grading and staging. In this article, we review the infrastructure needed to facilitate digital and computational pathology. We address the barriers for its full deployment in the clinical setting and describe the use of AI in intraoperative or postoperative settings were frozen or formalin-fixed, paraffin-embedded materials are used. We also summarize quality assessment issues of slide digitization, new spatial biology approaches, and the determination of specific gene-expression from whole slide images. Finally, we highlight new innovative and future technologies, such as large language models, optical biopsies, and mass spectrometry imaging.
Collapse
Affiliation(s)
- Chen Sagiv
- DeePathology Ltd., HaTidhar 5, P. O. Box 2622, Ra'anana, IL-4365104, Israel.
| | - Ofir Hadar
- DeePathology Ltd., HaTidhar 5, P. O. Box 2622, Ra'anana, IL-4365104, Israel
| | - Abderrahman Najjar
- Department of Pathology, Rabin Medical Center (RMC), Ze'ev Jabotinsky 39, Petah Tikva, IL-4941492, Israel
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372, Oslo, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538, Lübeck, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, LV-1004, Rīga, Latvia; Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, IL-6997801, Israel.
| |
Collapse
|
19
|
Chormai P, Herrmann J, Muller KR, Montavon G. Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:7283-7299. [PMID: 38607718 DOI: 10.1109/tpami.2024.3388275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Explainable AI aims to overcome the black-box nature of complex ML models like neural networks by generating explanations for their predictions. Explanations often take the form of a heatmap identifying input features (e.g. pixels) that are relevant to the model's decision. These explanations, however, entangle the potentially multiple factors that enter into the overall complex decision strategy. We propose to disentangle explanations by extracting at some intermediate layer of a neural network, subspaces that capture the multiple and distinct activation patterns (e.g. visual concepts) that are relevant to the prediction. To automatically extract these subspaces, we propose two new analyses, extending principles found in PCA or ICA to explanations. These novel analyses, which we call principal relevant component analysis (PRCA) and disentangled relevant subspace analysis (DRSA), maximize relevance instead of e.g. variance or kurtosis. This allows for a much stronger focus of the analysis on what the ML model actually uses for predicting, ignoring activations or concepts to which the model is invariant. Our approach is general enough to work alongside common attribution techniques such as Shapley Value, Integrated Gradients, or LRP. Our proposed methods show to be practically useful and compare favorably to the state of the art as demonstrated on benchmarks and three use cases.
Collapse
|
20
|
Leite KRM, Melo PADS. Artificial Intelligence in Uropathology. Diagnostics (Basel) 2024; 14:2279. [PMID: 39451602 PMCID: PMC11506825 DOI: 10.3390/diagnostics14202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The global population is currently at unprecedented levels, with an estimated 7.8 billion people inhabiting the planet. We are witnessing a rise in cancer cases, attributed to improved control of cardiovascular diseases and a growing elderly population. While this has resulted in an increased workload for pathologists, it also presents an opportunity for advancement. The accurate classification of tumors and identification of prognostic and predictive factors demand specialized expertise and attention. Fortunately, the rapid progression of artificial intelligence (AI) offers new prospects in medicine, particularly in diagnostics such as image and surgical pathology. This article explores the transformative impact of AI in the field of uropathology, with a particular focus on its application in diagnosing, grading, and prognosticating various urological cancers. AI, especially deep learning algorithms, has shown significant potential in improving the accuracy and efficiency of pathology workflows. This comprehensive review is dedicated to providing an insightful overview of the primary data concerning the utilization of AI in diagnosing, predicting prognosis, and determining drug responses for tumors of the urinary tract. By embracing these advancements, we can look forward to improved outcomes and better patient care.
Collapse
Affiliation(s)
- Katia Ramos Moreira Leite
- Laboratory of Medical Investigation, Urology Department, University of São Paulo Medical School, LIM55, Av Dr. Arnando 455, Sao Paulo 01246-903, SP, Brazil;
| | | |
Collapse
|
21
|
Chen V, Yang M, Cui W, Kim JS, Talwalkar A, Ma J. Applying interpretable machine learning in computational biology-pitfalls, recommendations and opportunities for new developments. Nat Methods 2024; 21:1454-1461. [PMID: 39122941 PMCID: PMC11348280 DOI: 10.1038/s41592-024-02359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/24/2024] [Indexed: 08/12/2024]
Abstract
Recent advances in machine learning have enabled the development of next-generation predictive models for complex computational biology problems, thereby spurring the use of interpretable machine learning (IML) to unveil biological insights. However, guidelines for using IML in computational biology are generally underdeveloped. We provide an overview of IML methods and evaluation techniques and discuss common pitfalls encountered when applying IML methods to computational biology problems. We also highlight open questions, especially in the era of large language models, and call for collaboration between IML and computational biology researchers.
Collapse
Affiliation(s)
- Valerie Chen
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Muyu Yang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Wenbo Cui
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Joon Sik Kim
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ameet Talwalkar
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Ding N, Yuan Z, Ma Z, Wu Y, Yin L. AI-Assisted Rational Design and Activity Prediction of Biological Elements for Optimizing Transcription-Factor-Based Biosensors. Molecules 2024; 29:3512. [PMID: 39124917 PMCID: PMC11313831 DOI: 10.3390/molecules29153512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The rational design, activity prediction, and adaptive application of biological elements (bio-elements) are crucial research fields in synthetic biology. Currently, a major challenge in the field is efficiently designing desired bio-elements and accurately predicting their activity using vast datasets. The advancement of artificial intelligence (AI) technology has enabled machine learning and deep learning algorithms to excel in uncovering patterns in bio-element data and predicting their performance. This review explores the application of AI algorithms in the rational design of bio-elements, activity prediction, and the regulation of transcription-factor-based biosensor response performance using AI-designed elements. We discuss the advantages, adaptability, and biological challenges addressed by the AI algorithms in various applications, highlighting their powerful potential in analyzing biological data. Furthermore, we propose innovative solutions to the challenges faced by AI algorithms in the field and suggest future research directions. By consolidating current research and demonstrating the practical applications and future potential of AI in synthetic biology, this review provides valuable insights for advancing both academic research and practical applications in biotechnology.
Collapse
Affiliation(s)
- Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Zenan Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Yefei Wu
- Zhejiang Qianjiang Biochemical Co., Ltd., Haining 314400, China;
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
23
|
Khan MK, Raza M, Shahbaz M, Hussain I, Khan MF, Xie Z, Shah SSA, Tareen AK, Bashir Z, Khan K. The recent advances in the approach of artificial intelligence (AI) towards drug discovery. Front Chem 2024; 12:1408740. [PMID: 38882215 PMCID: PMC11176507 DOI: 10.3389/fchem.2024.1408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024] Open
Abstract
Artificial intelligence (AI) has recently emerged as a unique developmental influence that is playing an important role in the development of medicine. The AI medium is showing the potential in unprecedented advancements in truth and efficiency. The intersection of AI has the potential to revolutionize drug discovery. However, AI also has limitations and experts should be aware of these data access and ethical issues. The use of AI techniques for drug discovery applications has increased considerably over the past few years, including combinatorial QSAR and QSPR, virtual screening, and denovo drug design. The purpose of this survey is to give a general overview of drug discovery based on artificial intelligence, and associated applications. We also highlighted the gaps present in the traditional method for drug designing. In addition, potential strategies and approaches to overcome current challenges are discussed to address the constraints of AI within this field. We hope that this survey plays a comprehensive role in understanding the potential of AI in drug discovery.
Collapse
Affiliation(s)
- Mahroza Kanwal Khan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Mohsin Raza
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, China
| | - Muhammad Shahbaz
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, United States
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, Republic of Korea
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen, China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Zoobia Bashir
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Karim Khan
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, China
| |
Collapse
|
24
|
Khorsandi D, Rezayat D, Sezen S, Ferrao R, Khosravi A, Zarepour A, Khorsandi M, Hashemian M, Iravani S, Zarrabi A. Application of 3D, 4D, 5D, and 6D bioprinting in cancer research: what does the future look like? J Mater Chem B 2024; 12:4584-4612. [PMID: 38686396 DOI: 10.1039/d4tb00310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The application of three- and four-dimensional (3D/4D) printing in cancer research represents a significant advancement in understanding and addressing the complexities of cancer biology. 3D/4D materials provide more physiologically relevant environments compared to traditional two-dimensional models, allowing for a more accurate representation of the tumor microenvironment that enables researchers to study tumor progression, drug responses, and interactions with surrounding tissues under conditions similar to in vivo conditions. The dynamic nature of 4D materials introduces the element of time, allowing for the observation of temporal changes in cancer behavior and response to therapeutic interventions. The use of 3D/4D printing in cancer research holds great promise for advancing our understanding of the disease and improving the translation of preclinical findings to clinical applications. Accordingly, this review aims to briefly discuss 3D and 4D printing and their advantages and limitations in the field of cancer. Moreover, new techniques such as 5D/6D printing and artificial intelligence (AI) are also introduced as methods that could be used to overcome the limitations of 3D/4D printing and opened promising ways for the fast and precise diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Dorsa Rezayat
- Center for Global Design and Manufacturing, College of Engineering and Applied Science, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221, USA
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956 Istanbul, Türkiye
- Nanotechnology Research and Application Center, Sabanci University, Tuzla 34956 Istanbul, Türkiye
| | - Rafaela Ferrao
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
- University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Melika Khorsandi
- Department of Cellular and Molecular Biology, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Hashemian
- Department of Cellular and Molecular Biology, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
25
|
Gombolay GY, Silva A, Schrum M, Gopalan N, Hallman‐Cooper J, Dutt M, Gombolay M. Effects of explainable artificial intelligence in neurology decision support. Ann Clin Transl Neurol 2024; 11:1224-1235. [PMID: 38581138 PMCID: PMC11093252 DOI: 10.1002/acn3.52036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
OBJECTIVE Artificial intelligence (AI)-based decision support systems (DSS) are utilized in medicine but underlying decision-making processes are usually unknown. Explainable AI (xAI) techniques provide insight into DSS, but little is known on how to design xAI for clinicians. Here we investigate the impact of various xAI techniques on a clinician's interaction with an AI-based DSS in decision-making tasks as compared to a general population. METHODS We conducted a randomized, blinded study in which members of the Child Neurology Society and American Academy of Neurology were compared to a general population. Participants received recommendations from a DSS via a random assignment of an xAI intervention (decision tree, crowd sourced agreement, case-based reasoning, probability scores, counterfactual reasoning, feature importance, templated language, and no explanations). Primary outcomes included test performance and perceived explainability, trust, and social competence of the DSS. Secondary outcomes included compliance, understandability, and agreement per question. RESULTS We had 81 neurology participants with 284 in the general population. Decision trees were perceived as the more explainable by the medical versus general population (P < 0.01) and as more explainable than probability scores within the medical population (P < 0.001). Increasing neurology experience and perceived explainability degraded performance (P = 0.0214). Performance was not predicted by xAI method but by perceived explainability. INTERPRETATION xAI methods have different impacts on a medical versus general population; thus, xAI is not uniformly beneficial, and there is no one-size-fits-all approach. Further user-centered xAI research targeting clinicians and to develop personalized DSS for clinicians is needed.
Collapse
Affiliation(s)
- Grace Y. Gombolay
- Department of Pediatrics, Division of NeurologyChildren's Healthcare of Atlanta, Emory University School of MedicineAtlantaGAUSA
| | | | | | | | - Jamika Hallman‐Cooper
- Department of Pediatrics, Division of NeurologyChildren's Healthcare of Atlanta, Emory University School of MedicineAtlantaGAUSA
| | - Monideep Dutt
- Department of Pediatrics, Division of NeurologyChildren's Healthcare of Atlanta, Emory University School of MedicineAtlantaGAUSA
| | - Matthew Gombolay
- Department of Pediatrics, Division of NeurologyChildren's Healthcare of Atlanta, Emory University School of MedicineAtlantaGAUSA
| |
Collapse
|
26
|
Yilmaz F, Brickman A, Najdawi F, Yakirevich E, Egger R, Resnick MB. Advancing Artificial Intelligence Integration Into the Pathology Workflow: Exploring Opportunities in Gastrointestinal Tract Biopsies. J Transl Med 2024; 104:102043. [PMID: 38431118 DOI: 10.1016/j.labinv.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
This review aims to present a comprehensive overview of the current landscape of artificial intelligence (AI) applications in the analysis of tubular gastrointestinal biopsies. These publications cover a spectrum of conditions, ranging from inflammatory ailments to malignancies. Moving beyond the conventional diagnosis based on hematoxylin and eosin-stained whole-slide images, the review explores additional implications of AI, including its involvement in interpreting immunohistochemical results, molecular subtyping, and the identification of cellular spatial biomarkers. Furthermore, the review examines how AI can contribute to enhancing the quality and control of diagnostic processes, introducing new workflow options, and addressing the limitations and caveats associated with current AI platforms in this context.
Collapse
Affiliation(s)
- Fazilet Yilmaz
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Arlen Brickman
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Fedaa Najdawi
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Evgeny Yakirevich
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | | | - Murray B Resnick
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island.
| |
Collapse
|
27
|
Dombrowski AK, Gerken JE, Muller KR, Kessel P. Diffeomorphic Counterfactuals With Generative Models. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:3257-3274. [PMID: 38055368 DOI: 10.1109/tpami.2023.3339980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Counterfactuals can explain classification decisions of neural networks in a human interpretable way. We propose a simple but effective method to generate such counterfactuals. More specifically, we perform a suitable diffeomorphic coordinate transformation and then perform gradient ascent in these coordinates to find counterfactuals which are classified with great confidence as a specified target class. We propose two methods to leverage generative models to construct such suitable coordinate systems that are either exactly or approximately diffeomorphic. We analyze the generation process theoretically using Riemannian differential geometry and validate the quality of the generated counterfactuals using various qualitative and quantitative measures.
Collapse
|
28
|
Klauschen F, Dippel J, Keyl P, Jurmeister P, Bockmayr M, Mock A, Buchstab O, Alber M, Ruff L, Montavon G, Müller KR. [Explainable artificial intelligence in pathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:133-139. [PMID: 38315198 DOI: 10.1007/s00292-024-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
With the advancements in precision medicine, the demands on pathological diagnostics have increased, requiring standardized, quantitative, and integrated assessments of histomorphological and molecular pathological data. Great hopes are placed in artificial intelligence (AI) methods, which have demonstrated the ability to analyze complex clinical, histological, and molecular data for disease classification, biomarker quantification, and prognosis estimation. This paper provides an overview of the latest developments in pathology AI, discusses the limitations, particularly concerning the black box character of AI, and describes solutions to make decision processes more transparent using methods of so-called explainable AI (XAI).
Collapse
Affiliation(s)
- Frederick Klauschen
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland.
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland.
- Deutsches Krebsforschungszentrum (DKTK/DKFZ), Partnerstandort München, München, Deutschland.
| | - Jonas Dippel
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland
- Machine Learning Group, Fachbereich Elektrotechnik und Informatik, Technische Universität Berlin, Berlin, Deutschland
| | - Philipp Keyl
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Philipp Jurmeister
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
- Deutsches Krebsforschungszentrum (DKTK/DKFZ), Partnerstandort München, München, Deutschland
| | - Michael Bockmayr
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Pädiatrische Hämatologie und Onkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Forschungsinstitut Kinderkrebs-Zentrum Hamburg, Hamburg, Deutschland
| | - Andreas Mock
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
- Deutsches Krebsforschungszentrum (DKTK/DKFZ), Partnerstandort München, München, Deutschland
| | - Oliver Buchstab
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Maximilian Alber
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Aignostics GmbH, Berlin, Deutschland
| | | | - Grégoire Montavon
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland
- Machine Learning Group, Fachbereich Elektrotechnik und Informatik, Technische Universität Berlin, Berlin, Deutschland
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Berlin, Deutschland
| | - Klaus-Robert Müller
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland.
- Machine Learning Group, Fachbereich Elektrotechnik und Informatik, Technische Universität Berlin, Berlin, Deutschland.
- Department of Artificial Intelligence, Korea University, Seoul, Südkorea.
- Max-Planck-Institut für Informatik, Saarbrücken, Deutschland.
- Machine Learning/Intelligent Data Analysis (IDA), Technische Universität Berlin, Marchstr. 23, 10587, Berlin, Deutschland.
| |
Collapse
|