1
|
Zhang Y, Gao Z, Qi Z, Xu J, Xue J, Xiong L, Wang J, Huang Y, Qin S. Fractionated radiotherapy initiated at the early stage of bone metastasis is effective to prolong survival in mouse model. Cancer Biol Ther 2025; 26:2455756. [PMID: 39834121 DOI: 10.1080/15384047.2025.2455756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Bone metastasis is common for breast cancer and associated with poor prognosis. Currently, radiotherapy (RT) serves as the standard treatment for patients exhibiting symptoms of bone metastasis to alleviate pain. Whether earlier application of RT will better control bone metastasis remains unclear. METHODS We utilized a mouse model of breast cancer bone metastasis by intra-femoral injection of 4T1-luc breast tumor cells. The bone metastasis was treated by RT using various doses, timings, and modalities. Tumor growth was assessed through bioluminescence imaging, and lung metastases was quantified following lung tissue fixation. Flow cytometry was employed to analyze alterations in immune cell populations. RESULTS Single high-dose RT suppressed tumor growth of bone metastases, but caused severe side effects. Conversely, fractionated RT mitigated tumor growth in bone metastases with fewer adverse effects. Fractioned RT initiated at the early stage of bone metastasis effectively inhibited tumor growth in the bone, suppressed secondary lung metastases, and prolonged mouse survival. In line with the known pro- and anti-metastatic effects of neutrophils and T cells in breast cancer, respectively, earlier fractioned RT consistently decreased the proportions of neutrophils while increased the proportions of T cells in both the bone and the lung tissues. CONCLUSION The data suggest that fractionated RT can inhibit the progression of early stage of bone metastasis and reduce secondary lung metastasis, leading to favorable outcomes. Therefore, these findings provide preclinical evidence to support the application of fractionated RT to treat patients with bone metastasis as earlier as possible.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhunyi Gao
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziwei Qi
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiahe Xu
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiao Xue
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lujie Xiong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junhui Wang
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuhui Huang
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Songbing Qin
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:20. [PMID: 40192949 PMCID: PMC11977077 DOI: 10.1186/s43556-025-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The metastatic cascade is a complicated process where cancer cells travel across multiple organs distant from their primary site of onset. Despite the wide acceptance of the 'seed and soil' theory, mechanisms driving metastasis organotropism remain mystery. Using breast cancer of different subtypes as the disease model, we characterized the 'metastatic profile of cancer cells' and the 'redox status of the organ microenvironment' as the primary determinants of cancer metastasis organotropism. Mechanically, we identified a positive correlation between cancer metabolic plasticity and stemness, and proposed oxidative stress as the selection power of cancer cells succeeding the metastasis cascade. Therapeutically, we proposed the use of pro-oxidative therapeutics in ablating cancer cells taking advantages of this fragile moment during metastasis. We comprehensively reviewed current pro-oxidative strategies for treating cancers that cover the first line chemo- and radio-therapies, approaches relying on naturally existing power including magnetic field, electric field, light and sound, nanoparticle-based anti-cancer composites obtained through artificial design, as well as cold atmospheric plasma as an innovative pro-oxidative multi-modal modality. We discussed possible combinations of pro-oxidative approaches with existing therapeutics in oncology prior to the forecast of future research directions. This paper identified the fundamental mechanics driving metastasis organotropism and proposed intervention strategies accordingly. Insights provided here may offer clues for the design of innovative solutions that may open a new paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Ming Xi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jitian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
3
|
Ghosh P, Dey A, Nandi S, Majumder R, Das S, Mandal M. CTGF (CCN2): a multifaceted mediator in breast cancer progression and therapeutic targeting. Cancer Metastasis Rev 2025; 44:32. [PMID: 39945880 DOI: 10.1007/s10555-025-10248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 02/01/2025] [Indexed: 03/28/2025]
Abstract
Breast cancer, with its diverse subtypes like ER-positive, HER-2-positive, and triple-negative, presents complex challenges demanding personalized treatment approaches. The intricate interplay of genetic, environmental, and lifestyle factors underscores its status as a primary contributor to cancer-related fatalities in women globally. Understanding the molecular drivers specific to each subtype is crucial for developing effective therapies. In this landscape, connective tissue growth factor (CTGF), also referred to as cellular communication network factor 2 (CCN2), emerges as a significant player. CTGF regulates critical biological activities like cell growth, invasion, and migration, impacting breast cancer development and progression. It modulates breast tumor microenvironment by promoting angiogenesis, activating cancer-associated fibroblasts (CAFs), and inducing inflammation. The activity of CTGF depends on several factors including oxygen levels, hormone signals, and growth factors and differs according to the type of breast cancer. CTGF can regulate breast cancer cells by activating various signaling pathways and modulating the transcription of other genes that are involved in tumor development and metastasis including S100A4, glucose transporter 3 (GLUT3), and vascular endothelial growth factor (VEGF). The matricellular protein can be considered a potential therapeutic target, as it can promote tumor growth and confer drug resistance in breast cancer. Numerous tactics, including neutralizing antibodies, antisense oligonucleotides, natural compounds, recombinant proteins, and short hairpin RNAs have been suggested to block its function. This review highlights the structure of CTGF, regulation of its expression, and current knowledge of its oncogenic role in breast cancer, as well as focusing on potential therapeutic strategies for targeting CTGF in breast cancer.
Collapse
Affiliation(s)
- Priya Ghosh
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Suvendu Nandi
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Ranabir Majumder
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India
| | - Subhayan Das
- Department of Allied Health Sciences, Brainware University, Kolkata 700125, Barasat, West Bengal, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology, Kharagpur 721302, Kharagpur, West Bengal, India.
| |
Collapse
|
4
|
Lusby R, Demirdizen E, Inayatullah M, Kundu P, Maiques O, Zhang Z, Terp MG, Sanz-Moreno V, Tiwari VK. Pan-cancer drivers of metastasis. Mol Cancer 2025; 24:2. [PMID: 39748426 PMCID: PMC11697158 DOI: 10.1186/s12943-024-02182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Metastasis remains a leading cause of cancer-related mortality, irrespective of the primary tumour origin. However, the core gene regulatory program governing distinct stages of metastasis across cancers remains poorly understood. We investigate this through single-cell transcriptome analysis encompassing over two hundred patients with metastatic and non-metastatic tumours across six cancer types. Our analysis revealed a prognostic core gene signature that provides insights into the intricate cellular dynamics and gene regulatory networks driving metastasis progression at the pan-cancer and single-cell level. Notably, the dissection of transcription factor networks active across different stages of metastasis, combined with functional perturbation, identified SP1 and KLF5 as key regulators, acting as drivers and suppressors of metastasis, respectively, at critical steps of this transition across multiple cancer types. Through in vivo and in vitro loss of function of SP1 in cancer cells, we revealed its role in driving cancer cell survival, invasive growth, and metastatic colonisation. Furthermore, tumour cells and the microenvironment increasingly engage in communication through WNT signalling as metastasis progresses, driven by SP1. Further validating these observations, a drug repurposing analysis identified distinct FDA-approved drugs with anti-metastasis properties, including inhibitors of WNT signalling across various cancers.
Collapse
Affiliation(s)
- Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK
| | - Engin Demirdizen
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Paramita Kundu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Oscar Maiques
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK
| | - Mikkel Green Terp
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, BT9 7AE, Belfast, UK.
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense C, Denmark.
| |
Collapse
|
5
|
Zhang Y, Wang B, Cai J, Yang Y, Tang C, Zheng X, Li H, Xu F. Enrichment and separation technology for evaluation of circulating tumor cells. Talanta 2025; 282:127025. [PMID: 39406084 DOI: 10.1016/j.talanta.2024.127025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
Circulating tumor cells (CTCs) are tumor cells that exist in human peripheral blood, which could spread to other tissues or organs via the blood circulation system and develop into metastatic foci, leading to tumor recurrence or metastasis in postoperative patients and thereby increasing the mortality of malignant tumor patients. Evaluation of CTC levels can be used for tumor metastasis prediction, prognosis evaluation, drug exploitation, individualized treatment, liquid biopsy, etc., which exhibit outstanding clinical application prospects. In recent years, accurately capturing and analyzing CTCs has become a research hotspot in the early diagnosis and precise treatment of tumors. This review summarized various enrichment and isolation technologies for evaluating CTCs based on the design principle and discussed the challenges and perspectives in this field.
Collapse
Affiliation(s)
- Yanjun Zhang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bing Wang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junwen Cai
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuting Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chen Tang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaoqun Zheng
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, 110000, China
| | - Feng Xu
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Ren J, Han Y, Xu J, Chen T, Huang W, Yan D. Synergistic Therapy of Metastatic Breast Cancers by Biomimetic Chemotherapeutic Drug-Gene Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70242-70255. [PMID: 39657238 DOI: 10.1021/acsami.4c13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cancer metastasis is responsible for more than 90% of tumor-related deaths. Especially, metastatic breast cancer (MBC) is a common malignancy with a high mortality among women worldwide. It is urgent to develop effective drugs for the treatment of MBC. Herein, biomimetic chemotherapeutic drug-gene nanoparticles (named TPT-ASOVEGF@MM NPs) were constructed for the combination therapy of MBC. First, topotecan hydrochloride (TPT) and vascular endothelial growth factor antisense oligonucleotide (ASOVEGF) were coself-assembled in water through electrostatic interaction to produce chemotherapeutic drug-gene nanoparticles (TPT-ASOVEGF NPs). Then, the nanoparticles were encapsulated within macrophage membranes (MM) to form biomimetic TPT-ASOVEGF@MM NPs with long circulation time in blood and active tumor-targeting ability. TPT-ASOVEGF@MM NPs can be effectively internalized by breast cancer cells and then the nanoparticles collapse to simultaneously release TPT and ASOVEGF. ASOVEGF can inhibit the expression of VEGF, impeding the process of neovascularization and blocking the metastatic pathway of cancer cells. Meanwhile, TPT can bind to the topoisomerase I-DNA complex to prevent DNA repair and replication, and further induce apoptosis of cancer cells. In addition, TPT can also affect hypoxia-inducible factor 1α (HIF-1α) expression and inhibit hypoxia-induced tumor metastasis to achieve synergistic therapy with ASOVEGF. In MBC mouse models, the in vivo inhibition rate of TPT-ASOVEGF@MM NPs for lung metastasis was 89.5%, with minor toxic side effects and the least number of metastatic nodules in the lungs. In summary, TPT-ASOVEGF@MM NPs would be a promising biomimetic nanodrug for chemo-gene combination therapy of MBC with high efficacy and safety in clinics.
Collapse
Affiliation(s)
- Junjie Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Han
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Jie Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianbao Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- XIANGFU Laboratory, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
7
|
Srinivasan S, Mohanprasanth A, Nadeem A, Saravanan M. Exploring the anti-cancer and antimetastatic effect of Silymarin against lung cancer. Toxicol Rep 2024; 13:101746. [PMID: 39431222 PMCID: PMC11490676 DOI: 10.1016/j.toxrep.2024.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
Lung cancer metastasis remains a significant challenge in cancer therapy, necessitating the exploration of novel treatment modalities. Silymarin, a natural compound derived from milk thistle, has demonstrated promising anticancer properties. This work explored the inhibitory effects of silymarin on lung cancer metastasis and revealed the underlying processes, focusing on matrix metalloproteinase (MMP) 2 and MMP-9 activities. Using a combination of in vitro and molecular docking analyses, we found that silymarin effectively reducing the lung cancer cells' motility and invasion by modulation of expression of MMP-2 and MMP-9. Furthermore, MTT assays revealed a dose-dependent inhibition of cell proliferation upon silymarin treatment and found the IC50 value at 58 μM. We observe that apoptotic morphology characteristic in silymarin treated groups. Cell cycle analysis exhibit the cell cycle arrest at G1 phase, 25.8 % increased apoptosis in silymarin treated groups, as evidenced by Annexin V staining. Moreover, silymarin treatment shows the lipid peroxidation in elevated level and reduced in enzymatic antioxidant level, indicating its potential role in mitigating oxidative stress induce cell death. Gelatin zymography assay indicates the silymarin has ability to inhibit the MMP-2 and MMP-9 expression in lung cancer. Additionally, cell migration assays and colony formation assays demonstrated impaired migratory and colony-forming abilities of lung cancer cells when treated with silymarin. Molecular docking studies further supported the binding affinity of silymarin with MMP-2 and MMP-9, demonstrate the -10.26 and -6.69 kcal/mol of binding energy. Collectively, our findings highlight the multifaceted anticancer properties of silymarin against lung cancer metastasis, providing insights into its therapeutic potential as an adjuvant treatment strategy.
Collapse
Affiliation(s)
- Srithika Srinivasan
- Saveetha Medical College, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, India
| | - Aruchamy Mohanprasanth
- AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, India
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, king Saud University, Riyadh, Saudi Arabia
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, India
| |
Collapse
|
8
|
Yousefi T, Mohammadi Jobani B, Taebi R, Qujeq D. Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis. DNA Cell Biol 2024; 43:438-451. [PMID: 39018567 DOI: 10.1089/dna.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohammadi Jobani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Liu W, Mousa AAK, Hopkins AM, Wu YF, Thu KL, Campbell M, Lees SJ, Ramachandran R, Hou J. Lysophosphatidic Acid Receptor 1 (LPA 1) Antagonists as Potential Migrastatics for Triple Negative Breast Cancer. ChemMedChem 2024; 19:e202400013. [PMID: 38648251 DOI: 10.1002/cmdc.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Metastasis is responsible for about 90 % of cancer deaths. Anti-metastatic drugs, termed as migrastatics, offer a distinctive therapeutic approach to address cancer migration and invasion. However, therapeutic exploitation of metastasis-specific targets remains limited, and the effective prevention and suppression of metastatic cancer continue to be elusive. Lysophosphatidic acid receptor 1 (LPA1) is activated by an endogenous lipid molecule LPA, leading to a diverse array of cellular activities. Previous studies have shown that the LPA/LPA1 axis supports the progression of metastasis for many types of cancer. In this study, we report the synthesis and biological evaluation of fluorine-containing triazole derivatives as potent LPA1 antagonists, offering potential as migrastatic drugs for triple negative breast cancer (TNBC). In particular, compound 12 f, the most potent and highly selective in this series with an IC50 value of 16.0 nM in the cAMP assay and 18.4 nM in the calcium mobilization assay, inhibited cell survival, migration, and invasion in the TNBC cell line. Interestingly, the compound did not induce apoptosis in TNBC cells and demonstrated no cytotoxic effects. These results highlight the potential of LPA1 as a migrastatic target. Consequently, the LPA1 antagonists developed in this study hold promise as potential migrastatic candidates for TNBC.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON, P7B 6 V4, Canada
| | - Amr A K Mousa
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Austin M Hopkins
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
| | - Yin Fang Wu
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kelsie L Thu
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Campbell
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON, P7B 6 V4, Canada
| | - Simon J Lees
- Northern Ontario School of Medicine University, Thunder Bay, Ontario, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON, P7B 6 V4, Canada
| |
Collapse
|
10
|
Nathanson SD, Dieterich LC, Zhang XHF, Chitale DA, Pusztai L, Reynaud E, Wu YH, Ríos-Hoyo A. Associations amongst genes, molecules, cells, and organs in breast cancer metastasis. Clin Exp Metastasis 2024; 41:417-437. [PMID: 37688650 DOI: 10.1007/s10585-023-10230-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
This paper is a cross fertilization of ideas about the importance of molecular aspects of breast cancer metastasis by basic scientists, a pathologist, and clinical oncologists at the Henry Ford Health symposium. We address four major topics: (i) the complex roles of lymphatic endothelial cells and the molecules that stimulate them to enhance lymph node and systemic metastasis and influence the anti-tumor immunity that might inhibit metastasis; (ii) the interaction of molecules and cells when breast cancer spreads to bone, and how bone metastases may themselves spread to internal viscera; (iii) how molecular expression and morphologic subtypes of breast cancer assist clinicians in determining which patients to treat with more or less aggressive therapies; (iv) how the outcomes of patients with oligometastases in breast cancer are different from those with multiple metastases and how that could justify the aggressive treatment of these patients with the hope of cure.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Health, 2799 W. Grand Blvd, Detroit, MI, 48202, USA.
- Cancer Center, Henry Ford Health, Detroit, MI, USA.
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emma Reynaud
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
11
|
Mirshahidi S, Yuan IJ, Chen Z, Simental A, Lee SC, Andrade Filho PA, Murry T, Zeng F, Duerksen-Hughes P, Wang C, Yuan X. Tumor Cell Stemness and Stromal Cell Features Contribute to Oral Cancer Outcome Disparity in Black Americans. Cancers (Basel) 2024; 16:2730. [PMID: 39123459 PMCID: PMC11311411 DOI: 10.3390/cancers16152730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Black Americans (BAs) with head and neck cancer (HNC) have worse survival outcomes compared to the White patients. While HNC disparities in patient outcomes for BAs have been well recognized, the specific drivers of the inferior outcomes remain poorly understood. Here, we investigated the biologic features of patient tumor specimens obtained during the surgical treatment of oral cancers and performed a follow-up study of the patients' post-surgery recurrences and metastases with the aim to explore whether tumor biologic features could be associated with the poorer outcomes among BA patients compared with White American (WA) patients. We examined the tumor stemness traits and stromal properties as well as the post-surgery recurrence and metastasis of oral cancers among BA and WA patients. It was found that high levels of tumor self-renewal, invasion, tumorigenesis, metastasis, and tumor-promoting stromal characteristics were linked to post-surgery recurrence and metastasis. There were more BA than WA patients demonstrating high stemness traits and strong tumor-promoting stromal features in association with post-surgery tumor recurrences and metastases, although the investigated cases displayed clinically comparable TNM stages and histological grades. These findings demonstrated that the differences in tumor stemness and stromal property among cancers with comparable clinical diagnoses contribute to the outcome disparity in HNCs. More research is needed to understand the genetic and molecular basis of the biologic characteristics underlying the inferior outcomes among BA patients, so that targeting strategies can be developed to reduce HNC disparity.
Collapse
Affiliation(s)
- Saied Mirshahidi
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center Biospecimen Laboratory, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Isabella J. Yuan
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Alfred Simental
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Steve C. Lee
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Pedro A. Andrade Filho
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Thomas Murry
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Feng Zeng
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Charles Wang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Xiangpeng Yuan
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
12
|
Kouhmareh K, Martin E, Finlay D, Bhadada A, Hernandez-Vargas H, Downey F, Allen JK, Teriete P. Capture of circulating metastatic cancer cell clusters from lung cancer patients can reveal unique genomic profiles and potential anti-metastatic molecular targets: A proof-of-concept study. PLoS One 2024; 19:e0306450. [PMID: 39083508 PMCID: PMC11290651 DOI: 10.1371/journal.pone.0306450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Metastasis remains the leading cause of cancer deaths worldwide and lung cancer, known for its highly metastatic progression, remains among the most lethal of malignancies. Lung cancer metastasis can selectively spread to multiple different organs, however the genetic and molecular drivers for this process are still poorly understood. Understanding the heterogeneous genomic profile of lung cancer metastases is considered key in identifying therapeutic targets that prevent its spread. Research has identified the key source for metastasis being clusters of cells rather than individual cancer cells. These clusters, known as metastatic cancer cell clusters (MCCCs) have been shown to be 100-fold more tumorigenic than individual cancer cells. Unfortunately, access to these primary drivers of metastases remains difficult and has limited our understanding of their molecular and genomic profiles. Strong evidence in the literature suggests that differentially regulated biological pathways in MCCCs can provide new therapeutic drug targets to help combat cancer metastases. In order to expand research into MCCCs and their role in metastasis, we demonstrate a novel, proof of principle technology, to capture MCCCs directly from patients' whole blood. Our platform can be readily tuned for different solid tumor types by combining a biomimicry-based margination effect coupled with immunoaffinity to isolate MCCCs. Adopting a selective capture approach based on overexpressed CD44 in MCCCs provides a methodology that preferentially isolates them from whole blood. Furthermore, we demonstrate a high capture efficiency of more than 90% when spiking MCCC-like model cell clusters into whole blood. Characterization of the captured MCCCs from lung cancer patients by immunofluorescence staining and genomic analyses, suggests highly differential morphologies and genomic profiles. This study lays the foundation to identify potential drug targets thus unlocking a new area of anti-metastatic therapeutics.
Collapse
Affiliation(s)
| | - Erika Martin
- PhenoVista Biosciences, San Diego, CA, United States of America
| | - Darren Finlay
- National Cancer Institute Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States of America
| | | | | | | | | | - Peter Teriete
- TumorGen Inc., San Diego, CA, United States of America
- IDEAYA Biosciences, South San Francisco, CA, United States of America
| |
Collapse
|
13
|
Liao J, Zhou L, Wu Y, Qian Z, Li P. Enhancing MRI through high loading of superparamagnetic nanogels with high sensitivity to the tumor environment. NANOSCALE ADVANCES 2024; 6:3367-3376. [PMID: 38933853 PMCID: PMC11197402 DOI: 10.1039/d4na00014e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/06/2024] [Indexed: 06/28/2024]
Abstract
Tumors pose a significant threat to human health, and their occurrence and fatality rates are on the rise each year. Accurate tumor diagnosis is crucial in preventing untimely treatment and late-stage metastasis, thereby reducing mortality. To address this, we have developed a novel type of hybrid nanogel called γ-Fe2O3@PNIPAM/PAm/CTS, which contains iron oxide nanoparticles and poly(N-isopropyl acrylamide)/polyacrylamide/chitosan. The rationale for this study relies on the concept that thermosensitive PNIPAM has the ability to contract when exposed to elevated temperature conditions found within tumors. This contraction leads to a dense clustering of the high-loading γ-Fe2O3 nanoparticles within the nanogel, thus greatly enhancing the capabilities of MRI. Additionally, the amino groups in chitosan on the particle surface can be converted into ammonium salts under mildly acidic conditions, allowing for an increase in the charge of the nanogel specifically at the slightly acidic tumor site. Consequently, it promotes the phagocytosis of tumor cells and effectively enhances the accumulation and retention of nanogels at the tumor site. The synthesis of the hybrid nanogels involves a surfactant-free emulsion copolymerization process, where vinyl-modified γ-Fe2O3 superparamagnetic nanoparticles are copolymerized with the monomers in the presence of chitosan. We have optimized various reaction parameters to achieve a high loading content of the superparamagnetic nanoparticles, reaching up to 60%. The achieved r 2 value of 517.74 mM-1 S-1 significantly surpasses that of the clinical imaging contrast agent Resovist (approximately 151 mM-1 S-1). To assess the performance of these magnetic nanogels, we conducted experiments using Cal27 oral tumors and 4T1 breast tumors in animal models. The nanogels exhibited temperature- and pH-sensitivity, enabling magnetic targeting and enhancing diagnosis through MRI. The results demonstrated the potential of these hybrid nanogels as contrast agents for magnetic targeting in biomedical applications.
Collapse
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Liangyu Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong P. R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Pei Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong P. R. China
| |
Collapse
|
14
|
Yamazaki E, Ikeda K, Urata R, Ueno D, Katayama A, Ito F, Ikegaya H, Matoba S. Endothelial CLEC-1b plays a protective role against cancer hematogenous metastasis. Biochem Biophys Res Commun 2024; 708:149819. [PMID: 38531221 DOI: 10.1016/j.bbrc.2024.149819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Metastasis, which is the spread of cancer cells into distant organs, is a critical determinant of prognosis in patients with cancer, and blood vessels are the major route for cancer cells to spread systemically. Extravasation is a critical process for the hematogenous metastasis; however, its underlying molecular mechanisms remain poorly understood. Here, we identified that senescent ECs highly express C-type lectin domain family 1 member B (CLEC-1b), and that endothelial CLEC-1b inhibits the hematogenous metastasis of a certain type of cancer. CLEC-1b expression was enhanced in ECs isolated from aged mice, senescent cultured human ECs, and ECs of aged human. CLEC-1b overexpression in ECs prevented the disruption of endothelial integrity, and inhibited the transendothelial migration of cancer cells expressing podoplanin (PDPN), a ligand for CLEC-1b. Notably, target activation of CLEC-1b in ECs decreased the hematogenous metastasis in the lungs by cancer cells expressing PDPN in mice. Our data reveal the protective role of endothelial CLEC-1b against cancer hematogenous metastasis. Considering the high CLEC-1b expression in senescent ECs, EC senescence may play a beneficial role with respect to the cancer hematogenous metastasis.
Collapse
Affiliation(s)
- Ekura Yamazaki
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Koji Ikeda
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan; Department of Epidemiology for Longevity and Regional Health, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan.
| | - Ryota Urata
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Daisuke Ueno
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Akiko Katayama
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Fumiaki Ito
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Hiroshi Ikegaya
- Department of Forensics Medicine, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiology, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| |
Collapse
|
15
|
Hanalis-Miller T, Ricon-Becker I, Sakis N, Trachtenberg E, Ohayon F, Wadhawker S, Birnboim Y, Magen A, Sharon E, Tarrasch R, Goldzweig G, Cole SW, Jacoby R, Ben-Eliyahu S. Peri-operative individually tailored psychological intervention in breast cancer patients improves psychological indices and molecular biomarkers of metastasis in excised tumors. Brain Behav Immun 2024; 117:529-540. [PMID: 38346596 DOI: 10.1016/j.bbi.2024.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Perioperative stress and inflammatory signaling can invigorate pro-metastatic molecular processes in patients' tumors, potentially worsening long-term survival. Yet, it is unknown whether pre-operative psychotherapeutic interventions can attenuate such effects. Herein, three weeks before surgery, forty women diagnosed with stage I-III invasive ductal/lobular breast carcinoma were randomized to a 6-week one-on-one psychological intervention (6 meetings with a medical psychologist and bi-weekly phone calls) versus standard nursing-staff-attention. The intervention protocol was individually tailored based on evaluation of patients' emotional, cognitive, physiological, and behavioral stress response-patterns, and also included psychoeducation regarding medical treatments and recruitment of social support. Resected primary tumors were subjected to whole-genome RNA sequencing and bioinformatic analyses, assessing a priori hypothesized cancer-relevant molecular signatures. Self-report questionnaires (BSI-18, Hope-18, MSPSS, and a stress-scale) were collected three (T1) and one (T2) week before surgery, a day before (T3) and after (T4) surgery, and three weeks (T5) and 3-months (T6) following surgery. The intervention reduced distress (GSI), depression, and somatization scores (BSI-18: p < 0.01, p < 0.05, p < 0.05; T5 vs. T1). Additionally, tumors from treated patients (vs. controls) showed: (i) decreased activity of transcription control pathways involved in adrenergic and glucocorticoid signaling (CREB, GR) (p < 0.001), pro-inflammatory signaling (NFkB) (p < 0.01), and pro-malignant signaling (ETS1, STAT and GATA families) (p < 0.001, p < 0.01, p < 0.005); (ii) increased M1 macrophage polarization (p < 0.05), and CD4+ T cell activity (p < 0.01); and an unexpected increase in epithelial-to-mesenchymal-transition (EMT) signature (p < 0.005). This is the first randomized controlled trial to show beneficial effects of a psychological perioperative intervention on tumor pro-metastatic molecular biomarkers.
Collapse
Affiliation(s)
- Tsipi Hanalis-Miller
- Psychoneuroimmunology Laboratory, School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Stress, Hope and Cope Laboratory, School of Behavioral Sciences, The Academic College of Tel Aviv-Yafo, Tel Aviv, Israel
| | - Itay Ricon-Becker
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nahida Sakis
- Psychoneuroimmunology Laboratory, School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Frida Ohayon
- Department of Surgery, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Sonya Wadhawker
- Department of Surgery, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Yehudit Birnboim
- Department of Surgery, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Ada Magen
- Department of Surgery, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Eran Sharon
- Department of Surgery, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | | | - Gil Goldzweig
- Stress, Hope and Cope Laboratory, School of Behavioral Sciences, The Academic College of Tel Aviv-Yafo, Tel Aviv, Israel
| | - Steve W Cole
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Rebecca Jacoby
- Stress, Hope and Cope Laboratory, School of Behavioral Sciences, The Academic College of Tel Aviv-Yafo, Tel Aviv, Israel
| | - Shamgar Ben-Eliyahu
- Psychoneuroimmunology Laboratory, School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
16
|
Guerra A, Betancourt-Mar JA, Llanos-Pérez JA, Mansilla R, Nieto-Villar JM. Metastasis Models: Thermodynamics and Complexity. Methods Mol Biol 2024; 2745:45-75. [PMID: 38060179 DOI: 10.1007/978-1-0716-3577-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The thermodynamic formalism of nonequilibrium systems together with the theory of complex systems and systems biology offer an appropriate theoretical framework to explain the complexity observed at the macroscopic level in physiological phenomena. In turn, they allow the establishment of an appropriate conceptual and operational framework to address the study of phenomena such as the emergence and evolution of cancer.This chapter is organized as follows: In Subheading 1, an integrated vision of these disciplines is offered for the characterization of the emergence and evolution of cancer, seen as a nonlinear dynamic system, temporally and spatially self-organized out of thermodynamic equilibrium. The development of the various mathematical models and different techniques and approaches used in the characterization of cancer metastasis is presented in Subheading 2. Subheading 3 is devoted to the time course of cancer metastasis, with particular emphasis on the epithelial-mesenchymal transition (EMT henceforth) as well as chronotherapeutic treatments. In Subheading 4, models of the spatial evolution of cancer metastasis are presented. Finally, in Subheading 5, some conclusions and remarks are presented.
Collapse
Affiliation(s)
- A Guerra
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems M.V. Lomonosov Chair, Faculty of Chemistry, University of Havana, Havana, Cuba
| | | | | | - R Mansilla
- Centro Peninsular en Humanidades y Ciencias Sociales (CEPHCIS), National Autonomous University of Mexico (UNAM), Mérida, Mexico
| | - J M Nieto-Villar
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems M.V. Lomonosov Chair, Faculty of Chemistry, University of Havana, Havana, Cuba.
| |
Collapse
|
17
|
Kouhmareh K, Martin E, Finlay D, Bhadada A, Hernandez-Vargas H, Downey F, Allen JK, Teriete P. Capture of circulating metastatic cancer cell clusters from a lung cancer patient can reveal a unique genomic profile and potential anti-metastatic molecular targets: A proof of concept study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558270. [PMID: 37781582 PMCID: PMC10541091 DOI: 10.1101/2023.09.19.558270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Metastasis remains the leading cause of cancer deaths worldwide and lung cancer, known for its highly metastatic progression, remains among the most lethal of malignancies. The heterogeneous genomic profile of lung cancer metastases is often unknown. Since different metastatic events can selectively spread to multiple organs, strongly suggests more studies are needed to understand and target these different pathways. Unfortunately, access to the primary driver of metastases, the metastatic cancer cell clusters (MCCCs), remains difficult and limited. These metastatic clusters have been shown to be 100-fold more tumorigenic than individual cancer cells. Capturing and characterizing MCCCs is a key limiting factor in efforts to help treat and ultimately prevent cancer metastasis. Elucidating differentially regulated biological pathways in MCCCs will help uncover new therapeutic drug targets to help combat cancer metastases. We demonstrate a novel, proof of principle technology, to capture MCCCs directly from patients' whole blood. Our platform can be readily tuned for different solid tumor types by combining a biomimicry-based margination effect coupled with immunoaffinity to isolate MCCCs. Adopting a selective capture approach based on overexpressed CD44 in MCCCs provides a methodology that preferentially isolates them from whole blood. Furthermore, we demonstrate a high capture efficiency of more than 90% when spiking MCCC-like model cell clusters into whole blood. Characterization of the captured MCCCs from lung cancer patients by immunofluorescence staining and genomic analyses, suggests highly differential morphologies and genomic profiles., This study lays the foundation to identify potential drug targets thus unlocking a new area of anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Kourosh Kouhmareh
- PhenoVista Biosciences, 6195 Cornerstone Ct E STE 114, San Diego, CA 92121
| | - Erika Martin
- PhenoVista Biosciences, 6195 Cornerstone Ct E STE 114, San Diego, CA 92121
| | - Darren Finlay
- NCI Cancer Center Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Anukriti Bhadada
- TumorGen Inc., 6197 Cornerstone Ct E STE #101, San Diego, CA 92121
| | | | - Francisco Downey
- TumorGen Inc., 6197 Cornerstone Ct E STE #101, San Diego, CA 92121
| | - Jeffrey K Allen
- TumorGen Inc., 6197 Cornerstone Ct E STE #101, San Diego, CA 92121
| | - Peter Teriete
- IDEAYA Biosciences, 7000 Shoreline Ct STE #350, South San Francisco, CA 94080
| |
Collapse
|
18
|
Jiang P, Huo X, Dong B, Zhou N, Zhang X. Multi-omics analysis of expression profile and prognostic values of connexin family in LUAD. J Cancer Res Clin Oncol 2023; 149:12791-12806. [PMID: 37458803 DOI: 10.1007/s00432-023-05075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE Our study first explored the expression differences and prognostic significance of Cx genes in pan-cancer and then focused on LUAD. Our objectives were to conducted a comprehensive analysis of the expression profile, prognostic significance, genetic alterations, potential biological functions and drug sensitivity of the Connexin gene family in LUAD. METHODS We developed a comprehensive prognostic model for LUAD by combining risk scores with clinical features and created a nomogram to predict 1-, 3-, and 5-year overall survival. Using single-cell sequencing, we examined the expression and biological functions of the identified prognostic markers. RESULTS Our risk model revealed that GJB2-5 play a critical role in the prognosis of LUAD patients, associated with many biological processes such as cell cycle, DNA damage, EMT, hypoxia, invasion, and metastasis. Furthermore, the connexin gene family is linked to transcriptional mechanisms such as the extracellular matrix (ECM), migration, mobility, angiogenesis, and the epithelial-mesenchymal transition (EMT) genetic program. CONCLUSION The risk model can be used as a potential prognostic factor for LUAD patients and may provide new insights into cancer treatment from perspective of the expression of Cx genes.
Collapse
Affiliation(s)
- Peng Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- Qingdao University, Qingdao, 266071, China
| | - Xingfa Huo
- Qingdao University, Qingdao, 266071, China
| | - Bowen Dong
- Qingdao University, Qingdao, 266071, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China.
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
19
|
Ni Y, Liang Y, Li M, Lin Y, Zou X, Han F, Cao J, Li L. The updates on metastatic mechanism and treatment of colorectal cancer. Pathol Res Pract 2023; 251:154837. [PMID: 37806170 DOI: 10.1016/j.prp.2023.154837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Colorectal cancer (CRC) is a main cause of cancer death worldwide. Metastasis is a major cause of cancer-related death in CRC. The treatment of metastatic CRC has progressed minimally. However, the potential molecular mechanisms involved in CRC metastasis have remained to be comprehensively clarified. An improved understanding of the CRC mechanistic determinants is needed to better prevent and treat metastatic cancer. In this review, based on evidence from a growing body of research in metastatic cancers, we discuss the cellular and molecular mechanisms involved in CRC metastasis. This review reveals both the molecular mechanisms of metastases and identifies new opportunities for developing more effective strategies to target metastatic relapse and improve CRC patient outcomes.
Collapse
Affiliation(s)
- Yunfei Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - You Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xin Zou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Fangyi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jianing Cao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Liang Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Hall D. MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:673-704. [PMID: 37670150 PMCID: PMC10682183 DOI: 10.1007/s00249-023-01679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
The single-celled baker's yeast, Saccharomyces cerevisiae, can sustain a number of amyloid-based prions, the three most prominent examples being [URE3], [PSI+], and [PIN+]. In the laboratory, haploid S. cerevisiae cells of a single mating type can acquire an amyloid prion in one of two ways (i) spontaneous nucleation of the prion within the yeast cell, and (ii) receipt via mother-to-daughter transmission during the cell division cycle. Similarly, prions can be lost due to (i) dissolution of the prion amyloid by its breakage into non-amyloid monomeric units, or (ii) preferential donation/retention of prions between the mother and daughter during cell division. Here we present a computational tool (Monitoring Induction and Loss of prions in Cells; MIL-CELL) for modelling these four general processes using a multiscale approach describing both spatial and kinetic aspects of the yeast life cycle and the amyloid-prion behavior. We describe the workings of the model, assumptions upon which it is based and some interesting simulation results pertaining to the wave-like spread of the epigenetic prion elements through the yeast population. MIL-CELL is provided as a stand-alone GUI executable program for free download with the paper. MIL-CELL is equipped with a relational database allowing all simulated properties to be searched, collated and graphed. Its ability to incorporate variation in heritable properties means MIL-CELL is also capable of simulating loss of the isogenic nature of a cell population over time. The capability to monitor both chronological and reproductive age also makes MIL-CELL potentially useful in studies of cell aging.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1164, Japan.
| |
Collapse
|
21
|
Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Circ_0004676 exacerbates triple-negative breast cancer progression through regulation of the miR-377-3p/E2F6/PNO1 axis. Cell Biol Toxicol 2023; 39:2183-2205. [PMID: 35870038 DOI: 10.1007/s10565-022-09704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/23/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND The significant roles of circular RNAs (circRNAs) in different cancers and diseases have been reported. We now focused on the possible role of a newly recognized circRNA, circ_0004674 in triple-negative breast cancer (TNBC), and the related downstream mechanism. METHODS The expression of circ_0004674 in TNBC tissues and cells was determined followed by analysis of the correlation between circ_0004674 and TNBC patients' prognosis. The interaction between circ_0004674, miR-377-3p, E2F6, and PNO1 was then identified using bioinformatics analysis combined with FISH, RIP, RNA pull-down, RT-qPCR, and Western blot analysis. Using gain-of-function and loss-of-function methods, we analyzed the effect of circ_0004674, miR-377-3p, E2F6, and PNO1 on TNBC in vivo and in vitro. RESULTS Increased circ_0004674 and E2F6 but decreased miR-377-3p were observed in TNBC tissues and MDA-MB-231 TNBC cells, all of which findings were associated with poor prognosis in patients with TNBC. Silencing of circ_0004676 remarkably suppressed the proliferation, cell cycle progression, and migration of TNBC cells in vitro, as well as inhibiting tumorigenesis and metastasis in vivo. Additionally, circ_0004676 served as a sponge of miR-377-3p which bound to the transcription factor E2F6. In the presence of overexpression of circ_0004676, E2F6 expression and its target PNO1 expression were elevated, while miR-377-3p expression was decreased. Interestingly, overexpression of E2F6 could reverse the inhibitory effect on tumor growth caused by downregulation of circ_0004676. CONCLUSION Our study highlighted the carcinogenic effect of circ_0004676 on TNBC through regulation of the miR-377-3p/E2F6/PNO1 axis. 1. Circ_0004674 is highly expressed in TNBC tissues and cells. 2. Circ_0004674 upregulates the expression of E2F6 by sponging miR-377-3p. 3. E2F6 upregulates PNO1 by binding to the PNO1 promoter. 4. Circ_0004674 favors TNBC progression by regulating the miR-377-3p/E2F6/PNO1 axis. 5. This study provides a new target for the treatment of TNBC.
Collapse
Affiliation(s)
- Guoli Shao
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Road, Haizhu District, Guangzhou, 510282, People's Republic of China
| | - Xulong Fan
- Department of Breast Surgery, Maternity and Children's Healthcare Hospital of Foshan, Foshan, 528000, People's Republic of China
| | - Pusheng Zhang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Xuewen Liu
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Road, Haizhu District, Guangzhou, 510282, People's Republic of China
| | - Lei Huang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Shufeng Ji
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Road, Haizhu District, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
22
|
He K, Wang Z, Luo M, Li B, Ding N, Li L, He B, Wang H, Cao J, Huang C, Yang J, Chen HN. Metastasis organotropism in colorectal cancer: advancing toward innovative therapies. J Transl Med 2023; 21:612. [PMID: 37689664 PMCID: PMC10493031 DOI: 10.1186/s12967-023-04460-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/11/2023] Open
Abstract
Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.
Collapse
Affiliation(s)
- Kai He
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ning Ding
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Li
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Han Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangjun Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Hai-Ning Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
23
|
Yin Y, Sun J, Jiang T, Zhu L, Gu W, Wang S, Song L, Wang C, Zhang Q. Combined Doxorubicin Mesoporous Carbon Nanospheres for Effective Tumor Lymphatic Metastasis by Multi-Modal Chemo-Photothermal Treatment in vivo. Int J Nanomedicine 2023; 18:4589-4600. [PMID: 37588626 PMCID: PMC10426433 DOI: 10.2147/ijn.s418766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Sentinel lymph node (SLN) is the first regional lymph node where tumor cells metastasize, and its identification and treatment are of great significance for the prevention of tumor metastasis. However, the current clinical modalities for identification and treatment of SLN are still far from satisfactory owing to their high cost, invasiveness and low accuracy. We aim to design a novel nanomedicine system for SLN imaging and treatment with high efficacy. Methods We designed and prepared hollow mesoporous carbon spheres (HMCS) and loaded with the chemotherapeutic drug doxorubicin (DOX), which is then modified with polyvinyl pyrrolidone (PVP) to obtain nanomedicine: HMCS-PVP-DOX. Results HMCS-PVP with a size of about 150 nm could retain in the lymph nodes for a long time and stain the lymph nodes, which could be easily observed by the naked eye. At the same time, HMCS-PVP exhibited excellent photoacoustic and photothermal imaging capabilities, realizing multimodal imaging to locate lymph nodes precisely. Due to its high specific surface area, HMCS could be largely loaded with the chemotherapeutic drug doxorubicin (DOX). HMCS-PVP-DOX displayed highly efficient synergistic chemotherapy-photothermal therapy for lymphatic metastases in both cellular and animal experiments due to its significant photothermal effect under 1064 nm laser irradiation. HMCS-PVP-DOX also displayed great stability and biosafety. Discussion Multifunctional nanomedicine HMCS-PVP-DOX is expected to provide a novel paradigm for designing nanomedicine to the diagnosis and treatment of lymphatic metastases because of its good stability and safety.
Collapse
Affiliation(s)
- Yipengchen Yin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Jiaxin Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, People’s Republic of China
| | - Tiaoyan Jiang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Li Zhu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People’s Republic of China
| | - Le Song
- Department of Gerontology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, People’s Republic of China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| |
Collapse
|
24
|
Mitsou JD, Tseveleki V, Dimitrakopoulos FI, Konstantinidis K, Kalofonos H. Radical Tumor Denervation Activates Potent Local and Global Cancer Treatment. Cancers (Basel) 2023; 15:3758. [PMID: 37568574 PMCID: PMC10417359 DOI: 10.3390/cancers15153758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
This preliminary study seeks to determine the effect of R&P denervation on tumor growth and survival in immunocompetent rats bearing an aggressive and metastatic breast solid tumor. A novel microsurgical approach was applied "in situ", aiming to induce R&P denervation through the division of every single nerve fiber connecting the host with the primary tumor via its complete detachment and re-attachment, by resecting and reconnecting its supplying artery and vein (anastomosis). This preparation, known as microsurgical graft or flap, is radically denervated by definition, but also effectively delays or even impedes the return of innervation for a significant period of time, thus creating a critical and therapeutic time window. Mammary adenocarcinoma cells (HH-16.cl4) were injected into immunocompetent Sprague Dawley adult rats. When the tumors reached a certain volume, the subjects entered the study. The primary tumor, including a substantial amount of peritumoral tissue, was surgically isolated on a dominant artery and vein, which was resected and reconnected using a surgical microscope (orthotopic tumor auto-transplantation). Intending to simulate metastasis, two or three tumors were simultaneously implanted and only one was treated, using the surgical technique described herein. Primary tumor regression was observed in all of the microsurgically treated subjects, associated with a potent systemic anticancer effect and prolonged survival. In stark contrast, the subjects received a close to identical surgical operation; however, with the intact neurovascular connection, they did not achieve the therapeutic result. Animals bearing multiple tumors and receiving the same treatment in only one tumor exhibited regression in both the "primary" and remote- untreated tumors at a clinically significant percentage, with regression occurring in more than half of the treated subjects. A novel therapeutic approach is presented, which induces the permanent regression of primary and, notably, remote tumors, as well as, evidently, the naturally occurring metastatic lesions, at a high rate. This strategy is aligned with the impetus that comes from the current translational research data, focusing on the abrogation of the neuro-tumoral interaction as an alternative treatment strategy. More data regarding the clinical significance of this are expected to come up from a pilot clinical trial that is ongoing.
Collapse
Affiliation(s)
- John D. Mitsou
- Department of Plastic and Reconstructive Surgery, Athens Medical Center, 15125 Maroussi, Greece
| | - Vivian Tseveleki
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Foteinos-Ioannis Dimitrakopoulos
- Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504 Rio, Greece;
- Division of Oncology, Department of Medicine, University Hospital of Patras, 26504 Rio, Greece;
| | - Konstantinos Konstantinidis
- Department of General Robotic, Laparoscopic and Oncologic Surgery, Athens Medical Center, 15125 Maroussi, Greece;
| | - Haralabos Kalofonos
- Division of Oncology, Department of Medicine, University Hospital of Patras, 26504 Rio, Greece;
| |
Collapse
|
25
|
Desjardins-Lecavalier N, Annis MG, Nowakowski A, Kiepas A, Binan L, Roy J, Modica G, Hébert S, Kleinman CL, Siegel PM, Costantino S. Migration speed of captured breast cancer subpopulations correlates with metastatic fitness. J Cell Sci 2023; 136:jcs260835. [PMID: 37313743 PMCID: PMC10657211 DOI: 10.1242/jcs.260835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
The genetic alterations contributing to migration proficiency, a phenotypic hallmark of metastatic cells required for colonizing distant organs, remain poorly defined. Here, we used single-cell magneto-optical capture (scMOCa) to isolate fast cells from heterogeneous human breast cancer cell populations, based on their migratory ability alone. We show that captured fast cell subpopulations retain higher migration speed and focal adhesion dynamics over many generations as a result of a motility-related transcriptomic profile. Upregulated genes in isolated fast cells encoded integrin subunits, proto-cadherins and numerous other genes associated with cell migration. Dysregulation of several of these genes correlates with poor survival outcomes in people with breast cancer, and primary tumors established from fast cells generated a higher number of circulating tumor cells and soft tissue metastases in pre-clinical mouse models. Subpopulations of cells selected for a highly migratory phenotype demonstrated an increased fitness for metastasis.
Collapse
Affiliation(s)
- Nicolas Desjardins-Lecavalier
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
- Institut de genie biomedical, University of Montreal, Pavillon Paul-G.-Desmarais, 2960, chemin de la Tour, Montréal, QC H3T 1J4, Canada
| | - Matthew G. Annis
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Alexander Nowakowski
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Alexander Kiepas
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MA 20892-4370, USA
| | - Loïc Binan
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Joannie Roy
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Graziana Modica
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Steven Hébert
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E2, Canada
| | - Claudia L. Kleinman
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3T 1E2, Canada
| | - Peter M. Siegel
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
- Department of Ophthalmology, University of Montreal, Pavillon Roger-Gaudry, Bureau S-700, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
26
|
Hu H, Bai H, Huang L, Yang B, Zhao H. Eupalinolide J Inhibits Cancer Metastasis by Promoting STAT3 Ubiquitin-Dependent Degradation. Molecules 2023; 28:molecules28073143. [PMID: 37049904 PMCID: PMC10096386 DOI: 10.3390/molecules28073143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023] Open
Abstract
Eupalinolide J (EJ) is an active component from Eupatorium lindleyanum DC. (EL), which was reported to have good antitumor activity via STAT3 and Akt signaling pathways. In this study, we identified Eupalinolide J (EJ) as a potential anti-cancer metastatic agent by target prediction and molecular docking technique screening. Follow-up experiments demonstrated that EJ exhibited a good inhibitory effect on cancer cell metastasis both in vitro and in vivo, and could effectively reduce the expression of STAT3, MMP-2, and MMP-9 proteins in cells, while the knockdown of STAT3 could weaken the inhibitory effect of EJ on cancer cell metastasis. Further molecular biology experiments revealed that EJ promoted STAT3 ubiquitin-dependent degradation, and thus, downregulated the expression of the metastasis-related genes MMP-2 and MMP-9. In conclusion, our study revealed that EJ, a sesquiterpene lactone from EL, could act as a STAT3 degradation agent to inhibit cancer cell metastasis and is expected to be applied in cancer therapy.
Collapse
|
27
|
Venghateri JB, Geiger B. Quantification of Invadopodia Formation and Matrix Degradation Activity. Methods Mol Biol 2023; 2600:185-196. [PMID: 36587098 DOI: 10.1007/978-1-0716-2851-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer cells possess a remarkable capacity to dissociate from a primary tumor, invade the surrounding tissues and vasculature, and eventually form metastases in distant organs. This complex and multistep process remains one of the major causes of mortality in cancer patients worldwide. Multiple studies have highlighted the role of actin-rich structures called invadopodia ("invasive feet"), which adhere to the matrix, contain and secrete matrix-degrading proteinases, and apply protrusive forces generated by the actin cytoskeleton, which drive the invasive process. Here, we describe a fluorescent microscopy-based protocol for imaging and quantifying both invadopodia formation and matrix degradation.
Collapse
Affiliation(s)
- Jubina Balan Venghateri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma. Pharmaceutics 2022; 15:pharmaceutics15010097. [PMID: 36678726 PMCID: PMC9862601 DOI: 10.3390/pharmaceutics15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Metastasis is the primary cause of death in cancer patients. Many current chemotherapeutic agents only show cytotoxic, but not antimetastatic properties. This leads to a reduction in tumor size, but allows cancer cells to disseminate, which ultimately causes patient death. Therefore, novel anticancer compounds with both effects need to be developed. In this work, we analyze the antimetastatic properties of prodigiosin and obatoclax (GX15-070), anticancer drugs of the Prodiginines (PGs) family. We studied PGs' effects on cellular adhesion and morphology in the human primary and metastatic melanoma cell lines, SK-MEL-28 and SK-MEL-5, and in the murine melanoma cell line, B16F10A. Cell adhesion sharply decreased in the treated cells, and this was accompanied by a reduction in filopodia protrusions and a significant decrease in the number of focal-adhesion structures. Moreover, cell migration was assessed through the wound-healing assay and cell motility was severely inhibited after 24 h of treatment. To elucidate the molecular mechanisms involved, changes in metastasis-related genes were analyzed through a gene-expression array. Key genes related to cellular invasion, migration and chemoresistance were significantly down-regulated. Finally, an in vivo model of melanoma-induced lung metastasis was established and significant differences in lung tumors were observed in the obatoclax-treated mice. Altogether, these results describe, in depth, PGs' cellular antimetastatic effects and identify in vivo antimetastatic properties of Obatoclax.
Collapse
|
29
|
Vascular Invasion Predicts Recurrence in Stage IA2-IB Lung Adenocarcinoma but not Squamous Cell Carcinoma. Clin Lung Cancer 2022; 24:e126-e133. [PMID: 36631388 DOI: 10.1016/j.cllc.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Lymphovascular invasion (LVI) is an adverse prognostic feature in resected stage I non-small cell lung cancer (NSCLC); however, it is unclear if the prognostic significance applies to both lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). MATERIALS AND METHODS A retrospective review of H&E-stained slides from surgically resected AJCC 8th ed. stage IA2-IB LUAD (n = 344) and LUSC (n = 102) from two institutions was performed. LVI was defined as either lymphatic (LI) or vascular (VI) invasion. Outcomes were assessed by 5-year recurrence-free survival (RFS) estimates using the Kaplan-Meier method. RESULTS The cohorts of LUAD and LUSC showed no significant differences in 5-year RFS (81% each), stage, age, race, or surgical procedure. The presence of LVI, VI, and LI was predictive of 5-year RFS for LUAD (LVI + 71% vs. LVI - 92%, P < 0.001; VI + 64% vs. VI - 90%, P < 0.001; LI + 75% vs. LI - 84%, P = 0.030) but not LUSC (LVI + 84% vs. LVI - 79%, P = 0.740; VI + 83% vs. VI- 80%, P = 0.852; LI + 84% vs. LI - 81%, P = 0.757). Among LUAD with LVI, VI was a stronger predictor of 5-year RFS than the remaining subset of VI-LI + tumors (64% vs. 87%, P = 004). Subset analysis of LI among LUAD stratified by VI showed no significant prognostic advantage to adding LI for risk stratification (VI-LI + 87% vs. VI-LI - 92%, P = 0.347 & VI+LI + 62% vs. VI + LI- 66%, P = 0.422). VI was present in 36% of LUAD. CONCLUSION Vascular invasion is a strong predictor of recurrence in stage IA2-IB LUAD but not in LUSC. Adjuvant therapy trials should be directed at this subgroup.
Collapse
|
30
|
Fu X, Fu S, Cai Z, Jin R, Xia C, Lui S, Song B, Gong Q, Ai H. Manganese porphyrin/ICG nanoparticles as magnetic resonance/fluorescent dual-mode probes for imaging of sentinel lymph node metastasis. J Mater Chem B 2022; 10:10065-10074. [PMID: 36454208 DOI: 10.1039/d2tb01885c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diagnosis of sentinel lymph node (SLN) metastasis and its status are key parameters for predicting overall disease prognosis. In this work, Pluronic F127 stabilized ICG/tetra(4-carboxyphenyl)porphyrin-Mn(III) (TCPP(Mn)) nanoparticles (F127-ICG/Mn NPs) as fluorescent/magnetic resonance (FL/MR) dual-modality probes were prepared. The application of F127-ICG/Mn NPs in SLN imaging was mainly evaluated from two perspectives: the difference between the normal LN and the metastatic SLN and the difference between micrometastasis and macrometastasis. Normal and metastatic SLNs and micro- and macro-SLN metastasis were successfully distinguished through fluorescence and MR imaging with the help of F127-ICG/Mn NPs. In contrast, for the ICG group, the micro- and macro-SLN metastasis status could not be differentiated by fluorescence imaging. Besides, the lymph nodes can be stained green by the F127-ICG/Mn NPs and clearly visualized by the naked eye. In general, F127-ICG/Mn NPs demonstrated the potential of the preoperative diagnosis of SLN metastasis and its status, as well as intraoperative navigation by green-stained SLN and NIR FL imaging. This work provides a reference for developing multimodal nanoparticles for SLN metastasis diagnosis.
Collapse
Affiliation(s)
- Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Bing Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
31
|
Bian X, Yin S, Yang S, Jiang X, Wang J, Zhang M, Zhang L. Roles of platelets in tumor invasion and metastasis: A review. Heliyon 2022; 8:e12072. [PMID: 36506354 PMCID: PMC9730139 DOI: 10.1016/j.heliyon.2022.e12072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/10/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The invasion and metastasis of malignant tumors are major causes of death. The most common metastases of cancer are lymphatic metastasis and hematogenous metastasis. Hematogenous metastasis often leads to rapid tumor dissemination. The mechanism of hematogenous metastasis of malignant tumors is very complex. Some experts have found that platelets play an important role in promoting tumor hematogenous metastasis. Platelets may be involved in many processes, such as promoting tumor cell survival, helping tumor cells escape immune surveillance, helping tumors attach to endothelial cells and penetrating capillaries for distant metastasis. However, recent studies have shown that platelets can also inhibit tumor metastasis. At present, the function of platelets in tumor progression has been widely studied, and they not only promote tumor cell metastasis, but also have an inhibitory effect. Therefore, in-depth and summary research of the molecular mechanism of platelets in tumor cell metastasis is of great significance for the screening and treatment of cancer patients. The following is a brief review of the role of platelets in the process of malignant tumor metastasis.
Collapse
Affiliation(s)
- Xiulan Bian
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, Inner Mongolia, China
| | - Shuo Yang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinju Jiang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaqi Wang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, Inner Mongolia, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
32
|
Xu Y, Yuan L, Jiang X, Su M, Huang M, Chen Y, Zhang L, Chen X, Zhu H, Lu J. Glutathione peroxidase 8 expression on cancer cells and cancer-associated fibroblasts facilitates lung cancer metastasis. MedComm (Beijing) 2022; 3:e152. [PMID: 35978854 PMCID: PMC9365937 DOI: 10.1002/mco2.152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide, of which lung adenocarcinoma (LUAD) is the most common subtype. Metastasis is the major cause of poor prognosis and mortality for lung cancer patients, which urgently needs great efforts to be further explored. Herein, glutathione peroxidase 8 (GPX8) was identified as a novel potential pro-metastatic gene in LUAD metastatic mice models from GEO database. GPX8 was highly expressed in tumor tissues, predicting poor prognosis in LUAD patients. Knockdown of GPX8 inhibited LUAD metastasis in vitro and in vivo, while it did not obviously affect tumor growth. Knockdown of GPX8 decreased the levels of p-FAK and p-Paxillin and disturbed the distribution of focal adhesion. Furthermore, GPX8 was overexpressed in cancer-associated fibroblast (CAF) and associated with CAF infiltration in tumor microenvironment of lung cancer. GPX8 silence on fibroblasts suppressed lung cancer cell migration in the coculture system. BRD2 and RRD4 were the potential transcriptionally regulators for GPX8. Bromodomain extra-terminal inhibitor JQ1 downregulated GPX8 expression and suppressed lung cancer cell migration. Our findings indicate that highly expressed GPX8 in lung cancer cells and fibroblasts functions as a pro-metastatic factor in lung cancer. JQ1 is identified as a potential inhibitor against GPX8-mediated lung cancer metastasis.
Collapse
Affiliation(s)
- Yu‐Lian Xu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
| | - Luo‐Wei Yuan
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
| | - Xiao‐Ming Jiang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
| | - Min‐Xia Su
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
| | - Mu‐Yang Huang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
| | - Yu‐Chi Chen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
| | - Le‐Le Zhang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Jin‐Jian Lu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
- Department of Pharmaceutical SciencesFaculty of Health SciencesUniversity of MacauMacaoChina
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacaoChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchUniversity of MacauMacaoChina
| |
Collapse
|
33
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 414] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
34
|
Edd JF, Mishra A, Smith KC, Kapur R, Maheswaran S, Haber DA, Toner M. Isolation of Circulating Tumor Cells. iScience 2022; 25:104696. [PMID: 35880043 PMCID: PMC9307519 DOI: 10.1016/j.isci.2022.104696] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Circulating tumor cells (CTCs) enter the vasculature from solid tumors and disseminate widely to initiate metastases. Mining the metastatic-enriched molecular signatures of CTCs before, during, and after treatment holds unique potential in personalized oncology. Their extreme rarity, however, requires isolation from large blood volumes at high yield and purity, yet they overlap leukocytes in size and other biophysical properties. Additionally, many CTCs lack EpCAM that underlies much of affinity-based capture, complicating their separation from blood. Here, we provide a comprehensive introduction of CTC isolation technology, by analyzing key separation modes and integrated isolation strategies. Attention is focused on recent progress in microfluidics, where an accelerating evolution is occurring in high-throughput sorting of cells along multiple dimensions. Circulating tumor cells (CTCs) spread cancer through the bloodstream (metastasis) CTC-based liquid biopsy enables minimally invasive sampling of cancer cells in blood Their extreme rarity requires all CTC types to be enriched from large blood volumes CTC isolation technology is analyzed, with a focus on high-throughput microfluidics
Collapse
Affiliation(s)
- Jon F. Edd
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Avanish Mishra
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | - Ravi Kapur
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- BendBio, Inc., Sharon, MA 02067, USA
| | - Shyamala Maheswaran
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Daniel A. Haber
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
- Corresponding author
| |
Collapse
|
35
|
Aalam S, Tang X, Song J, Ray U, Russell S, Weroha S, Bakkum-Gamez J, Shridhar V, Sherman M, Eaves C, Knapp DJHF, Kalari K, Kannan N. DNA barcoded competitive clone-initiating cell analysis reveals novel features of metastatic growth in a cancer xenograft model. NAR Cancer 2022; 4:zcac022. [PMID: 35875052 PMCID: PMC9303272 DOI: 10.1093/narcan/zcac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
A problematic feature of many human cancers is a lack of understanding of mechanisms controlling organ-specific patterns of metastasis, despite recent progress in identifying many mutations and transcriptional programs shown to confer this potential. To address this gap, we developed a methodology that enables different aspects of the metastatic process to be comprehensively characterized at a clonal resolution. Our approach exploits the application of a computational pipeline to analyze and visualize clonal data obtained from transplant experiments in which a cellular DNA barcoding strategy is used to distinguish the separate clonal contributions of two or more competing cell populations. To illustrate the power of this methodology, we demonstrate its ability to discriminate the metastatic behavior in immunodeficient mice of a well-established human metastatic cancer cell line and its co-transplanted LRRC15 knockdown derivative. We also show how the use of machine learning to quantify clone-initiating cell (CIC) numbers and their subsequent metastatic progeny generated in different sites can reveal previously unknown relationships between different cellular genotypes and their initial sites of implantation with their subsequent respective dissemination patterns. These findings underscore the potential of such combined genomic and computational methodologies to identify new clonally-relevant drivers of site-specific patterns of metastasis.
Collapse
Affiliation(s)
- Syed Mohammed Musheer Aalam
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN, USA
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic , Rochester, MN, USA
| | - Jianning Song
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN, USA
| | - Upasana Ray
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN, USA
| | | | - S John Weroha
- Department of Oncology, Mayo Clinic , Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Rochester, MN, USA
| | - Jamie Bakkum-Gamez
- Division of Gynecologic Oncology Surgery, Department of Obstetrics and Gynecology, Mayo Clinic , Rochester, MN, USA
| | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN, USA
| | - Mark E Sherman
- Department of Quantitative Health Sciences, Mayo Clinic , Jacksonville, FL, USA
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Research Institute , Vancouver, BC, Canada
- Departments of Medical Genetics and School of Biomedical Engineering, University of British Columbia , Vancouver, BC, Canada
| | - David J H F Knapp
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN, USA
- Institut de Recherche en Immunologie et Cancérologie, and Département de Pathologie et Biologie Cellulaire, Université de Montréal , Montreal, QC, Canada
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic , Rochester, MN, USA
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic , Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic , Rochester, MN, USA
| |
Collapse
|
36
|
Forero-Doria O, Guzmán L, Jiménez-Aspee F, Echeverría J, Wehinger S, Valenzuela C, Araya-Maturana R, Martínez-Cifuentes M. An In Vitro and In Silico Study of Antioxidant Properties of Curcuminoid N-alkylpyridinium Salts: Initial Assessment of Their Antitumoral Properties. Antioxidants (Basel) 2022; 11:antiox11061104. [PMID: 35740001 PMCID: PMC9219799 DOI: 10.3390/antiox11061104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
In this work, we report the synthesis of curcuminoids with ionic liquid characteristics, obtained by incorporating alkyl-substituted pyridinium moiety rather than one phenyl group through a two-step process. The antioxidant capacity of the obtained compounds was evaluated in vitro by 1,1-diphenyl-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) assays, showing that some derivatives are more potent than curcumin. Pyridine curcuminoids (group 4) and curcuminoid N-alkylpyridinium salts with two methoxyl groups in the phenyl ring (group 7), presented the best antioxidant capacity. The experimental results were rationalized by density functional theory (DFT) calculations of the bond dissociation enthalpy (BDE) for O–H in each compound. The computational calculations allowed for insight into the structural–antioxidant properties relationship in these series of compounds. BDEs, obtained in the gas phase and water, showed a notable impact of water solvation on the stabilization of some radicals. The lower values of BDEs in the water solution correspond to the structurally related compounds curcuminoid-pyridine 4c and curcuminoid pyridinium salt 7a, which is consistent with the experimental results. Additionally, an assessment of cell viability and cell migration assays was performed for human colon cancer (HT29), human breast cancer (MCF7) cells, in addition to NIH3T3 murine fibroblast, as a model of non-cancer cell type. These compounds mainly cause inhibition of the cell migration observed in MCF7 cancer cells without affecting the non-tumoral NIH3T3 cell line: Neither in viability nor in migration.
Collapse
Affiliation(s)
- Oscar Forero-Doria
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca 3460000, Chile;
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile;
| | - Felipe Jiménez-Aspee
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany;
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
| | - Sergio Wehinger
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile;
| | - Claudio Valenzuela
- Center for Medical Research, School of Medicine, University of Talca, Talca 3460000, Chile;
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile
- Correspondence: (R.A.-M.); (M.M.-C.)
| | - Maximiliano Martínez-Cifuentes
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
- Correspondence: (R.A.-M.); (M.M.-C.)
| |
Collapse
|
37
|
Ibragimova M, Tsyganov M, Litviakov N. Tumour Stem Cells in Breast Cancer. Int J Mol Sci 2022; 23:ijms23095058. [PMID: 35563449 PMCID: PMC9099719 DOI: 10.3390/ijms23095058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC− non-CSCs and their significance for metastasis are considered.
Collapse
Affiliation(s)
- Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
| |
Collapse
|
38
|
Li C, Li R, Hu X, Zhou G, Jiang G. Tumor-promoting mechanisms of macrophage-derived extracellular vesicles-enclosed microRNA-660 in breast cancer progression. Breast Cancer Res Treat 2022; 192:353-368. [PMID: 35084622 DOI: 10.1007/s10549-021-06433-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Breast cancer metastasis is the main cause of cancer-related death in women worldwide. Current therapies have remarkably improved the prognosis of breast cancer patients but still fail to manage metastatic breast cancer. Here, the present study was set to explore the role of microRNA (miR)-660 from tumor-associated macrophages (TAMs) in breast cancer, particularly in metastasis. MATERIALS AND METHODS We collected breast cancer tissues and isolated their polarized macrophages as well as extracellular vesicles (EVs), in which we measured the expression of miR-660, Kelch-like Protein 21 (KLHL21), and nuclear factor-κB (NF-κB) p65. Breast cancer cells were transfected with miR-660 mimic, miR-660 inhibitor, and sh-KLHL21 and then the cells were co-cultured with EVs or TAMs followed by detection of invasion and migration. Finally, mouse model of breast cancer was established to detect the effect of miR-660 or KLHL21 on metastasis by measuring the lymph node metastasis (LNM) foci in femur and lung. RESULTS KLHL21 was poorly expressed, whereas miR-660 was highly expressed in breast cancer tissues and cells. Of note, low KLHL21 expression or high miR-660 expression was related to poor overall survival. EVs-contained miR-660 was identified to bind to KLHL21, reducing the binding between KLHL21 and inhibitor kappa B kinase β (IKKβ) to activate the NF-κB p65 signaling pathway. Interestingly, EV-loaded miR-660 from TAMs could be internalized by breast cancer cells. Moreover, silencing of KLHL21 increased the number of lung LNM foci in vivo, while EVs-contained miR-660 promoted cancerous cell invasion and migration. DISCUSSION Taken altogether, our work shows that TAMs-EVs-shuttled miR-660 promotes breast cancer progression through KLHL21-mediated IKKβ/NF-κB p65 axis.
Collapse
Affiliation(s)
- Changchun Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215000, Jiangsu Province, People's Republic of China
| | - Ruiqing Li
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Xingchi Hu
- Department of Thyroid and Breast Surgery, Yancheng City No. 1 People's Hospital, Yancheng, 224001, People's Republic of China
| | - Guangjun Zhou
- Department of Thyroid and Breast Surgery, Yancheng City No. 1 People's Hospital, Yancheng, 224001, People's Republic of China
| | - Guoqing Jiang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
39
|
PLUS: Predicting cancer metastasis potential based on positive and unlabeled learning. PLoS Comput Biol 2022; 18:e1009956. [PMID: 35349572 PMCID: PMC8992993 DOI: 10.1371/journal.pcbi.1009956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/08/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Metastatic cancer accounts for over 90% of all cancer deaths, and evaluations of metastasis potential are vital for minimizing the metastasis-associated mortality and achieving optimal clinical decision-making. Computational assessment of metastasis potential based on large-scale transcriptomic cancer data is challenging because metastasis events are not always clinically detectable. The under-diagnosis of metastasis events results in biased classification labels, and classification tools using biased labels may lead to inaccurate estimations of metastasis potential. This issue is further complicated by the unknown metastasis prevalence at the population level, the small number of confirmed metastasis cases, and the high dimensionality of the candidate molecular features. Our proposed algorithm, called Positive and unlabeled Learning from Unbalanced cases and Sparse structures (PLUS), is the first to use a positive and unlabeled learning framework to account for the under-detection of metastasis events in building a classifier. PLUS is specifically tailored for studying metastasis that deals with the unbalanced instance allocation as well as unknown metastasis prevalence, which are not considered by other methods. PLUS achieves superior performance on synthetic datasets compared with other state-of-the-art methods. Application of PLUS to The Cancer Genome Atlas Pan-Cancer gene expression data generated metastasis potential predictions that show good agreement with the clinical follow-up data, in addition to predictive genes that have been validated by independent single-cell RNA-sequencing datasets. Metastasis is the major cause of cancer-related deaths, and evaluations of metastasis risk are essential for tailored treatment of cancer patients. Existing methods often build a classifier using the clinical metastasis diagnoses as binary responses or detect genomic features significantly associated with metastasis-related survival outcomes. However, these methods tend to identify genomic predictors that have little consistency across different cancer types. Thus, there is an urgent need for a powerful tool to characterize the cancer metastasis potential applicable across a wide span of cancer types. Computational assessment of metastasis potential based on large-scale transcriptomic cancer data is challenging because metastasis events are not always clinically detectable, which results in biased estimations of metastasis potential. Our proposed algorithm, called PLUS, considers patients with metastasis diagnosis as positive instances and the remainder as unlabeled instances, meaning they are either metastatic or non-metastatic. Such a classifier given by PLUS rendered concordance between the predicted cancer metastasis and observed metastasis survival outcomes in the follow-up data for almost all cancer types considered. The selected genes were found to perform functions consistent with experimental research findings and are capable of clustering the single cells based on their levels of metastasis potential.
Collapse
|
40
|
Widjaya AS, Liu Y, Yang Y, Yin W, Liang J, Jiang Y. Tumor-permeable smart liposomes by modulating the tumor microenvironment to improve the chemotherapy. J Control Release 2022; 344:62-79. [PMID: 35182612 DOI: 10.1016/j.jconrel.2022.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Low levels of accumulation and permeability in tumors are two primary reasons for the limited efficacy of conventional antineoplastic nanodrugs. In the present study, based on an original corosolic acid liposome (CALP) carrier with the functions of cell penetration, tumor permeability and anti-inflammation developed by our previous work, a versatile PTX/CALP was achieved by CALP loading paclitaxel (PTX). Compared to conventional PTX liposomes (PTX/LP) prepared by cholesterol and phospholipid, PTX/CALP exhibited extremely increasing cellular uptake and cytotoxicity in vitro, and in vivo enhancing the accumulation and permeability of tumor, thus significantly improving the antitumor efficacy. Further evidence indicated that PTX/CALP conspicuously promoted the recruitment of CD8+ T cells as well as reduced the infiltration of regulatory T cells and M2 macrophages into tumor by inducing enhanced immunogenic cell death (ICD) and down-regulating the inflammation level. Therefore, the improvement of efficacy was also attributed to the superiorities of PTX/CALP in modulating the inflammatory and immunosuppressive tumor microenvironment. Overall, the smart PTX liposomes based on the multi-functional CALP carrier without any modification could overcome the harsh tumor biological barriers, enhance the induction of ICD and then achieve satisfactory efficacy, suggesting its promising potentials in industrial transfer and clinical application.
Collapse
Affiliation(s)
- Andy Samuel Widjaya
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yunhu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yueying Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weiwei Yin
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianying Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
41
|
Zhu S, Sun X, Zeng Y, Song Z, Zhong Y. Problems and prospects of clinical trials of boron neutron capture therapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Reyes RM, Zhang C, Deng Y, Ji N, Mukherjee N, Padron AS, Clark CA, Svatek RS, Curiel TJ. CD122-targeted interleukin-2 and αPD-L1 treat bladder cancer and melanoma via distinct mechanisms, including CD122-driven natural killer cell maturation. Oncoimmunology 2021; 10:2006529. [PMID: 34858732 PMCID: PMC8632314 DOI: 10.1080/2162402x.2021.2006529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bladder cancer (BC) and melanoma are amenable to immune checkpoint blockade (ICB) therapy, yet most patients with advanced/metastatic disease do not respond. CD122-targeted interleukin (IL)-2 can improve ICB efficacy, but mechanisms are unclear. We tested αPD-L1 and CD122-directed immunotherapy with IL-2/αIL-2 complexes (IL-2c) in primary and metastatic bladder and melanoma tumors. IL-2c treatment of orthotopic MB49 and MBT-2 BC generated NK cell antitumor immunity through enhanced activation, reduced exhaustion, and promotion of a mature, effector NK cell phenotype. By comparison, subcutaneous B16-F10 melanoma, which is IL-2c sensitive, requires CD8+ T and not NK cells, yet we found αPD-L1 efficacy requires both CD8+ T and NK cells. We then explored αPD-L1 and IL-2c mechanisms at distinct metastatic sites and found intraperitoneal B16-F10 metastases were sensitive to αPD-L1 and IL-2c, with IL-2c but not αPD-L1, increasing CD122+ mature NK cell function, confirming conserved IL-2c effects in distinct cancer types and anatomic compartments. αPD-L1 failed to control tumor growth and prolong survival in B16-F10 lung metastases, yet IL-2c treated B16-F10 lung metastases effectively even in T cell and adaptive immunity deficient mice, which was abrogated by NK cell depletion in wild-type mice. Flow cytometric analyses of NK cells in B16-F10 lung metastases suggest that IL-2c directly boosts NK cell activation and effector function. Thus, αPD-L1 and IL-2c mediate nonredundant, immune microenvironment-specific treatment mechanisms involving CD8+ T and NK cells in primary and metastatic BC and melanoma. Mechanistic differences suggest effective treatment combinations including in other tumors or sites, warranting further studies.
Collapse
Affiliation(s)
- Ryan M Reyes
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, TX, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chenghao Zhang
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.,Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Yilun Deng
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Niannian Ji
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Alvaro S Padron
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Curtis A Clark
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert S Svatek
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.,Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler J Curiel
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.,Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
43
|
Wordeman L, Vicente JJ. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers (Basel) 2021; 13:5650. [PMID: 34830812 PMCID: PMC8616087 DOI: 10.3390/cancers13225650] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Microtubule-targeting agents (MTAs) represent one of the most successful first-line therapies prescribed for cancer treatment. They interfere with microtubule (MT) dynamics by either stabilizing or destabilizing MTs, and in culture, they are believed to kill cells via apoptosis after eliciting mitotic arrest, among other mechanisms. This classical view of MTA therapies persisted for many years. However, the limited success of drugs specifically targeting mitotic proteins, and the slow growing rate of most human tumors forces a reevaluation of the mechanism of action of MTAs. Studies from the last decade suggest that the killing efficiency of MTAs arises from a combination of interphase and mitotic effects. Moreover, MTs have also been implicated in other therapeutically relevant activities, such as decreasing angiogenesis, blocking cell migration, reducing metastasis, and activating innate immunity to promote proinflammatory responses. Two key problems associated with MTA therapy are acquired drug resistance and systemic toxicity. Accordingly, novel and effective MTAs are being designed with an eye toward reducing toxicity without compromising efficacy or promoting resistance. Here, we will review the mechanism of action of MTAs, the signaling pathways they affect, their impact on cancer and other illnesses, and the promising new therapeutic applications of these classic drugs.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|
44
|
Urra FA, Fuentes-Retamal S, Palominos C, Rodríguez-Lucart YA, López-Torres C, Araya-Maturana R. Extracellular Matrix Signals as Drivers of Mitochondrial Bioenergetics and Metabolic Plasticity of Cancer Cells During Metastasis. Front Cell Dev Biol 2021; 9:751301. [PMID: 34733852 PMCID: PMC8558415 DOI: 10.3389/fcell.2021.751301] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
The role of metabolism in tumor growth and chemoresistance has received considerable attention, however, the contribution of mitochondrial bioenergetics in migration, invasion, and metastasis is recently being understood. Migrating cancer cells adapt their energy needs to fluctuating changes in the microenvironment, exhibiting high metabolic plasticity. This occurs due to dynamic changes in the contributions of metabolic pathways to promote localized ATP production in lamellipodia and control signaling mediated by mitochondrial reactive oxygen species. Recent evidence has shown that metabolic shifts toward a mitochondrial metabolism based on the reductive carboxylation, glutaminolysis, and phosphocreatine-creatine kinase pathways promote resistance to anoikis, migration, and invasion in cancer cells. The PGC1a-driven metabolic adaptations with increased electron transport chain activity and superoxide levels are essential for metastasis in several cancer models. Notably, these metabolic changes can be determined by the composition and density of the extracellular matrix (ECM). ECM stiffness, integrins, and small Rho GTPases promote mitochondrial fragmentation, mitochondrial localization in focal adhesion complexes, and metabolic plasticity, supporting enhanced migration and metastasis. Here, we discuss the role of ECM in regulating mitochondrial metabolism during migration and metastasis, highlighting the therapeutic potential of compounds affecting mitochondrial function and selectively block cancer cell migration.
Collapse
Affiliation(s)
- Félix A Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Charlotte Palominos
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Yarcely A Rodríguez-Lucart
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile.,Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - Camila López-Torres
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile.,Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
45
|
Tang J, Yan B, Li GF, Li QY, Liu WF, Liang RB, Ge QM, Shao Y. Carbohydrate antigen 125, carbohydrate antigen 15-3 and low-density lipoprotein as risk factors for intraocular metastases in postmenopausal breast cancer. Medicine (Baltimore) 2021; 100:e27693. [PMID: 34713867 PMCID: PMC8556018 DOI: 10.1097/md.0000000000027693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
The prognosis of patients with postmenopausal breast cancer (PBC) could be improved by the early detection of intraocular metastases (IOMs). However, serum biomarkers for IOMs in PBC remain elusive. In the current study, we investigated patients with PBC, and compared serum parameters in an IOM and a non-IOM group, and then differentiated the risk factors related to IOMs. A comparison between an IOM and a non-IOM (NIOM) group was performed using Student t-test and a Chi-Squared test. After constructing a Poisson regression model to identify risk factors, we plotted receiver operating characteristic curves to evaluate the predictive value of significant risk factors in detecting IOMs. The incidence of IOMs in PBC was 1.16%. The histopathology results were not significantly different between the 2 groups. The levels of serum carbohydrate antigen 125 (CA-125), carbohydrate antigen 15-3 (CA15-3) and alkaline phosphatase were significantly elevated in IOMs compared with NIOMs (P = .082, P < .001, and P < .001, respectively). Compared with NIOMs, age, carbohydrate antigen 19 to 9, hemoglobin, calcium, total cholesterol, low-density lipoprotein (LDL) and apolipoprotein A1 were remarkably lower in IOMs (P = .038, P < .001, P < .001, P = .032, P = .041, P < .001, and P = .001, respectively). Poisson regression suggested that CA-125, CA15-3 and LDL were contributing to IOMs in PBC as risk factors (OR = 1.003, 95% CI: 1.001-1.005; OR = 1.025, 95% CI: 1.019-1.033; OR = 0.238, 95% CI: 0.112-0.505, respectively). A receiver operating characteristic curve revealed that the cut-off values for CA-125, CA15-3 and LDL were 16.78 0 U/mL, 63.175 U/mL, and 2.415 mmol/L, respectively. The combination of CA-125 and CA15-3 showed significant diagnostic value (area under the curve [AUC] = 0.982, P < .001). Our investigation suggests that CA-125, CA15-3 and LDL remarkably predict IOMs in PBC as risk factors, and the combination of CA-125 and CA15-3 shows considerable diagnostic value.
Collapse
Affiliation(s)
- Jing Tang
- Department of Oncology, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Bo Yan
- Hunan University of Technology, Zhuzhou, Hunan, China
| | - Gao-Feng Li
- Department of Oncology, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Qiu-Yu Li
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wen-Feng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rong-Bin Liang
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qian-Min Ge
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
46
|
Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer. Biomolecules 2021; 11:biom11081130. [PMID: 34439796 PMCID: PMC8392841 DOI: 10.3390/biom11081130] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, a fatal disease, is also one of the main causes of death worldwide. Despite various developments to prevent and treat cancer, the side effects of anticancer drugs remain a major concern. Ascorbic acid is an essential vitamin required by our bodies for normal physiological function and also has antioxidant and anticancer activity. Although the body cannot synthesize ascorbic acid, it is abundant in nature through foods and other natural sources and also exists as a nutritional food supplement. In anticancer drug development, ascorbic acid has played an important role by inhibiting the development of cancer through various mechanisms, including scavenging reactive oxygen species (ROS), selectively producing ROS and encouraging their cytotoxicity against tumour cells, preventing glucose metabolism, serving as an epigenetic regulator, and regulating the expression of HIF in tumour cells. Several ascorbic acid analogues have been produced to date for their anticancer and antioxidant activity. The current review summarizes the mechanisms behind ascorbic acid's antitumor activity, presents a compilation of its derivatives and their biological activity as anticancer agents, and discusses delivery systems such as liposomes, nanoparticles against cancer, and patents on ascorbic acid as anticancer agents.
Collapse
|
47
|
Biomimetic recognition strategy for efficient capture and release of circulating tumor cells. Mikrochim Acta 2021; 188:220. [PMID: 34076759 DOI: 10.1007/s00604-021-04856-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Efficient capture and release of circulating tumor cells play an important role in cancer diagnosis, but the limited affinity of monovalent adhesion molecules in existing capture technologies leads to low capture efficiency, and the captured cells are difficult to be separated. Inspired by the phenomenon that the long tentacles of jellyfish contain multiple adhesion domains and can effectively capture moving food, we have constructed a biomimetic recognition strategy to capture and release tumor cells. In details, gold-coated magnetic nanomaterials (Au@Fe3O4 NPs) were first prepared and characterized by scanning electron microscopy, UV-vis absorption spectra, and Zeta potential. Then, the DNA primers modified on Au@Fe3O4 nanoparticles can be extended to form many radialized DNA products by rolling circle amplification. These long DNA products resemble jellyfish tentacles and contain multivalent aptamers that can be extended into three dimensions to increase the accessibility of target cells, resulting in efficient, simple, rapid, and specific cells capture. The capture efficiencies are no less than 92% in PBS buffer and 77% in blood. Subsequently, DNase I was selected to degrade biomimetic tentacles to release the captured tumor cells with high viability. This release strategy can not only improve cell viability, but also reduce a tedious release process and unnecessary costs. We believe that the proposed method can be expanded for the capture and release of various tumor cells and will inspire the development of circulating tumor cells analysis. A biomimetic recognition strategy for capture and release of circulating tumor cells has been developed. This method modified specific P1 DNA primers on Au@Fe3O4 NPs to form many radialized DNA products by rolling circle amplification. These products can efficiently capture CTCs since it contains multiple aptamers with a multivalent binding capacity. This make it a promising tool to capture and release of other tumor cells, and will inspire the development of CTC analysis.
Collapse
|
48
|
Emerging roles of cancer-testis antigenes, semenogelin 1 and 2, in neoplastic cells. Cell Death Dis 2021; 7:97. [PMID: 33966049 PMCID: PMC8106676 DOI: 10.1038/s41420-021-00482-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 11/22/2020] [Accepted: 01/17/2021] [Indexed: 02/03/2023]
Abstract
Cancer-testicular Antigens (CTAs) belong to a group of proteins that under normal conditions are strictly expressed in a male's reproductive tissues. However, upon malignisation, they are frequently re-expressed in neoplastic tissues of various origin. A number of studies have shown that different CTAs affect growth, migration and invasion of tumor cells and favor cancer development and metastasis. Two members of the CTA group, Semenogelin 1 and 2 (SEMG1 and SEMG2, or SEMGs) represent the major component of human seminal fluid. They regulate the motility and capacitation of sperm. They are often re-expressed in different malignancies including breast cancer. However, there is almost no information about the functional properties of SEMGs in cancer cells. In this review, we highlight the role of SEMGs in the reproductive system and also summarize the data on their expression and functions in malignant cells of various origins.
Collapse
|
49
|
Mendaza S, Fernández-Irigoyen J, Santamaría E, Arozarena I, Guerrero-Setas D, Zudaire T, Guarch R, Vidal A, Salas JS, Matias-Guiu X, Ausín K, Gil C, Hernández-Alcoceba R, Martín-Sánchez E. Understanding the Molecular Mechanism of miR-877-3p Could Provide Potential Biomarkers and Therapeutic Targets in Squamous Cell Carcinoma of the Cervix. Cancers (Basel) 2021; 13:cancers13071739. [PMID: 33917510 PMCID: PMC8038805 DOI: 10.3390/cancers13071739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
No therapeutic targets and molecular biomarkers are available in cervical cancer (CC) management. In other cancer types, micro-RNA-877-3p (miR-877-3p) has been associated with events relevant for CC development. Thus, we aimed to determine miR-877-3p role in CC. miR-877-3p levels were examined by quantitative-PCR in 117 cervical lesions and tumors. Effects on CC cell proliferation, migration, and invasion were evaluated upon anti-miR-877-3p transfection. miR-877-3p dependent molecular mechanism was comprehensively explored by proteomics, dual-luciferase reporter assay, western blot, and immunohistochemistry. Cervical tumors expressed higher miR-877-3p levels than benign lesions. miR-877-3p promoted CC cell migration and invasion, at least partly by modulating cytoskeletal protein folding through the chaperonin-containing T-complex protein 1 complex. Notably, miR-877-3p silencing synergized with paclitaxel. Interestingly, miR-877-3p downregulated the levels of an in silico-predicted target, ZNF177, whose expression and subcellular location significantly distinguished high-grade squamous intraepithelial lesions (HSILs) and squamous cell carcinomas of the cervix (SCCCs). Cytoplasmic ZNF177 was significantly associated with worse progression-free survival in SCCC. Our results suggest that: (i) miR-877-3p is a potential therapeutic target whose inhibition improves paclitaxel effects; (ii) the expression and location of its target ZNF177 could be diagnostic biomarkers between HSIL and SCCC; and (iii) cytoplasmic ZNF177 is a poor-prognosis biomarker in SCCC.
Collapse
Affiliation(s)
- Saioa Mendaza
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (D.G.-S.)
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (J.F.-I.); (E.S.); (K.A.)
| | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (J.F.-I.); (E.S.); (K.A.)
| | - Imanol Arozarena
- Cancer Cell Signalling Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain;
| | - David Guerrero-Setas
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (D.G.-S.)
- Department of Pathology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain; (T.Z.); (R.G.)
| | - Tamara Zudaire
- Department of Pathology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain; (T.Z.); (R.G.)
| | - Rosa Guarch
- Department of Pathology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain; (T.Z.); (R.G.)
| | - August Vidal
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Carrer de la Feixa Llarga, 08907 L’Hospitalet de Llobregat, Spain; (A.V.); (X.M.-G.)
- CIBERONC, Centro de Investigación Biomédica en Red—Cáncer, 28029 Madrid, Spain
| | - José-Santos Salas
- Department of Pathology, Complejo Asistencial Universitario, Altos de Nava, 24071 León, Spain;
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Carrer de la Feixa Llarga, 08907 L’Hospitalet de Llobregat, Spain; (A.V.); (X.M.-G.)
- CIBERONC, Centro de Investigación Biomédica en Red—Cáncer, 28029 Madrid, Spain
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, Alcalde Rovira Roure 80, 25198 Lleida, Spain
| | - Karina Ausín
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (J.F.-I.); (E.S.); (K.A.)
| | - Carmen Gil
- Microbial Pathogenesis Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain;
| | - Rubén Hernández-Alcoceba
- Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pío XII 55, 31008 Pamplona, Spain;
| | - Esperanza Martín-Sánchez
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (D.G.-S.)
- Correspondence:
| |
Collapse
|
50
|
Miller AK, Brown JS, Basanta D, Huntly N. What Is the Storage Effect, Why Should It Occur in Cancers, and How Can It Inform Cancer Therapy? Cancer Control 2021; 27:1073274820941968. [PMID: 32723185 PMCID: PMC7658723 DOI: 10.1177/1073274820941968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intratumor heterogeneity is a feature of cancer that is associated with progression, treatment resistance, and recurrence. However, the mechanisms that allow diverse cancer cell lineages to coexist remain poorly understood. The storage effect is a coexistence mechanism that has been proposed to explain the diversity of a variety of ecological communities, including coral reef fish, plankton, and desert annual plants. Three ingredients are required for there to be a storage effect: (1) temporal variability in the environment, (2) buffered population growth, and (3) species-specific environmental responses. In this article, we argue that these conditions are observed in cancers and that it is likely that the storage effect contributes to intratumor diversity. Data that show the temporal variation within the tumor microenvironment are needed to quantify how cancer cells respond to fluctuations in the tumor microenvironment and what impact this has on interactions among cancer cell types. The presence of a storage effect within a patient’s tumors could have a substantial impact on how we understand and treat cancer.
Collapse
Affiliation(s)
- Anna K Miller
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nancy Huntly
- Ecology Center & Department of Biology, Utah State University, Logan, UT, USA
| |
Collapse
|