1
|
Rezhdo A, Hershman RL, Williams SJ, Van Deventer JA. Design, Construction, and Validation of a Yeast-Displayed Chemically Expanded Antibody Library. ACS Synth Biol 2025; 14:1021-1040. [PMID: 40099723 DOI: 10.1021/acssynbio.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In vitro display technologies, exemplified by phage and yeast display, have emerged as powerful platforms for antibody discovery and engineering. However, the identification of antibodies that disrupt target functions beyond binding remains a challenge. In particular, there are very few strategies that support identification and engineering of either protein-based irreversible binders or inhibitory enzyme binders. Expanding the range of chemistries in antibody libraries has the potential to lead to efficient discovery of function-disrupting antibodies. In this work, we describe a yeast display-based platform for the discovery of chemically diversified antibodies. We constructed a billion-member antibody library, called the "Clickable CDR-H3 Library", that supports the presentation of a range of chemistries within antibody variable domains via noncanonical amino acid (ncAA) incorporation and subsequent bioorthogonal click chemistry conjugations. Use of a polyspecific orthogonal translation system enables introduction of chemical groups with various properties, including photoreactive, proximity-reactive, and click chemistry-enabled functional groups for library screening. We established conjugation conditions that facilitate modification of the full library, demonstrating the feasibility of sorting the full billion-member library in "protein-small molecule hybrid" format in future work. Here, we conducted initial library screens after introducing O-(2-bromoethyl)tyrosine (OBeY), a weakly electrophilic ncAA capable of undergoing proximity-induced crosslinking to a target. Enrichments against donkey IgG and protein tyrosine phosphatase 1B (PTP1B) each led to the identification of several OBeY-substituted clones that bind to the targets of interest. Flow cytometry analysis on the yeast surface confirmed higher retention of binding for OBeY-substituted clones compared to clones substituted with ncAAs lacking electrophilic side chains after denaturation. However, subsequent crosslinking experiments in solution with ncAA-substituted clones yielded inconclusive results, suggesting that weakly reactive OBeY side chain is not sufficient to drive robust crosslinking in the clones isolated here. Nonetheless, this work establishes a multimodal, chemically expanded antibody library and demonstrates the feasibility of conducting discovery campaigns in chemically expanded format. This versatile platform offers new opportunities for identifying and characterizing antibodies with properties beyond what is accessible with the canonical amino acids, potentially enabling discovery of new classes of reagents, diagnostics, and even therapeutic leads.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Rebecca L Hershman
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Wang C, Wang C, Xiao C, Zhang W, Guo Y, Qu M, Song Q, Qi X, Zou B. Tumor-Selective Gene Therapy: Using Hairpin DNA Oligonucleotides to Trigger Cleavage of Target RNA by Endogenous flap endonuclease 1 (FEN 1) Highly Expressed in Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410146. [PMID: 40156152 DOI: 10.1002/smll.202410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/27/2025] [Indexed: 04/01/2025]
Abstract
Nucleic acid drugs, which trigger gene silencing by hybridizing with target genes, have shown great potential in targeting those undruggable targets. However, most of the existing nucleic acid drugs are only sequence specific for target genes and lack cellular or tissue selectivity, which challenges their therapeutic safety. Here, the study proposes a tumor cell-specific gene silencing strategy by using hairpin DNA oligonucleotides to trigger target RNA degrading by highly expressed endogenous flap endonuclease 1 (FEN1) in tumor cells, for selective tumor therapy. Using Kirsten rat sarcoma viral oncogene homolog (KRASG12S) and B-cell lymphoma 2 (Bcl-2) genes as targets, it is verified that the hairpin DNA oligonucleotides show cytotoxicity only to tumor cells but very low effects on normal cells. In addition, hairpin DNA oligonucleotides designed for KRAS inhibition, which are encapsulated in lipid nanoparticles, inhibit tumor growth in mice and demonstrate excellent antitumor efficacy in combination with gefitinib, but has little effect on normal tissues, suggesting that the proposed strategy enables highly selective tumor therapy and has the potential to give rise to a new class of nucleic acid drugs.
Collapse
Affiliation(s)
- Chunlu Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenxin Xiao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijie Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Muqing Qu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinxin Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaole Qi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
3
|
Li S, Wang X, Huang J, Cao X, Liu Y, Bai S, Zeng T, Chen Q, Li C, Lu C, Yang H. Decoy-PROTAC for specific degradation of "Undruggable" STAT3 transcription factor. Cell Death Dis 2025; 16:197. [PMID: 40118821 PMCID: PMC11928565 DOI: 10.1038/s41419-025-07535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 03/24/2025]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is widely recognized as an attractive target for cancer therapy due to its significant role in the initiation and progression of tumorigenesis. However, existing STAT3 inhibitors have suffered from drawbacks including poor efficacy, limited specificity, and undesirable off-target effects, due to the challenging nature of identifying active sites or allosteric regulatory pockets on STAT3 amenable to small-molecule inhibition. In response to these obstacles, we utilize the innovative proteolysis targeting chimera (PROTAC) technology to create a highly specific decoy-targeted protein degradation system for STAT3 protein, termed D-PROTAC. This system fuses DNA decoy that targets STAT3 with an E3 ligase ligand, utilizing a click chemistry approach. Experimental results demonstrate that D-PROTAC efficiently mediates the degradation of the STAT3 protein across various cancer cell types, leading to the downregulation of crucial downstream STAT3 targets, inhibiting tumor cell growth, triggering cell cycle arrest and apoptosis, and suppressing tumor immune evasion. Furthermore, D-PROTAC is capable of achieving significant tumor suppression in xenograft models. Overall, our research validates that D-PROTAC can successfully target and eliminate the "undruggable" STAT3, showcasing specificity and potent antitumor effects. This strategy will suggest a promising avenue for the development of targeted therapies against the critical functions of STAT3 in human cancers and potentially other diseases.
Collapse
Affiliation(s)
- Shiqing Li
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Xin Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Jiabao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, People's Republic of China
| | - Xiuping Cao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Shiyan Bai
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, People's Republic of China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China.
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China.
| |
Collapse
|
4
|
Ge Z, Fan Z, He W, Zhou G, Zhou Y, Zheng M, Zhang S. Recent advances in targeted degradation in the RAS pathway. Future Med Chem 2025; 17:693-708. [PMID: 40065567 PMCID: PMC11938967 DOI: 10.1080/17568919.2025.2476387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
RAS (rat sarcoma) is one of the most frequently mutated gene families in cancer, encoding proteins classified as small GTPases. Mutations in RAS proteins result in abnormal activation of the RAS signaling pathway, a key driver in the initiation and progression of various malignancies. Consequently, targeting RAS proteins and the RAS signaling pathway has become a critical strategy in anticancer therapy. While RAS was historically considered an "undruggable" target, recent breakthroughs have yielded inhibitors specifically targeting KRASG12C and KRASG12D mutations, which have shown clinical efficacy in patients. However, these inhibitors face limitations due to rapid acquired resistance and the toxic effects of combination therapies in clinical settings. Targeted protein degradation (TPD) strategies, such as PROTACs and molecular glues, provide a novel approach by selectively degrading RAS proteins, or their upstream and downstream regulatory factors, to block aberrant signaling pathways. These degraders offer a promising alternative to traditional inhibitors by potentially circumventing resistance and enhancing therapeutic precision. This review discusses recent advancements in RAS pathway degraders, with an emphasis on targeting RAS mutations as well as their upstream regulators and downstream effectors for potential cancer treatments.
Collapse
Affiliation(s)
- Zhiming Ge
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zisheng Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Wei He
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Guizhen Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Yidi Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Sulin Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Katiyar P, Kalpana, Srivastava A, Singh CM. Investigation of Benzimidazole Derivatives in Molecular Targets for Breast Cancer Treatment: A Comprehensive Review. Crit Rev Oncog 2025; 30:43-58. [PMID: 39819434 DOI: 10.1615/critrevoncog.2024056541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This article provides a basic summary of computational research on benzimidazole and its molecular targets in breast cancer (BC) drug discovery. The drug development process is streamlined, expenses are decreased, and the possibility of finding successful therapies for this difficult illness is increased with the use of computational tools. The utilization of benzimidazole derivatives in medication research and discovery is discussed, along with the results of benzimidazole derivative-related clinical trials conducted against blood cancer during the previous five years. Additionally, it includes analysis of changes in structure and how they affect pharmacology. The structure-based method and other computational tools used in drug development are also covered, as well as the importance of structural information such as stereochemistry, physiological action, and the use of spectroscopic methods like NMR and X-ray crystallography in understanding the interactions between bioactive compounds and receptors. The article highlights the potential of benzimidazoles as bioactive heterocyclic molecules with various biological activities, including antimicrobial and anti-cancer properties.
Collapse
Affiliation(s)
- Pratima Katiyar
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Kalpana
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Aditi Srivastava
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Chandra Mohan Singh
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| |
Collapse
|
6
|
Lazo JS, Isbell KN, Vasa SA, Llaneza DC, Mingledorff GA, Sharlow ER. Deletion of PTP4A3 phosphatase in high-grade serous ovarian cancer cells decreases tumorigenicity and produces marked changes in intracellular signaling pathways and cytokine release. J Pharmacol Exp Ther 2025; 392:100010. [PMID: 39892999 DOI: 10.1124/jpet.124.002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
The oncogenic protein tyrosine phosphatase PTP4A3 is frequently overexpressed in human ovarian cancers and is associated with poor patient prognosis. PTP4A3 is thought to regulate multiple oncogenic signaling pathways, including STAT3, SRC, and extracellular signal-regulated kinase. The objective of this study was to generate ovarian cancer cells with genetically depleted PTP4A3, to assess their tumorigenicity, to examine their cellular phenotype, and to uncover changes in their intracellular signaling pathways and cytokine release profiles. Genetic deletion of PTP4A3 using CRISPR/CRISPR-associated protein 9 enabled the generation of individual clones derived from single cells isolated from the polyclonal knockout population. We observed a >90% depletion of PTP4A3 protein levels by western blotting in the clonal cell lines compared with the sham-transfected wild-type population. The wild-type and polyclonal knockout cell lines shared similar monolayer growth rates, whereas the isolated clonal populations 2B4, 3C9, and 3C12 exhibited significantly lower monolayer growth characteristics consistent with their lower PTP4A3 levels. The clonal Ptp4a3 knockout cell lines also had substantially lower in vitro colony formation efficiencies compared with the wild-type cells and were less tumorigenic in vivo. The clonal knockout cells were markedly less responsive to interleukin-6-stimulated migration in a scratch wound assay compared with the wild-type cells. Antibody microarray assays documented differences in cytokine release and intracellular phosphorylation patterns in the Ptp4a3-deleted clones. Bioinformatic network analyses indicated alterations in cellular signaling nodes. These biochemical changes could ultimately form the foundation for pharmacodynamic endpoints useful for emerging anti-PTP4A3 therapeutics. SIGNIFICANCE STATEMENT: Clones of high-grade serous ovarian cancer cells were isolated, in which the oncogenic phosphatase Ptp4a3 gene was deleted using CRISPR/CRISPR-associated protein 9 methodologies. The Ptp4a3-null cells exhibited loss of in vitro proliferation, colony formation, and migration and reduced in vivo tumorigenesis. Marked differences in intracellular protein phosphorylation and cytokine release were seen. The newly developed Ptp4a3 knockout cells should provide useful tools to probe the role of PTP4A3 phosphatase in ovarian cancer cell survival, tumorigenicity, and cell signaling.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia; KeViRx, Inc., Charlottesville, Virginia.
| | | | | | - Danielle C Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | | | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia; KeViRx, Inc., Charlottesville, Virginia
| |
Collapse
|
7
|
Wu E, Ellis A, Bell K, Moss DL, Landry SJ, Hristova K, Wimley WC. pH-Responsive Peptide Nanoparticles Deliver Macromolecules to Cells via Endosomal Membrane Nanoporation. ACS NANO 2024; 18:33922-33936. [PMID: 39651582 DOI: 10.1021/acsnano.4c07525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The synthetically evolved pHD family of peptides is known to self-assemble into macromolecule-sized nanopores of 2-10 nm diameter in synthetic lipid bilayers, but only when the pH is below ∼6. Here, we show that a representative family member, pHD108, has the same pH-responsive nanopore-forming activity in the endosomal membranes of living human cells, which is triggered by endosomal acidification. This enables the cytosolic delivery of endocytosed proteins and other macromolecules. Acylation of either peptide terminus significantly decreases the concentration of peptide required for macromolecule delivery to the cell cytosol while not causing any measurable cytotoxicity. Longer acyl chains are more effective. The N-terminal palmitoylated C16-pHD108 is the most potent of all of the acyl-pHD108 variants and readily delivers a cytotoxic enzyme, fluorescent proteins, and a dye-labeled dextran to the cell cytosol. C16-pHD108 forms stable monodisperse micellar nanoparticles in a buffer at pH 7 with an average diameter of around 120 nm. These nanoparticles are not cytolytic or cytotoxic because the acylated pHD peptide does not partition from the nanoparticles into cell membranes at pH 7. At pH 5, the nanoparticles are unstable, driving acylated pHD108 to bind strongly to membranes. We hypothesize that passive endocytosis of macromolecular cargo and stable peptide nanoparticles, followed by endosomal acidification-dependent destabilization of the nanoparticles, triggers the nanopore-forming activity of acylated pHD peptides in the endosomal membrane, enabling internalized macromolecules to be delivered to the cytosol.
Collapse
Affiliation(s)
- Eric Wu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ains Ellis
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Keynon Bell
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel L Moss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalina Hristova
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
8
|
Zhou G, Zhou C, Ma X, Xu J, Zhou Z, Xu T, Zheng M, Zhang S. An updated patent review of SOS1 inhibitors (2022-present). Expert Opin Ther Pat 2024; 34:1199-1213. [PMID: 39435474 DOI: 10.1080/13543776.2024.2419825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION SOS1 is a crucial guanine nucleotide exchange factor for KRAS. It facilitates the transition of KRAS from inactive GDP-bound state to active GTP-bound state. The activation of KRAS triggers downstream signaling pathways, promoting tumor initiation and progression. Inhibiting SOS1 to prevent KRAS activation is an effective strategy for treating tumors driven by KRAS. AREAS COVERED This review identified patents claiming to be SOS1 inhibitors or SOS1-KRAS interaction modulators published between January 2022 and June 2024 using Cortellis Drug Discovery Intelligence. A total of 15 patent applications from 5 different applicants were assessed. EXPERT OPINIONS In KRAS-driven tumors, inhibiting SOS1 significantly affect cell proliferation and migration by modulating the RAS/MAPK and PI3K/AKT/mTOR signaling pathways. Since 2022, numerous patents for SOS1 inhibitors have been published. The majority of SOS1 inhibitors are currently in the preclinical phase of development, with only a few progressing to clinical trials. However, these inhibitors face significant challenges in clinical studies, including limited efficacy of monotherapies, safety concerns, and the necessity to enhance PK properties. Despite their excellent in vitro performance, SOS1 inhibitors must address issues related to safety, pharmacokinetics, and pharmacodynamics in clinical applications.
Collapse
Affiliation(s)
- Guizhen Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuan Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Ma
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiahang Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zehui Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tianfeng Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Altinbay M, Wang J, Chen J, Schäfer D, Sprang M, Blagojevic B, Wölfl S, Andrade-Navarro M, Dikic I, Knapp S, Cheng X. Chem-CRISPR/dCas9FCPF: a platform for chemically induced epigenome editing. Nucleic Acids Res 2024; 52:11587-11601. [PMID: 39315698 PMCID: PMC11514490 DOI: 10.1093/nar/gkae798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024] Open
Abstract
Epigenetic aberration is one of the major driving factors in human cancer, often leading to acquired resistance to chemotherapies. Various small molecule epigenetic modulators have been reported. Nonetheless, outcomes from animal models and clinical trials have underscored the substantial setbacks attributed to pronounced on- and off-target toxicities. To address these challenges, CRISPR/dCas9 technology is emerging as a potent tool for precise modulation of epigenetic mechanism. However, this technology involves co-expressing exogenous epigenetic modulator proteins, which presents technical challenges in preparation and delivery with potential undesirable side effects. Recently, our research demonstrated that Cas9 tagged with the Phe-Cys-Pro-Phe (FCPF)-peptide motif can be specifically targeted by perfluorobiphenyl (PFB) derivatives. Here, we integrated the FCPF-tag into dCas9 and established a chemically inducible platform for epigenome editing, called Chem-CRISPR/dCas9FCPF. We designed a series of chemical inhibitor-PFB conjugates targeting various epigenetic modulator proteins. Focusing on JQ1, a panBET inhibitor, we demonstrate that c-MYC-sgRNA-guided JQ1-PFB specifically inhibits BRD4 in close proximity to the c-MYC promoter/enhancer, thereby effectively repressing the intricate transcription networks orchestrated by c-MYC as compared with JQ1 alone. In conclusion, our Chem-CRISPR/dCas9FCPF platform significantly increased target specificity of chemical epigenetic inhibitors, offering a viable alternative to conventional fusion protein systems for epigenome editing.
Collapse
Affiliation(s)
- Mukaddes Altinbay
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Jianhui Wang
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Jie Chen
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Theodor-Stern-Kai7, 60590, Frankfurt am Main, Germany
| | - Daniel Schäfer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, 55128 Mainz, Germany
| | - Biljana Blagojevic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg, Germany
| | | | - Ivan Dikic
- Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stefan Knapp
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
- DKTK translational cancer network, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Theodor-Stern-Kai7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Bennett GM, Starczewski J, dela Cerna MVC. In silico identification of putative druggable pockets in PRL3, a significant oncology target. Biochem Biophys Rep 2024; 39:101767. [PMID: 39050014 PMCID: PMC11267023 DOI: 10.1016/j.bbrep.2024.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Protein tyrosine phosphatases (PTP) have emerged as targets in diseases characterized by aberrant phosphorylations such as cancers. The activity of the phosphatase of regenerating liver 3, PRL3, has been linked to several oncogenic and metastatic pathways, particularly in breast, ovarian, colorectal, and blood cancers. Development of small molecules that directly target PRL3, however, has been challenging. This is partly due to the lack of structural information on how PRL3 interacts with its inhibitors. Here, computational methods are used to bridge this gap by evaluating the druggability of PRL3. In particular, web-based pocket prediction tools, DoGSite3 and FTMap, were used to identify binding pockets using structures of PRL3 currently available in the Protein Data Bank. Druggability assessment by molecular dynamics simulations with probes was also performed to validate these results and to predict the strength of binding in the identified pockets. While several druggable pockets were identified, those in the closed conformation show more promise given their volume and depth. These two pockets flank the active site loops and roughly correspond to pockets predicted by molecular docking in previous papers. Notably, druggability simulations predict the possibility of low nanomolar affinity inhibitors in these sites implying the potential to identify highly potent small molecule inhibitors for PRL3. Putative pockets identified here can be leveraged for high-throughput virtual screening to further accelerate the drug discovery against PRL3 and development of PRL3-directed therapeutics.
Collapse
Affiliation(s)
- Grace M. Bennett
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| | - Julia Starczewski
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| | - Mark Vincent C. dela Cerna
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| |
Collapse
|
11
|
Zhan W, Duan H, Li C. Recent Advances in Metal-Free Peptide Stapling Strategies. CHEM & BIO ENGINEERING 2024; 1:593-605. [PMID: 39974699 PMCID: PMC11835171 DOI: 10.1021/cbe.3c00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 02/21/2025]
Abstract
Protein-protein interactions (PPIs) pose challenges for intervention through small molecule drugs, protein drugs, and linear peptides due to inherent limitations such as inappropriate size, poor stability, and limited membrane penetrance. The emergence of stapled α-helical peptides presents a promising avenue as potential competitors for inhibiting PPIs, demonstrating enhanced structural stability and increased tolerance to proteolytic enzymes. This review aims to provide an overview of metal-free stapling strategies involving two identical natural amino acids, two different natural amino acids, non-natural amino acids, and multicomponent reactions. The primary objective is to delineate comprehensive peptide stapling approaches and foster innovative ideation among readers by accentuating methodologies published within the past five years and elucidating evolving trends in stapled peptides.
Collapse
Affiliation(s)
- Wanglin Zhan
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310030, China
- Engineering
Research Center of Functional Materials Intelligent Manufacturing
of Zhejiang Province, ZJU-Hangzhou Global
Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Hongliang Duan
- Faculty
of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Chengxi Li
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310030, China
- Engineering
Research Center of Functional Materials Intelligent Manufacturing
of Zhejiang Province, ZJU-Hangzhou Global
Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
12
|
Vijay A, Mukherjee A. Unraveling the folding-assisted unbinding mechanism of TCF with its binding partner β-catenin. Phys Chem Chem Phys 2024; 26:17481-17488. [PMID: 38887991 DOI: 10.1039/d4cp01451k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study utilizes molecular dynamics simulations aided with multiple walker parallel bias metadynamics to investigate the TCF unbinding mechanism from the β-catenin interface. The results, consistent with experimental binding affinity calculations, unveil a folding-assisted unbinding mechanism.
Collapse
Affiliation(s)
- Amal Vijay
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, Maharashtra, India.
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, Maharashtra, India.
| |
Collapse
|
13
|
Moujane S, Bouadid I, Bouymajane A, Younes FZ, Benlyas M, Mohammed B, Cacciola F, Vinci RL, Tropea A, Mondello L, Altemimi AB, Eddouks M, Moualij B. Biochemical and toxicity evaluation of Retama sphaerocarpa extracts and in-silico investigation of phenolic compounds as potential inhibitors against HPV16 E6 oncoprotein. Fitoterapia 2024; 175:105923. [PMID: 38554886 DOI: 10.1016/j.fitote.2024.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Cervical cancer is a type of cancer which affects the cervix cells. The conventional treatments for cervical cancer including surgery, chemotherapy, and radiotherapy are only effective in premature stages and less effective in late stages of this tumor. Therefore, the therapeutic strategies based on biologically active substances from plants are needed to develop for the treatment of cervical cancer. The aim of the present study was to assess in vivo toxicity, hematological and biochemical blood parameters in Wistar rats fed Retama sphaerocarpa aqueous leaf extract (RS-AE), as well as to perform in silico molecular docking studies and dynamic simulation of phenolic compounds against HPV16 oncoprotein E6 in order to identify potential inhibitors. RS-AE was found not to induce acute or sub-acute oral toxicity or significant alterations in hematological and biochemical blood parameters in Wistar rats. A total of 11 phenolic compounds were identified in RS-AE, including dihydrodaidzein glucuronide, chrysoperiol pentoside, genistin and vitexin, which turned out to have the highest binding affinity to HPV16 oncoprotein E6. Based on these results, these RS-AE phenolic compounds could be used as natural drugs against the HPV16 E6 oncoprotein.
Collapse
Affiliation(s)
- Soumia Moujane
- Biochemistry of Natural Substances, Faculty of Science and Techniques of Errachidia, Moulay Ismail University, Errachdia 50003, Morocco.
| | - Ismail Bouadid
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques of Errachidia, Moulay Ismail University, Boutalamine, Errachidia 52000, Morocco
| | - Aziz Bouymajane
- Team of Microbiology and Health, Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco; Biology, Environment and Health Team, Faculty of Sciences and Techniques of Errachidia, Moulay Ismail University, Meknes 50070, Morocco
| | | | - Mohamed Benlyas
- Biochemistry of Natural Substances, Faculty of Science and Techniques of Errachidia, Moulay Ismail University, Errachdia 50003, Morocco
| | - Bouachrine Mohammed
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco; EST Khenifra, Sultan Moulay Sliman University, Khenifra, Morocco
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Consolare Valeria, 98125 Messina, Italy.
| | - Roberto Laganà Vinci
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy
| | - Alessia Tropea
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy
| | - Ammar B Altemimi
- Department of Food Sciences, College of Agriculture, University of Basrah, Iraq
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques of Errachidia, Moulay Ismail University, Boutalamine, Errachidia 52000, Morocco
| | - Benaissa Moualij
- Biochemistry of Natural Substances, Faculty of Science and Techniques of Errachidia, Moulay Ismail University, Errachdia 50003, Morocco
| |
Collapse
|
14
|
Rezhdo A, Hershman RL, Van Deventer JA. Design, Construction, and Validation of a Yeast-Displayed Chemically Expanded Antibody Library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596443. [PMID: 38853888 PMCID: PMC11160716 DOI: 10.1101/2024.05.29.596443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In vitro display technologies, exemplified by phage and yeast display, have emerged as powerful platforms for antibody discovery and engineering. However, the identification of antibodies that disrupt target functions beyond binding remains a challenge. In particular, there are very few strategies that support identification and engineering of either protein-based irreversible binders or inhibitory enzyme binders. Expanding the range of chemistries in antibody libraries has the potential to lead to efficient discovery of function-disrupting antibodies. In this work, we describe a yeast display-based platform for the discovery of chemically diversified antibodies. We constructed a billion-member antibody library that supports the presentation of a range of chemistries within antibody variable domains via noncanonical amino acid (ncAA) incorporation and subsequent bioorthogonal click chemistry conjugations. Use of a polyspecific orthogonal translation system enables introduction of chemical groups with various properties, including photo-reactive, proximity-reactive, and click chemistry-enabled functional groups for library screening. We established conjugation conditions that facilitate modification of the full library, demonstrating the feasibility of sorting the full billion-member library in "protein-small molecule hybrid" format in future work. Here, we conducted initial library screens after introducing O-(2-bromoethyl)tyrosine (OBeY), a weakly electrophilic ncAA capable of undergoing proximity-induced crosslinking to a target. Enrichments against donkey IgG and protein tyrosine phosphatase 1B (PTP1B) each led to the identification of several OBeY-substituted clones that bind to the targets of interest. Flow cytometry analysis on the yeast surface confirmed higher retention of binding for OBeY-substituted clones compared to clones substituted with ncAAs lacking electrophilic side chains after denaturation. However, subsequent crosslinking experiments in solution with ncAA-substituted clones yielded inconclusive results, suggesting that weakly reactive OBeY side chain is not sufficient to drive robust crosslinking in the clones isolated here. Nonetheless, this work establishes a multi-modal, chemically expanded antibody library and demonstrates the feasibility of conducting discovery campaigns in chemically expanded format. This versatile platform offers new opportunities for identifying and characterizing antibodies with properties beyond what is accessible with the canonical amino acids, potentially enabling discovery of new classes of reagents, diagnostics, and even therapeutic leads.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Rebecca L. Hershman
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
15
|
Jeong J, Usman M, Li Y, Zhou XZ, Lu KP. Pin1-Catalyzed Conformation Changes Regulate Protein Ubiquitination and Degradation. Cells 2024; 13:731. [PMID: 38727267 PMCID: PMC11083468 DOI: 10.3390/cells13090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The unique prolyl isomerase Pin1 binds to and catalyzes cis-trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin-proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies.
Collapse
Affiliation(s)
- Jessica Jeong
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Muhammad Usman
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Department of Pathology and Laboratory Medicine, and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, Western University, London, ON N6C 2R5, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
16
|
Chen N, Zhang Z, Liu X, Wang H, Guo RC, Wang H, Hu B, Shi Y, Zhang P, Liu Z, Yu Z. Sulfatase-Induced In Situ Formulation of Antineoplastic Supra-PROTACs. J Am Chem Soc 2024; 146:10753-10766. [PMID: 38578841 DOI: 10.1021/jacs.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Proteolysis targeting chimera (PROTAC) technology is an innovative strategy for cancer therapy, which, however, suffers from poor targeting delivery and limited capability for protein of interest (POI) degradation. Here, we report a strategy for the in situ formulation of antineoplastic Supra-PROTACs via intracellular sulfatase-responsive assembly of peptides. Coassembling a sulfated peptide with two ligands binding to ubiquitin VHL and Bcl-xL leads to the formation of a pro-Supra-PROTAC, in which the ratio of the two ligands is rationally optimized based on their protein binding affinity. The resulting pro-Supra-PROTAC precisely undergoes enzyme-responsive assembly into nanofibrous Supra-PROTACs in cancer cells overexpressing sulfatase. Mechanistic studies reveal that the pro-Supra-PROTACs selectively cause apparent cytotoxicity to cancer cells through the degradation of Bcl-xL and the activation of caspase-dependent apoptosis, during which the rationally optimized ligand ratio improves the bioactivity for POI degradation and cell death. In vivo studies show that in situ formulation enhanced the tumor accumulation and retention of the pro-Supra-PROTACs, as well as the capability for inhibiting tumor growth with excellent biosafety when coadministrating with chemodrugs. Our findings provide a new approach for enzyme-regulated assembly of peptides in living cells and the development of PROTACs with high targeting delivering and POI degradation efficiency.
Collapse
Affiliation(s)
- Ninglin Chen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410000, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hongbo Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yang Shi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Peng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410000, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410000, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
17
|
Das A, Gupta S, Shaw P, Sinha S. Synthesis of Self Permeable Antisense PMO Using C5-Guanidino-Functionalized Pyrimidines at the 5'-End Enables Sox2 Downregulation in Triple Negative Breast Cancer Cells. Mol Pharm 2024; 21:1256-1271. [PMID: 38324380 DOI: 10.1021/acs.molpharmaceut.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Delivery of macromolecular drugs inside cells has been a huge challenge in the field of oligonucleotide therapeutics for the past few decades. Earliest natural inspirations included the arginine rich stretch of cell permeable HIV-TAT peptide, which led to the design of several molecular transporters with varying numbers of rigid or flexible guanidinium units with different tethering groups. These transporters have been shown to efficiently deliver phosphorodiamidate morpholino oligonucleotides, which have a neutral backbone and cannot form lipoplexes. In this report, PMO based delivery agents having 3 or 4 guanidinium groups at the C5 position of the nucleobases of cytosine and uracil have been explored, which can be assimilated within the desired stretch of the antisense oligonucleotide. Guanidinium units have been connected by varying the flexibility with either a saturated (propyl) or an unsaturated (propargyl) spacer, which showed different serum dependency along with varied cytoplasmic distribution. The effect of cholesterol conjugation in the delivery agent as well as at the 5'-end of full length PMO in cellular delivery has also been studied. Finally, the efficacy of the delivery has been studied by the PMO mediated downregulation of the stemness marker Sox2 in the triple-negative breast cancer cell line MDA-MB 231. These results have validated the use of this class of delivery agents, which permit at a stretch PMO synthesis where the modified bases can also participate in Watson-Crick-Franklin base pairing for enhanced mRNA binding and protein downregulation and could solve the delivery problem of PMO.
Collapse
Affiliation(s)
- Arnab Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Pallab Shaw
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
18
|
Wu Z, Huang Y, Liu K, Min J. N/C-degron pathways and inhibitor development for PROTAC applications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194952. [PMID: 37263341 DOI: 10.1016/j.bbagrm.2023.194952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Ubiquitination is a fascinating post-translational modification that has received continuous attention since its discovery. In this review, we first provide a concise overview of the E3 ubiquitin ligases, delving into classification, characteristics and mechanisms of ubiquitination. We then specifically examine the ubiquitination pathways mediated by the N/C-degrons, discussing their unique features and substrate recognition mechanisms. Finally, we offer insights into the current state of development pertaining to inhibitors that target the N/C-degron pathways, as well as the promising advances in the field of PROTAC (PROteolysis TArgeting Chimeras). Overall, this review offers a comprehensive understanding of the rapidly-evolving field of ubiquitin biology.
Collapse
Affiliation(s)
- Zhibin Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
19
|
Padilla MS, Tangsangasaksri M, Chang CC, Mecozzi S. MCT Nanoemulsions for the Efficient Delivery of siRNA. J Pharm Sci 2024; 113:764-771. [PMID: 37984699 DOI: 10.1016/j.xphs.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
In this study, an oil-in-water (o/w) nanoemulsion is used to deliver siRNA targeting Twist1, a protein that contributes to tumor metastasis in a variety of cancers. The FDA-approved oil, medium chain triglycerides (MCT), is used as the hydrophobic phase for the nanoemulsion. The siRNA is paired with dioleoyl-3-trimethylammonium-propane (DOTAP) to form a hydrophobic salt that is soluble at high concentrations in MCT. The resulting MCT/siRNA-DOTAP solution is formulated into a nanoemulsion with an average particle size of 140 nm. The nanoemulsion displays long term stability over the course of 195 days. In an in vivo murine tumor model, the nanoemulsion facilitates a 46% decrease in Twist1 mRNA after 48 h.
Collapse
Affiliation(s)
- Marshall S Padilla
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - Montira Tangsangasaksri
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - Chih-Chun Chang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - Sandro Mecozzi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States of America.
| |
Collapse
|
20
|
Deutzmann A, Sullivan DK, Dhanasekaran R, Li W, Chen X, Tong L, Mahauad-Fernandez WD, Bell J, Mosley A, Koehler AN, Li Y, Felsher DW. Nuclear to cytoplasmic transport is a druggable dependency in MYC-driven hepatocellular carcinoma. Nat Commun 2024; 15:963. [PMID: 38302473 PMCID: PMC10834515 DOI: 10.1038/s41467-024-45128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The MYC oncogene is often dysregulated in human cancer, including hepatocellular carcinoma (HCC). MYC is considered undruggable to date. Here, we comprehensively identify genes essential for survival of MYChigh but not MYClow cells by a CRISPR/Cas9 genome-wide screen in a MYC-conditional HCC model. Our screen uncovers novel MYC synthetic lethal (MYC-SL) interactions and identifies most MYC-SL genes described previously. In particular, the screen reveals nucleocytoplasmic transport to be a MYC-SL interaction. We show that the majority of MYC-SL nucleocytoplasmic transport genes are upregulated in MYChigh murine HCC and are associated with poor survival in HCC patients. Inhibiting Exportin-1 (XPO1) in vivo induces marked tumor regression in an autochthonous MYC-transgenic HCC model and inhibits tumor growth in HCC patient-derived xenografts. XPO1 expression is associated with poor prognosis only in HCC patients with high MYC activity. We infer that MYC may generally regulate and require altered expression of nucleocytoplasmic transport genes for tumorigenesis.
Collapse
Affiliation(s)
- Anja Deutzmann
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Delaney K Sullivan
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Renumathy Dhanasekaran
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Division of Gastroenterology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20012, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, 20012, USA
| | - Xinyu Chen
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ling Tong
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | - John Bell
- Stanford Genome Technology Center, Stanford University, Stanford, CA, 94305, USA
| | - Adriane Mosley
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yulin Li
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Institute for Academic Medicine, Houston Methodist and Weill Cornell Medical College, Houston, TX, 77030, USA.
| | - Dean W Felsher
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
21
|
Peng X, Hu Z, Zeng L, Zhang M, Xu C, Lu B, Tao C, Chen W, Hou W, Cheng K, Bi H, Pan W, Chen J. Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies. Acta Pharm Sin B 2024; 14:533-578. [PMID: 38322348 PMCID: PMC10840439 DOI: 10.1016/j.apsb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/21/2023] [Accepted: 08/30/2023] [Indexed: 02/08/2024] Open
Abstract
Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Zhihao Hu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou 314000, China
| | - Meizhu Zhang
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Congcong Xu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Benyan Lu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Chengpeng Tao
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Weiming Chen
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Wen Hou
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanyi Pan
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Sayin AZ, Abali Z, Senyuz S, Cankara F, Gursoy A, Keskin O. Conformational diversity and protein-protein interfaces in drug repurposing in Ras signaling pathway. Sci Rep 2024; 14:1239. [PMID: 38216592 PMCID: PMC10786864 DOI: 10.1038/s41598-023-50913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
We focus on drug repurposing in the Ras signaling pathway, considering structural similarities of protein-protein interfaces. The interfaces formed by physically interacting proteins are found from PDB if available and via PRISM (PRotein Interaction by Structural Matching) otherwise. The structural coverage of these interactions has been increased from 21 to 92% using PRISM. Multiple conformations of each protein are used to include protein dynamics and diversity. Next, we find FDA-approved drugs bound to structurally similar protein-protein interfaces. The results suggest that HIV protease inhibitors tipranavir, indinavir, and saquinavir may bind to EGFR and ERBB3/HER3 interface. Tipranavir and indinavir may also bind to EGFR and ERBB2/HER2 interface. Additionally, a drug used in Alzheimer's disease can bind to RAF1 and BRAF interface. Hence, we propose a methodology to find drugs to be potentially used for cancer using a dataset of structurally similar protein-protein interface clusters rather than pockets in a systematic way.
Collapse
Affiliation(s)
- Ahenk Zeynep Sayin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey
| | - Zeynep Abali
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Simge Senyuz
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Fatma Cankara
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, 34450, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
23
|
Kandhasamy K, Surajambika RR, Velayudham PK. Pyrazolo - Pyrimidines as Targeted Anticancer Scaffolds - A Comprehensive Review. Med Chem 2024; 20:293-310. [PMID: 37885114 DOI: 10.2174/0115734064251256231018104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Globally, cancer is the leading cause of death, which causes 10 million deaths yearly. Clinically, several drugs are used in treatment but due to drug resistance and multidrug resistance, there occurs a failure in the cancer treatment. OBJECTIVES The present review article is a comprehensive review of pyrazole and pyrimidine hybrids as potential anticancer agents. METHODS The review comprises more than 60 research works done in this field. The efficiency of the reported pyrazolopyrimidine fused heterocyclic with their biological data and the influence of the structural aspects of the molecule have been discussed. RESULTS This review highlighted pyrazolo-pyrimidines as targeted anticancer agents with effect on multiple targets. CONCLUSION The review will be helpful for the researchers involved in targeted drugs for cancer therapy for designing new scaffolds with pyrazolo-pyrimidine moieties.
Collapse
Affiliation(s)
- Kesavamoorthy Kandhasamy
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Chennai- 600 097, India
| | | | - Pradeep Kumar Velayudham
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Chennai- 600 097, India
| |
Collapse
|
24
|
Tracey SR, Smyth P, Herron UM, Burrows JF, Porter AJ, Barelle CJ, Scott CJ. Development of a cationic polyethyleneimine-poly(lactic- co-glycolic acid) nanoparticle system for enhanced intracellular delivery of biologics. RSC Adv 2023; 13:33721-33735. [PMID: 38020041 PMCID: PMC10654694 DOI: 10.1039/d3ra06050k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
Intracellular delivery of proteins, peptides and biologics is an emerging field which has the potential to provide novel opportunities to target intracellular proteins, previously deemed 'undruggable'. However, the delivery of proteins intracellularly remains a challenge. Here, we present a cationic nanoparticle delivery system for enhanced cellular delivery of proteins through use of a polyethyleneimine and poly-(lactic-co-glycolic acid) polymer blend. Cationic nanoparticles were shown to provide increased cellular uptake compared to anionic and neutral nanoparticles, successfully delivering Variable New Antigen Receptors (vNARs), entrapped within the nanoparticle core, to the cell interior. vNARs were identified as ideal candidates for nanoparticle entrapment due to their remarkable stability. The optimised 10% PEI-PLGA nanoparticle formulation displayed low toxicity, was uniform in size and possessed appropriate cationic charge to limit cellular toxicity, whilst being capable of escaping the endo/lysosomal system and delivering their cargo to the cytosol. This work demonstrates the ability of cationic nanoparticles to facilitate intracellular delivery of vNARs, novel biologic agents with potential utility towards intracellular targets.
Collapse
Affiliation(s)
- Shannon R Tracey
- Queen's University Belfast, The Patrick G Johnston Centre for Cancer Research 97 Lisburn Road Belfast Northern Ireland BT9 7AE UK
| | - Peter Smyth
- Queen's University Belfast, The Patrick G Johnston Centre for Cancer Research 97 Lisburn Road Belfast Northern Ireland BT9 7AE UK
| | - Una M Herron
- Queen's University Belfast, The Patrick G Johnston Centre for Cancer Research 97 Lisburn Road Belfast Northern Ireland BT9 7AE UK
| | - James F Burrows
- Queen's University Belfast, School of Pharmacy Belfast BT9 7BL UK
| | | | | | - Christopher J Scott
- Queen's University Belfast, The Patrick G Johnston Centre for Cancer Research 97 Lisburn Road Belfast Northern Ireland BT9 7AE UK
| |
Collapse
|
25
|
Bhole RP, Kute PR, Chikhale RV, Bonde CG, Pant A, Gurav SS. Unlocking the potential of PROTACs: A comprehensive review of protein degradation strategies in disease therapy. Bioorg Chem 2023; 139:106720. [PMID: 37480814 DOI: 10.1016/j.bioorg.2023.106720] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The technology known asPROTACs (PROteolysisTArgeting Chimeras) is a method of protein degradation. Utilising bifunctional small molecules, the ubiquitin-proteosome system (UPS) is used to induce the ubiquitination and degradation of target proteins. In addition to being novel chemical knockdown agents for biological studies that are catalytic, reversible, and rapid, PROTACs used in the treatment for disorders like cancer, immunological disorders, viral diseases, and neurological disorders. The protein degradation field has advanced quickly over the last two years, with a significant rise in research articles on the subject as well as a quick rise in smallmolecule degraders that are currently in or will soon enter the clinical stage. Other new degrading technologies, in addition to PROTAC and molecular glue technology, are also emerging rapidly. In this review article, we mainly focuses on various PROTAC molecules designed with special emphasis on targeted cellular pathways for different diseases i.e., cancer, Viral diseases Immune disorders, Neurodegenerative diseases, etc. We discussed about new technologies based on PROTACs such as Antibody PROTAC, Aptamers, Dual target, Folate caged, TF PROTAC, etc. Also, we listed out the PROTACs which are in clinical trials.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.
| | - Payal R Kute
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | | | - C G Bonde
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur Campus 425 405, India.
| | - Amit Pant
- School of Medicine Creighton University, Omaha, Neraska, USA.
| | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa 403001, India.
| |
Collapse
|
26
|
Feng X, Ge J, Fu H, Miao L, Zhao F, Wang J, Sun Y, Li Y, Li Y. Discovery of small molecule β-catenin suppressors that enhance immunotherapy. Bioorg Chem 2023; 139:106754. [PMID: 37536216 DOI: 10.1016/j.bioorg.2023.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Small molecules directly downregulating β-catenin could potentially offer a more effective therapeutic approach for combating against cancer stem cells, as compared to targeting the downstream components of the Wnt/β-catenin pathway. The challenge, however, lies in the fact that very few β-catenin suppressors have proven clinically effective, leaving a significant gap in medical solutions. Given that E-cadherin has a natural affinity for β-catenin, it stands to reason that agents designed to increase E-cadherin expression might provide an alternative method of regulating β-catenin levels. In this study, we report our discovery of DSS-C12 and DSS-B8, specific ester-based drugs derived from Dan-Shen-Su (DSS) extracted from the herb Salvia miltiorrhiza. Remarkably, these compounds display a potent ability to downregulate β-catenin, while also improving overall survival in post-surgery mice. Additionally, when these drugs are used in combination with PD-L1 checkpoint blockade, they stimulate enhanced systemic immune responses leading to significant suppression of primary tumor growth. In-depth mechanistic studies revealed that DSS-B8 functions as a vitamin D receptor agonist without inducing hypercalcemic effects. Collectively, our findings indicate that DSS-derived small molecules have considerable potential as clinically viable therapeutic strategies for β-catenin deactivation.
Collapse
Affiliation(s)
- Xuchen Feng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyu Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
27
|
Manicardi A, Theppawong A, Van Troys M, Madder A. Proximity-Induced Ligation and One-Pot Macrocyclization of 1,4-Diketone-Tagged Peptides Derived from 2,5-Disubstituted Furans upon Release from the Solid Support. Org Lett 2023; 25:6618-6622. [PMID: 37656900 PMCID: PMC10510716 DOI: 10.1021/acs.orglett.3c02289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 09/03/2023]
Abstract
1,4-Dione-containing peptides are generated during the cleavage of 2,5-disubstituted furan-containing systems. The generated electrophilic systems then react with α-effect nucleophiles, following a Paal-Knorr-like mechanism, for the generation of macrocyclic peptides, occurring after simple resuspension of the crude peptide in water. Conveniently, the in situ generation of the electrophile from a stable furan ring avoids the complications associated with the synthesis of carbonyl-containing peptides. Detailed investigation of the reaction characteristics was first performed on supramolecular coiled-coil systems.
Collapse
Affiliation(s)
- Alex Manicardi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Atiruj Theppawong
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Marleen Van Troys
- Department
of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Annemieke Madder
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
28
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
29
|
Xie L, Xie L. Elucidation of genome-wide understudied proteins targeted by PROTAC-induced degradation using interpretable machine learning. PLoS Comput Biol 2023; 19:e1010974. [PMID: 37590332 PMCID: PMC10464998 DOI: 10.1371/journal.pcbi.1010974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/29/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are hetero-bifunctional molecules that induce the degradation of target proteins by recruiting an E3 ligase. PROTACs have the potential to inactivate disease-related genes that are considered undruggable by small molecules, making them a promising therapy for the treatment of incurable diseases. However, only a few hundred proteins have been experimentally tested for their amenability to PROTACs, and it remains unclear which other proteins in the entire human genome can be targeted by PROTACs. In this study, we have developed PrePROTAC, an interpretable machine learning model based on a transformer-based protein sequence descriptor and random forest classification. PrePROTAC predicts genome-wide targets that can be degraded by CRBN, one of the E3 ligases. In the benchmark studies, PrePROTAC achieved a ROC-AUC of 0.81, an average precision of 0.84, and over 40% sensitivity at a false positive rate of 0.05. When evaluated by an external test set which comprised proteins from different structural folds than those in the training set, the performance of PrePROTAC did not drop significantly, indicating its generalizability. Furthermore, we developed an embedding SHapley Additive exPlanations (eSHAP) method, which extends conventional SHAP analysis for original features to an embedding space through in silico mutagenesis. This method allowed us to identify key residues in the protein structure that play critical roles in PROTAC activity. The identified key residues were consistent with existing knowledge. Using PrePROTAC, we identified over 600 novel understudied proteins that are potentially degradable by CRBN and proposed PROTAC compounds for three novel drug targets associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Li Xie
- Department of Computer Science, Hunter College, The City University of New York, New York City, New York, United States of America
| | - Lei Xie
- Department of Computer Science, Hunter College, The City University of New York, New York City, New York, United States of America
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York City, New York, United States of America
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York City, New York, United States of America
| |
Collapse
|
30
|
Winter H, Winski G, Busch A, Chernogubova E, Fasolo F, Wu Z, Bäcklund A, Khomtchouk BB, Van Booven DJ, Sachs N, Eckstein HH, Wittig I, Boon RA, Jin H, Maegdefessel L. Targeting long non-coding RNA NUDT6 enhances smooth muscle cell survival and limits vascular disease progression. Mol Ther 2023; 31:1775-1790. [PMID: 37147804 PMCID: PMC10277891 DOI: 10.1016/j.ymthe.2023.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) orchestrate various biological processes and regulate the development of cardiovascular diseases. Their potential therapeutic benefit to tackle disease progression has recently been extensively explored. Our study investigates the role of lncRNA Nudix Hydrolase 6 (NUDT6) and its antisense target fibroblast growth factor 2 (FGF2) in two vascular pathologies: abdominal aortic aneurysms (AAA) and carotid artery disease. Using tissue samples from both diseases, we detected a substantial increase of NUDT6, whereas FGF2 was downregulated. Targeting Nudt6 in vivo with antisense oligonucleotides in three murine and one porcine animal model of carotid artery disease and AAA limited disease progression. Restoration of FGF2 upon Nudt6 knockdown improved vessel wall morphology and fibrous cap stability. Overexpression of NUDT6 in vitro impaired smooth muscle cell (SMC) migration, while limiting their proliferation and augmenting apoptosis. By employing RNA pulldown followed by mass spectrometry as well as RNA immunoprecipitation, we identified Cysteine and Glycine Rich Protein 1 (CSRP1) as another direct NUDT6 interaction partner, regulating cell motility and SMC differentiation. Overall, the present study identifies NUDT6 as a well-conserved antisense transcript of FGF2. NUDT6 silencing triggers SMC survival and migration and could serve as a novel RNA-based therapeutic strategy in vascular diseases.
Collapse
Affiliation(s)
- Hanna Winter
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Greg Winski
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Albert Busch
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty, Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Zhiyuan Wu
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | | | - Bohdan B Khomtchouk
- Department of BioHealth Informatics, Indiana University, Indianapolis, IN, USA; Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology & Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Derek J Van Booven
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Reinier A Boon
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, 60590 Frankfurt am Main, Germany; Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany; Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, 1081 Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, 1105 Amsterdam, the Netherlands
| | - Hong Jin
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany; Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
32
|
Wang Z, Tan M, Su W, Huang W, Zhang J, Jia F, Cao G, Liu X, Song H, Ran H, Nie G, Wang H. Persistent Degradation of HER2 Protein by Hybrid nanoPROTAC for Programmed Cell Death. J Med Chem 2023; 66:6263-6273. [PMID: 37092695 DOI: 10.1021/acs.jmedchem.3c00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Proteolysis-targeting chimera (PROTAC) has emerged as a promising strategy for degrading proteins of interest. Peptide-based PROTACs offer several advantages over small-molecule-based PROTACs, such as high specificity, low toxicity, and large protein-protein interaction surfaces. However, peptide-based PROTACs have several intrinsic shortcomings that strongly limit their application including poor cell permeability and low stability and potency. Herein, we designed a nanosized hybrid PROTAC (GNCTACs) to target and degrade human epidermal growth factor receptor 2 (HER2) in tumor cells. Gold nanoclusters (GNCs) were utilized to connect HER2-targeting peptides and cereblon (CRBN)-targeting ligands. GNCTACs could overcome the intrinsic barriers of peptide-based PROTACs, efficiently delivering HER2-targeting peptides in the cytoplasm and protecting them from degradation. Furthermore, a fasting-mimicking diet was applied to enhance the cellular uptake and proteasome activity. Consequently, more than 95% of HER2 in SKBR3 cells was degraded by GNCTACs, and the degradation lasted for at least 72 h, showing a catalytic-like reaction.
Collapse
Affiliation(s)
- Zhihang Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixiao Tan
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Wen Su
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xinyang Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haohao Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haitao Ran
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Chee CE, Ooi M, Lee SC, Sundar R, Heong V, Yong WP, Ng CH, Wong A, Lim JSJ, Tan DSP, Soo R, Tan JTC, Yang S, Thura M, Al-Aidaroos AQ, Chng WJ, Zeng Q, Goh BC. A Phase I, First-in-Human Study of PRL3-zumab in Advanced, Refractory Solid Tumors and Hematological Malignancies. Target Oncol 2023; 18:391-402. [PMID: 37060431 DOI: 10.1007/s11523-023-00962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Phosphatase of regenerating liver-3 (PRL-3) is involved in cellular processes driving metastasis, cell proliferation, invasion, motility and survival. It has been shown to be upregulated and overexpressed in cancer tissue, in contrast to low or no expression in most normal tissue. PRL3-zumab is a first-in-class humanized antibody that specifically binds to PRL-3 oncotarget with high affinity and has been shown to reduce tumor growth and increase survival. OBJECTIVE In the study, we aimed to determine the safety and efficacy of PRL3-zumab in patients with advanced solid tumors and hematological malignancies. METHODS We conducted a phase I, first-in-human study in advanced solid tumors and hematological malignancies to investigate the safety, tolerability and efficacy of PRL3-zumab. Response rates were evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST) guideline (version 1.1) for solid tumors. For acute myeloid leukemia (AML) patients, bone marrow response criteria based on the European Leukaemia Network (ELN) 2017 guidelines for AML were used. We also explored the pharmacokinetics and pharmacodynamic relationships of PRL3-zumab in patients. This study was registered with ClinicalTrials.gov: NCT03191682. RESULTS In the dose-escalation cohort, 11 patients with advanced solid tumors were enrolled into the study. An additional 12 patients with solid tumors and four patients with AML were enrolled in the dose-expansion cohort. Maximum tolerability was not achieved in this study, as there were no dose-limiting toxicities. Potential treatment-emergent adverse events were grade 1 increased stoma output and fatigue and grade 2 vomiting. Best response observed was stable disease in three solid-tumor patients (11.1%). The pharmacokinetics of PRL3-zumab were dose proportional, consistent with an IgG type monoclonal antibody. CONCLUSIONS PRL3-zumab, a first-in-class humanized antibody, was safe and tolerable in solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Cheng E Chee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Melissa Ooi
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Soo-Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Raghav Sundar
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Valerie Heong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Wei-Peng Yong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Hin Ng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Andrea Wong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Joline S J Lim
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David S P Tan
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ross Soo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Joshua T C Tan
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Song Yang
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Min Thura
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Abdul Qader Al-Aidaroos
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Boon-Cher Goh
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Liu Y, Qian X, Ran C, Li L, Fu T, Su D, Xie S, Tan W. Aptamer-Based Targeted Protein Degradation. ACS NANO 2023; 17:6150-6164. [PMID: 36942868 DOI: 10.1021/acsnano.2c10379] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The selective removal of misfolded, aggregated, or aberrantly overexpressed protein plays an essential role in maintaining protein-dominated biological processes. In parallel, the precise knockout of abnormal proteins is inseparable from the accurate identification of proteins within complex environments. Guided by these precepts, small molecules, or antibodies, are commonly used as protein recognition tools for developing targeted protein degradation (TPD) technology. Indeed, TPD has shown tremendous prospects in chronic diseases, rare diseases, cancer research, and other fields. Meanwhile, aptamers are short RNA or DNA oligonucleotides that can bind to target proteins with high specificity and strong affinity. Accordingly, aptamers are actively used in designing and constructing TPD technology. In this perspective, we provide a brief introduction to TPD technology in its current progress, and we summarize its application challenges. Recent advances in aptamer-based TPD technology are reviewed, together with corresponding challenges and outlooks.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xu Qian
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chunyan Ran
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Longjie Li
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ting Fu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sitao Xie
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Luo G, Wang B, Hou Q, Wu X. Development of Son of Sevenless Homologue 1 (SOS1) Modulators To Treat Cancers by Regulating RAS Signaling. J Med Chem 2023; 66:4324-4341. [PMID: 36987571 DOI: 10.1021/acs.jmedchem.2c01729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Son of sevenless homologue 1 (SOS1) protein is universally expressed in cells and plays an important role in the RAS signaling pathway. Specifically, this protein interacts with RAS in response to upstream stimuli to promote guanine nucleotide exchange in RAS and activates the downstream signaling pathways. Thus, targeting SOS1 is a new approach for treating RAS-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of SOS1 and focus on recent advances in the discovery of activators, inhibitors, and PROTACs that target SOS1. This review aims to provide a timely and updated overview on the strategies for targeting SOS1 in cancer therapy.
Collapse
Affiliation(s)
- Guangmei Luo
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Bingrui Wang
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
36
|
Pal S. Impact of Hydrogen‐Bond Surrogate Model on Helix Stabilization and Development of Protein‐Protein Interaction Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre of the Max Planck Society Max Planck Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| |
Collapse
|
37
|
Wu Y, Chang X, Yang G, Chen L, Wu Q, Gao J, Tian R, Mu W, Gooding JJ, Chen X, Sun S. A Physiologically Responsive Nanocomposite Hydrogel for Treatment of Head and Neck Squamous Cell Carcinoma via Proteolysis-Targeting Chimeras Enhanced Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210787. [PMID: 36656993 DOI: 10.1002/adma.202210787] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Although immunotherapy has revolutionized oncotherapy, only ≈15% of head and neck squamous cell carcinoma (HNSCC) patients benefit from the current therapies. An immunosuppressive tumor microenvironment (TME) and dysregulation of the polycomb ring finger oncogene BMI1 are potential reasons for the failure. Herein, to promote immunotherapeutic efficacy against HNSCC, an injectable nanocomposite hydrogel is developed with a polymer framework (PLGA-PEG-PLGA) that is loaded with both imiquimod encapsulated CaCO3 nanoparticles (RC) and cancer cell membrane (CCM)-coated mesoporous silica nanoparticles containing a peptide-based proteolysis-targeting chimeras (PROTAC) for BMI1 and paclitaxel (PepM@PacC). Upon injection, this nanocomposite hydrogel undergoes in situ gelation, after which it degrades in the TME over time, releasing RC and PepM@PacC nanoparticles to respectively perform immunotherapy and chemotherapy. Specifically, the RC particles selectively manipulate tumor-associated macrophages and dendritic cells to activate a T-cell immune response, while CCM-mediated homologous targeting and endocytosis delivers the PepM@PacC particles into cancer cells, where endogenous glutathione promotes disulfide bond cleavage to release the PROTAC peptide for BMI1 degradation and frees the paclitaxel from the particle pores to elicit apoptosis meanwhile enhance immunotherapy. Thus, the nanocomposite hydrogel, which is designed to exploit multiple known vulnerabilities of HNSCC, succeeds in suppressing both growth and metastasis of HNSCC.
Collapse
Affiliation(s)
- Yaping Wu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guizhu Yang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Li Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Wu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Jiamin Gao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Ran Tian
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenyun Mu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - John Justin Gooding
- School of Chemistry, Australian Centre for Nano-Medicine and ARC Australian Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, 2052, Australia
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| |
Collapse
|
38
|
Xie L, Xie L. Elucidation of Genome-wide Understudied Proteins targeted by PROTAC-induced degradation using Interpretable Machine Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529828. [PMID: 36865212 PMCID: PMC9980153 DOI: 10.1101/2023.02.23.529828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) are hetero-bifunctional molecules. They induce the degradation of a target protein by recruiting an E3 ligase to the target. The PROTAC can inactivate disease-related genes that are considered as understudied, thus has a great potential to be a new type of therapy for the treatment of incurable diseases. However, only hundreds of proteins have been experimentally tested if they are amenable to the PROTACs. It remains elusive what other proteins can be targeted by the PROTAC in the entire human genome. For the first time, we have developed an interpretable machine learning model PrePROTAC, which is based on a transformer-based protein sequence descriptor and random forest classification to predict genome-wide PROTAC-induced targets degradable by CRBN, one of the E3 ligases. In the benchmark studies, PrePROTAC achieved ROC-AUC of 0.81, PR-AUC of 0.84, and over 40% sensitivity at a false positive rate of 0.05, respectively. Furthermore, we developed an embedding SHapley Additive exPlanations (eSHAP) method to identify positions in the protein structure, which play key roles in the PROTAC activity. The key residues identified were consistent with our existing knowledge. We applied PrePROTAC to identify more than 600 novel understudied proteins that are potentially degradable by CRBN, and proposed PROTAC compounds for three novel drug targets associated with Alzheimer's disease. Author Summary Many human diseases remain incurable because disease-causing genes cannot by selectively and effectively targeted by small molecules. Proteolysis-targeting chimera (PROTAC), an organic compound that binds to both a target and a degradation-mediating E3 ligase, has emerged as a promising approach to selectively target disease-driving genes that are not druggable by small molecules. Nevertheless, not all of proteins can be accommodated by E3 ligases, and be effectively degraded. Knowledge on the degradability of a protein will be crucial for the design of PROTACs. However, only hundreds of proteins have been experimentally tested if they are amenable to the PROTACs. It remains elusive what other proteins can be targeted by the PROTAC in the entire human genome. In this paper, we propose an intepretable machine learning model PrePROTAC that takes advantage of powerful protein language modeling. PrePROTAC achieves high accuracy when evaluated by an external dataset which comes from different gene families from the proteins in the training data, suggesting the generalizability of PrePROTAC. We apply PrePROTAC to the human genome, and identify more than 600 understudied proteins that are potentially responsive to the PROTAC. Furthermore, we design three PROTAC compounds for novel drug targets associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Li Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, 10065, USA
| | - Lei Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, 10065, USA
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, 10016, USA
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, 10021, USA
| |
Collapse
|
39
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
40
|
Zhang H, Liu C, Zhu D, Zhang Q, Li J. Medicinal Chemistry Strategies for the Development of Inhibitors Disrupting β-Catenin's Interactions with Its Nuclear Partners. J Med Chem 2023; 66:1-31. [PMID: 36583662 DOI: 10.1021/acs.jmedchem.2c01016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulation of the Wnt/β-catenin signaling pathway is strongly associated with various aspects of cancer, including tumor initiation, proliferation, and metastasis as well as antitumor immunity, and presents a promising opportunity for cancer therapy. Wnt/β-catenin signaling activation increases nuclear dephosphorylated β-catenin levels, resulting in β-catenin binding to TCF and additional cotranscription factors, such as BCL9, CBP, and p300. Therefore, directly disrupting β-catenin's interactions with these nuclear partners holds promise for the effective and selective suppression of the aberrant activation of Wnt/β-catenin signaling. Herein, we summarize recent advances in biochemical techniques and medicinal chemistry strategies used to identify potent peptide-based and small-molecule inhibitors that directly disrupt β-catenin's interactions with its nuclear binding partners. We discuss the challenges involved in developing drug-like inhibitors that target the interactions of β-catenin and its nuclear binding partner into therapeutic agents.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
41
|
Zhao HY, Xin M, Zhang SQ. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Dev Res 2023; 84:337-394. [PMID: 36606428 DOI: 10.1002/ddr.22026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Recent years have witnessed the rapid development of targeted protein degradation (TPD), especially proteolysis targeting chimeras. These degraders have manifested many advantages over small molecule inhibitors. To date, a huge number of degraders have been excavated against over 70 disease-related targets. In particular, degraders against estrogen receptor and androgen receptor have crowded into phase II clinical trial. TPD technologies largely expand the scope of druggable targets, and provide powerful tools for addressing intractable problems that can not be tackled by traditional small molecule inhibitors. In this review, we mainly focus on the structures and biological activities of small molecule degraders as well as the elucidation of mechanisms of emerging TPD technologies. We also propose the challenges that exist in the TPD field at present.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
42
|
Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, Chen Y, Fan L, Ma H, Gong Y, Xie Y. An overview of PROTACs: a promising drug discovery paradigm. MOLECULAR BIOMEDICINE 2022; 3:46. [PMID: 36536188 PMCID: PMC9763089 DOI: 10.1186/s43556-022-00112-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) technology has emerged as a novel therapeutic paradigm in recent years. PROTACs are heterobifunctional molecules that degrade target proteins by hijacking the ubiquitin-proteasome system. Currently, about 20-25% of all protein targets are being studied, and most works focus on their enzymatic functions. Unlike small molecules, PROTACs inhibit the whole biological function of the target protein by binding to the target protein and inducing subsequent proteasomal degradation. PROTACs compensate for limitations that transcription factors, nuclear proteins, and other scaffolding proteins are difficult to handle with traditional small-molecule inhibitors. Currently, PROTACs have successfully degraded diverse proteins, such as BTK, BRD4, AR, ER, STAT3, IRAK4, tau, etc. And ARV-110 and ARV-471 exhibited excellent efficacy in clinical II trials. However, what targets are appropriate for PROTAC technology to achieve better benefits than small-molecule inhibitors are not fully understood. And how to rationally design an efficient PROTACs and optimize it to be orally effective poses big challenges for researchers. In this review, we summarize the features of PROTAC technology, analyze the detail of general principles for designing efficient PROTACs, and discuss the typical application of PROTACs targeting different protein categories. In addition, we also introduce the progress of relevant clinical trial results of representative PROTACs and assess the challenges and limitations that PROTACs may face. Collectively, our studies provide references for further application of PROTACs.
Collapse
Affiliation(s)
- Zi Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Mingxing Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Yu Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Chenghao Du
- grid.42505.360000 0001 2156 6853Department of Biological Sciences, USC Dana and David Dornsife College of Letters, Arts and Sciences, Los Angeles, 90089 USA
| | - Haoxuan Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Chengyali Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Yuanwei Chen
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Lei Fan
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Hongqun Ma
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Youling Gong
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yongmei Xie
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| |
Collapse
|
43
|
Ma Y, Joyce A, Brandenburg O, Saatchi F, Stevens C, Tcheuyap VT, Christie A, Do QN, Fatunde O, Macchiaroli A, Wong SC, Woolford L, Yousuf Q, Miyata J, Carrillo D, Onabolu O, McKenzie T, Mishra A, Hardy T, He W, Li D, Ivanishev A, Zhang Q, Pedrosa I, Kapur P, Schluep T, Kanner SB, Hamilton J, Brugarolas J. HIF2 Inactivation and Tumor Suppression with a Tumor-Directed RNA-Silencing Drug in Mice and Humans. Clin Cancer Res 2022; 28:5405-5418. [PMID: 36190432 PMCID: PMC9771962 DOI: 10.1158/1078-0432.ccr-22-0963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE HIF2α is a key driver of kidney cancer. Using a belzutifan analogue (PT2399), we previously showed in tumorgrafts (TG) that ∼50% of clear cell renal cell carcinomas (ccRCC) are HIF2α dependent. However, prolonged treatment induced resistance mutations, which we also identified in humans. Here, we evaluated a tumor-directed, systemically delivered, siRNA drug (siHIF2) active against wild-type and resistant-mutant HIF2α. EXPERIMENTAL DESIGN Using our credentialed TG platform, we performed pharmacokinetic and pharmacodynamic analyses evaluating uptake, HIF2α silencing, target gene inactivation, and antitumor activity. Orthogonal RNA-sequencing studies of siHIF2 and PT2399 were pursued to define the HIF2 transcriptome. Analyses were extended to a TG line generated from a study biopsy of a siHIF2 phase I clinical trial (NCT04169711) participant and the corresponding patient, an extensively pretreated individual with rapidly progressive ccRCC and paraneoplastic polycythemia likely evidencing a HIF2 dependency. RESULTS siHIF2 was taken up by ccRCC TGs, effectively depleted HIF2α, deactivated orthogonally defined effector pathways (including Myc and novel E2F pathways), downregulated cell cycle genes, and inhibited tumor growth. Effects on the study subject TG mimicked those in the patient, where HIF2α was silenced in tumor biopsies, circulating erythropoietin was downregulated, polycythemia was suppressed, and a partial response was induced. CONCLUSIONS To our knowledge, this is the first example of functional inactivation of an oncoprotein and tumor suppression with a systemic, tumor-directed, RNA-silencing drug. These studies provide a proof-of-principle of HIF2α inhibition by RNA-targeting drugs in ccRCC and establish a paradigm for tumor-directed RNA-based therapeutics in cancer.
Collapse
Affiliation(s)
- Yuanqing Ma
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Allison Joyce
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olivia Brandenburg
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Faeze Saatchi
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Stevens
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vanina Toffessi Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,O’Donnell School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Quyen N. Do
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oluwatomilade Fatunde
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyssa Macchiaroli
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - So C. Wong
- Arrowhead Pharmaceuticals, Pasadena, CA, USA
| | - Layton Woolford
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qurratulain Yousuf
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Miyata
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deyssy Carrillo
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oreoluwa Onabolu
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffani McKenzie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Akhilesh Mishra
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tanner Hardy
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei He
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Li
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexander Ivanishev
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Corresponding author James Brugarolas, M.D., Ph.D., University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8852, Phone: 214-648-4059,
| |
Collapse
|
44
|
Lin CJ, Chen JT, Yeh LJ, Yang RC, Huang SM, Chen TW. Characteristics of the Cytotoxicity of Taraxacum mongolicum and Taraxacum formosanum in Human Breast Cancer Cells. Int J Mol Sci 2022; 23:11918. [PMID: 36233219 PMCID: PMC9570343 DOI: 10.3390/ijms231911918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is a highly heterogeneous disease that has been clinically divided into three main subtypes: estrogen receptor (ER)- and progesterone receptor (PR)-positive, human epidermal growth factor receptor 2 (HER 2)-positive, and triple-negative breast cancer (TNBC). With its high metastatic potential and resistance to endocrine therapy, HER 2-targeted therapy, and chemotherapy, TNBC represents an enormous clinical challenge. The genus Taraxacum is used to treat breast cancer in traditional medicine. Here, we applied aqueous extracts from two Taraxacum species, T. mongolicum and T. formosanum, to compare their potential antitumor effects against three human breast cancer cell lines: MDA-MB-231 (ER-, PR-, and HER2-), ZR-75-1 (ER+, PR+/-, and HER2-), and MCF-7 (ER+, PR+, and HER2-). Our results show that T. mongolicum exerted cytotoxic effects against MDA-MB-231 cells, including the induction of apoptosis, the reduction of cell proliferation, the disruption of the mitochondrial membrane potential, and/or the downregulation of the oxygen consumption rate. Both T. mongolicum and T. formosanum decreased cell migration and colony formation in the three cell-lines and exerted suppressive effects on MCF-7 cell proliferation based on metabolic activity and BrdU incorporation, but an enhanced proliferation of ZR-75-1 cells based on BrdU incorporation. T. formosanum induced ribotoxic stress in MDA-MB-231and ZR-75-1 cells; T. mongolicum did not. In summary, these findings suggest that T. mongolicum showed greater cytotoxicity against all three tested breast cancer cell lines, especially the TNBC MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Jen-Tuo Chen
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Lin-Jhen Yeh
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Rong-Chi Yang
- School of Medicine, National Defense Medical Center, Taipei City 114, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Teng-Wei Chen
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| |
Collapse
|
45
|
Tan ZW, Tee WV, Guarnera E, Berezovsky IN. AlloMAPS 2: allosteric fingerprints of the AlphaFold and Pfam-trRosetta predicted structures for engineering and design. Nucleic Acids Res 2022; 51:D345-D351. [PMID: 36169226 PMCID: PMC9825619 DOI: 10.1093/nar/gkac828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/29/2023] Open
Abstract
AlloMAPS 2 is an update of the Allosteric Mutation Analysis and Polymorphism of Signalling database, which contains data on allosteric communication obtained for predicted structures in the AlphaFold database (AFDB) and trRosetta-predicted Pfam domains. The data update contains Allosteric Signalling Maps (ASMs) and Allosteric Probing Maps (APMs) quantifying allosteric effects of mutations and of small probe binding, respectively. To ensure quality of the ASMs and APMs, we performed careful and accurate selection of protein sets containing high-quality predicted structures in both databases for each organism/structure, and the data is available for browsing and download. The data for remaining structures are available for download and should be used at user's discretion and responsibility. We believe these massive data can facilitate both diagnostics and drug design within the precision medicine paradigm. Specifically, it can be instrumental in the analysis of allosteric effects of pathological and rescue mutations, providing starting points for fragment-based design of allosteric effectors. The exhaustive character of allosteric signalling and probing fingerprints will be also useful in future developments of corresponding machine learning applications. The database is freely available at: http://allomaps.bii.a-star.edu.sg.
Collapse
Affiliation(s)
- Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Igor N Berezovsky
- To whom correspondence should be addressed. Tel: +65 6478 8269; Fax: +65 6478 9047;
| |
Collapse
|
46
|
Lin Z, Radaeva M, Cherkasov A, Dong X. Lin28 Regulates Cancer Cell Stemness for Tumour Progression. Cancers (Basel) 2022; 14:4640. [PMID: 36230562 PMCID: PMC9564245 DOI: 10.3390/cancers14194640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Tumours develop therapy resistance through complex mechanisms, one of which is that cancer stem cell (CSC) populations within the tumours present self-renewable capability and phenotypical plasticity to endure therapy-induced stress conditions and allow tumour progression to the therapy-resistant state. Developing therapeutic strategies to cope with CSCs requires a thorough understanding of the critical drivers and molecular mechanisms underlying the aforementioned processes. One such hub regulator of stemness is Lin28, an RNA-binding protein. Lin28 blocks the synthesis of let-7, a tumour-suppressor microRNA, and acts as a global regulator of cell differentiation and proliferation. Lin28also targets messenger RNAs and regulates protein translation. In this review, we explain the role of the Lin28/let-7 axis in establishing stemness, epithelial-to-mesenchymal transition, and glucose metabolism reprogramming. We also highlight the role of Lin28 in therapy-resistant prostate cancer progression and discuss the emergence of Lin28-targeted therapeutics and screening methods.
Collapse
Affiliation(s)
- Zhuohui Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Food and Land Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mariia Radaeva
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
47
|
Chen P, Yang W, Hong T, Miyazaki T, Dirisala A, Kataoka K, Cabral H. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC. Biomaterials 2022; 288:121748. [PMID: 36038419 DOI: 10.1016/j.biomaterials.2022.121748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Intracellular protein delivery is a powerful strategy for developing innovative therapeutics. Nanocarriers present great potential to deliver proteins inside cells by promoting cellular uptake and overcoming entrapment and degradation in acidic endo/lysosomal compartments. Thus, because cytosolic access is essential for eliciting the function of proteins, significant efforts have been dedicated to engineering nanocarriers with maximal endosomal escape regardless of the cell type. On the other hand, controlling the ability of nanocarriers to escape from the endo/lysosomal compartments of particular cells may offer the opportunity for enhancing delivery precision. To test this hypothesis, we developed pH-sensitive polymeric nanocarriers with adjustable endosomal escape potency for selectively reaching the cytosol of defined cancer cells with dysregulated endo/lysosomal acidification. By loading antibodies against nuclear pore complex in the nanocarriers, we demonstrated the selective delivery into the cytosol and subsequent nucleus targeting of cancer cells rather than non-cancerous cells both in vitro and in vivo. Systemically injected nanocarriers loading anti-c-MYC antibodies suppressed c-MYC in solid tumors and inhibit tumor growth without side effects, confirming the therapeutic potential of our approach. These results indicated that regulating the ability of nanocarriers to escape from endo/lysosomal compartments in particular cells is a practical approach for gaining delivery specificity.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wenqian Yang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina City, Kanagawa, 243-0435, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
48
|
Abstract
Proteolysis targeting chimeras (PROTACs) technology is a novel and promising therapeutic strategy using small molecules to induce ubiquitin-dependent degradation of proteins. It has received extensive attention from both academia and industry as it can potentially access previously inaccessible targets. However, the design and optimization of PROTACs present big challenges for researchers, and the general strategy for its development and optimization is a lot of trial and error based on experience. This review highlights the important advances in this rapidly growing field and critical limitations of the traditional trial-and-error approach to developing PROTACs by analyzing numerous representative examples of PROTACs development. We summarize and analyze the general principles and strategies for PROTACs design and optimization from the perspective of chemical structure design, and propose potential future pathways to facilitate the development of PROTACs.
Collapse
Affiliation(s)
- Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China. .,Tsinghua-Peking Center for Life Sciences, Beijing 100084, P. R. China
| | - Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| | - Liguo Wang
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
49
|
Wang W, He S, Dong G, Sheng C. Nucleic-Acid-Based Targeted Degradation in Drug Discovery. J Med Chem 2022; 65:10217-10232. [PMID: 35916496 DOI: 10.1021/acs.jmedchem.2c00875] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Targeted protein degradation (TPD), represented by proteolysis-targeting chimera (PROTAC), has emerged as a novel therapeutic modality in drug discovery. However, the application of conventional PROTACs is limited to protein targets containing cytosolic domains with ligandable sites. Recently, nucleic-acid-based modalities, such as modified oligonucleotide mimics and aptamers, opened new avenues to degrade protein targets and greatly expanded the scope of TPD. Beyond constructing protein-degrading chimeras, nucleic acid motifs can also serve as substrates for targeted degradation. Particularly, the new type of chimeric RNA degrader termed ribonuclease-targeting chimera (RIBOTAC) has shown promising features in drug discovery. Here, we provide an overview of the newly emerging TPD strategies based on nucleic acids as well as new strategies for targeted degradation of nucleic acid (RNA) targets. The design strategies, case studies, potential applications, and challenges are focused on.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
50
|
Tapia B, Yagudayeva G, Bravo MF, Thakur K, Braunschweig AB, Marianski M. Binding of synthetic carbohydrate receptors to enveloped virus glycans: Insights from molecular dynamics simulations. Carbohydr Res 2022; 518:108574. [PMID: 35617913 PMCID: PMC9080030 DOI: 10.1016/j.carres.2022.108574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023]
Abstract
Can envelope glycans be targeted to stop viral pandemics? Here we address this question by using molecular dynamics simulations to study the binding between 10 synthetic carbohydrate receptors (SCRs) and the 33 N-glycans most commonly found on the surfaces of enveloped viruses, including Zika virus and SARS-CoV-2. Based on association quotients derived from these simulations, we classified the SCRs as weak binders, promiscuous binders, or selective binders. The SCRs almost exclusively associate at the Man3GlcNAc2 core, which is common to all N-glycans, but the binding affinity between the SCR⋅glycan pair depends on the noncovalent interactions between the heterocycle rings and the glycan antennae. Systematic variations in the glycan and SCR structures reveal relationships that could guide the design of SCRs to attain affinity and selectivity towards a chosen envelope glycan target. With these results, envelope glycans, which are currently considered "undruggable", could become viable targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Beicer Tapia
- Department of Chemistry and Biochemistry, Hunter College, The City University of New York, 695 Park Ave, New York, NY, 10065, USA; The PhD Program in Biochemistry, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, 10016, USA
| | - Genrietta Yagudayeva
- Department of Chemistry and Biochemistry, Hunter College, The City University of New York, 695 Park Ave, New York, NY, 10065, USA
| | - M Fernando Bravo
- Department of Chemistry and Biochemistry, Hunter College, The City University of New York, 695 Park Ave, New York, NY, 10065, USA
| | - Khushabu Thakur
- Advanced Science Research Center of The City University of New York, 85 Nicolas Terrace, New York, NY, 10031, USA
| | - Adam B Braunschweig
- Department of Chemistry and Biochemistry, Hunter College, The City University of New York, 695 Park Ave, New York, NY, 10065, USA; The PhD Program in Biochemistry, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, 10016, USA; The PhD Program in Chemistry, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, 10016, USA; Advanced Science Research Center of The City University of New York, 85 Nicolas Terrace, New York, NY, 10031, USA
| | - Mateusz Marianski
- Department of Chemistry and Biochemistry, Hunter College, The City University of New York, 695 Park Ave, New York, NY, 10065, USA; The PhD Program in Biochemistry, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, 10016, USA; The PhD Program in Chemistry, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, 10016, USA; Advanced Science Research Center of The City University of New York, 85 Nicolas Terrace, New York, NY, 10031, USA.
| |
Collapse
|