1
|
Wang Y, Liu Z, Zhou W, Wang J, Li R, Peng C, Jiao L, Zhang S, Liu Z, Yu Z, Sun J, Deng Q, Duan S, Tan W, Wang Y, Song L, Guo F, Zhou Z, Wang Y, Zhou L, Jiang H, Yu L. Mast cell stabilizer, an anti-allergic drug, reduces ventricular arrhythmia risk via modulation of neuroimmune interaction. Basic Res Cardiol 2024; 119:75-91. [PMID: 38172251 DOI: 10.1007/s00395-023-01024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Mast cells (MCs) are important intermediates between the nervous and immune systems. The cardiac autonomic nervous system (CANS) crucially modulates cardiac electrophysiology and arrhythmogenesis, but whether and how MC-CANS neuroimmune interaction influences arrhythmia remain unclear. Our clinical data showed a close relationship between serum levels of MC markers and CANS activity, and then we use mast cell stabilizers (MCSs) to alter this MC-CANS communication. MCSs, which are well-known anti-allergic agents, could reduce the risk of ventricular arrhythmia (VA) after myocardial infarction (MI). RNA-sequencing (RNA-seq) analysis to investigate the underlying mechanism by which MCSs could affect the left stellate ganglion (LSG), a key therapeutic target for modulating CANS, showed that the IL-6 and γ-aminobutyric acid (GABA)-ergic system may be involved in this process. Our findings demonstrated that MCSs reduce VA risk along with revealing the potential underlying antiarrhythmic mechanisms.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Wenjie Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Jun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Rui Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Chen Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Liying Jiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Song Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhongyang Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Qiang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Shoupeng Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Yijun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Lingpeng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China.
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Nappi P, Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Taglialatela M. Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction. Pflugers Arch 2020; 472:881-898. [PMID: 32506321 DOI: 10.1007/s00424-020-02404-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Seizures are the most common neurological manifestation in the newborn period, with an estimated incidence of 1.8-3.5 per 1000 live births. Prolonged or intractable seizures have a detrimental effect on cognition and brain function in experimental animals and are associated with adverse long-term neurodevelopmental sequelae and an increased risk of post-neonatal epilepsy in humans. The developing brain is particularly susceptible to the potentially severe effects of epilepsy, and epilepsy, especially when refractory to medications, often results in a developmental and epileptic encephalopathy (DEE) with developmental arrest or regression. DEEs can be primarily attributed to genetic causes. Given the critical role of potassium (K+) currents with distinct subcellular localization, biophysical properties, modulation, and pharmacological profile in regulating intrinsic electrical properties of neurons and their responsiveness to synaptic inputs, it is not too surprising that genetic research in the past two decades has identified several K+ channel genes as responsible for a large fraction of DEE. In the present article, we review the genetically determined epileptic channelopathies affecting three members of the Kv7 family, namely Kv7.2 (KCNQ2), Kv7.3 (KCNQ3), and Kv7.5 (KCNQ5); we review the phenotypic spectrum of Kv7-related epileptic channelopathies, the different genetic and pathogenetic mechanisms, and the emerging genotype-phenotype correlations which may prove crucial for prognostic predictions, disease management, parental counseling, and individually tailored therapeutic attempts.
Collapse
Affiliation(s)
- Piera Nappi
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | | | - Paolo Ambrosino
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy
| | - Vincenzo Barrese
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|