1
|
Mir MM, Jeelani M, Alharthi MH, Rizvi SF, Sohail SK, Wani JI, Sabah ZU, BinAfif WF, Nandi P, Alshahrani AM, Alfaifi J, Jehangir A, Mir R. Unraveling the Mystery of Insulin Resistance: From Principle Mechanistic Insights and Consequences to Therapeutic Interventions. Int J Mol Sci 2025; 26:2770. [PMID: 40141412 PMCID: PMC11942988 DOI: 10.3390/ijms26062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin resistance (IR) is a significant factor in the development and progression of metabolic-related diseases like dyslipidemia, T2DM, hypertension, nonalcoholic fatty liver disease, cardiovascular and cerebrovascular disorders, and cancer. The pathogenesis of IR depends on multiple factors, including age, genetic predisposition, obesity, oxidative stress, among others. Abnormalities in the insulin-signaling cascade lead to IR in the host, including insulin receptor abnormalities, internal environment disturbances, and metabolic alterations in the muscle, liver, and cellular organelles. The complex and multifaceted characteristics of insulin signaling and insulin resistance envisage their thorough and comprehensive understanding at the cellular and molecular level. Therapeutic strategies for IR include exercise, dietary interventions, and pharmacotherapy. However, there are still gaps to be addressed, and more precise biomarkers for associated chronic diseases and lifestyle interventions are needed. Understanding these pathways is essential for developing effective treatments for IR, reducing healthcare costs, and improving quality of patient life.
Collapse
Affiliation(s)
- Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Syeda Fatima Rizvi
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Shahzada Khalid Sohail
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Zia Ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Partha Nandi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Abdullah M. Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Adnan Jehangir
- Biomedical Sciences Department, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
2
|
Weaver SR, Arnold KM, Peralta-Herrera E, Oviedo M, Zars EL, Bradley EW, Westendorf JJ. Postnatal deletion of Phlpp1 in chondrocytes delays post-traumatic osteoarthritis in male mice. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100525. [PMID: 39811690 PMCID: PMC11732534 DOI: 10.1016/j.ocarto.2024.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/24/2024] [Indexed: 01/16/2025] Open
Abstract
Objective Osteoarthritis is a chronic, debilitating disease that causes long-term pain and immobility. Germline deletion of Phlpp1 or administration of small molecules that inhibit Phlpp1 prevents post-traumatic osteoarthritis (PTOA) in mice. However, the chondrocyte-intrinsic role of Phlpp1 in PTOA progression is unknown. The objective of this study was to determine how postnatal, chondrocyte-directed deletion of Phlpp1 affects PTOA progression in the presence or absence of Phlpp inhibitors. Design Phlpp1fl/fl; Agc-CreERT2 and Agc-CreERT2 mice were injected with tamoxifen at 12 weeks of age to generate Phlpp1-CKOAgcERT and control (AgcERT) groups. Male mice underwent surgery to destabilize the medial meniscus (DMM) at 17 weeks of age. A separate cohort of male Phlpp1-CKOAgcERT mice were administered an intra-articular injection of NSC117079, a Phlpp1/2 inhibitor, or saline seven weeks after DMM surgery. Activity and mechanical allodynia were monitored throughout the experiment and cartilage damage was evaluated 12 weeks post-surgery. Results Phlpp1-CKOAgcERT mice had less cartilage damage than AgcERT littermates 12 weeks after DMM surgery but exhibited no differences in activity. Prg4 expression was also higher in articular chondrocytes of Phlpp1-CKOAgcERT mice. Intra-articular administration of NSC117079 to Phlpp1-CKOAgcERT mice improved cartilage structure, subchondral bone sclerosis, and mechanical allodynia at 12 weeks post-DMM. Conclusions Postnatal deletion of Phlpp1 in chondrocytes attenuates DMM-induced cartilage damage and subchondral bone sclerosis but does not prevent pain-related behaviors. Intra-articular injection of Phlpp inhibitors delays mechanical allodynia in Phlpp1-CKOAgcERT mice. These data indicate that Phlpp1 in chondrocytes affects articular cartilage structure after injury, but pain-related behaviors are controlled by Phlpp1 or Phlpp2 in other cell types.
Collapse
Affiliation(s)
| | | | | | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Elizabeth W. Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Weaver SR, Peralta-Herrera E, Torres HM, Jessen E, Bradley EW, Westendorf JJ. Phlpp1 alters the murine chondrocyte phospho-proteome during endochondral bone formation. Bone 2024; 189:117265. [PMID: 39349089 PMCID: PMC11549792 DOI: 10.1016/j.bone.2024.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Appendicular skeletal growth and bone mass acquisition are controlled by a variety of growth factors, hormones, and mechanical forces in a dynamic process called endochondral ossification. In long bones, chondrocytes in the growth plate proliferate and undergo hypertrophy to drive bone lengthening and mineralization. Pleckstrin homology (PH) domain and leucine rich repeat phosphatase 1 and 2 (Phlpp1 and Phlpp2) are serine/threonine protein phosphatases that regulate cell proliferation, survival, and maturation via Akt, PKC, Raf1, S6k, and other intracellular signaling cascades. Germline deletion of Phlpp1 suppresses bone lengthening in growth plate chondrocytes. Here, we demonstrate that Phlpp2 does not regulate endochondral ossification, and we define the molecular differences between Phlpp1 and Phlpp2 in chondrocytes. Phlpp2-/- mice were phenotypically indistinguishable from their wildtype (WT) littermates, with similar bone length, bone mass, and growth plate dynamics. Deletion of Phlpp2 had moderate effects on the chondrocyte transcriptome and proteome compared to WT cells. By contrast, Phlpp1/2-/- (double knockout) mice resembled Phlpp1-/- mice phenotypically and molecularly, as the chondrocyte phospho-proteomes of Phlpp1-/- and Phlpp1/2-/- chondrocytes had similarities and were significantly different from WT and Phlpp2-/- chondrocyte phospho-proteomes. Data integration via multiparametric analysis showed that the transcriptome explained less variation in the data as a result of Phlpp1 or Phlpp2 deletion than proteome or phospho-proteome. Alterations in cell proliferation, collagen fibril organization, and Pdpk1 and Pak1/2 signaling pathways were identified in chondrocytes lacking Phlpp1, while cell cycle processes and Akt1 and Aurka signaling pathways were altered in chondrocytes lacking Phlpp2. These data demonstrate that Phlpp1, and to a lesser extent Phlpp2, regulate multiple and complex signaling cascades across the chondrocyte transcriptome, proteome, and phospho-proteome and that multi-omic data integration can reveal novel putative kinase targets that regulate endochondral ossification.
Collapse
Affiliation(s)
- Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | | | - Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Erik Jessen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Elizabeth W Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
4
|
Weidle UH, Nopora A. CircRNAs in Pancreatic Cancer: New Tools for Target Identification and Therapeutic Intervention. Cancer Genomics Proteomics 2024; 21:327-349. [PMID: 38944427 PMCID: PMC11215428 DOI: 10.21873/cgp.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
We have reviewed the literature for circular RNAs (circRNAs) with efficacy in preclinical pancreatic-cancer related in vivo models. The identified circRNAs target chemoresistance mechanisms (n=5), secreted proteins and transmembrane receptors (n=15), transcription factors (n=9), components of the signaling- (n=11), ubiquitination- (n=2), autophagy-system (n=2), and others (n=9). In addition to identifying targets for therapeutic intervention, circRNAs are potential new entities for treatment of pancreatic cancer. Up-regulated circRNAs can be inhibited by antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or clustered regularly interspaced short-palindromic repeats-CRISPR associated protein (CRISPR-CAS)-based intervention. The function of down-regulated circRNAs can be reconstituted by replacement therapy using plasmids or virus-based vector systems. Target validation experiments and the development of improved delivery systems for corresponding agents were examined.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
5
|
Fontana F, Giannitti G, Marchesi S, Limonta P. The PI3K/Akt Pathway and Glucose Metabolism: A Dangerous Liaison in Cancer. Int J Biol Sci 2024; 20:3113-3125. [PMID: 38904014 PMCID: PMC11186371 DOI: 10.7150/ijbs.89942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/11/2024] [Indexed: 06/22/2024] Open
Abstract
Aberrant activation of the PI3K/Akt pathway commonly occurs in cancers and correlates with multiple aspects of malignant progression. In particular, recent evidence suggests that the PI3K/Akt signaling plays a fundamental role in promoting the so-called aerobic glycolysis or Warburg effect, by phosphorylating different nutrient transporters and metabolic enzymes, such as GLUT1, HK2, PFKB3/4 and PKM2, and by regulating various molecular networks and proteins, including mTORC1, GSK3, FOXO transcription factors, MYC and HIF-1α. This leads to a profound reprogramming of cancer metabolism, also impacting on pentose phosphate pathway, mitochondrial oxidative phosphorylation, de novo lipid synthesis and redox homeostasis and thereby allowing the fulfillment of both the catabolic and anabolic demands of tumor cells. The present review discusses the interactions between the PI3K/Akt cascade and its metabolic targets, focusing on their possible therapeutic implications.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
6
|
Etemad-Moghadam S, Mohammadpour H, Emami Razavi A, Alaeddini M. Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase Acts as a Tumor Suppressor in Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2024; 32:249-253. [PMID: 38602289 DOI: 10.1097/pai.0000000000001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) family has been found to have both tumor-suppressor and oncogenic properties across various types and locations of cancer. Given that PHLPP has not been previously studied in oral squamous cell carcinoma (SCC), we conducted an assessment of the expression of both its isoforms in oral SCC tissues and cell lines and compared these findings to their corresponding normal counterparts. In addition, we assessed the relationship between PHLPP and clinicopathological factors and patient survival. Quantitative real-time polymerase chain reaction was used to detect the mRNA levels of PHLPP1 and PHLPP2 in cancerous and normal cell lines in addition to 124 oral SCC and noncancerous adjacent epithelia (N = 62, each). Correlations between their expression rate and clinicopathological parameters were further evaluated in 57 patients. Data were statistically analyzed with t test and paired t test, analysis of variance, Mann-Whitney U , and Cox Regression tests ( P < 0.05). We found significantly lower levels of both PHLPP isoforms in oral SCC tissues compared with noncancerous epithelia ( P < 0.001, for both). However, in the cell lines, this difference was significant only for PHLPP1 ( P = 0.027). The correlation between the two isoforms was significant only in cancerous tissues ( P < 0.001). None of the clinicopathologic factors showed significant associations with either of the isoforms and there was no correlation with survival. We showed for the first time that PHLPP1 and PHLPP2 act as tumor suppressors in oral SCC at the mRNA level. The regulation of their mRNA appears to be different between normal and cancerous tissues.
Collapse
Affiliation(s)
- Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadiseh Mohammadpour
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Gao S, Qiu Y, Meng Y, Jia Y, Lang X, Zhao H, Sun H, Zhang J, Ding L. Blockage of PHLPP1 protects against myocardial ischemia/reperfusion injury in diabetic mice via activation of STAT3 signaling. J Bioenerg Biomembr 2023; 55:325-339. [PMID: 37584737 DOI: 10.1007/s10863-023-09977-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Diabetes can exacerbate myocardial ischemia/reperfusion (IR) injury. However, the sensitivity to IR injury and the underlying mechanisms in diabetic hearts remain unclear. Inhibition of PH domain leucine-rich repeating protein phosphatase (PHLPP1) could reduce myocardial IR injury, our previous study demonstrated that the expression of PHLPP1 was upregulated in diabetic myocardial IR model. Thus, this study aimed to investigate the mechanism of PHLPP1 in diabetic myocardial IR injury. Nondiabetic and diabetic C57BL/6 mice underwent 45 min of coronary artery occlusion followed by 2 h of reperfusion. Male C57BL/6 mice were injected with streptozotocin for five consecutive days to establish a diabetes model. H9c2 cells were exposed to normal or high glucose and subjected to 4 h of hypoxia followed by 4 h of reoxygenation. Diabetes or hyperglycemia increased postischemic infarct size, cellular injury, release of creatine kinase-MB, apoptosis, and oxidative stress, while exacerbating mitochondrial dysfunction. This was accompanied by enhanced expression of PHLPP1 and decreased levels of p-STAT3 and p-Akt. These effects were counteracted by PHLPP1 knockdown. Moreover, PHLPP1 knockdown resulted in an increase in mitochondrial translocation of p-STAT3 Ser727 and nuclear translocation of p-STAT3 Tyr705 and p-STAT3 Ser727. However, the effect of PHLPP1 knockdown in reducing posthypoxic cellular damage was nullified by either Stattic or LY294002. Additionally, a co-immunoprecipitation assay indicated a direct interaction between PHLPP1 and p-STAT3 Ser727, but not p-STAT3 Tyr705. The abnormal expression of PHLPP1 plays a significant role in exacerbating myocardial IR injury in diabetic mice. Knockdown of PHLPP1 to activate the STAT3 signaling pathway may represent a novel strategy for alleviating myocardial IR injury in diabetes.
Collapse
Affiliation(s)
- Sumin Gao
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yun Qiu
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yuming Meng
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yajuan Jia
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xuemei Lang
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hongmei Zhao
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hong Sun
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jinsong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China.
| |
Collapse
|
8
|
Zhu J, Tang J, Wu Y, Qiu X, Jin X, Zhang R. RNF149 confers cisplatin resistance in esophageal squamous cell carcinoma via destabilization of PHLPP2 and activating PI3K/AKT signalling. Med Oncol 2023; 40:290. [PMID: 37658961 DOI: 10.1007/s12032-023-02137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 09/05/2023]
Abstract
Chemo-resistance has been identified as a crucial factor contributing to tumor recurrence and a leading cause of worse prognosis in patients with ESCC. Therefore, unravel the critical regulators and effective strategies to overcome drug resistance will have a significant clinical impact on the disease. In our study we found that RNF149 was upregulated in ESCC and high RNF149 expression was associated with poor prognosis with ESCC patients. Functionally, we have demonstrated that overexpression of RNF149 confers CDDP resistance to ESCC; however, inhibition of RNF149 reversed this phenomenon both in vitro and in vivo. Mechanistically, we demonstrated that RNF149 interacts with PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2) and induces E3 ligase-dependent protein degradation of PHLPP2, substantially activating the PI3K/AKT signalling pathway in ESCC. Additionally, we found that inhibition of PI3K/AKT signalling pathway by AKT siRNA or small molecule inhibitor significantly suppressed RNF149-induced CDDP resistance. Importantly, RNF149 locus was also found to be amplified not only in ESCC but also in various human cancer types. Our data suggest that RNF149 might function as an oncogenic gene. Targeting the RNF149/PHLPP2/PI3K/Akt axis may be a promising prognostic factor and valuable therapeutic target for malignant tumours.
Collapse
Affiliation(s)
- Jinrong Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jiuren Tang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongqi Wu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiangyu Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xin Jin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Powis G, Meuillet EJ, Indarte M, Booher G, Kirkpatrick L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed Pharmacother 2023; 165:115024. [PMID: 37399719 DOI: 10.1016/j.biopha.2023.115024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.
Collapse
Affiliation(s)
- Garth Powis
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA.
| | | | - Martin Indarte
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Garrett Booher
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Lynn Kirkpatrick
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Xia X, Pi W, Chen M, Wang W, Cai D, Wang X, Lan Y, Yang H. Emerging roles of PHLPP phosphatases in lung cancer. Front Oncol 2023; 13:1216131. [PMID: 37576883 PMCID: PMC10414793 DOI: 10.3389/fonc.2023.1216131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Pleckstrin homologous domain leucine-rich repeating protein phosphatases (PHLPPs) were originally identified as protein kinase B (Akt) kinase hydrophobic motif specific phosphatases to maintain the cellular homeostasis. With the continuous expansion of PHLPPs research, imbalanced-PHLPPs were mainly found as a tumor suppressor gene of a variety of solid tumors. In this review, we simply described the history and structures of PHLPPs and summarized the recent achievements in emerging roles of PHLPPs in lung cancer by 1) the signaling pathways affected by PHLPPs including Phosphoinositide 3-kinase (PI3K)/AKT, RAS/RAF/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and Protein kinase C (PKC) signaling cascades. 2) function of PHLPPs regulatory factor USP46 and miR-190/miR-215, 3) the potential roles of PHLPPs in disease prognosis, Epidermal growth factor receptors (EGFR)- tyrosine kinase inhibitor (TKI) resistance and DNA damage, 4) and the possible function of PHLPPs in radiotherapy, ferroptosis and inflammation response. Therefore, PHLPPs can be considered as either biomarker or prognostic marker for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
11
|
Zhang C, Joseph KM, Khan NM, Diaz‐Hernandez ME, Drissi H, Illien‐Junger S. PHLPP1 deficiency protects against age-related intervertebral disc degeneration. JOR Spine 2022; 5:e1224. [PMID: 36601379 PMCID: PMC9799085 DOI: 10.1002/jsp2.1224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is strongly associated with low back pain and is highly prevalent in the elderly population. Hallmarks of IVD degeneration include cell loss and extracellular matrix degradation. The PH domain leucine-rich-repeats protein phosphatase (PHLPP1) is highly expressed in diseased cartilaginous tissues where it is linked to extracellular matrix degradation. This study explored the ability of PHLPP1 deficiency to protect against age-related spontaneous IVD degeneration. Methods Lumbar IVDs of global Phlpp1 knockout (KO) and wildtype (WT) mice were collected at 5 months (young) and 20 months (aged). Picrosirius red-alcian blue staining (PR-AB) was performed to examine IVD structure and histological score. The expression of aggrecan, ADAMTS5, KRT19, FOXO1 and FOXO3 was analyzed through immunohistochemistry. Cell apoptosis was assessed by TUNEL assay. Human nucleus pulposus (NP) samples were obtained from patients diagnosed with IVD degeneration. PHLPP1 knockdown in human degenerated NP cells was conducted using small interfering RNA (siRNA) transfection. The expression of PHLPP1 regulated downstream targets was analyzed via immunoblot and real time quantitative PCR. Results Histological analysis showed that Phlpp1 KO decreased the prevalence and severity of age-related IVD degeneration. The deficiency of PHLPP1 promoted the increased expression of NP phenotypic marker KRT19, aggrecan and FOXO1, and decreased levels of ADMATS5 and cell apoptosis in the NP of aged mice. In degenerated human NP cells, PHLPP1 knockdown induced FOXO1 protein levels while FOXO1 inhibition offset the beneficial effects of PHLPP1 knockdown on KRT19 gene and protein expression. Conclusions Our findings indicate that Phlpp1 deficiency protected against NP phenotypic changes, extracellular matrix degradation, and cell apoptosis in the process of IVD degeneration, probably through FOXO1 activation, making PHLPP1 a promising therapeutic target for treating IVD degeneration.
Collapse
Affiliation(s)
- Changli Zhang
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Katherine M. Joseph
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nazir M. Khan
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - Hicham Drissi
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | |
Collapse
|
12
|
Emerging roles of PHLPP phosphatases in the nervous system. Mol Cell Neurosci 2022; 123:103789. [PMID: 36343848 DOI: 10.1016/j.mcn.2022.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
It has been more than a decade since the discovery of a novel class of phosphatase, the Pleckstrin Homology (PH) domain Leucine-rich repeat Protein Phosphatases (PHLPP). Over time, they have been recognized as crucial regulators of various cellular processes, such as memory formation, cellular survival and proliferation, maintenance of circadian rhythm, and others, with any deregulation in their expression or cellular localization causing havoc in any cellular system. With the ever-growing number of downstream substrates across multiple tissue systems, a web is emerging wherein the central point is PHLPP. A slight nick in the normal signaling cascade of the two isoforms of PHLPP, namely PHLPP1 and PHLPP2, has been recently found to invoke a variety of neurological disorders including Alzheimer's disease, epileptic seizures, Parkinson's disease, and others, in the neuronal system. Improper regulation of the two isoforms has also been associated with various disease pathologies such as diabetes, cardiovascular disorders, cancer, musculoskeletal disorders, etc. In this review, we have summarized all the current knowledge about PHLPP1 (PHLPP1α and PHLPP1β) and PHLPP2 and their emerging roles in regulating various neuronal signaling pathways to pave the way for a better understanding of the complexities. This would in turn aid in providing context for the development of possible future therapeutic strategies.
Collapse
|
13
|
Vaneynde P, Verbinnen I, Janssens V. The role of serine/threonine phosphatases in human development: Evidence from congenital disorders. Front Cell Dev Biol 2022; 10:1030119. [PMID: 36313552 PMCID: PMC9608770 DOI: 10.3389/fcell.2022.1030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Reversible protein phosphorylation is a fundamental regulation mechanism in eukaryotic cell and organismal physiology, and in human health and disease. Until recently, and unlike protein kinases, mutations in serine/threonine protein phosphatases (PSP) had not been commonly associated with disorders of human development. Here, we have summarized the current knowledge on congenital diseases caused by mutations, inherited or de novo, in one of 38 human PSP genes, encoding a monomeric phosphatase or a catalytic subunit of a multimeric phosphatase. In addition, we highlight similar pathogenic mutations in genes encoding a specific regulatory subunit of a multimeric PSP. Overall, we describe 19 affected genes, and find that most pathogenic variants are loss-of-function, with just a few examples of gain-of-function alterations. Moreover, despite their widespread tissue expression, the large majority of congenital PSP disorders are characterised by brain-specific abnormalities, suggesting a generalized, major role for PSPs in brain development and function. However, even if the pathogenic mechanisms are relatively well understood for a small number of PSP disorders, this knowledge is still incomplete for most of them, and the further identification of downstream targets and effectors of the affected PSPs is eagerly awaited through studies in appropriate in vitro and in vivo disease models. Such lacking studies could elucidate the exact mechanisms through which these diseases act, and possibly open up new therapeutic avenues.
Collapse
Affiliation(s)
- Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
- *Correspondence: Veerle Janssens,
| |
Collapse
|
14
|
Baffi TR, Newton AC. mTOR Regulation of AGC Kinases: New Twist to an Old Tail. Mol Pharmacol 2022; 101:213-218. [PMID: 34155089 PMCID: PMC9092464 DOI: 10.1124/molpharm.121.000310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
The family of AGC kinases not only regulates cellular biology by phosphorylating substrates but is itself controlled by phosphorylation. Phosphorylation generally occurs at two conserved regions in these kinases: a loop near the entrance to the active site, termed the activation loop, that correctly aligns residues for catalysis, and a C-terminal tail whose phosphorylation at a site termed the hydrophobic motif stabilizes the active conformation. Whereas phosphorylation of the activation loop is well established to be catalyzed by the phosphoinositide-dependent kinase 1, the mechanism of phosphorylation of the C-tail hydrophobic motif has been controversial. For a subset of AGC kinases, which include most protein kinase C (PKC) isozymes and Akt, phosphorylation of the hydrophobic motif in cells was shown to depend on mTORC2 over 15 years ago, yet whether this was by direct phosphorylation or by another mechanism has remained elusive. The recent identification of a novel and evolutionarily conserved phosphorylation site on the C-tail, termed the TOR interaction motif (TIM), has finally unraveled the mystery of how mTORC2 regulates its client kinases. mTORC2 does not directly phosphorylate the hydrophobic motif; instead, it converts kinases such as PKC and Akt into a conformation that can ultimately autophosphorylate at the hydrophobic motif. Identification of the direct mTOR phosphorylation that facilitates autoregulation of the C-tail hydrophobic motif revises the activation mechanisms of mTOR-regulated AGC kinases. This new twist to an old tail opens avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The enzyme mTORC2 has been an enigmatic regulator of AGC kinases such as protein kinase C (PKC) and Akt. The recent discovery of a motif named the TOR interaction motif in the C-tail of these kinases solves the mystery: mTORC2 marks these kinases for maturity by, ultimately, facilitating autophosphorylation of another C-tail site, the hydrophobic motif.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, California
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, California
| |
Collapse
|
15
|
Lemoine KA, Fassas JM, Ohannesian SH, Purcell NH. On the PHLPPside: Emerging roles of PHLPP phosphatases in the heart. Cell Signal 2021; 86:110097. [PMID: 34320369 PMCID: PMC8403656 DOI: 10.1016/j.cellsig.2021.110097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
PH domain leucine-rich repeat protein phosphatase (PHLPP) is a family of enzymes made up of two isoforms (PHLPP1 and PHLPP2), whose actions modulate intracellular activity via the dephosphorylation of specific serine/threonine (Ser/Thr) residues on proteins such as Akt. Recent data generated in our lab, supported by findings from others, implicates the divergent roles of PHLPP1 and PHLPP2 in maintaining cellular homeostasis since dysregulation of these enzymes has been linked to various pathological states including cardiovascular disease, diabetes, ischemia/reperfusion injury, musculoskeletal disease, and cancer. Therefore, development of therapies to modulate specific isoforms of PHLPP could prove to be therapeutically beneficial in several diseases especially those targeting the cardiovascular system. This review is intended to provide a comprehensive summary of current literature detailing the role of the PHLPP isoforms in the development and progression of heart disease.
Collapse
Affiliation(s)
- Kellie A Lemoine
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Julianna M Fassas
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Shirag H Ohannesian
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Nicole H Purcell
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA; Cardiovascular Molecular Signaling, Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| |
Collapse
|
16
|
Abstract
Over the last decades, research has focused on the role of pleckstrin homology (PH) domain leucine-rich repeat protein phosphatases (PHLPPs) in regulating cellular signaling via PI3K/Akt inhibition. The PKB/Akt signaling imbalances are associated with a variety of illnesses, including various types of cancer, inflammatory response, insulin resistance, and diabetes, demonstrating the relevance of PHLPPs in the prevention of diseases. Furthermore, identification of novel substrates of PHLPPs unveils their role as a critical mediator in various cellular processes. Recently, researchers have explored the increasing complexity of signaling networks involving PHLPPs whereby relevant information of PHLPPs in metabolic diseases was obtained. In this review, we discuss the current knowledge of PHLPPs on the well-known substrates and metabolic regulation, especially in liver, pancreatic beta cell, adipose tissue, and skeletal muscle in relation with the stated diseases. Understanding the context-dependent functions of PHLPPs can lead to a promising treatment strategy for several kinds of metabolic diseases.
Collapse
Affiliation(s)
- Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Korea
| | - Sang Bae Lee
- Division of Life Sciences, Jeonbuk National University; Sarcopenia Total Solution Center, Jeonju 54896, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Korea
| |
Collapse
|
17
|
Roberto MP, Varano G, Vinas-Castells R, Holmes AB, Kumar R, Pasqualucci L, Farinha P, Scott DW, Dominguez-Sola D. Mutations in the transcription factor FOXO1 mimic positive selection signals to promote germinal center B cell expansion and lymphomagenesis. Immunity 2021; 54:1807-1824.e14. [PMID: 34380064 DOI: 10.1016/j.immuni.2021.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/26/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022]
Abstract
The transcription factor forkhead box O1 (FOXO1), which instructs the dark zone program to direct germinal center (GC) polarity, is typically inactivated by phosphatidylinositol 3-kinase (PI3K) signals. Here, we investigated how FOXO1 mutations targeting this regulatory axis in GC-derived B cell non-Hodgkin lymphomas (B-NHLs) contribute to lymphomagenesis. Examination of primary B-NHL tissues revealed that FOXO1 mutations and PI3K pathway activity were not directly correlated. Human B cell lines bearing FOXO1 mutations exhibited hyperactivation of PI3K and Stress-activated protein kinase (SAPK)/Jun amino-terminal kinase (JNK) signaling, and increased cell survival under stress conditions as a result of alterations in FOXO1 transcriptional affinities and activation of transcriptional programs characteristic of GC-positive selection. When modeled in mice, FOXO1 mutations conferred competitive advantage to B cells in response to key T-dependent immune signals, disrupting GC homeostasis. FOXO1 mutant transcriptional signatures were prevalent in human B-NHL and predicted poor clinical outcomes. Thus, rather than enforcing FOXO1 constitutive activity, FOXO1 mutations enable co-option of GC-positive selection programs during the pathogenesis of GC-derived lymphomas.
Collapse
Affiliation(s)
- Mark P Roberto
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriele Varano
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosa Vinas-Castells
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Rahul Kumar
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Pedro Farinha
- Center for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC V5Z 1L3, Canada
| | - David W Scott
- Center for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC V5Z 1L3, Canada
| | - David Dominguez-Sola
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
18
|
Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in Cancer: A Prima Donna Playing Multiple Characters. Int J Mol Sci 2021; 22:ijms22094716. [PMID: 33946854 PMCID: PMC8125560 DOI: 10.3390/ijms22094716] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hexokinases are a family of ubiquitous exose-phosphorylating enzymes that prime glucose for intracellular utilization. Hexokinase 2 (HK2) is the most active isozyme of the family, mainly expressed in insulin-sensitive tissues. HK2 induction in most neoplastic cells contributes to their metabolic rewiring towards aerobic glycolysis, and its genetic ablation inhibits malignant growth in mouse models. HK2 can dock to mitochondria, where it performs additional functions in autophagy regulation and cell death inhibition that are independent of its enzymatic activity. The recent definition of HK2 localization to contact points between mitochondria and endoplasmic reticulum called Mitochondria Associated Membranes (MAMs) has unveiled a novel HK2 role in regulating intracellular Ca2+ fluxes. Here, we propose that HK2 localization in MAMs of tumor cells is key in sustaining neoplastic progression, as it acts as an intersection node between metabolic and survival pathways. Disrupting these functions by targeting HK2 subcellular localization can constitute a promising anti-tumor strategy.
Collapse
Affiliation(s)
- Francesco Ciscato
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| | - Lavinia Ferrone
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Institute of Neuroscience, National Research Council, 56124 Pias, Italy
| | - Claudio Laquatra
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| |
Collapse
|
19
|
PHLPPing the balance: restoration of protein kinase C in cancer. Biochem J 2021; 478:341-355. [PMID: 33502516 DOI: 10.1042/bcj20190765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Protein kinase signalling, which transduces external messages to mediate cellular growth and metabolism, is frequently deregulated in human disease, and specifically in cancer. As such, there are 77 kinase inhibitors currently approved for the treatment of human disease by the FDA. Due to their historical association as the receptors for the tumour-promoting phorbol esters, PKC isozymes were initially targeted as oncogenes in cancer. However, a meta-analysis of clinical trials with PKC inhibitors in combination with chemotherapy revealed that these treatments were not advantageous, and instead resulted in poorer outcomes and greater adverse effects. More recent studies suggest that instead of inhibiting PKC, therapies should aim to restore PKC function in cancer: cancer-associated PKC mutations are generally loss-of-function and high PKC protein is protective in many cancers, including most notably KRAS-driven cancers. These recent findings have reframed PKC as having a tumour suppressive function. This review focusses on a potential new mechanism of restoring PKC function in cancer - through targeting of its negative regulator, the Ser/Thr protein phosphatase PHLPP. This phosphatase regulates PKC steady-state levels by regulating the phosphorylation of a key site, the hydrophobic motif, whose phosphorylation is necessary for the stability of the enzyme. We also consider whether the phosphorylation of the potent oncogene KRAS provides a mechanism by which high PKC expression may be protective in KRAS-driven human cancers.
Collapse
|
20
|
Baffi TR, Lordén G, Wozniak JM, Feichtner A, Yeung W, Kornev AP, King CC, Del Rio JC, Limaye AJ, Bogomolovas J, Gould CM, Chen J, Kennedy EJ, Kannan N, Gonzalez DJ, Stefan E, Taylor SS, Newton AC. mTORC2 controls the activity of PKC and Akt by phosphorylating a conserved TOR interaction motif. Sci Signal 2021; 14:eabe4509. [PMID: 33850054 PMCID: PMC8208635 DOI: 10.1126/scisignal.abe4509] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x3-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components. Mutation of this motif in Akt1 and PKCβII abolished cellular kinase activity by impairing activation loop and hydrophobic motif phosphorylation. mTORC2 directly phosphorylated the PKC TIM in vitro, and this phosphorylation event was detected in mouse brain. Overexpression of PDK1 in mTORC2-deficient cells rescued hydrophobic motif phosphorylation of PKC and Akt by a mechanism dependent on their intrinsic catalytic activity, revealing that mTORC2 facilitates the PDK1 phosphorylation step, which, in turn, enables autophosphorylation. Structural analysis revealed that PKC homodimerization is driven by a TIM-containing helix, and biophysical proximity assays showed that newly synthesized, unphosphorylated PKC dimerizes in cells. Furthermore, disruption of the dimer interface by stapled peptides promoted hydrophobic motif phosphorylation. Our data support a model in which mTORC2 relieves nascent PKC dimerization through TIM phosphorylation, recruiting PDK1 to phosphorylate the activation loop and triggering intramolecular hydrophobic motif autophosphorylation. Identification of TIM phosphorylation and its role in the regulation of PKC provides the basis for AGC kinase regulation by mTORC2.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gema Lordén
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Charles C King
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jason C Del Rio
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ameya J Limaye
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Julius Bogomolovas
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Christine M Gould
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|