1
|
Ambreen S, Umar M, Noor A, Jain H, Ali R. Advanced AI and ML frameworks for transforming drug discovery and optimization: With innovative insights in polypharmacology, drug repurposing, combination therapy and nanomedicine. Eur J Med Chem 2025; 284:117164. [PMID: 39721292 DOI: 10.1016/j.ejmech.2024.117164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Artificial Intelligence (AI) and Machine Learning (ML) are transforming drug discovery by overcoming traditional challenges like high costs, time-consuming, and frequent failures. AI-driven approaches streamline key phases, including target identification, lead optimization, de novo drug design, and drug repurposing. Frameworks such as deep neural networks (DNNs), convolutional neural networks (CNNs), and deep reinforcement learning (DRL) models have shown promise in identifying drug targets, optimizing delivery systems, and accelerating drug repurposing. Generative adversarial networks (GANs) and variational autoencoders (VAEs) aid de novo drug design by creating novel drug-like compounds with desired properties. Case studies, such as DDR1 kinase inhibitors designed using generative models and CDK20 inhibitors developed via structure-based methods, highlight AI's ability to produce highly specific therapeutics. Models like SNF-CVAE and DeepDR further advance drug repurposing by uncovering new therapeutic applications for existing drugs. Advanced ML algorithms enhance precision in predicting drug efficacy, toxicity, and ADME-Tox properties, reducing development costs and improving drug-target interactions. AI also supports polypharmacology by optimizing multi-target drug interactions and enhances combination therapy through predictions of drug synergies and antagonisms. In nanomedicine, AI models like CURATE.AI and the Hartung algorithm optimize personalized treatments by predicting toxicological risks and real-time dosing adjustments with high accuracy. Despite its potential, challenges like data quality, model interpretability, and ethical concerns must be addressed. High-quality datasets, transparent models, and unbiased algorithms are essential for reliable AI applications. As AI continues to evolve, it is poised to revolutionize drug discovery and personalized medicine, advancing therapeutic development and patient care.
Collapse
Affiliation(s)
- Subiya Ambreen
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Mohammad Umar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Aaisha Noor
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Himangini Jain
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
2
|
An Q, Huang L, Wang C, Wang D, Tu Y. New strategies to enhance the efficiency and precision of drug discovery. Front Pharmacol 2025; 16:1550158. [PMID: 40008135 PMCID: PMC11850385 DOI: 10.3389/fphar.2025.1550158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Drug discovery plays a crucial role in medicinal chemistry, serving as the cornerstone for developing new treatments to address a wide range of diseases. This review emphasizes the significance of advanced strategies, such as Click Chemistry, Targeted Protein Degradation (TPD), DNA-Encoded Libraries (DELs), and Computer-Aided Drug Design (CADD), in boosting the drug discovery process. Click Chemistry streamlines the synthesis of diverse compound libraries, facilitating efficient hit discovery and lead optimization. TPD harnesses natural degradation pathways to target previously undruggable proteins, while DELs enable high-throughput screening of millions of compounds. CADD employs computational methods to refine candidate selection and reduce resource expenditure. To demonstrate the utility of these methodologies, we highlight exemplary small molecules discovered in the past decade, along with a summary of marketed drugs and investigational new drugs that exemplify their clinical impact. These examples illustrate how these techniques directly contribute to advancing medicinal chemistry from the bench to bedside. Looking ahead, Artificial Intelligence (AI) technologies and interdisciplinary collaboration are poised to address the growing complexity of drug discovery. By fostering a deeper understanding of these transformative strategies, this review aims to inspire innovative research directions and further advance the field of medicinal chemistry.
Collapse
Affiliation(s)
| | | | | | - Dongmei Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yalan Tu
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Ge Y, Yang M, Yu X, Zhou Y, Zhang Y, Mou M, Chen Z, Sun X, Ni F, Fu T, Liu S, Han L, Zhu F. MolBiC: the cell-based landscape illustrating molecular bioactivities. Nucleic Acids Res 2025; 53:D1683-D1691. [PMID: 39373530 PMCID: PMC11701603 DOI: 10.1093/nar/gkae868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
The measurement of cell-based molecular bioactivity (CMB) is critical for almost every step of drug development. With the booming application of AI in biomedicine, it is essential to have the CMB data to promote the learning of cell-based patterns for guiding modern drug discovery, but no database providing such information has been constructed yet. In this study, we introduce MolBiC, a knowledge base designed to describe valuable data on molecular bioactivity measured within a cellular context. MolBiC features 550 093 experimentally validated CMBs, encompassing 321 086 molecules and 2666 targets across 988 cell lines. Our MolBiC database is unique in describing the valuable data of CMB, which meets the critical demands for CMB-based big data promoting the learning of cell-based molecular/pharmaceutical pattern in drug discovery and development. MolBiC is now freely accessible without any login requirement at: https://idrblab.org/MolBiC/.
Collapse
Affiliation(s)
- Yichao Ge
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai 200040, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Guangzhou, Guangzhou 511458, China
| | - Mengjie Yang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lianyi Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai 200040, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Guangzhou, Guangzhou 511458, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
4
|
Zhang C, Xie L, Lu X, Mao R, Xu L, Xu X. Developing an Improved Cycle Architecture for AI-Based Generation of New Structures Aimed at Drug Discovery. Molecules 2024; 29:1499. [PMID: 38611779 PMCID: PMC11013495 DOI: 10.3390/molecules29071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Drug discovery involves a crucial step of optimizing molecules with the desired structural groups. In the domain of computer-aided drug discovery, deep learning has emerged as a prominent technique in molecular modeling. Deep generative models, based on deep learning, play a crucial role in generating novel molecules when optimizing molecules. However, many existing molecular generative models have limitations as they solely process input information in a forward way. To overcome this limitation, we propose an improved generative model called BD-CycleGAN, which incorporates BiLSTM (bidirectional long short-term memory) and Mol-CycleGAN (molecular cycle generative adversarial network) to preserve the information of molecular input. To evaluate the proposed model, we assess its performance by analyzing the structural distribution and evaluation matrices of generated molecules in the process of structural transformation. The results demonstrate that the BD-CycleGAN model achieves a higher success rate and exhibits increased diversity in molecular generation. Furthermore, we demonstrate its application in molecular docking, where it successfully increases the docking score for the generated molecules. The proposed BD-CycleGAN architecture harnesses the power of deep learning to facilitate the generation of molecules with desired structural features, thus offering promising advancements in the field of drug discovery processes.
Collapse
Affiliation(s)
| | | | | | | | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China; (C.Z.); (L.X.); (X.L.); (R.M.)
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China; (C.Z.); (L.X.); (X.L.); (R.M.)
| |
Collapse
|
5
|
Hakmi M, Bouricha EM, Soussi A, Bzioui IA, Belyamani L, Ibrahimi A. Computational Drug Design Strategies for Fighting the COVID-19 Pandemic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1457:199-214. [PMID: 39283428 DOI: 10.1007/978-3-031-61939-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The advent of COVID-19 has brought the use of computer tools to the fore in health research. In recent years, computational methods have proven to be highly effective in a variety of areas, including genomic surveillance, host range prediction, drug target identification, and vaccine development. They were also instrumental in identifying new antiviral compounds and repurposing existing therapeutics to treat COVID-19. Using computational approaches, researchers have made significant advances in understanding the molecular mechanisms of COVID-19 and have developed several promising drug candidates and vaccines. This chapter highlights the critical importance of computational drug design strategies in elucidating various aspects of COVID-19 and their contribution to advancing global drug design efforts during the pandemic. Ultimately, the use of computing tools will continue to play an essential role in health research, enabling researchers to develop innovative solutions to combat new and emerging diseases.
Collapse
Affiliation(s)
- Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco.
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco.
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
| | - Abdellatif Soussi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145, Genova, Italy
| | - Ilias Abdeslam Bzioui
- Department of Gynecology and Obstetrics, Faculty of Medicine, Abdelmalek Essaâdi University Hospital, Tangier, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Emergency Department, Medical and Pharmacy School, Military Hospital Mohammed V, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
6
|
Tiwari PC, Pal R, Chaudhary MJ, Nath R. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges. Drug Dev Res 2023; 84:1652-1663. [PMID: 37712494 DOI: 10.1002/ddr.22115] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
By harnessing artificial intelligence (AI) algorithms and machine learning techniques, the entire drug discovery process stands to undergo a profound transformation, offering a myriad of advantages. Foremost among these is the ability of AI to conduct swift and efficient screenings of expansive compound libraries, significantly augmenting the identification of potential drug candidates. Moreover, AI algorithms can prove instrumental in predicting the efficacy and safety profiles of candidate compounds, thus endowing invaluable insights and reducing reliance on extensive preclinical and clinical testing. This predictive capacity of AI has the potential to streamline the drug development pipeline and enhance the success rate of clinical trials, ultimately resulting in the emergence of more efficacious and safer therapeutic agents. However, the deployment of AI in drug discovery introduces certain challenges that warrant attention. A primary hurdle entails the imperative acquisition of high-quality and diverse data. Furthermore, ensuring the interpretability of AI models assumes critical importance in securing regulatory endorsement and cultivating trust within scientific and medical communities. Addressing ethical considerations, including data privacy and mitigating bias, represents an additional momentous challenge, requiring assiduous navigation. In this review, we provide an intricate and comprehensive overview of the multifaceted challenges intrinsic to conventional drug development paradigms, while simultaneously interrogating the efficacy of AI in effectively surmounting these formidable obstacles.
Collapse
Affiliation(s)
- Prafulla C Tiwari
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rishi Pal
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Manju J Chaudhary
- Department of Physiology, Government Medical College, Kannauj, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Zhu Z, Yao Z, Zheng X, Qi G, Li Y, Mazur N, Gao X, Gong Y, Cong B. Drug-target affinity prediction method based on multi-scale information interaction and graph optimization. Comput Biol Med 2023; 167:107621. [PMID: 37907030 DOI: 10.1016/j.compbiomed.2023.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Drug-target affinity (DTA) prediction as an emerging and effective method is widely applied to explore the strength of drug-target interactions in drug development research. By predicting these interactions, researchers can assess the potential efficacy and safety of candidate drugs at an early stage, narrowing down the search space for therapeutic targets and accelerating the discovery and development of new drugs. However, existing DTA prediction models mainly use graphical representations of drug molecules, which lack information on interactions between individual substructures, thus affecting prediction accuracy and model interpretability. Therefore, transformer and diffusion on drug graphs in DTA prediction (TDGraphDTA) are introduced to predict drug-target interactions using multi-scale information interaction and graph optimization. An interactive module is integrated into feature extraction of drug and target features at different granularity levels. A diffusion model-based graph optimization module is proposed to improve the representation of molecular graph structures and enhance the interpretability of graph representations while obtaining optimal feature representations. In addition, TDGraphDTA improves the accuracy and reliability of predictions by capturing relationships and contextual information between molecular substructures. The performance of the proposed TDGraphDTA in DTA prediction was verified on three publicly available benchmark datasets (Davis, Metz, and KIBA). Compared with state-of-the-art baseline models, it achieved better results in terms of consistency index, R-squared, etc. Furthermore, compared with some existing methods, the proposed TDGraphDTA is demonstrated to have better structure capturing capabilities by visualizing the feature capturing capabilities of the model using Grad-AAM toxicity labels in the ToxCast dataset. The corresponding source codes are available at https://github.com/Lamouryz/TDGraph.
Collapse
Affiliation(s)
- Zhiqin Zhu
- College of Automation, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Zheng Yao
- College of Automation, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Xin Zheng
- College of Automation, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Guanqiu Qi
- Computer Information Systems Department, State University of New York at Buffalo State, Buffalo, NY 14222, USA.
| | - Yuanyuan Li
- College of Automation, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Neal Mazur
- Computer Information Systems Department, State University of New York at Buffalo State, Buffalo, NY 14222, USA.
| | - Xinbo Gao
- College of Automation, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Yifei Gong
- Faculty of applied science & engineering, the Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto at Toronto, ON M5S, Canada.
| | - Baisen Cong
- Diagnostics Digital, DH(Shanghai) Diagnostics Co, Ltd, a Danaher company, Shanghai, 200335, China.
| |
Collapse
|
8
|
Klaus B. AI Models and Drug Discovery Within Pharmaceutical Drug Market. Dela J Public Health 2023; 9:52-53. [PMID: 38173958 PMCID: PMC10759970 DOI: 10.32481/djph.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
This literature review aims to highlight new drug discovery specifically in the United States, and introduce how artificial intelligence can be used to help reduce development time and costs.
Collapse
Affiliation(s)
- Bridget Klaus
- Intern, Delaware Academy of Medicine/Delaware Public Health Association
| |
Collapse
|
9
|
Hazra P, Vadnere S, Mishra S, Halder S, Mandal S, Ghosh P. Review on Uric Acid Recognition by MOFs with a Future in Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37905918 DOI: 10.1021/acsami.3c11210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Uric acid (UA) is produced from purine metabolism and serves as a prevalent biomarker for multiple diseases including cancer. Hyperuricemia or hypouricemia can cause multiple dysfunctions throughout the biological processes. Consequently, there is a pressing need for monitoring UA concentration in body fluid. While clinical methods are known, the availability of a point-of-care testing (PoCT) kit remains conspicuously absent. In the case of electrochemical recognition of UA, the oxidation potential of ascorbic acid closely aligns with that of UA and thus it hinders the detection process, which eventually may result in false positive signals. Several chemosensors are known in the field of supramolecular chemistry, and metal-organic frameworks (MOFs) are one of the best-performing contenders due to their robustness, stability, and versatile structures. In this review, we tried to unbox the up-to-date development of UA sensing by MOFs. We delve into the state of UA recognition by MOFs, exploring both electrochemical and fluorometric pathways and drawing comparisons with structurally similar probes like covalent organic frameworks (COFs) to understand/establish the advantages of MOFs specifically in UA sensing. In the absence of a PoCT kit, we have provided the conceptual outlook for designing a PoCT device termed a "Urimeter" via electrochemical operation. For the first time, we have proposed different methods of how UA sensing can be tied up with artificial intelligence and machine learning (AI-ML).
Collapse
Affiliation(s)
- Poimanti Hazra
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Srushti Vadnere
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Saswat Mishra
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Shibashis Halder
- Department of Chemistry, Tej Narayan Banaili College, Bhagalpur 812007, Bihar, India
| | - Shaswati Mandal
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Pritam Ghosh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| |
Collapse
|
10
|
Blaschke TF, Insel PA, Amara SG, Meyer UA. Introduction to the Theme "Development of New Drugs: Moving from the Bench to Bedside and Improved Patient Care". Annu Rev Pharmacol Toxicol 2023; 63:15-18. [PMID: 36270297 DOI: 10.1146/annurev-pharmtox-091222-022612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Investigations in pharmacology and toxicology range from molecular studies to clinical care. Studies in basic and clinical pharmacology and in preclinical and clinical toxicology are all essential in bringing new knowledge and new drugs into clinical use. The 30 reviews in Volume 63 of the Annual Review of Pharmacology and Toxicology explore topics across this spectrum. Examples include "Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology" and "Artificial Intelligence and Machine Learning for Lead-to-Candidate Decision-Making and Beyond." Other reviews discuss components important for drug discovery and development and the use of pharmaceuticals in a variety of diseases. Air pollution continues to increase globally; accordingly, "Air Pollution-Related Neurotoxicity Across the Life Span" is a timely and forward-thinking review. Volume 63 also explores the use of contemporary technologies such as electronic health records, pharmacogenetics, and new drug delivery systems that help enhance and improve the utility of new therapies.
Collapse
Affiliation(s)
| | - Paul A Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Susan G Amara
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Urs A Meyer
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|