1
|
Kowluru RA, Kumar J, Malaviya P. DNA methylation of long noncoding RNA cytochrome B in diabetic retinopathy. Noncoding RNA Res 2025; 11:141-149. [PMID: 39811245 PMCID: PMC11732211 DOI: 10.1016/j.ncrna.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic retinopathy, a microvascular complication of diabetes, is the leading cause of blindness in adults, but the molecular mechanism of its development remains unclear. Retinal mitochondrial DNA is damaged and hypermethylated, and mtDNA-encoded genes are downregulated. Expression of a long noncoding RNA (larger than 200 nucleotides, which does not translate into proteins), encoded by mtDNA, cytochrome B (LncCytB), is also downregulated. This study aims to investigate the role of DNA methylation in the downregulation of LncCytB in diabetic retinopathy. Human retinal endothelial cells, incubated in 5 mM (normal) or 20 mM (high) D-glucose, in the presence/absence of Azacytidine (a DNA methyl transferase inhibitor) were analyzed for LncCytB DNA methylation by immunoprecipitation and methylation specific PCR techniques, and LncCytB transcripts by strand-specific PCR and RNA-FISH. Mitochondrial genomic stability was evaluated by quantifying protective mtDNA nucleoids by SYBR green staining and by flow cytometry, and functional stability by oxygen consumption rate using Seahorse analyzer. Results were confirmed in an in vivo model using retina from diabetic rat. While high glucose elevated 5 mC and the ratio of methylated to unmethylated amplicons at LncCytB and downregulated its transcripts, azacytidine prevented LncCytB DNA hypermethylation and decrease in its expression. Azacytidine also ameliorated decrease in nucleoids and oxygen consumption rate. Similarly, azacytidine prevented increase in retinal LncCytB DNA methylation and decrease in its expression in diabetic rats. Thus, DNA hypermethylation plays a major role in the downregulation of retinal LncCytB in diabetes, resulting in impaired mitochondrial homeostasis, and culminating in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Renu A. Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Jay Kumar
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Pooja Malaviya
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Mazelis I, Sun H, Kulkarni A, Torre T, Klein AM. Multi-step genomics on single cells and live cultures in sub-nanoliter capsules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.642839. [PMID: 40166192 PMCID: PMC11956983 DOI: 10.1101/2025.03.14.642839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Single-cell genomics encompasses a set of methods whereby hundreds to millions of cells are individually subjected to multiplexed assays including sequencing DNA, chromatin accessibility or modification, RNA, or combinations thereof1,2. These methods enable unbiased, systematic discovery of cellular phenotypes and their dynamics1-3. Many functional genomic methods, however, require multiple steps that cannot be easily scaled to high throughput, including assays on living cells. Here we develop capsules with amphiphilic gel envelopes (CAGEs), which selectively retain cells, mRNA, and gDNA, while allowing free diffusion of media, enzymes and reagents. CAGEs enable carrying out high-throughput assays that require multiple steps, including combining genomics with live-cell assays. We establish methods for barcoding CAGE DNA and RNA libraries, and apply them to measure persistence of gene expression programs by capturing the transcriptomes of tens of thousands of expanding clones in CAGEs. The compatibility of CAGEs with diverse enzymatic reactions will facilitate the expansion of the current repertoire of single-cell, high-throughput measurements and extend them to live-cell assays.
Collapse
Affiliation(s)
- Ignas Mazelis
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haoxiang Sun
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Arpita Kulkarni
- Single Cell Core, Harvard Medical School, Boston, MA 02115, USA
| | - Theresa Torre
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Liu Z, Gu A, Bao Y, Lin GN. Epigenetic Impacts of Non-Coding Mutations Deciphered Through Pre-Trained DNA Language Model at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413571. [PMID: 39888214 PMCID: PMC11924033 DOI: 10.1002/advs.202413571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/20/2025] [Indexed: 02/01/2025]
Abstract
DNA methylation plays a critical role in gene regulation, affecting cellular differentiation and disease progression, particularly in non-coding regions. However, predicting the epigenetic consequences of non-coding mutations at single-cell resolution remains a challenge. Existing tools have limited prediction capacity and struggle to capture dynamic, cell-type-specific regulatory changes that are crucial for understanding disease mechanisms. Here, Methven, a deep learning framework designed is presented to predict the effects of non-coding mutations on DNA methylation at single-cell resolution. Methven integrates DNA sequence with single-cell ATAC-seq data and models SNP-CpG interactions over 100 kbp genomic distances. By using a divide-and-conquer approach, Methven accurately predicts both short- and long-range regulatory interactions and leverages the pre-trained DNA language model for enhanced precision in classification and regression tasks. Methven outperforms existing methods and demonstrates robust generalizability to monocyte datasets. Importantly, it identifies CpG sites associated with rheumatoid arthritis, revealing key pathways involved in immune regulation and disease progression. Methven's ability to detect progressive epigenetic changes provides crucial insights into gene regulation in complex diseases. These findings demonstrate Methven's potential as a powerful tool for basic research and clinical applications, advancing this understanding of non-coding mutations and their role in disease, while offering new opportunities for personalized medicine.
Collapse
Affiliation(s)
- Zhe Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - An Gu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Yihang Bao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200230, China
- Engineering Research Center of Digital Medicine of the Ministry of Education, Shanghai, 200230, China
| |
Collapse
|
4
|
Roza M, Eriksson ANM, Svanholm S, Berg C, Karlsson O. Male-transmitted transgenerational effects of the herbicide linuron on DNA methylation profiles in Xenopus tropicalis brain and testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:170949. [PMID: 38365020 DOI: 10.1016/j.scitotenv.2024.170949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The herbicide linuron can cause endocrine disrupting effects in Xenopus tropicalis frogs, including offspring that were never exposed to the contaminant. The mechanisms by which these effects are transmitted across generations need to be further investigated. Here, we examined transgenerational alterations of brain and testis DNA methylation profiles paternally inherited from grandfathers developmentally exposed to an environmentally relevant concentration of linuron. Reduced representation bisulfite sequencing (RRBS) revealed numerous differentially methylated regions (DMRs) in brain (3060 DMRs) and testis (2551 DMRs) of the adult male F2 generation. Key genes in the brain involved in somatotropic (igfbp4) and thyrotropic signaling (dio1 and tg) were differentially methylated and correlated with phenotypical alterations in body size, weight, hind limb length and plasma glucose levels, indicating that these methylation changes could be potential mediators of the transgenerational effects of linuron. Testis DMRs were found in genes essential for spermatogenesis, meiosis and germ cell development (piwil1, spo11 and tdrd9) and their methylation levels were correlated with the number of germ cells nests per seminiferous tubule, an endpoint of disrupted spermatogenesis. DMRs were also identified in several genes central for the machinery that regulates the epigenetic landscape including DNA methylation (dnmt3a and mbd2) and histone acetylation (hdac8, ep300, elp3, kat5 and kat14), which may at least partly drive the linuron-induced transgenerational effects. The results from this genome-wide DNA methylation profiling contribute to better understanding of potential transgenerational epigenetic inheritance mechanisms in amphibians.
Collapse
Affiliation(s)
- Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Vullioud C, Benhaiem S, Meneghini D, Szyf M, Shao Y, Hofer H, East ML, Fickel J, Weyrich A. Epigenetic signatures of social status in wild female spotted hyenas (Crocuta crocuta). Commun Biol 2024; 7:313. [PMID: 38548860 PMCID: PMC10978994 DOI: 10.1038/s42003-024-05926-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/16/2024] [Indexed: 04/01/2024] Open
Abstract
In mammalian societies, dominance hierarchies translate into inequalities in health, reproductive performance and survival. DNA methylation is thought to mediate the effects of social status on gene expression and phenotypic outcomes, yet a study of social status-specific DNA methylation profiles in different age classes in a wild social mammal is missing. We tested for social status signatures in DNA methylation profiles in wild female spotted hyenas (Crocuta crocuta), cubs and adults, using non-invasively collected gut epithelium samples. In spotted hyena clans, female social status influences access to resources, foraging behavior, health, reproductive performance and survival. We identified 149 differentially methylated regions between 42 high- and low-ranking female spotted hyenas (cubs and adults). Differentially methylated genes were associated with energy conversion, immune function, glutamate receptor signalling and ion transport. Our results provide evidence that socio-environmental inequalities are reflected at the molecular level in cubs and adults in a wild social mammal.
Collapse
Affiliation(s)
- Colin Vullioud
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Sarah Benhaiem
- Department of Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Dorina Meneghini
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | | | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marion L East
- Department of Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- University of Potsdam, Potsdam, Germany
| | - Alexandra Weyrich
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
6
|
Chiapperino L, Panese F. Engram Studies: A Call for Historical, Philosophical, and Sociological Approaches. ADVANCES IN NEUROBIOLOGY 2024; 38:259-272. [PMID: 39008020 DOI: 10.1007/978-3-031-62983-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In this chapter, we identify three distinct avenues of research on the philosophical, historical, and sociopolitical dimensions of engram research. First, we single out the need to refine philosophical understandings of memory within neuroscientific research on the engram. Specifically, we question the place of constructivist and preservationist philosophical claims on memory in the formulation of the engram concept and its operationalization in contemporary neuroscience research. Second, we delve into the received historiography of the engram claiming its disappearance after Richard Semon's (1859-1918) coinage of the concept. Differently from this view, we underline that Semon's legacy is still largely undocumented: Unknown are the ways the engram circulated within studies of organic memory as well as the role Semon's ideas had in specific national contexts of research in neurosciences. Finally, another research gap on the engram concerns a socio-anthropological documentation of the factual and normative resources this research offers to think about memory in healthcare and society. Representations of memory in this research, experimental strategies of intervention into the engram, as well as their translational potential for neurodegenerative (e.g., Alzheimer's disease) and psychiatric (e.g., post-traumatic stress disorder) conditions have not yet received scrutiny notwithstanding their obvious social and political relevance.All these knowledge gaps combined call for a strong commitment towards interdisciplinarity to align the ambitions of a foundational neuroscience of the engram with a socially responsible circulation of this knowledge. What role can the facts, metaphors, and interventional strategies of engram research play in the wider society? With what implications for philosophical questions at the foundation of memory, which have accompanied its study from antiquity? And what can neuro- and social scientists do jointly to shape the social and political framings of engram research?
Collapse
Affiliation(s)
- Luca Chiapperino
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Francesco Panese
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
9
|
Zhao Q. Thermodynamic understanding of flower pigmentation. Biosystems 2023:104938. [PMID: 37277021 DOI: 10.1016/j.biosystems.2023.104938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
We have reviewed and interpreted the thermodynamic principles for flower pigmentation. The basic thoughts are as follows: 1) any biological trait is associated with one thermodynamic system; 2) a thermodynamic system of biology cannot be physically isolated from complex thermal systems of biology but can be separately studied using thermodynamic methods; 3) a thermodynamic system of biology has all types of information, including volume, shape, and structure, unlike the traditional thermal system of gases; 4) a thermodynamic system of biology is associated with one type of biological structure that is not fully fixed but can change its conformation under different conditions; and 5) a thermodynamic system of biology shows a hierarchical structure. On the basis of these principles, several conclusions regarding flower pigmentation are obtained as follows: 1) processes of pigmentation formation can be divided into reversible and irreversible processes; 2) the reversible process is related to quantitative changes in pigments; 3) the irreversible process is related to the formation of stable pigmentation patterns that are physiologically inherited; 4) the spot pattern of color pigmentation represents an independent island of the physiological system; 5) many types of activators and inhibitors are involved in flower pigmentation production; 6) the patterns of flower pigmentation can be modulated; and 7) the evolution mechanism of organogenesis can be separated into several steps of independent thermodynamic processes. Our conclusion is that the thermodynamic system, rather than the dynamic system, is the essential and fundamental attribute of biological behaviors.
Collapse
Affiliation(s)
- Qinyi Zhao
- Medical Institute, CRRC, Beijing, PR China.
| |
Collapse
|
10
|
Domi E, Barchiesi R, Barbier E. Epigenetic Dysregulation in Alcohol-Associated Behaviors: Preclinical and Clinical Evidence. Curr Top Behav Neurosci 2023. [PMID: 36717533 DOI: 10.1007/7854_2022_410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.
Collapse
Affiliation(s)
- Esi Domi
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Riccardo Barchiesi
- Department of Neuroscience, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
11
|
Liang L, Chen Y, Wu C, Cao Z, Xia L, Meng J, He L, Yang C, Wang Z. MicroRNAs: key regulators of the trophoblast function in pregnancy disorders. J Assist Reprod Genet 2023; 40:3-17. [PMID: 36508034 PMCID: PMC9742672 DOI: 10.1007/s10815-022-02677-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The placenta is essential for a successful pregnancy and healthy intrauterine development in mammals. During human pregnancy, the growth and development of the placenta are inseparable from the rapid proliferation, invasion, and migration of trophoblast cells. Previous reports have shown that the occurrence of many pregnancy disorders may be closely related to the dysfunction of trophoblasts. However, the function regulation of human trophoblast cells in the placenta is poorly understood. Therefore, studying the factors that regulate the function of trophoblast cells is necessary. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNA molecules. Increasing evidence suggests that miRNAs play a crucial role in regulating trophoblast functions. This review outlines the role of miRNAs in regulating the function of trophoblast cells and several common signaling pathways related to miRNA regulation in pregnancy disorders.
Collapse
Affiliation(s)
- Lingli Liang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Yanjun Chen
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Chunyan Wu
- grid.412017.10000 0001 0266 8918Department of Cardiovascular, The Third Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zitong Cao
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Linzhen Xia
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Jun Meng
- grid.461579.8Department of Function, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Lu He
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Chunfen Yang
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zuo Wang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| |
Collapse
|
12
|
Chen JR, Caviness PC, Zhao H, Belcher B, Wankhade UD, Shankar K, Blackburn ML, Lazarenko OP. Maternal high-fat diet modifies epigenetic marks H3K27me3 and H3K27ac in bone to regulate offspring osteoblastogenesis in mice. Epigenetics 2022; 17:2209-2222. [PMID: 35950595 PMCID: PMC9665156 DOI: 10.1080/15592294.2022.2111759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022] Open
Abstract
Studies from both humans and animal models indicated that maternal chronic poor-quality diet, especially a high fat diet (HFD), is significantly associated with reduced bone density and childhood fractures in offspring. When previously studied in a rat model, our data suggested that maternal HFD changes epigenetic marks such as DNA methylation and histone modifications to control osteoblast metabolism. In mouse embryonic and postnatal offspring bone samples, a ChIP-sequencing (ChIP-Seq)-based genome-wide method was used to locate the repressive histone mark H3K27me3 (mediated via the polycomb histone methyltransferase, Ezh2) and expressive histone mark H3K27ac (p300/CBP mediated) throughout the genome. Using isolated mouse embryonic cells from foetal calvaria (osteoblast-like cells), H3K27me3 ChIP-Seq showed that 147 gene bodies and 26 gene promoters in HFD embryotic samples had a greater than twofold increase in H3K27me peaks compared to controls. Among the HFD samples, Pthlh and Col2a1 that are important genes playing roles during chondro- and osteogenesis had significantly enriched levels of H3K27me3. Their decreased mRNA expression was confirmed by real-time PCR and standard ChIP analysis, indicating a strong association with Ezh2 mediated H3K27me3 epigenetic changes. Using embryonic calvaria osteoblastic cells and offspring bone samples, H3K27ac ChIP-Seq analysis showed that osteoblast inhibitor genes Tnfaip3 and Twist1 had significantly enriched peaks of H3K27ac in HFD samples compared to controls. Their increased gene expression and association with H3K27ac were also confirmed by real-time PCR and standard ChIP analysis. These findings indicate that chronic maternal HFD changes histone trimethylation and acetylation epigenetic marks to regulate expression of genes controlling osteoblastogenesis.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Perry C. Caviness
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Haijun Zhao
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Beau Belcher
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Umesh D. Wankhade
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael L Blackburn
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Oxana P. Lazarenko
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
13
|
Kee MZ, Teh AL, Clappison A, Pokhvisneva I, MacIssac JL, Lin DT, Ramadori KE, Broekman BF, Chen H, Daniel ML, Karnani N, Kobor MS, Gluckman PD, Chong YS, Huang JY, Meaney MJ. Fetal sex-specific epigenetic associations with prenatal maternal depressive symptoms. iScience 2022; 25:104860. [PMID: 36046194 PMCID: PMC9421382 DOI: 10.1016/j.isci.2022.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/14/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Prenatal maternal mental health is a global health challenge with poorly defined biological mechanisms. We used maternal blood samples collected during the second trimester from a Singaporean longitudinal birth cohort study to examine the association between inter-individual genome-wide DNA methylation and prenatal maternal depressive symptoms. We found that (1) the maternal methylome was significantly associated with prenatal maternal depressive symptoms only in mothers with a female fetus; and (2) this sex-dependent association was observed in a comparable, UK-based birth cohort study. Qualitative analyses showed fetal sex-specific differences in genomic features of depression-related CpGs and genes mapped from these CpGs in mothers with female fetuses implicated in a depression-associated WNT/β-catenin signaling pathway. These same genes also showed enriched expression in brain regions linked to major depressive disorder. We also found similar female-specific associations with fetal-facing placenta methylome. Our fetal sex-specific findings provide evidence for maternal-fetal interactions as a mechanism for intergenerational transmission.
Collapse
Affiliation(s)
- Michelle Z.L. Kee
- Translation Neuroscience, Singapore Institute for Clinical Sciences, ASTAR, Singapore 117609, Singapore
| | - Ai Ling Teh
- Bioinformatics, Singapore Institute for Clinical Sciences, ASTAR, Singapore 117609, Singapore
| | - Andrew Clappison
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Irina Pokhvisneva
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Julie L. MacIssac
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - David T.S. Lin
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Katia E. Ramadori
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Birit F.P. Broekman
- Translation Neuroscience, Singapore Institute for Clinical Sciences, ASTAR, Singapore 117609, Singapore
- Department of Psychiatry, Amsterdam UMC and OLVG, VU University, 1007 Amsterdam, the Netherlands
| | - Helen Chen
- Department of Psychological Medicine (Mental Wellness Service), KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Mary Lourdes Daniel
- Department of Child Development, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Neerja Karnani
- Translation Neuroscience, Singapore Institute for Clinical Sciences, ASTAR, Singapore 117609, Singapore
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Peter D. Gluckman
- Translation Neuroscience, Singapore Institute for Clinical Sciences, ASTAR, Singapore 117609, Singapore
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Yap Seng Chong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Jonathan Y. Huang
- Translation Neuroscience, Singapore Institute for Clinical Sciences, ASTAR, Singapore 117609, Singapore
- Centre for Quantitative Medicine, Health Services and System Research Signature Research Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Michael J. Meaney
- Translation Neuroscience, Singapore Institute for Clinical Sciences, ASTAR, Singapore 117609, Singapore
- Bioinformatics, Singapore Institute for Clinical Sciences, ASTAR, Singapore 117609, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
14
|
Weyrich A, Guerrero-Altamirano TP, Yasar S, Czirják GÁ, Wachter B, Fickel J. First Steps towards the Development of Epigenetic Biomarkers in Female Cheetahs ( Acinonyx jubatus). LIFE (BASEL, SWITZERLAND) 2022; 12:life12060920. [PMID: 35743950 PMCID: PMC9225391 DOI: 10.3390/life12060920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Free-ranging cheetahs (Acinonyx jubatus) are generally healthy, whereas cheetahs under human care, such as those in zoological gardens, suffer from ill-defined infectious and degenerative pathologies. These differences are only partially explained by husbandry management programs because both groups share low genetic diversity. However, mounting evidence suggests that physiological differences between populations in different environments can be tracked down to differences in epigenetic signatures. Here, we identified differentially methylated regions (DMRs) between free-ranging cheetahs and conspecifics in zoological gardens and prospect putative links to pathways relevant to immunity, energy balance and homeostasis. Comparing epigenomic DNA methylation profiles obtained from peripheral blood mononuclear cells (PBMCs) from eight free-ranging female cheetahs from Namibia and seven female cheetahs living in zoological gardens within Europe, we identified DMRs of which 22 were hypermethylated and 23 hypomethylated. Hypermethylated regions in cheetahs under human care were located in the promoter region of a gene involved in host-pathogen interactions (KLC1) and in an intron of a transcription factor relevant for the development of pancreatic β-cells, liver, and kidney (GLIS3). The most canonical mechanism of DNA methylation in promoter regions is assumed to repress gene transcription. Taken together, this could indicate that hypermethylation at the promoter region of KLC1 is involved in the reduced immunity in cheetahs under human care. This approach can be generalized to characterize DNA methylation profiles in larger cheetah populations under human care with a more granular longitudinal data collection, which, in the future, could be used to monitor the early onset of pathologies, and ultimately translate into the development of biomarkers with prophylactic and/or therapeutic potential.
Collapse
Affiliation(s)
- Alexandra Weyrich
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany; (T.P.G.-A.); (S.Y.)
- Correspondence: (A.W.); (B.W.); (J.F.)
| | - Tania P. Guerrero-Altamirano
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany; (T.P.G.-A.); (S.Y.)
- Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Selma Yasar
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany; (T.P.G.-A.); (S.Y.)
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gábor Á. Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany;
| | - Bettina Wachter
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
- Correspondence: (A.W.); (B.W.); (J.F.)
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany; (T.P.G.-A.); (S.Y.)
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Correspondence: (A.W.); (B.W.); (J.F.)
| |
Collapse
|
15
|
Asada M, Hayashi H, Takagi N. Possible Involvement of DNA Methylation and Protective Effect of Zebularine on Neuronal Cell Death after Glutamate Excitotoxity. Biol Pharm Bull 2022; 45:770-779. [PMID: 35650104 DOI: 10.1248/bpb.b22-00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuronal cell death after cerebral ischemia consists various steps including glutamate excitotoxity. Excessive Ca2+ influx through the N-methyl-D-aspartate (NMDA) receptor, which is one of the ionotropic glutamate receptors, plays a central role in neuronal cell death after cerebral ischemia. We previously reported that DNA methylation is transiently increased in neurons during ischemic injury and that this aberrant DNA methylation is accompanied by neuronal cell death. Therefore, we performed the present experiments on glutamate excitotoxicity to gain further insight into DNA methylation involvement in the neuronal cell death. We demonstrated that knockdown of DNA methyltransferase (DNMT)1, DNMT3a, or DNMT3b gene in Neuro2a cells was performed to examine which DNMTs were more important for neuronal cell death after glutamate excitotoxicity. Although we confirmed a decrease in the levels of the target DNMT protein after small interfering RNA (siRNA) transfection, the Neuro2a cells were not protected from injury by transfection with siRNA for each DNMT. We next revealed that the pharmacological inhibitor of DNMTs protected against glutamate excitotoxicity in Neuro2a cells and also in primary cultured cortical neurons. This protective effect was associated with a decrease in the number of 5-methylcytosine (5 mC)-positive cells under glutamate excitotoxicity. In addition, the increased level of cleaved caspase-3 was also reduced by a DNMT inhibitor. Our results suggest the possibility that at least 2 or all DNMTs functionally would cooperate to activate DNA methylation after glutamate excitotoxicity and that inhibition of DNA methylation in neurons after cerebral ischemia might become a strategy to reduce the neuronal injury.
Collapse
Affiliation(s)
- Mayumi Asada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
16
|
Dourson AJ, Willits A, Raut NG, Kader L, Young E, Jankowski MP, Chidambaran V. Genetic and epigenetic mechanisms influencing acute to chronic postsurgical pain transitions in pediatrics: Preclinical to clinical evidence. Can J Pain 2022; 6:85-107. [PMID: 35572362 PMCID: PMC9103644 DOI: 10.1080/24740527.2021.2021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Background Chronic postsurgical pain (CPSP) in children remains an important problem with no effective preventive or therapeutic strategies. Recently, genomic underpinnings explaining additional interindividual risk beyond psychological factors have been proposed. Aims We present a comprehensive review of current preclinical and clinical evidence for genetic and epigenetic mechanisms relevant to pediatric CPSP. Methods Narrative review. Results Animal models are relevant to translational research for unraveling genomic mechanisms. For example, Cacng2, p2rx7, and bdnf mutant mice show altered mechanical hypersensitivity to injury, and variants of the same genes have been associated with CPSP susceptibility in humans; similarly, differential DNA methylation (H1SP) and miRNAs (miR-96/7a) have shown translational implications. Animal studies also suggest that crosstalk between neurons and immune cells may be involved in nociceptive priming observed in neonates. In children, differential DNA methylation in regulatory genomic regions enriching GABAergic, dopaminergic, and immune pathways, as well as polygenic risk scores for enhanced prediction of CPSP, have been described. Genome-wide studies in pediatric CPSP are scarce, but pathways identified by adult gene association studies point to potential common mechanisms. Conclusions Bench-to-bedside genomics research in pediatric CPSP is currently limited. Reverse translational approaches, use of other -omics, and inclusion of pediatric/CPSP endophenotypes in large-scale biobanks may be potential solutions. Time of developmental vulnerability and longitudinal genomic changes after surgery warrant further investigation. Emergence of promising precision pain management strategies based on gene editing and epigenetic programing emphasize need for further research in pediatric CPSP-related genomics.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| |
Collapse
|
17
|
Collins NJ, Zimmerman CW, Phillips NLH, Fern S, Doherty TS, Roth TL. Developmental administration of valproic acid alters DNA methylation and maternal behavior. Dev Psychobiol 2022; 64:e22231. [PMID: 35312054 DOI: 10.1002/dev.22231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
Exposure to adversity in early development has powerful and potentially lasting consequences on behavior. Previous work in our laboratory using female Long-Evans rats has demonstrated that exposure to early-life maltreatment manifests into alterations in dam behavior, including a perpetuation of the maltreatment phenotype. These observed behavioral changes coincide with changes in epigenetic activity in the prefrontal cortex (PFC). Further, treating dams with a chromatin modifying agent (Zebularine) normalizes methylation and maltreatment phenotypes, suggesting a link between epigenetic programming and phenotypic outcomes. Here, we sought to investigate if administration of a chromatin modifying agent concurrent with the experience of maltreatment normalizes epigenetic activity associated with maltreatment and alters behavioral trajectories. Administration of valproic acid (VPA) transiently lowered levels of global DNA methylation in the PFC, regardless of exposure to nurturing care or maltreatment. When VPA-exposed animals reached adulthood, they engaged in more adverse behaviors toward their offspring. These data provide further evidence linking epigenetic changes in the developing brain with effects on behavior.
Collapse
Affiliation(s)
- Nicholas J Collins
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Catherine W Zimmerman
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Natalia L H Phillips
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Samantha Fern
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Tiffany S Doherty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
18
|
GSNOR Contributes to Demethylation and Expression of Transposable Elements and Stress-Responsive Genes. Antioxidants (Basel) 2021; 10:antiox10071128. [PMID: 34356361 PMCID: PMC8301139 DOI: 10.3390/antiox10071128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022] Open
Abstract
In the past, reactive nitrogen species (RNS) were supposed to be stress-induced by-products of disturbed metabolism that cause oxidative damage to biomolecules. However, emerging evidence demonstrates a substantial role of RNS as endogenous signals in eukaryotes. In plants, S-nitrosoglutathione (GSNO) is the dominant RNS and serves as the •NO donor for S-nitrosation of diverse effector proteins. Remarkably, the endogenous GSNO level is tightly controlled by S-nitrosoglutathione reductase (GSNOR) that irreversibly inactivates the glutathione-bound NO to ammonium. Exogenous feeding of diverse RNS, including GSNO, affected chromatin accessibility and transcription of stress-related genes, but the triggering function of RNS on these regulatory processes remained elusive. Here, we show that GSNO reductase-deficient plants (gsnor1-3) accumulate S-adenosylmethionine (SAM), the principal methyl donor for methylation of DNA and histones. This SAM accumulation triggered a substantial increase in the methylation index (MI = [SAM]/[S-adenosylhomocysteine]), indicating the transmethylation activity and histone methylation status in higher eukaryotes. Indeed, a mass spectrometry-based global histone profiling approach demonstrated a significant global increase in H3K9me2, which was independently verified by immunological detection using a selective antibody. Since H3K9me2-modified regions tightly correlate with methylated DNA regions, we also determined the DNA methylation status of gsnor1-3 plants by whole-genome bisulfite sequencing. DNA methylation in the CG, CHG, and CHH contexts in gsnor1-3 was significantly enhanced compared to the wild type. We propose that GSNOR1 activity affects chromatin accessibility by controlling the transmethylation activity (MI) required for maintaining DNA methylation and the level of the repressive chromatin mark H3K9me2.
Collapse
|
19
|
Ribeiro ACR, Jahr FM, Hawkins E, Kronfol MM, Younis RM, McClay JL, Deshpande LS. Epigenetic histone acetylation and Bdnf dysregulation in the hippocampus of rats exposed to repeated, low-dose diisopropylfluorophosphate. Life Sci 2021; 281:119765. [PMID: 34186043 DOI: 10.1016/j.lfs.2021.119765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
AIMS Deployment-related exposures to organophosphate (OP) compounds are implicated for Gulf War Illness (GWI) development in First GW veterans. However, reasons for the persistence of GWI are not fully understood. Epigenetic modifications to chromatin are regulatory mechanisms that can adaptively or maladaptively respond to external stimuli. These include DNA methylation and histone acetylation. DNA methylation changes have been reported in GWI but the role of histone acetylation in GWI has been less explored, despite its importance as an epigenetic mechanism for neurological disorders. MAIN METHODS Male Sprague-Dawley rats were exposed to OP diisopropyl fluorophosphate (DFP, 0.5 mg/kg s.c., 5-d) and 6-m later brains were dissected for hippocampus. Western blotting, activity assays and chromatin immunoprecipitation (ChIP) were utilized for epigenetic analyses. Behavior was assessed using the Forced Swim Test (FST) and the Elevated Plus Maze (EPM). KEY FINDINGS We observed a significant upregulation in HDAC1 protein along with a significant increase in HDAC enzyme activity in the hippocampus of DFP rats. A locus-specific ChIP study revealed decreases in H3K9ac at the brain derived neurotrophic factor (Bdnf) promoter IV coupled with a significant decrease in BDNF protein in DFP rat hippocampus. Treatment with HDAC inhibitor valproic acid reduced HDAC activity and decreased the FST immobility time in DFP rats. SIGNIFICANCE Our research suggests that epigenetic alterations to histone acetylation pathways and decreased BDNF expression could represent novel mechanisms for GWI symptomatology and may provide new targets for developing effective drugs for GWI treatment.
Collapse
Affiliation(s)
- Ana C R Ribeiro
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Fay M Jahr
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisa Hawkins
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohamad M Kronfol
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Rabha M Younis
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Laxmikant S Deshpande
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
20
|
Bennett H, Troutman TD, Sakai M, Glass CK. Epigenetic Regulation of Kupffer Cell Function in Health and Disease. Front Immunol 2021; 11:609618. [PMID: 33574817 PMCID: PMC7870864 DOI: 10.3389/fimmu.2020.609618] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Kupffer cells, the resident macrophages of the liver, comprise the largest pool of tissue macrophages in the body. Within the liver sinusoids Kupffer cells perform functions common across many tissue macrophages including response to tissue damage and antigen presentation. They also engage in specialized activities including iron scavenging and the uptake of opsonized particles from the portal blood. Here, we review recent studies of the epigenetic pathways that establish Kupffer cell identity and function. We describe a model by which liver-environment specific signals induce lineage determining transcription factors necessary for differentiation of Kupffer cells from bone-marrow derived monocytes. We conclude by discussing how these lineage determining transcription factors (LDTFs) drive Kupffer cell behavior during both homeostasis and disease, with particular focus on the relevance of Kupffer cell LDTF pathways in the setting of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Hunter Bennett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ty D Troutman
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
21
|
Liao AH, Liu H. The epigenetic regulation of the immune system during pregnancy. REPRODUCTIVE IMMUNOLOGY 2021:365-385. [DOI: 10.1016/b978-0-12-818508-7.00005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Kong FC, Ma CL, Zhong MK. Epigenetic Effects Mediated by Antiepileptic Drugs and their Potential Application. Curr Neuropharmacol 2020; 18:153-166. [PMID: 31660836 PMCID: PMC7324883 DOI: 10.2174/1570159x17666191010094849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/01/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
An epigenetic effect mainly refers to a heritable modulation in gene expression in the short term but does not involve alterations in the DNA itself. Epigenetic molecular mechanisms include DNA methylation, histone modification, and untranslated RNA regulation. Antiepileptic drugs have drawn attention to biological and translational medicine because their impact on epigenetic mechanisms will lead to the identification of novel biomarkers and possible therapeutic strategies for the prevention and treatment of various diseases ranging from neuropsychological disorders to cancers and other chronic conditions. However, these transcriptional and posttranscriptional alterations can also result in adverse reactions and toxicity in vitro and in vivo. Hence, in this review, we focus on recent findings showing epigenetic processes mediated by antiepileptic drugs to elucidate their application in medical experiments and shed light on epigenetic research for medicinal purposes.
Collapse
Affiliation(s)
- Fan-Cheng Kong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Prenatal stress and epigenetics. Neurosci Biobehav Rev 2020; 117:198-210. [DOI: 10.1016/j.neubiorev.2017.05.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/22/2022]
|
24
|
Peedicayil J. Pharmacoepigenetics and Pharmacoepigenomics: An Overview. Curr Drug Discov Technol 2020; 16:392-399. [PMID: 29676232 DOI: 10.2174/1570163815666180419154633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The rapid and major advances being made in epigenetics are impacting pharmacology, giving rise to new sub-disciplines in pharmacology, pharmacoepigenetics, the study of the epigenetic basis of variation in response to drugs; and pharmacoepigenomics, the application of pharmacoepigenetics on a genome-wide scale. METHODS This article highlights the following aspects of pharmacoepigenetics and pharmacoepigenomics: epigenetic therapy, the role of epigenetics in pharmacokinetics, the relevance of epigenetics to adverse drug reactions, personalized medicine, drug addiction, and drug resistance, and the use of epigenetic biomarkers in drug therapy. RESULTS Epigenetics is having an increasing impact on several areas of pharmacology. CONCLUSION Pharmacoepigenetics and pharmacoepigenomics are new sub-disciplines in pharmacology and are likely to have an increasing impact on the use of drugs in clinical practice.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
25
|
Epigenomic profile and biological age. PAJAR - PAN AMERICAN JOURNAL OF AGING RESEARCH 2020. [DOI: 10.15448/2357-9641.2020.1.37125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Man ages at a constant chronological rate while their biological aging rate is extremely variable. Interventions to improve, or to slow the rate of biological aging are the subject of several research. The broad spectrum of molecules and its intricate role from the biological point of view and its relation with environmental factors are being investigated. Recently, researchers have been putting its efforts to understand the epigenetic mechanisms and how it can interfere with alterations in gene expression that leads to predisposition and, or pathological outcome. Some of these investigations have shed light about how one can determine the biological age from a simple blood sample, just by detecting the epigenetic alterations on only three CpGs sites with a reasonable certainty. Also, the enzymes inhibitors that can interfere with methylation and demethylation were effective to reverse the epigenetic mechanisms. Other studies have shown how the environmental changes since from early life can affect these alterations on the epigenome. Taking all together, some biomolecular markers are already available to determine the genetic background of an individual and this information can be used to guide the lifestyle in order to prevent some future diseases development and/or improve the quality of later life.
Collapse
|
26
|
Leite ML, Oliveira KBS, Cunha VA, Dias SC, da Cunha NB, Costa FF. Epigenetic Therapies in the Precision Medicine Era. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Michel Lopes Leite
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | | | - Victor Albuquerque Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Simoni Campos Dias
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
- Animal Biology DepartmentUniversidade de Brasília UnB, Campus Darcy Ribeiro. Brasilia DF 70910‐900 Brazil
| | - Nicolau Brito da Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Fabricio F. Costa
- Cancer Biology and Epigenomics ProgramAnn & Robert H Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- MATTER Chicago 222 W. Merchandise Mart Plaza, Suite 12th Floor Chicago IL 60654 USA
- Genomic Enterprise (www.genomicenterprise.com) San Diego, CA 92008 and New York NY 11581 USA
| |
Collapse
|
27
|
Tissue-specific epigenetic inheritance after paternal heat exposure in male wild guinea pigs. Mamm Genome 2020; 31:157-169. [PMID: 32285146 PMCID: PMC7369130 DOI: 10.1007/s00335-020-09832-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
External temperature change has been shown to modify epigenetic patterns, such as DNA methylation, which regulates gene expression. DNA methylation is heritable, and as such provides a mechanism to convey environmental information to subsequent generations. Studies on epigenetic response to temperature increase are still scarce in wild mammals, even more so studies that compare tissue-specific epigenetic responses. Here, we aim to address differential epigenetic responses on a gene and gene pathway level in two organs, liver and testis. We chose these organs, because the liver is the main metabolic and thermoregulation organ, and epigenetic modifications in testis are potentially transmitted to the F2 generation. We focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to an ambient temperature increase of 10 °C, and investigated differential methylated regions of sons sired before and after the paternal exposure using Reduced Representation Bisulfite Sequencing. We detected both a highly tissue-specific epigenetic response, reflected in genes involved in organ-specific metabolic pathways, and a more general regulation of single genes epigenetically modified in both organs. We conclude that genomes are context-specifically differentially epigenetically regulated in response to temperature increase. These findings emphasize the epigenetic relevance in cell differentiation, which is essential for the specific function(s) of complex organs, and is represented in a diverse molecular regulation of genes and gene pathways. The results also emphasize the paternal contribution to adaptive processes.
Collapse
|
28
|
Patel NJ, Hogan KJ, Rizk E, Stewart K, Madrid A, Vadakkadath Meethal S, Alisch R, Borth L, Papale LA, Ondoma S, Gorges LR, Weber K, Lake W, Bauer A, Hariharan N, Kuehn T, Cook T, Keles S, Newton MA, Iskandar BJ. Ancestral Folate Promotes Neuronal Regeneration in Serial Generations of Progeny. Mol Neurobiol 2020; 57:2048-2071. [PMID: 31919777 PMCID: PMC7125003 DOI: 10.1007/s12035-019-01812-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
Folate supplementation in F0 mating rodents increases regeneration of injured spinal axons in vivo in 4 or more generations of progeny (F1-F4) in the absence of interval folate administration to the progeny. Transmission of the enhanced regeneration phenotype to untreated progeny parallels axonal growth in neuron culture after in vivo folate administration to the F0 ancestors alone, in correlation with differential patterns of genomic DNA methylation and RNA transcription in treated lineages. Enhanced axonal regeneration phenotypes are observed with diverse folate preparations and routes of administration, in outbred and inbred rodent strains, and in two rodent genera comprising rats and mice, and are reversed in F4-F5 progeny by pretreatment with DNA demethylating agents prior to phenotyping. Uniform transmission of the enhanced regeneration phenotype to progeny together with differential patterns of DNA methylation and RNA expression is consistent with a non-Mendelian mechanism. The capacity of an essential nutritional co-factor to induce a beneficial transgenerational phenotype in untreated offspring carries broad implications for the diagnosis, prevention, and treatment of inborn and acquired disorders.
Collapse
Affiliation(s)
- Nirav J Patel
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Kirk J Hogan
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Elias Rizk
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Krista Stewart
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Sivan Vadakkadath Meethal
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Reid Alisch
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Laura Borth
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Solomon Ondoma
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Logan R Gorges
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Kara Weber
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Wendell Lake
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Andrew Bauer
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Nithya Hariharan
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Thomas Kuehn
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA
| | - Thomas Cook
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
- Department of Statistics, University of Wisconsin, Madison, WI, USA
| | - Michael A Newton
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
- Department of Statistics, University of Wisconsin, Madison, WI, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, K4/832, Madison, WI, 53792, USA.
| |
Collapse
|
29
|
Aggernæs B. Suggestion of a dynamic model of the development of neurodevelopmental disorders and the phenomenon of autism. AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
30
|
|
31
|
Kumari N, Karmakar A, Ganesan SK. Targeting epigenetic modifications as a potential therapeutic option for diabetic retinopathy. J Cell Physiol 2019; 235:1933-1947. [PMID: 31531859 DOI: 10.1002/jcp.29180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in adults of working age (20-65 years) in developed countries. The metabolic memory phenomena (persistent effect of a glycemic insult even after retrieved) associated with it has increased the risk of developing the complication even after the termination of the glycemic insult. Hence, the need for finding early diagnosis and treatment options has been of great concern. Epigenetic modifications which generally occur during the beginning stages of the disease are responsible for the metabolic memory effect. Therefore, the therapy based on the reversal of the associated epigenetic mechanism can bring new insight in the area of early diagnosis and treatment mechanism. This review discusses the diabetic retinopathy, its pathogenesis, current treatment options, need of finding novel treatment options, and different epigenetic alterations associated with DR. However, the main focus is emphasized on various epigenetic modifications particularly DNA methylation which are responsible for the initiation and progression of diabetic retinopathy and the use of different epigenetic inhibitors as a novel therapeutic option for DR.
Collapse
Affiliation(s)
- Nidhi Kumari
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditi Karmakar
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Senthil Kumar Ganesan
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
32
|
Li Z, Li N, Guo C, Li X, Qian Y, Wu J, Yang Y, Wei Y. Genomic DNA methylation signatures in different tissues after ambient air particulate matter exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:175-181. [PMID: 31039460 DOI: 10.1016/j.ecoenv.2019.04.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
DNA methylation (5-mc) is one of the several epigenetic markers, and is generally associated with the inhibition of gene expression. Both hyper and hypo DNA methylation are associated with the diseases. Exposure to fine particles with a diameter of 2.5 μm or less (PM2.5) is a pervasive risk factor for cardiopulmonary mortality, metabolic disorders, cognition damage, and etc.. Recent reports pointed toward that these diseases were associated with the altered DNA methylation level of some specific-gene, potentially suggesting that the DNA methylation alteration was involved in the health hazard derived from the PM2.5 exposure. In this study, we systematically investigated the global DNA methylation level of most tissues, including lung, heart, testis, thymus, spleen, epididymal fat, hippocampus, kidney, live, after short and long term PM2.5 exposure. After acute PM2.5 exposure, the global hypo-methylation in DNA was observed in lung and heart. Notably, after chronic PM2.5 exposure, level of global DNA methylation decreased in most organs which included lung, testis, thymus, spleen, epididymal fat, hippocampus and blood. The present study systematically demonstrated the global DNA methylation changes by PM2.5 exposure, and put forward a possible orientation for further exploring the effects of ambient air particles exposure on the specific organs.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nannan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jing Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yining Yang
- Class 5 of Grade 2 in Senior High School, Beijing No.171 High School, 100013, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
33
|
Mallei A, Ieraci A, Popoli M. Chronic social defeat stress differentially regulates the expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice. World J Biol Psychiatry 2019; 20:555-566. [PMID: 30058429 DOI: 10.1080/15622975.2018.1500029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objectives: Although stress is considered a primary risk factor for neuropsychiatric disorders, a majority of individuals are resilient to the effects of stress exposure and successfully adapt to adverse life events, while others, the so-called susceptible individuals, may have problems to properly adapt to environmental changes. However, the mechanisms underlying these different responses to stress exposure are poorly understood.Methods: Adult male C57BL/6J mice were exposed to chronic social defeat stress protocol and levels of brain derived neurotrophic factor (BDNF) transcripts and epigenetic modifying enzymes were analysed by real-time PCR in the hippocampus (HPC) and prefrontal cortex (PFC) of susceptible and resilient mice.Results: We found a selective reduction of BDNF-6 transcript in the HPC and an increase of BDNF-4 transcript in the PFC of susceptible mice. Moreover, susceptible mice showed a selective reduction of the g9a mRNA levels in the HPC, while HDAC-5 and DNMT3a mRNA levels were specifically reduced in the PFC.Conclusions: Overall, our results, showing a different expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice, suggest that stress resilience is not simply a lack of activation of stress-related pathways, but is related to the activation of additional different specific mechanisms.
Collapse
Affiliation(s)
- Alessandra Mallei
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| |
Collapse
|
34
|
Yuan T, Zhao W, Niu Y, Fu Y, Lu L, Niu D. Exploration of the temporal-spatial expression pattern and DNA methylation-related regulation of the duck telomerase reverse transcriptase gene. Poult Sci 2019; 98:3257-3267. [PMID: 31064004 DOI: 10.3382/ps/pez240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase that adds TTAGGG repeats to the 3'-overhang of telomeres. In the present study, we detected that the duck TERT (dTERT) gene was highly expressed in small intestine and kidney, followed by heart, leg muscle, spleen, pancreas, gonad, and liver at neonatal stage. From embryonic to neonatal stage, the highest dTERT mRNA in liver appeared at stage E19 (19 days at embryonic stage), while for the leg muscle the maximum expression occurred at E26. We also measured the relative telomerase activity (RTA) and relative telomere length (RTL) in the examined tissues and found that the changed tendency of RTA and RTL was not very consistent with that of TERT. In silico analysis revealed that there were three CpG islands (S1, S2, and S3) within the 5' regulatory region of the dTERT gene. Bisulfite sequencing PCR (BSP) assay showed that liver (D7, 7 days after birth) which expressed significantly lower dTERT mRNA had an obviously higher methylation level of S1 compared with small intestine (D7) or liver (E19). Quantitative real-time PCR analysis revealed that the expression of DNA methyltransferase DNMT1 in liver (D7) was significantly higher than that in small intestine (D7) or in liver (E19). In vitro, dTERT expression was upregulated and the methylation status of S1 decreased in both duck embryonic fibroblasts and small intestinal epithelial cells following treatment with the demethylation reagent, 5-aza-2'-deoxycytidine (5-aza-dC), further suggesting that dTERT is epigenetically regulated by DNA methylation. This work lays a solid foundation for further study of TERT function and regulation in avian species.
Collapse
Affiliation(s)
- Taoyan Yuan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Wanqiu Zhao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Yifan Niu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yan Fu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China.,Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, Zhejiang, China
| | - Dong Niu
- College of Animal Science and Technology, Zhejiang A&F University
| |
Collapse
|
35
|
Modulation of the Negative Affective Dimension of Pain: Focus on Selected Neuropeptidergic System Contributions. Int J Mol Sci 2019; 20:ijms20164010. [PMID: 31426473 PMCID: PMC6720937 DOI: 10.3390/ijms20164010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that emotions can interfere with the perception of physical pain, as well as with the development and maintenance of painful conditions. On the other hand, somatic pain can have significant consequences on an individual’s affective behavior. Indeed, pain is defined as a complex and multidimensional experience, which includes both sensory and emotional components, thus exhibiting the features of a highly subjective experience. Over the years, neural pathways involved in the modulation of the different components of pain have been identified, indicating the existence of medial and lateral pain systems, which, respectively, project from medial or lateral thalamic nuclei to reach distinct cortex regions relating to specific functions. However, owing to the limited information concerning how mood state and painful input affect each other, pain treatment is frequently unsatisfactory. Different neuromodulators, including endogenous neuropeptides, appear to be involved in pain-related emotion and in its affective influence on pain perception, thus playing key roles in vulnerability and clinical outcome. Hence, this review article focuses on evidence concerning the modulation of the sensory and affective dimensions of pain, with particular attention given to some selected neuropeptidergic system contributions.
Collapse
|
36
|
Heim CM, Entringer S, Buss C. Translating basic research knowledge on the biological embedding of early-life stress into novel approaches for the developmental programming of lifelong health. Psychoneuroendocrinology 2019; 105:123-137. [PMID: 30578047 PMCID: PMC6561839 DOI: 10.1016/j.psyneuen.2018.12.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/22/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
This review integrates scientific knowledge obtained over the past few decades on the biological mechanisms that contribute to the profound association between exposure to early adversity, including childhood trauma and prenatal stress, and the lifelong elevated risk to develop a broad range of diseases. We further discuss insights into gene-environment interactions moderating the association between early adversity and disease manifestation and we discuss the role of epigenetic and other molecular processes in the biological embedding of early adversity. Based on these findings, we propose potential mechanisms that may contribute to the intergenerational transmission of risk related to early adversity from the mother to the fetus. Finally, we argue that basic research knowledge on the biological embedding of early adversity must now be translated into novel intervention strategies that are mechanism-driven and sensitive to developmental timing. Indeed, to date, there are no diagnostic biomarkers of risk or mechanism-informed interventions that we can offer to victims of early adversity in order to efficiently prevent or reverse adverse health outcomes. Such translational efforts can be expected to have significant impact on both clinical practice and the public health system, and will promote precision medicine in pediatrics and across the lifespan.
Collapse
Affiliation(s)
- Christine M. Heim
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany,Department of Biobehavioral Health, College of Health & Human Development, The Pennsylvania State University, University Park, PA, USA,Corresponding authors at: Institute of Medical Psychology, Charité Universitätsmedizin Berlin, Luisenstr. 57, 10117 Berlin, Germany., (C.M. Heim), (S. Entringer), (C. Buss)
| | - Sonja Entringer
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Development, Health, and Disease Research Program, University of California Irvine, Orange, CA, USA.
| | - Claudia Buss
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Development, Health, and Disease Research Program, University of California Irvine, Orange, CA, USA.
| |
Collapse
|
37
|
Shen XF, Yuan HB, Wang GQ, Xue H, Liu YF, Zhang CX. Role of DNA hypomethylation in lateral habenular nucleus in the development of depressive-like behavior in rats. J Affect Disord 2019; 252:373-381. [PMID: 30999094 DOI: 10.1016/j.jad.2019.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/02/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Lateral habenula nucleus (LHb) has recently been noted for its role in stress-induced depressive disorder. Yet little is known about the mechanisms by which external stimuli or depression induces pathological alteration in the LHb. METHODS Chronic unpredictable mild stress (CUMS) was employed to model depressive-like behaviors in adult rats. We examined expressions of DNA methyltransferases (Dnmts) mRNA and protein and global DNA methylation levels in LHb of CUMS-induced depressive rats. Then 5-aza-2'-deoxycytidine (5-aza), a Dnmts inhibitor, was infused into the LHb of native rats to test the effects of hypomethylation in the LHb. The gene expressions in the LHb and the levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in dorsal raphe nucleus (DRN) were examined in 5-aza infusion rats by quantitative real-time PCR and high performance liquid chromatography, respectively. RESULTS Rats were exposed to CUMS for 21 days and depressive-like behaviors were induced as expected. We observed significant decrease in mRNA and protein expressions of Dnmt1 and DNA hypomethylation in LHb of depressive rats. These phenomenon suggests that CUMS-induced depressive-like behaviors are related with DNA hypomethylation in the LHb. Local 5-aza infusion into LHb of native rat resulted in global DNA hypomethylation in the LHb and induced depressive-like behaviors which are featured with lack of interest and investment in the environment, behavioral despair and anhedonia. Moreover, DNA hypomethylation in the LHb increased transcription of β calcium/calmodulin dependent protein kinase II and glutamate receptor 1 in the LHb and attenuated the levels of 5-HT and 5-HIAA in the DRN. Our data suggested that alteration of DNA methylation in the LHb may control 5-HT neuronal activity in the DRN to regulate emotional state. CONCLUSIONS DNA hypomethylation in the LHb is involved in the development of depressive-like behavior and suitable methylation state contributes to the emotional stabilization.
Collapse
Affiliation(s)
- Xiang-Feng Shen
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Hai-Bo Yuan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Guo-Qiang Wang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Hui Xue
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yong-Feng Liu
- Department of Molecular Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Chun-Xiao Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
38
|
Wani AL, Shadab GHA. Brain, behavior and the journey towards neuroepigenetic therapeutics. Epigenomics 2019; 11:969-981. [PMID: 31144515 DOI: 10.2217/epi-2018-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epigenetics has brought about a major shift in our understanding of biological mechanisms and their associated health effects. Strong epigenetic components have been found to be involved in the progression of many diseases. In several human diseases, including debilitating psychiatric disorders, altered epigenetic status has been found as one of the main causes. With continuous progress on drug development, researchers are enthusiastic toward epigenetic therapeutics which could possibly reverse epigenetic modifications. In this article certain developments in epigenetic therapeutics are highlighted, the indiscriminate use of which could also be associated with potential risk. These risks may partly be due to our limited knowledge on genes and the mechanisms underlying epigenetic involvement in different diseases. Epigenetic changes are fundamentally important for a large number of bodily functions; nonspecific usage of therapeutics could be potentially harmful therefore there is a need to harness epigenetics positively.
Collapse
Affiliation(s)
- Ab Latif Wani
- Cytogenetics & Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Gg Hammad Ahmad Shadab
- Cytogenetics & Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
39
|
Possible protective effect of procainamide as an epigenetic modifying agent in experimentally induced type 2 diabetes mellitus in rats. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2014.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
40
|
Li Z, Li N, Guo C, Li X, Qian Y, Yang Y, Wei Y. The global DNA and RNA methylation and their reversal in lung under different concentration exposure of ambient air particulate matter in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:396-402. [PMID: 30731271 DOI: 10.1016/j.ecoenv.2019.01.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) in air pollution is a pervasive risk factor in pulmonary diseases that are always associated with gene expression level alterations in many specific-genes. DNA methylation (5-methylcytosine [5mC]) and RNA methylation (N6-methyladenine [6 mA]) influence the gene expression from transcription and post-transcription level, and the DNA hydroxymethylation (5-hydroxymethylcytosine [5hmC]) is the oxidized form of 5mC. In the present study, the levels of global 5mC, 5hmC and 6 mA of lungs in experimental mice were investigated. We divided the animals into 3 groups randomly, the group 1 was exposed to heavy PM for 24 h in the unfiltered chamber, the group 2 was exposed to filtered air in the filtered chamber, and the group 3 was 10 of the mice in the group 1 after 24 h exposure and then being moved to the filtered chamber for further 120 h exposure. The morphology of lungs showed that acute PM exposure impaired the structure of pulmonary alveolus. Meanwhile, the global level of DNA methylation was decreased, and DNA hydroxymethylation and RNA methylation levels were increased in lungs after PM exposure for only 24 h. Very notably, after being exposed in purified air for 120 h, the pulmonary morphology, the global levels of DNA methylation, DNA hydroxymethylation and RNA methylation of lungs were all reversed. The present study clearly demonstrated the alteration of DNA and RNA methylation after acute heavy PM exposure and emphasized the reversal of the symptoms caused by PM exposure after the air purification, which provided us a new idea for the intervention of the adverse health effects from air pollution. CAPSULE: Acute PM exposure resulted in reduced global DNA methylation and increased global DNA hydroxymethylcytosine and RNA methylation, and air purification reversed these alterations.
Collapse
Affiliation(s)
- Zhigang Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Nannan Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Qian
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yining Yang
- Senior High School, Beijing No.171 High School, 100013, China
| | - Yongjie Wei
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
41
|
Preventing epigenetic traces of caregiver maltreatment: A role for HDAC inhibition. Int J Dev Neurosci 2019; 78:178-184. [PMID: 31075305 DOI: 10.1016/j.ijdevneu.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 01/07/2023] Open
Abstract
Reorganization of the brain's epigenetic landscape occurs alongside early adversity in both human and non-human animals. Whether this reorganization is simply incidental to or is a causal mechanism of the behavioral abnormalities that result from early adversity is important to understand. Using the scarcity-adversity model of low nesting resources in Long Evans rats, our lab has previously reported specific epigenetic and behavioral trajectories occurring in response to early disruption of the caregiving environment. To further probe that relationship, the current work investigates the ability of the epigenome-modifying drug sodium butyrate to prevent maltreatment-induced methylation changes when administered alongside maltreatment. Following exposure to the scarcity-adversity model, during which drug was administered prior to each caregiving session, methylation of Brain-derived Neurotrophic Factor (Bdnf) IX DNA was examined in the Prefrontal Cortex (PFC) of male and female pups at postnatal day (PN) 8. As our previous work reports, increased methylation at this exon of Bdnf in the PFC is a stable epigenetic change across the lifespan that occurs in response to early maltreatment, thus giving us a suitable starting point to investigate pharmacological prevention of maltreatment-induced epigenetic marks. Here we also examined off-target effects of sodium butyrate by assessing methylation in another region of Bdnf (exon IV) not affected in the infant brain as well as global levels of methylation in the brain region of interest. Results indicate that a 400 mg/kg (but not 300 mg/kg) dose of sodium butyrate is effective in preventing the maltreatment-induced rise in methylation at Bdnf exon IX in the PFC of male (but not female) infant pups. Administration of sodium butyrate did not affect the methylation status of Bdnf IV or overall levels of global methylation in the PFC, suggesting potential specificity of this drug. These data provide us an avenue forward for investigating whether the relationship between adversity-induced epigenetic outcomes in our model can be manipulated to improve behavioral outcomes.
Collapse
|
42
|
DNA Methylation Patterns in the Round Goby Hypothalamus Support an On-The-Spot Decision Scenario for Territorial Behavior. Genes (Basel) 2019; 10:genes10030219. [PMID: 30875862 PMCID: PMC6471186 DOI: 10.3390/genes10030219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/28/2023] Open
Abstract
The question as to how early life experiences are stored on a molecular level and affect traits later in life is highly topical in ecology, medicine, and epigenetics. In this study, we use a fish model to investigate whether DNA methylation mediates early life experiences and predetermines a territorial male reproductive phenotype. In fish, adult reproductive phenotypes frequently depend on previous life experiences and are often associated with distinct morphological traits. DNA methylation is an epigenetic mechanism which is both sensitive to environmental conditions and stably inherited across cell divisions. We therefore investigate early life predisposition in the round goby Neogobius melanostomus by growth back-calculations and then study DNA methylation by MBD-Seq in the brain region controlling vertebrate reproductive behavior, the hypothalamus. We find a link between the territorial reproductive phenotype and high growth rates in the first year of life. However, hypothalamic DNA methylation patterns reflect the current behavioral status independently of early life experiences. Together, our data suggest a non-predetermination scenario in the round goby, in which indeterminate males progress to a non-territorial status in the spawning season, and in which some males then assume a specialized territorial phenotype if current conditions are favorable.
Collapse
|
43
|
Louwies T, Ligon CO, Johnson AC, Greenwood-Van Meerveld B. Targeting epigenetic mechanisms for chronic visceral pain: A valid approach for the development of novel therapeutics. Neurogastroenterol Motil 2019; 31:e13500. [PMID: 30393913 PMCID: PMC7924309 DOI: 10.1111/nmo.13500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/21/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic visceral pain is persistent pain emanating from thoracic, pelvic, or abdominal origin that is poorly localized with regard to the specific organ affected. The prevalence can range up to 25% in the adult population as chronic visceral pain is a common feature of many visceral disorders, which may or may not be accompanied by distinct structural or histological abnormalities within the visceral organs. Mounting evidence suggests that changes in epigenetic mechanisms are involved in the top-down or bottom-up sensitization of pain pathways and the development of chronic pain. Epigenetic changes can lead to long-term alterations in gene expression profiles of neurons and consequently alter functionality of peripheral neurons, dorsal root ganglia, spinal cord, and brain neurons. However, epigenetic modifications are dynamic, and thus, detrimental changes may be reversible. Hence, external factors/therapeutic interventions may be capable of modulating the epigenome and restore normal gene expression for extended periods of time. PURPOSE The goal of this review is to highlight the latest discoveries made toward understanding the epigenetic mechanisms that are involved in the development or maintenance of chronic visceral pain. Furthermore, this review will provide evidence supporting that targeting these epigenetic mechanisms may represent a novel approach to treat chronic visceral pain.
Collapse
Affiliation(s)
- Tijs Louwies
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Casey O. Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
44
|
Madani Tonekaboni SA, Soltan Ghoraie L, Manem VSK, Haibe-Kains B. Predictive approaches for drug combination discovery in cancer. Brief Bioinform 2019; 19:263-276. [PMID: 27881431 DOI: 10.1093/bib/bbw104] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 02/07/2023] Open
Abstract
Drug combinations have been proposed as a promising therapeutic strategy to overcome drug resistance and improve efficacy of monotherapy regimens in cancer. This strategy aims at targeting multiple components of this complex disease. Despite the increasing number of drug combinations in use, many of them were empirically found in the clinic, and the molecular mechanisms underlying these drug combinations are often unclear. These challenges call for rational, systematic approaches for drug combination discovery. Although high-throughput screening of single-agent therapeutics has been successfully implemented, it is not feasible to test all possible drug combinations, even for a reduced subset of anticancer drugs. Hence, in vitro and in vivo screening of a large number of drug combinations are not practical. Therefore, devising computational methods to efficiently explore the space of drug combinations and to discover efficacious combinations has attracted a lot of attention from the scientific community in the past few years. Nevertheless, in the absence of consensus regarding the computational approaches used to predict efficacious drug combinations, a plethora of methods, techniques and hypotheses have been developed to date, while the research field lacks an elaborate categorization of the existing computational methods and the available data sources. In this manuscript, we review and categorize the state-of-the-art computational approaches for drug combination prediction, and elaborate on the limitations of these methods and the existing challenges. We also discuss about the recent pan-cancer drug combination data sets and their importance in revising the available methods or developing more performant approaches.
Collapse
Affiliation(s)
- Seyed Ali Madani Tonekaboni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laleh Soltan Ghoraie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Venkata Satya Kumar Manem
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Sengupta A, Ganguly A, Chowdhury S. Promise of G-Quadruplex Structure Binding Ligands as Epigenetic Modifiers with Anti-Cancer Effects. Molecules 2019; 24:E582. [PMID: 30736345 PMCID: PMC6384772 DOI: 10.3390/molecules24030582] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Evidences from more than three decades of work support the function of non-duplex DNA structures called G-quadruplex (G4) in important processes like transcription and replication. In addition, G4 structures have been studied in connection with DNA base modifications and chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures, through interaction with G4 structure-interacting proteins, in epigenetics-in both DNA and histone modification. Epigenetic changes are found to be intricately associated with initiation as well as progression of cancer. Multiple oncogenes have been reported to harbor the G4 structure at regulatory regions. In this context, G4 structure-binding ligands attain significance as molecules with potential to modify the epigenetic state of chromatin. Here, using examples from recent studies we discuss the emerging role of G4 structures in epigenetic modifications and, therefore, the promise of G4 structure-binding ligands in epigenetic therapy.
Collapse
Affiliation(s)
- Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
- GNR Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| |
Collapse
|
46
|
D’Agnelli S, Arendt-Nielsen L, Gerra MC, Zatorri K, Boggiani L, Baciarello M, Bignami E. Fibromyalgia: Genetics and epigenetics insights may provide the basis for the development of diagnostic biomarkers. Mol Pain 2019; 15:1744806918819944. [PMID: 30486733 PMCID: PMC6322092 DOI: 10.1177/1744806918819944] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/03/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022] Open
Abstract
Fibromyalgia is a disease characterized by chronic widespread pain with additional symptoms, such as joint stiffness, fatigue, sleep disturbance, cognitive dysfunction, and depression. Currently, fibromyalgia diagnosis is based exclusively on a comprehensive clinical assessment, according to 2016 ACR criteria, but validated biological biomarkers associated with fibromyalgia have not yet been identified. Genome-wide association studies investigated genes potentially involved in fibromyalgia pathogenesis highlighting that genetic factors are possibly responsible for up to 50% of the disease susceptibility. Potential candidate genes found associated to fibromyalgia are SLC64A4, TRPV2, MYT1L, and NRXN3. Furthermore, a gene-environmental interaction has been proposed as triggering mechanism, through epigenetic alterations: In particular, fibromyalgia appears to be characterized by a hypomethylated DNA pattern, in genes implicated in stress response, DNA repair, autonomic system response, and subcortical neuronal abnormalities. Differences in the genome-wide expression profile of microRNAs were found among multiple tissues, indicating the involvement of distinct processes in fibromyalgia pathogenesis. Further studies should be dedicated to strength these preliminary findings, in larger multicenter cohorts, to identify reliable directions for biomarker research and clinical practice.
Collapse
Affiliation(s)
- Simona D’Agnelli
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Maria C Gerra
- Department of Health Science and Technology, Aalborg University, Denmark
| | - Katia Zatorri
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lorenzo Boggiani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Baciarello
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
47
|
Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC. Epigenetics in Metastatic Breast Cancer: Its Regulation and Implications in Diagnosis, Prognosis and Therapeutics. Curr Cancer Drug Targets 2019; 19:82-100. [PMID: 29714144 DOI: 10.2174/1568009618666180430130248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC are discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future.
Collapse
Affiliation(s)
- Yuan Seng Wu
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Zhong Yang Lee
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Chun Wai Mai
- Department of Pharmaceutical Chemistry, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
| |
Collapse
|
48
|
Weyrich A, Lenz D, Fickel J. Environmental Change-Dependent Inherited Epigenetic Response. Genes (Basel) 2018; 10:genes10010004. [PMID: 30583460 PMCID: PMC6356568 DOI: 10.3390/genes10010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023] Open
Abstract
Epigenetic modifications are a mechanism conveying environmental information to subsequent generations via parental germ lines. Research on epigenetic responses to environmental changes in wild mammals has been widely neglected, as well as studies that compare responses to changes in different environmental factors. Here, we focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to either diet (~40% less protein) or temperature increase (10 °C increased temperature). Because both experiments focused on the liver as the main metabolic and thermoregulation organ, we were able to decipher if epigenetic changes differed in response to different environmental changes. Reduced representation bisulfite sequencing (RRBS) revealed differentially methylated regions (DMRs) in annotated genomic regions in sons sired before (control) and after the fathers’ treatments. We detected both a highly specific epigenetic response dependent on the environmental factor that had changed that was reflected in genes involved in specific metabolic pathways, and a more general response to changes in outer stimuli reflected by epigenetic modifications in a small subset of genes shared between both responses. Our results indicated that fathers prepared their offspring for specific environmental changes by paternally inherited epigenetic modifications, suggesting a strong paternal contribution to adaptive processes.
Collapse
Affiliation(s)
- Alexandra Weyrich
- Evolutionary Genetics (Dept.2), Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany.
| | - Dorina Lenz
- Evolutionary Genetics (Dept.2), Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany.
| | - Jörns Fickel
- Evolutionary Genetics (Dept.2), Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany.
- Institute for Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
49
|
The Methylation Status of the Epigenome: Its Emerging Role in the Regulation of Tumor Angiogenesis and Tumor Growth, and Potential for Drug Targeting. Cancers (Basel) 2018; 10:cancers10080268. [PMID: 30103412 PMCID: PMC6115976 DOI: 10.3390/cancers10080268] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Approximately 50 years ago, Judah Folkman raised the concept of inhibiting tumor angiogenesis for treating solid tumors. The development of anti-angiogenic drugs would decrease or even arrest tumor growth by restricting the delivery of oxygen and nutrient supplies, while at the same time display minimal toxic side effects to healthy tissues. Bevacizumab (Avastin)—a humanized monoclonal anti VEGF-A antibody—is now used as anti-angiogenic drug in several forms of cancers, yet with variable results. Recent years brought significant progresses in our understanding of the role of chromatin remodeling and epigenetic mechanisms in the regulation of angiogenesis and tumorigenesis. Many inhibitors of DNA methylation as well as of histone methylation, have been successfully tested in preclinical studies and some are currently undergoing evaluation in phase I, II or III clinical trials, either as cytostatic molecules—reducing the proliferation of cancerous cells—or as tumor angiogenesis inhibitors. In this review, we will focus on the methylation status of the vascular epigenome, based on the genomic DNA methylation patterns with DNA methylation being mainly transcriptionally repressive, and lysine/arginine histone post-translational modifications which either promote or repress the chromatin transcriptional state. Finally, we discuss the potential use of “epidrugs” in efficient control of tumor growth and tumor angiogenesis.
Collapse
|
50
|
Weyrich A, Jeschek M, Schrapers KT, Lenz D, Chung TH, Rübensam K, Yasar S, Schneemann M, Ortmann S, Jewgenow K, Fickel J. Diet changes alter paternally inherited epigenetic pattern in male Wild guinea pigs. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy011. [PMID: 29992049 PMCID: PMC6031029 DOI: 10.1093/eep/dvy011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 05/14/2023]
Abstract
Epigenetic modifications, of which DNA methylation is the most stable, are a mechanism conveying environmental information to subsequent generations via parental germ lines. The paternal contribution to adaptive processes in the offspring might be crucial, but has been widely neglected in comparison to the maternal one. To address the paternal impact on the offspring's adaptability to changes in diet composition, we investigated if low protein diet (LPD) in F0 males caused epigenetic alterations in their subsequently sired sons. We therefore fed F0 male Wild guinea pigs with a diet lowered in protein content (LPD) and investigated DNA methylation in sons sired before and after their father's LPD treatment in both, liver and testis tissues. Our results point to a 'heritable epigenetic response' of the sons to the fathers' dietary change. Because we detected methylation changes also in the testis tissue, they are likely to be transmitted to the F2 generation. Gene-network analyses of differentially methylated genes in liver identified main metabolic pathways indicating a metabolic reprogramming ('metabolic shift'). Epigenetic mechanisms, allowing an immediate and inherited adaptation may thus be important for the survival of species in the context of a persistently changing environment, such as climate change.
Collapse
Affiliation(s)
- A Weyrich
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Street 17, D-10315 Berlin, Germany
| | - M Jeschek
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Street 17, D-10315 Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Koenigin-Luise-Street 6-8, 14195 Berlin, Germany
| | - K T Schrapers
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Street 17, D-10315 Berlin, Germany
| | - D Lenz
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Street 17, D-10315 Berlin, Germany
| | - T H Chung
- Zymoresearch, EpiQuest, 17062 Murphy Avenue, Irvine, CA 92614, USA
| | - K Rübensam
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Street 17, D-10315 Berlin, Germany
| | - S Yasar
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Street 17, D-10315 Berlin, Germany
| | - M Schneemann
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Street 17, D-10315 Berlin, Germany
| | - S Ortmann
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Street 17, D-10315 Berlin, Germany
| | - K Jewgenow
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Street 17, D-10315 Berlin, Germany
| | - J Fickel
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Street 17, D-10315 Berlin, Germany
- Institute for Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| |
Collapse
|