1
|
Wang T, Jiang H, Jin C, Zou X, Zhu P, Jiang T, He F, Xiang D. Imaging the photochemical dynamics of cyclobutanone with MeV ultrafast electron diffraction. J Chem Phys 2025; 162:184201. [PMID: 40337934 DOI: 10.1063/5.0267186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/16/2025] [Indexed: 05/09/2025] Open
Abstract
We study the photoinduced chemical dynamics of cyclobutanone upon excitation at 200 nm to the 3s Rydberg state using MeV ultrafast electron diffraction (UED). We observe both the elastic scattering signal, which contains information about the structural dynamics, and the inelastic scattering signal, which encodes information about the electronic state. Our results suggest a sub-picosecond timescale for the photodissociation dynamics and an excited state lifetime of about 230 femtoseconds. The dissociation is found to be dominated by the C3 channel, where cyclopropane and CO are produced. The branching ratio of the C3 channel to the C2 channel, where ethene and ketene are produced, is estimated to be ∼5:3. Our data suggest that the C3 and C2 channels account for ∼80% of the photoproducts, with the remaining 20% exhibiting ring-opened structures. It is found that the timescale associated with the dissociation process in the C2 channel is shorter compared to that in the C3 channel. Leveraging the enhanced temporal resolution of MeV UED, our results provide a real-time mapping of the nuclear wave packet dynamics, capturing the complete photochemical dynamics from S2 minimum through the S1/S0 conical intersection and finally to the dissociation. Our experimental results provide new insights into the Norrish type I reaction and can be used to benchmark non-adiabatic dynamics simulations.
Collapse
Affiliation(s)
- Tianyu Wang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Hui Jiang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Cheng Jin
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Xiao Zou
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Pengfei Zhu
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Tao Jiang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dao Xiang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
| |
Collapse
|
2
|
Richardson JO, Lawrence JE, Mannouch JR. Nonadiabatic Dynamics with the Mapping Approach to Surface Hopping (MASH). Annu Rev Phys Chem 2025; 76:663-687. [PMID: 39971353 DOI: 10.1146/annurev-physchem-082423-120631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The mapping approach to surface hopping (MASH) combines the rigor of quasiclassical mapping approaches with the pragmatism of surface hopping to obtain a practical trajectory-based method for simulating nonadiabatic dynamics in molecular systems. In this review, we outline the derivation of MASH, prove a number of important properties that ensure its reliability, and illustrate its accuracy for computing nonadiabatic rate constants as well as ultrafast photochemical dynamics.
Collapse
Affiliation(s)
- Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland;
| | - Joseph E Lawrence
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
- Department of Chemistry, New York University, New York, NY, USA;
| | - Jonathan R Mannouch
- Hamburg Center for Ultrafast Imaging, Universität Hamburg and the Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany;
| |
Collapse
|
3
|
Liu Y, Xu R, Sanchez DM, Martínez TJ, Wolf TJA. Ultrafast Events in Electrocyclic Ring-Opening Reactions. Annu Rev Phys Chem 2025; 76:615-638. [PMID: 39971379 DOI: 10.1146/annurev-physchem-082423-023323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Electrocyclic reactions are characterized by the concerted formation and cleavage of multiple σ and π bonds in a molecular system and have been extensively studied since they were introduced by Robert Burns Woodward and Roald Hoffmann in 1965. Recent advances and the integration of time-resolved experiments and nonadiabatic quantum molecular dynamics simulations have transformed the traditional understanding of electrocyclic reactions beyond the Woodward-Hoffmann rules. In this review, we focus on recent studies of 1,3-cyclohexadiene and two of its derivatives, α-phellandrene and α-terpinene, to shed light on the underlying mechanisms of electrocyclic photochemical reactions. We highlight recent progress in ultrafast electron diffraction techniques and the simulation approach of ab initio multiple spawning. Together, these approaches can elucidate molecular structure dynamics from femtosecond to picosecond timescales as well as nuclear and electronic responses at conical intersections.
Collapse
Affiliation(s)
- Yusong Liu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA;
| | - Rui Xu
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA;
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - David M Sanchez
- Design Physics Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Todd J Martínez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA;
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Thomas J A Wolf
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA;
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA;
| |
Collapse
|
4
|
Wu H, Yong H. Diffractive Imaging of Transient Electronic Coherences in Molecules with Electron Vortices. PHYSICAL REVIEW LETTERS 2025; 134:073001. [PMID: 40053996 DOI: 10.1103/physrevlett.134.073001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/14/2025] [Indexed: 03/09/2025]
Abstract
Direct imaging of transient electronic coherences in molecules has been challenging, with the potential to control electron motions and influence reaction outcomes. We propose a novel time-resolved vortex electron diffraction technique to spatially resolve transient electronic coherences in isolated molecules. By analyzing helical dichroism diffraction signals, the contribution of electronic populations cancels out, isolating the purely electronic coherence signals. This allows direct monitoring of the time evolution and decoherence of transient electronic coherences in molecules.
Collapse
Affiliation(s)
- Haowei Wu
- University of California San Diego, Department of Chemistry and Biochemistry, La Jolla, California 92093, USA
| | - Haiwang Yong
- University of California San Diego, Department of Chemistry and Biochemistry, La Jolla, California 92093, USA
- University of California San Diego, Program in Materials Science and Engineering, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Jíra T, Janoš J, Slavíček P. Sensitivity Analysis in Photodynamics: How Does the Electronic Structure Control cis-Stilbene Photodynamics? J Chem Theory Comput 2024; 20:10972-10985. [PMID: 39668373 DOI: 10.1021/acs.jctc.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The techniques of computational photodynamics are increasingly employed to unravel reaction mechanisms and interpret experiments. However, misinterpretations in nonadiabatic dynamics caused by inaccurate underlying potentials are often difficult to foresee. This work focuses on revealing the systematic errors in the nonadiabatic simulations due to the underlying potentials and suggests a thrifty approach to evaluate the sensitivity of the simulations to the potential. This issue is exemplified in the photochemistry of cis-stilbene, where similar experimental outcomes have been differently interpreted based on the electronic structure methods supporting nonadiabatic dynamics. We examine the predictions of cis-stilbene photochemistry using trajectory surface hopping methods coupled with various electronic structure methods (OM3-MRCISD, SA2-CASSCF, XMS-SA2-CASPT2, and XMS-SA3-CASPT2) and assess their ability to interpret experimental observations. While the excited-state lifetimes and calculated photoelectron spectra show consistency with experiments, the reaction quantum yields vary significantly: either completely suppressing cyclization or isomerization. Intriguingly, analyzing stationary points on the potential energy surface does not hint at any major discrepancy, making the electronic structure methods seemingly reliable when treated separately. We show that performing an ensemble of simulations with different potentials provides an estimate of the electronic structure sensitivity. However, this ensemble approach is costly. Thus, we propose running nonadiabatic simulations with an external bias at a resource-efficient underlying potential (semiempirical or machine-learned) for the sensitivity analysis. We demonstrate this approach using a semiempirical OM3-MRCISD method with a harmonic bias toward cyclization.
Collapse
Affiliation(s)
- Tomáš Jíra
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| | - Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| |
Collapse
|
6
|
He L, Johny M, Kierspel T, Długołęcki K, Bari S, Boll R, Bromberger H, Coreno M, De Fanis A, Di Fraia M, Erk B, Gisselbrecht M, Grychtol P, Eng-Johnsson P, Mazza T, Onvlee J, Ovcharenko Y, Petrovic J, Rennhack N, Rivas DE, Rudenko A, Rühl E, Schwob L, Simon M, Trinter F, Usenko S, Wiese J, Meyer M, Trippel S, Küpper J. Controlled molecule injector for cold, dense, and pure molecular beams at the European x-ray free-electron laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:113301. [PMID: 39540812 DOI: 10.1063/5.0219086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
A permanently available molecular-beam injection setup for controlled molecules (COMO) was installed and commissioned at the small quantum systems (SQS) instrument at the European x-ray free-electron laser (EuXFEL). A b-type electrostatic deflector allows for pure state-, size-, and isomer-selected samples of polar molecules and clusters. The source provides a rotationally cold (T ≈ 1 K) and dense (ρ ≈ 108 cm-3) molecular beam with pulse durations up to 100 µs generated by a new version of the Even-Lavie valve. Here, a performance overview of the COMO setup is presented along with characterization experiments performed both with an optical laser at the Center for Free-Electron-Laser Science and with x rays at EuXFEL under burst-mode operation. COMO was designed to be attached to different instruments at the EuXFEL, in particular, the SQS and single particles, clusters, and biomolecules (SPB) instruments. This advanced controlled-molecules injection setup enables x-ray free-electron laser studies using highly defined samples with soft and hard x-ray FEL radiation for applications ranging from atomic, molecular, and cluster physics to elementary processes in chemistry and biology.
Collapse
Affiliation(s)
- Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Melby Johny
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas Kierspel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Karol Długołęcki
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Hubertus Bromberger
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marcello Coreno
- ISM-CNR, Istituto Struttura della Materia, LD2 Unit, Basovizza Area Science Park, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.P.A., Basovizza, Trieste 34149, Italy
| | | | - Michele Di Fraia
- Elettra-Sincrotrone Trieste S.C.P.A., Basovizza, Trieste 34149, Italy
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | | | | | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jolijn Onvlee
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Jovana Petrovic
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nils Rennhack
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Eckart Rühl
- Physical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Florian Trinter
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sergey Usenko
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Joss Wiese
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
7
|
Janoš J, Slavíček P, Curchod BFE. Including Photoexcitation Explicitly in Trajectory-Based Nonadiabatic Dynamics at No Cost. J Phys Chem Lett 2024; 15:10614-10622. [PMID: 39405399 PMCID: PMC11514012 DOI: 10.1021/acs.jpclett.4c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Over the last decades, theoretical photochemistry has produced multiple techniques to simulate the nonadiabatic dynamics of molecules. Surprisingly, much less effort has been devoted to adequately describing the first step of a photochemical or photophysical process: photoexcitation. Here, we propose a formalism to include the effect of a laser pulse in trajectory-based nonadiabatic dynamics at the level of the initial conditions, with no additional cost. The promoted density approach (PDA) decouples the excitation from the nonadiabatic dynamics by defining a new set of initial conditions, which include an excitation time. PDA with surface hopping leads to nonadiabatic dynamics simulations in excellent agreement with quantum dynamics using an explicit laser pulse and highlights the strong impact of a laser pulse on the resulting photodynamics and the limits of the (sudden) vertical excitation. Combining PDA with trajectory-based nonadiabatic methods is possible for any arbitrary-sized molecules using a code provided in this work.
Collapse
Affiliation(s)
- Jiří Janoš
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, Prague 6, 166 28, Czech Republic
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United
Kingdom
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, Prague 6, 166 28, Czech Republic
| | - Basile F. E. Curchod
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United
Kingdom
| |
Collapse
|
8
|
Huang B, Yun L, Yang Y, Han R, Chen K, Wang Z, Wang Y, Chen H, Du Y, Hao Y, Lv P, Ji P, Tan Y, Zheng L, Liu L, Li R, Yang J. Structural Study of Aqueous Electrolyte Solution by MeV Liquid Electron Scattering. J Phys Chem B 2024; 128:9197-9205. [PMID: 39268827 DOI: 10.1021/acs.jpcb.4c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The impact of ions on water has long been a subject of great interest, as it is closely tied to the hydration structure, dynamics, and properties of electrolyte solutions. Over centuries of investigation, the influence of ions on water's structure remains highly debated. Prevailing techniques, such as neutron and X-ray scattering, primarily focus on the microscopic structure of salt solutions at very high concentrations, mostly above 1 mol/L. In this study, we measured the structure of aqueous potassium iodide (KI) and potassium chloride (KCl) solutions using MeV liquid electron scattering (MeV-LES) across a concentration range of 0.10 to 0.75 mol/L. The obtained results provide detailed insights into the variations in ion-oxygen and oxygen-oxygen correlations as a function of concentration. The observed structural differences between KI and KCl solutions are in line with the structure maker/breaker theory, which suggests that iodide ions exert a more pronounced effect than chloride ions on disrupting the water shell. This work demonstrates the potency of MeV-LES for investigating the atomic structure in liquids, augmenting the modern analytical toolbox.
Collapse
Affiliation(s)
- Bo Huang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Longteng Yun
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yining Yang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Ruinong Han
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Keke Chen
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiyuan Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Yian Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Haowei Chen
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingchao Du
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Yuxia Hao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Peng Lv
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Pengju Ji
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuemei Tan
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Lianmin Zheng
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Lihong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Renkai Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Jie Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Tang Z, Jarupula R, Yong H. Pushing the limits of ultrafast diffraction: Imaging quantum coherences in isolated molecules. iScience 2024; 27:110705. [PMID: 39262780 PMCID: PMC11388184 DOI: 10.1016/j.isci.2024.110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Quantum coherence governs the outcome and efficiency of photochemical reactions and ultrafast molecular dynamics. Recent ultrafast gas-phase X-ray scattering and electron diffraction have enabled the observation of femtosecond nuclear dynamics driven by vibrational coherence. However, probing attosecond electron dynamics and coupled electron-nuclear dynamics remains challenging. This article discusses advances in ultrafast X-ray scattering and electron diffraction, highlighting their potential to resolve attosecond charge migration and vibronic coupling at conical intersections. Novel techniques, such as X-ray scattering with orbital angular momentum beams and combined X-ray and electron diffraction, promise to selectively probe coherence contributions and visualize charge migration in real-space. These emerging methods could further our understanding of coherence effects in chemical reactions.
Collapse
Affiliation(s)
- Zilong Tang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ramesh Jarupula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haiwang Yong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Sun S, Yong H, Chernyak VY, Mukamel S. Self-Heterodyne Diffractive Imaging of Ultrafast Electron Dynamics Monitored by Single-Electron Pulses. PHYSICAL REVIEW LETTERS 2024; 133:093001. [PMID: 39270182 DOI: 10.1103/physrevlett.133.093001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024]
Abstract
The direct imaging of time-evolving molecular charge densities on atomistic scale and at femtosecond resolution has long been an elusive task. In this theoretical study, we propose a self-heterodyne electron diffraction technique based on single electron pulses. The electron is split into two beams, one passes through the sample and its interference with the second beam produces a heterodyne diffraction signal that images the charge density. Application to probing the ultrafast electronic dynamics in Mg-phthalocyanine demonstrates its potential for imaging chemical dynamics.
Collapse
Affiliation(s)
| | | | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
- Department of Mathematics, Wayne State University, 656 West Kirby, Detroit, Michigan 48202, USA
| | | |
Collapse
|
11
|
Moon J, Lee Y, Ihee H. Time-resolved serial femtosecond crystallography for investigating structural dynamics of chemical systems. Chem Commun (Camb) 2024; 60:9472-9482. [PMID: 39118495 DOI: 10.1039/d4cc03185g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Time-resolved serial femtosecond crystallography (TR-SFX) has emerged as a crucial tool for studying the structural dynamics of proteins. In principle, TR-SFX has the potential to be a powerful tool not only for studying proteins but also for investigating chemical reactions. However, non-protein systems generally face challenges in indexing due to sparse Bragg spots and encounter difficulties in effectively exciting target molecules. Nevertheless, successful TR-SFX studies on chemical systems have been recently reported in a few instances, boding well for the application of TR-SFX to study chemical reactions in the future. In this context, we review the static SFX and TR-SFX studies conducted on chemical systems reported to date and suggest prospects for future research directions.
Collapse
Affiliation(s)
- Jungho Moon
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yunbeom Lee
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
12
|
Hui D, Alqattan H, Sennary M, Golubev NV, Hassan MT. Attosecond electron microscopy and diffraction. SCIENCE ADVANCES 2024; 10:eadp5805. [PMID: 39167650 PMCID: PMC11338230 DOI: 10.1126/sciadv.adp5805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Advances in attosecond spectroscopy have enabled tracing and controlling the electron motion dynamics in matter, although they have yielded insufficient information about the electron dynamic in the space domain. Hence, ultrafast electron and x-ray imaging tools have been developed to image the ultrafast dynamics of matter in real time and space. The cutting-edge temporal resolution of these imaging tools is on the order of a few tens to a hundred femtoseconds, limiting imaging to the atomic dynamics and leaving electron motion imaging out of reach. Here, we obtained the attosecond temporal resolution in the transmission electron microscope, which we coined "attomicroscopy." We demonstrated this resolution by the attosecond diffraction measurements of the field-driven electron dynamics in graphene. This attosecond imaging tool would provide more insights into electron motion and directly connect it to the structural dynamics of matter in real-time and space domains, opening the door for long-anticipated real-life attosecond science applications in quantum physics, chemistry, and biology.
Collapse
Affiliation(s)
| | | | - Mohamed Sennary
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
13
|
Miller ER, Hoehn SJ, Kumar A, Jiang D, Parker SM. Ultrafast photochemistry and electron diffraction for cyclobutanone in the S2 state: Surface hopping with time-dependent density functional theory. J Chem Phys 2024; 161:034105. [PMID: 39007373 DOI: 10.1063/5.0203679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
We simulate the photodynamics of gas-phase cyclobutanone excited to the S2 state using fewest switches surface hopping (FSSH) dynamics powered by time-dependent density functional theory (TDDFT). We predict a total photoproduct yield of 8%, with a C3:C2 product ratio of 0 trajectories to 8 trajectories. One primary S2 → S1 conical intersection is identified involving the compression of an α-carbon-carbon-hydrogen bond angle. Excited state lifetimes computed with respect to electronic state populations were found to be 3.96 ps (S2 → S1) and 498 fs (S1 → S0). We also generate time-resolved difference pair distribution functions (ΔPDFs) from our TDDFT-FSSH dynamics results in order to generate direct comparisons with ultrafast electron diffraction experiment observables. Global and target analysis of time-resolved ΔPDFs produced a distinct set of lifetimes: (i) a 0.548 ps decay and (ii) a 1.69 ps decay, both resembling the S2 minimum, as well as (iii) a long decay that resembles the S1 minimum geometry and the fully separated C2 products. Finally, we contextualize our results by considering the impact of the most likely sources of significant errors.
Collapse
Affiliation(s)
- Ericka Roy Miller
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| | - Abhijith Kumar
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| | - Dehua Jiang
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| |
Collapse
|
14
|
Aiswarya R, Shaik R, Jose J, Varma HR, Chakraborty HS. Simultaneous Real and Momentum Space Electron Diffraction from a Fullerene Molecule. PHYSICAL REVIEW LETTERS 2024; 133:033002. [PMID: 39094158 DOI: 10.1103/physrevlett.133.033002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024]
Abstract
Plane-wave electrons undergo momentum transfer as they scatter off a target in overlapping spherical waves. The transferred momentum leads to target structural information to be encoded in angle and energy differential scattering. For symmetric, periodic, or structured targets this can engender diffraction in the electron intensity both in real and momentum space. With the example of elastic scattering from a C_{60} molecule we show these simultaneous diffraction signatures. Simulated angle-momentum diffractograms can be imaged in experiments with a two-dimensional detector and an energy-tunable electron gun. The result may inspire the invention of technology to extend scopes of electron diffraction studies, open a track of electron crystallography using the momentum-differential diffraction, and motivate research about controlling the time delay between the pump laser pulse and probe electron pulse by tuning the electron impact speed in ultrafast electron diffraction experiments.
Collapse
|
15
|
Vindel-Zandbergen P, González-Vázquez J. Non-adiabatic dynamics of photoexcited cyclobutanone: Predicting structural measurements from trajectory surface hopping with XMS-CASPT2 simulations. J Chem Phys 2024; 161:024104. [PMID: 38984954 DOI: 10.1063/5.0203722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Over the years, theoretical calculations and scalable computer simulations have complemented ultrafast experiments, as they offer the advantage of overcoming experimental restrictions and having access to the whole dynamics. This synergy between theory and experiment promises to yield a deeper understanding of photochemical processes, offering valuable insights into the behavior of complex systems at the molecular level. However, the ability of theoretical models to predict ultrafast experimental outcomes has remained largely unexplored. In this work, we aim to predict the electron diffraction signals of an upcoming ultrafast photochemical experiment using high-level electronic structure calculations and non-adiabatic dynamics simulations. In particular, we perform trajectory surface hopping with extended multi-state complete active space with second order perturbation simulations for understanding the photodissociation of cyclobutanone (CB) upon excitation at 200 nm. Spin-orbit couplings are considered for investigating the role of triplet states. Our simulations capture the bond cleavage after ultrafast relaxation from the 3s Rydberg state, leading to the formation of the previously observed primary photoproducts: CO + cyclopropane/propene (C3 products), ketene, and ethene (C2 products). The ratio of the C3:C2 products is found to be about 1:1. Within 700 fs, the majority of trajectories transition to their electronic ground state, with a small fraction conserving the initial cyclobutanone ring structure. We found a minimal influence of triplet states during the early stages of the dynamics, with their significance increasing at later times. We simulate MeV-ultrafast electron diffraction (UED) patterns from our trajectory results, linking the observed features with specific photoproducts and the underlying structural dynamics. Our analysis reveals highly intense features in the UED signals corresponding to the photochemical processes of CB. These features offer valuable insights into the experimental monitoring of ring opening dynamics and the formation of C3 and C2 photoproducts.
Collapse
Affiliation(s)
| | - Jesús González-Vázquez
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Institute of Advanced Chemistry (IADChem), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
He L, Yuen CH, He Y, Sun S, Goetz E, Le AT, Deng Y, Xu C, Lan P, Lu P, Lin CD. Ultrafast Picometer-Resolved Molecular Structure Imaging by Laser-Induced High-Order Harmonics. PHYSICAL REVIEW LETTERS 2024; 133:023201. [PMID: 39073922 DOI: 10.1103/physrevlett.133.023201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024]
Abstract
Real-time visualization of molecular transformations is a captivating yet challenging frontier of ultrafast optical science and physical chemistry. While ultrafast x-ray and electron diffraction methods can achieve the needed subangstrom spatial resolution, their temporal resolution is still limited to hundreds of femtoseconds, much longer than the few femtoseconds required to probe real-time molecular dynamics. Here, we show that high-order harmonics generated by intense femtosecond lasers can be used to image molecules with few-ten-attosecond temporal resolution and few-picometer spatial resolution. This is achieved by exploiting the sensitive dependence of molecular recombination dipole moment to the geometry of the molecule at the time of harmonic emission. In a proof-of-principle experiment, we have applied this high-harmonic structure imaging (HHSI) method to monitor the structural rearrangement in NH_{3}, ND_{3}, and N_{2} from one to a few femtoseconds after the molecule is ionized by an intense laser. Our findings establish HHSI as an effective approach to resolve molecular dynamics with unprecedented spatiotemporal resolution, which can be extended to trace photochemical reactions in the future.
Collapse
|
17
|
Nunes JPF, Williams M, Yang J, Wolf TJA, Rankine CD, Parrish R, Moore B, Wilkin K, Shen X, Lin MF, Hegazy K, Li R, Weathersby S, Martinez TJ, Wang XJ, Centurion M. Photo-induced structural dynamics of o-nitrophenol by ultrafast electron diffraction. Phys Chem Chem Phys 2024; 26:17991-17998. [PMID: 38764355 DOI: 10.1039/d3cp06253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The photo-induced dynamics of o-nitrophenol, particularly its photolysis, has garnered significant scientific interest as a potential source of nitrous acid in the atmosphere. Although the photolysis products and preceding photo-induced electronic structure dynamics have been investigated extensively, the nuclear dynamics accompanying the non-radiative relaxation of o-nitrophenol on the ultrafast timescale, which include an intramolecular proton transfer step, have not been experimentally resolved. Herein, we present a direct observation of the ultrafast nuclear motions mediating photo-relaxation using ultrafast electron diffraction. This work spatiotemporally resolves the loss of planarity which enables access to a conical intersection between the first excited state and the ground state after the proton transfer step, on the femtosecond timescale and with sub-Angstrom resolution. Our observations, supported by ab initio multiple spawning simulations, provide new insights into the proton transfer mediated relaxation mechanism in o-nitrophenol.
Collapse
Affiliation(s)
- J P F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, USA.
| | - M Williams
- SLAC National Accelerator Laboratory, Menlo Park, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
- Department of Chemistry, Stanford University, Stanford, USA
| | - J Yang
- SLAC National Accelerator Laboratory, Menlo Park, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - T J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
| | - C D Rankine
- School of Natural and Environmental Sciences, Newcastle University, UK
| | - R Parrish
- SLAC National Accelerator Laboratory, Menlo Park, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
- Department of Chemistry, Stanford University, Stanford, USA
| | - B Moore
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, USA.
| | - K Wilkin
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, USA.
| | - X Shen
- SLAC National Accelerator Laboratory, Menlo Park, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, USA
| | - K Hegazy
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
- Department of Physics, Stanford University, Stanford, USA
| | - R Li
- SLAC National Accelerator Laboratory, Menlo Park, USA
| | - S Weathersby
- SLAC National Accelerator Laboratory, Menlo Park, USA
| | - T J Martinez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
- Department of Chemistry, Stanford University, Stanford, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, Menlo Park, USA
- Physics Department, Universität Duisburg Essen, 47052 Duisburg, Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
- Physics Department, Technische Universität Dortmund, 44221 Dortmund, Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - M Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, USA.
| |
Collapse
|
18
|
Chirvi K, Biegert J. Laser-induced electron diffraction: Imaging of a single gas-phase molecular structure with one of its own electrons. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:041301. [PMID: 39221452 PMCID: PMC11365610 DOI: 10.1063/4.0000237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Among the many methods to image molecular structure, laser-induced electron diffraction (LIED) can image a single gas-phase molecule by locating all of a molecule's atoms in space and time. The method is based on attosecond electron recollision driven by a laser field and can reach attosecond temporal resolution. Implementation with a mid-IR laser and cold-target recoil ion-momentum spectroscopy, single molecules are measured with picometer resolution due to the keV electron impact energy without ensemble averaging or the need for molecular orientation. Nowadays, the method has evolved to detect single complex and chiral molecular structures in 3D. The review will touch on the various methods to discuss the implementations of LIED toward single-molecule imaging and complement the discussions with noteworthy experimental findings in the field.
Collapse
Affiliation(s)
- K. Chirvi
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - J. Biegert
- Author to whom correspondence should be addressed:
| |
Collapse
|
19
|
Diaz FR, Mero M, Amini K. High-repetition-rate ultrafast electron diffraction with direct electron detection. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:054302. [PMID: 39346930 PMCID: PMC11438501 DOI: 10.1063/4.0000256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
Ultrafast electron diffraction (UED) instruments typically operate at kHz or lower repetition rates and rely on indirect detection of electrons. However, these experiments encounter limitations because they are required to use electron beams containing a relatively large number of electrons (≫100 electrons/pulse), leading to severe space-charge effects. Consequently, electron pulses with long durations and large transverse diameters are used to interrogate the sample. Here, we introduce a novel UED instrument operating at a high repetition rate and employing direct electron detection. We operate significantly below the severe space-charge regime by using electron beams containing 1-140 electrons per pulse at 30 kHz. We demonstrate the ability to detect time-resolved signals from thin film solid samples with a difference contrast signal, Δ I / I 0 , and an instrument response function as low as 10-5 and 184-fs (FWHM), respectively, without temporal compression. Overall, our findings underscore the importance of increasing the repetition rate of UED experiments and adopting a direct electron detection scheme, which will be particularly impactful for gas-phase UED. Our newly developed scheme enables more efficient and sensitive investigations of ultrafast dynamics in photoexcited samples using ultrashort electron beams.
Collapse
Affiliation(s)
- F. R. Diaz
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - M. Mero
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - K. Amini
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| |
Collapse
|
20
|
Hait D, Lahana D, Fajen OJ, Paz ASP, Unzueta PA, Rana B, Lu L, Wang Y, Kjønstad EF, Koch H, Martínez TJ. Prediction of photodynamics of 200 nm excited cyclobutanone with linear response electronic structure and ab initio multiple spawning. J Chem Phys 2024; 160:244101. [PMID: 38912674 DOI: 10.1063/5.0203800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/05/2024] [Indexed: 06/25/2024] Open
Abstract
Simulations of photochemical reaction dynamics have been a challenge to the theoretical chemistry community for some time. In an effort to determine the predictive character of current approaches, we predict the results of an upcoming ultrafast diffraction experiment on the photodynamics of cyclobutanone after excitation to the lowest lying Rydberg state (S2). A picosecond of nonadiabatic dynamics is described with ab initio multiple spawning. We use both time dependent density functional theory (TDDFT) and equation-of-motion coupled cluster singles and doubles (EOM-CCSD) theory for the underlying electronic structure theory. We find that the lifetime of the S2 state is more than a picosecond (with both TDDFT and EOM-CCSD). The predicted ultrafast electron diffraction spectrum exhibits numerous structural features, but weak time dependence over the course of the simulations.
Collapse
Affiliation(s)
- Diptarka Hait
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Dean Lahana
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - O Jonathan Fajen
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Amiel S P Paz
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Pablo A Unzueta
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Bhaskar Rana
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Lixin Lu
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Yuanheng Wang
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| | - Eirik F Kjønstad
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94024, USA
| |
Collapse
|
21
|
Peng J, Liu H, Lan Z. The photodissociation dynamics and ultrafast electron diffraction image of cyclobutanone from the surface hopping dynamics simulation. J Chem Phys 2024; 160:224305. [PMID: 38856062 DOI: 10.1063/5.0203462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
The comprehension of nonadiabatic dynamics in polyatomic systems relies heavily on the simultaneous advancements in theoretical and experimental domains. The gas-phase ultrafast electron diffraction (UED) technique has attracted significant attention as a unique tool for monitoring photochemical and photophysical processes at the all-atomic level with high temporal and spatial resolutions. In this work, we simulate the UED spectra of cyclobutanone using the trajectory surface hopping method at the extended multi-state complete active space second order perturbation theory (XMS-CASPT2) level and thereby predict the results of the upcoming UED experiments in the Stanford Linear Accelerator Laboratory. The simulated results demonstrate that a few pathways, including the C2 and C3 dissociation channels, as well as the ring opening channel, play important roles in the nonadiabatic reactions of cyclobutanone. We demonstrate that the simulated UED signal can be directly interpreted in terms of atomic motions, which provides a unique way of monitoring the evolution of the molecular structure in real time. Our work not only provides numerical data that help to determine the accuracy of the well-known surface hopping dynamics at the high XMS-CASPT2 electronic-structure level but also facilitates the understanding of the microscopic mechanisms of the photoinduced reactions in cyclobutanone.
Collapse
Affiliation(s)
- Jiawei Peng
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hong Liu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
22
|
Lee Y, Oang KY, Kim D, Ihee H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:031301. [PMID: 38706888 PMCID: PMC11065455 DOI: 10.1063/4.0000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.
Collapse
Affiliation(s)
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | | | | |
Collapse
|
23
|
Jaiswal VK, Montorsi F, Aleotti F, Segatta F, Keefer D, Mukamel S, Nenov A, Conti I, Garavelli M. Ultrafast photochemistry and electron-diffraction spectra in n → (3s) Rydberg excited cyclobutanone resolved at the multireference perturbative level. J Chem Phys 2024; 160:164316. [PMID: 38686819 DOI: 10.1063/5.0203624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
We study the ultrafast time evolution of cyclobutanone excited to the singlet n → Rydberg state through non-adiabatic surface-hopping simulationsperformed at extended multi-state complete active space second-order perturbation (XMS-CASPT2) level of theory. These dynamics predict relaxation to the ground-state with a timescale of 822 ± 45 fs with minimal involvement of the triplets. The major relaxation path to the ground-state involves a three-state degeneracy region and leads to a variety of fragmented photoproducts. We simulate the resulting time-resolved electron-diffraction spectra, which track the relaxation of the excited state and the formation of various photoproducts in the ground state.
Collapse
Affiliation(s)
- V K Jaiswal
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - F Montorsi
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - F Aleotti
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - F Segatta
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Daniel Keefer
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, USA
| | - A Nenov
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - I Conti
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - M Garavelli
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
24
|
Gu Y, Yong H, Gu B, Mukamel S. Chemical bond reorganization in intramolecular proton transfer revealed by ultrafast X-ray photoelectron spectroscopy. Proc Natl Acad Sci U S A 2024; 121:e2321343121. [PMID: 38635639 PMCID: PMC11046627 DOI: 10.1073/pnas.2321343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Time-resolved X-ray photoelectron spectroscopy (TR-XPS) is used in a simulation study to monitor the excited state intramolecular proton transfer between oxygen and nitrogen atoms in 2-(iminomethyl)phenol. Real-time monitoring of the chemical bond breaking and forming processes is obtained through the time evolution of excited-state chemical shifts. By employing individual atomic probes of the proton donor and acceptor atoms, we predict distinct signals with opposite chemical shifts of the donor and acceptor groups during proton transfer. Details of the ultrafast bond breaking and forming dynamics are revealed by extending the classical electron spectroscopy chemical analysis to real time. Through a comparison with simulated time-resolved photoelectron spectroscopy at the valence level, the distinct advantage of TR-XPS is demonstrated thanks to its atom specificity.
Collapse
Affiliation(s)
- Yonghao Gu
- Department of Chemistry, University of California, Irvine, CA92697-2025
- Department of Physics and Astronomy, University of California, Irvine, CA92697-2025
| | - Haiwang Yong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
| | - Bing Gu
- Department of Chemistry, Westlake University, Hangzhou, Zhejiang310030, China
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA92697-2025
- Department of Physics and Astronomy, University of California, Irvine, CA92697-2025
| |
Collapse
|
25
|
Mukherjee S, Mattos RS, Toldo JM, Lischka H, Barbatti M. Prediction Challenge: Simulating Rydberg photoexcited cyclobutanone with surface hopping dynamics based on different electronic structure methods. J Chem Phys 2024; 160:154306. [PMID: 38624122 DOI: 10.1063/5.0203636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
This research examines the nonadiabatic dynamics of cyclobutanone after excitation into the n → 3s Rydberg S2 state. It stems from our contribution to the Special Topic of the Journal of Chemical Physics to test the predictive capability of computational chemistry against unseen experimental data. Decoherence-corrected fewest-switches surface hopping was used to simulate nonadiabatic dynamics with full and approximated nonadiabatic couplings. Several simulation sets were computed with different electronic structure methods, including a multiconfigurational wavefunction [multiconfigurational self-consistent field (MCSCF)] specially built to describe dissociative channels, multireference semiempirical approach, time-dependent density functional theory, algebraic diagrammatic construction, and coupled cluster. MCSCF dynamics predicts a slow deactivation of the S2 state (10 ps), followed by an ultrafast population transfer from S1 to S0 (<100 fs). CO elimination (C3 channel) dominates over C2H4 formation (C2 channel). These findings radically differ from the other methods, which predicted S2 lifetimes 10-250 times shorter and C2 channel predominance. These results suggest that routine electronic structure methods may hold low predictive power for the outcome of nonadiabatic dynamics.
Collapse
Affiliation(s)
| | - Rafael S Mattos
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Josene M Toldo
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
26
|
Janoš J, Figueira Nunes JP, Hollas D, Slavíček P, Curchod BFE. Predicting the photodynamics of cyclobutanone triggered by a laser pulse at 200 nm and its MeV-UED signals-A trajectory surface hopping and XMS-CASPT2 perspective. J Chem Phys 2024; 160:144305. [PMID: 38591685 DOI: 10.1063/5.0203105] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born-Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born-Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function-ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals.
Collapse
Affiliation(s)
- Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 166 28, Czech Republic
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | - Daniel Hollas
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 166 28, Czech Republic
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
27
|
Chen K, Yang J. Electron scattering beyond the independent atom model: Quantum fluctuation of the Coulomb potential. J Chem Phys 2024; 160:140901. [PMID: 38591674 DOI: 10.1063/5.0197155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
In the past century, electron scattering has mostly served as a powerful tool to measure the microscopic structure of gases, liquids, and solids in either a static or time-resolved manner. One common basis for these works is the independent atom model, which directly relates electron scattering signals to the atomic structure of matter. In this perspective, we explore the information content of electron scattering that goes beyond the independent atom model. We show that the small-angle limit of the electron scattering signal encodes the quantum mechanical fluctuation of the long-range Coulomb potential. This quantum fluctuation, described by the second moment of the dipole operator, is the root cause of the intermolecular van der Waals forces.
Collapse
Affiliation(s)
- Keke Chen
- Department of Chemistry, Center of Basic Molecular Science, Tsinghua University, Beijing 100084, China
| | - Jie Yang
- Department of Chemistry, Center of Basic Molecular Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Suchan J, Liang F, Durden AS, Levine BG. Prediction challenge: First principles simulation of the ultrafast electron diffraction spectrum of cyclobutanone. J Chem Phys 2024; 160:134310. [PMID: 38573851 DOI: 10.1063/5.0198333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Computer simulation has long been an essential partner of ultrafast experiments, allowing the assignment of microscopic mechanistic detail to low-dimensional spectroscopic data. However, the ability of theory to make a priori predictions of ultrafast experimental results is relatively untested. Herein, as a part of a community challenge, we attempt to predict the signal of an upcoming ultrafast photochemical experiment using state-of-the-art theory in the context of preexisting experimental data. Specifically, we employ ab initio Ehrenfest with collapse to a block mixed quantum-classical simulations to describe the real-time evolution of the electrons and nuclei of cyclobutanone following excitation to the 3s Rydberg state. The gas-phase ultrafast electron diffraction (GUED) signal is simulated for direct comparison to an upcoming experiment at the Stanford Linear Accelerator Laboratory. Following initial ring-opening, dissociation via two distinct channels is observed: the C3 dissociation channel, producing cyclopropane and CO, and the C2 channel, producing CH2CO and C2H4. Direct calculations of the GUED signal indicate how the ring-opened intermediate, the C2 products, and the C3 products can be discriminated in the GUED signal. We also report an a priori analysis of anticipated errors in our predictions: without knowledge of the experimental result, which features of the spectrum do we feel confident we have predicted correctly, and which might we have wrong?
Collapse
Affiliation(s)
- Jiří Suchan
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| | - Fangchun Liang
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Andrew S Durden
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Benjamin G Levine
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
29
|
Miao X, Diemer K, Mitrić R. A CASSCF/MRCI trajectory surface hopping simulation of the photochemical dynamics and the gas phase ultrafast electron diffraction patterns of cyclobutanone. J Chem Phys 2024; 160:124309. [PMID: 38526800 DOI: 10.1063/5.0197768] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
We present the simulation of the photochemical dynamics of cyclobutanone induced by the excitation of the 3 s Rydberg state. For this purpose, we apply the complete active space self-consistent field method together with the spin-orbit multireference configuration interaction singles treatment, combined with the trajectory surface hopping for the inclusion of nonadiabatic effects. The simulations were performed in the spin-adiabatic representation, including nine electronic states derived from three singlet and two triplet spin-diabatic states. Our simulations reproduce the two previously observed primary dissociation channels: the C2 pathway yielding C2H4 + CH2CO and the C3 pathway producing c-C3H6 + CO. In addition, two secondary products, CH2 + CO from the C2 pathway and C3H6 from the C3 pathway, both of them previously reported, are also observed in our simulation. We determine the ratio of the C3:C2 products to be about 2.8. Our findings show that most of the trajectories reach their electronic ground state within 200 fs, with dissociation events finished after 300 fs. We also identify the minimum energy conical intersections that are responsible for the relaxation and provide an analysis of the photochemical reaction mechanism based on multidimensional scaling. Furthermore, we demonstrate a minimal impact of triplet states on the photodissociation mechanism within the observed timescale. In order to provide a direct link to experiments, we simulate the gas phase ultrafast electron diffraction patterns and connect their features to the underlying structural dynamics.
Collapse
Affiliation(s)
- Xincheng Miao
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Kira Diemer
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| |
Collapse
|
30
|
Figueira Nunes JP, Ibele LM, Pathak S, Attar AR, Bhattacharyya S, Boll R, Borne K, Centurion M, Erk B, Lin MF, Forbes RJG, Goff N, Hansen CS, Hoffmann M, Holland DMP, Ingle RA, Luo D, Muvva SB, Reid AH, Rouzée A, Rudenko A, Saha SK, Shen X, Venkatachalam AS, Wang X, Ware MR, Weathersby SP, Wilkin K, Wolf TJA, Xiong Y, Yang J, Ashfold MNR, Rolles D, Curchod BFE. Monitoring the Evolution of Relative Product Populations at Early Times during a Photochemical Reaction. J Am Chem Soc 2024; 146:4134-4143. [PMID: 38317439 PMCID: PMC10870701 DOI: 10.1021/jacs.3c13046] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.
Collapse
Affiliation(s)
| | - Lea Maria Ibele
- CNRS,
Institut de Chimie Physique UMR8000, Université
Paris-Saclay, Orsay, 9140, France
| | - Shashank Pathak
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Andrew R. Attar
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Surjendu Bhattacharyya
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Kurtis Borne
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Martin Centurion
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Benjamin Erk
- Deutsches
Elektronen Synchrotron DESY, Hamburg, 22607, Germany
| | - Ming-Fu Lin
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ruaridh J. G. Forbes
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Nathan Goff
- Brown University, Providence, Rhode Island 02912, United States
| | | | - Matthias Hoffmann
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Rebecca A. Ingle
- Department
of Chemistry, University College London, London, WC1H 0AJ, U.K.
| | - Duan Luo
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Sri Bhavya Muvva
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexander H. Reid
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Artem Rudenko
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sajib Kumar Saha
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Xiaozhe Shen
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Anbu Selvam Venkatachalam
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Xijie Wang
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matt R. Ware
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Kyle Wilkin
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Thomas J. A. Wolf
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Yanwei Xiong
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Jie Yang
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Daniel Rolles
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | | |
Collapse
|
31
|
Tikhonov DS. Regularized weighted sine least-squares spectral analysis for gas electron diffraction data. J Chem Phys 2023; 159:174101. [PMID: 37909450 DOI: 10.1063/5.0168417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Here, we present a new approach for obtaining radial distribution functions (RDF) from the electron diffraction data using a regularized weighted sine least-squares spectral analysis. It allows for explicitly transferring the measured experimental uncertainties in the reduced molecular scattering function to the produced RDF. We provide a numerical demonstration, discuss the uncertainties and correlations in the RDFs, and suggest a regularization parameter choice criterion. The approach is also applicable for other diffraction data, e.g., for x-ray or neutron diffraction of liquid samples.
Collapse
Affiliation(s)
- Denis S Tikhonov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
32
|
Siddiqui KM, Durham DB, Cropp F, Ji F, Paiagua S, Ophus C, Andresen NC, Jin L, Wu J, Wang S, Zhang X, You W, Murnane M, Centurion M, Wang X, Slaughter DS, Kaindl RA, Musumeci P, Minor AM, Filippetto D. Relativistic ultrafast electron diffraction at high repetition rates. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:064302. [PMID: 38058995 PMCID: PMC10697722 DOI: 10.1063/4.0000203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams. Here, we present the technical design and capabilities of the HiRES (High Repetition-rate Electron Scattering) instrument, which blends relativistic electrons and high repetition rates to achieve orders of magnitude improvement in average beam current compared to the existing state-of-the-art instruments. The setup utilizes a novel electron source to deliver femtosecond duration electron pulses at up to MHz repetition rates for UED experiments. Instrument response function of sub-500 fs is demonstrated with < 100 fs time resolution targeted in future. We provide example cases of diffraction measurements on solid-state and gas-phase samples, including both micro- and nanodiffraction (featuring 100 nm beam size) modes, which showcase the potential of the instrument for novel UED experiments.
Collapse
Affiliation(s)
- K. M. Siddiqui
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | - F. Ji
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - S. Paiagua
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - C. Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N. C. Andresen
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L. Jin
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - J. Wu
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - S. Wang
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, USA
| | - X. Zhang
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - W. You
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - M. Murnane
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - M. Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - X. Wang
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - D. S. Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, USA
| | | | - P. Musumeci
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | - D. Filippetto
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
33
|
Champenois EG, List NH, Ware M, Britton M, Bucksbaum PH, Cheng X, Centurion M, Cryan JP, Forbes R, Gabalski I, Hegazy K, Hoffmann MC, Howard AJ, Ji F, Lin MF, Nunes JPF, Shen X, Yang J, Wang X, Martinez TJ, Wolf TJA. Femtosecond Electronic and Hydrogen Structural Dynamics in Ammonia Imaged with Ultrafast Electron Diffraction. PHYSICAL REVIEW LETTERS 2023; 131:143001. [PMID: 37862660 DOI: 10.1103/physrevlett.131.143001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/06/2023] [Accepted: 08/12/2023] [Indexed: 10/22/2023]
Abstract
Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of the nuclear and corresponding electronic structure changes resulting from the dissociation dynamics in the time-dependent diffraction. Both assignments are confirmed by ab initio simulations of the photochemical dynamics and the resulting diffraction observable. While the temporal resolution of the experiment is insufficient to resolve the dissociation in time, our results represent an important step towards the observation of proton dynamics in real space and time.
Collapse
Affiliation(s)
- Elio G Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Nanna H List
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Matthew Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mathew Britton
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Xinxin Cheng
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska Lincoln, Lincoln, Nebraska 68588, USA
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ruaridh Forbes
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ian Gabalski
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Kareem Hegazy
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | | | - Andrew J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Fuhao Ji
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J Pedro F Nunes
- Department of Physics and Astronomy, University of Nebraska Lincoln, Lincoln, Nebraska 68588, USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Todd J Martinez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
34
|
Liu Y, Sanchez DM, Ware MR, Champenois EG, Yang J, Nunes JPF, Attar A, Centurion M, Cryan JP, Forbes R, Hegazy K, Hoffmann MC, Ji F, Lin MF, Luo D, Saha SK, Shen X, Wang XJ, Martínez TJ, Wolf TJA. Rehybridization dynamics into the pericyclic minimum of an electrocyclic reaction imaged in real-time. Nat Commun 2023; 14:2795. [PMID: 37202402 DOI: 10.1038/s41467-023-38513-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
Electrocyclic reactions are characterized by the concerted formation and cleavage of both σ and π bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule α-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated π bonds. The σ bond dissociation largely happens after internal conversion from the pericyclic minimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general.
Collapse
Affiliation(s)
- Y Liu
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11790, USA
| | - D M Sanchez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
- Design Physics Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - M R Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E G Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - J Yang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Center of Basic Molecular Science, Department of Chemistry, Mong Man Wai Building of Science and Technology, S-1027 Tsinghua University, Beijing, China
| | - J P F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore Jorgensen Hall 208, 855 N 16th Street, Lincoln, NE, 68588, USA
- Diamond Light Source, Harwell Science Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - A Attar
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore Jorgensen Hall 208, 855 N 16th Street, Lincoln, NE, 68588, USA
| | - J P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - R Forbes
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - K Hegazy
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M C Hoffmann
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - F Ji
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M-F Lin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - D Luo
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - S K Saha
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore Jorgensen Hall 208, 855 N 16th Street, Lincoln, NE, 68588, USA
| | - X Shen
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - T J Martínez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA.
| | - T J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
35
|
Morimoto Y. Attosecond electron-beam technology: a review of recent progress. Microscopy (Oxf) 2023; 72:2-17. [PMID: 36269108 DOI: 10.1093/jmicro/dfac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Electron microscopy and diffraction with ultrashort pulsed electron beams are capable of imaging transient phenomena with the combined ultrafast temporal and atomic-scale spatial resolutions. The emerging field of optical electron beam control allowed the manipulation of relativistic and sub-relativistic electron beams at the level of optical cycles. Specifically, it enabled the generation of electron beams in the form of attosecond pulse trains and individual attosecond pulses. In this review, we describe the basics of the attosecond electron beam control and overview the recent experimental progress. High-energy electron pulses of attosecond sub-optical cycle duration open up novel opportunities for space-time-resolved imaging of ultrafast chemical and physical processes, coherent photon generation, free electron quantum optics, electron-atom scattering with shaped wave packets and laser-driven particle acceleration. Graphical Abstract.
Collapse
Affiliation(s)
- Yuya Morimoto
- Ultrashort Electron Beam Science RIKEN Hakubi research team, RIKEN Cluster for Pioneering Research (CPR), RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
36
|
Yong H, Keefer D, Mukamel S. Novel Ultrafast Molecular Imaging Based on the Combination of X-ray and Electron Diffraction. J Phys Chem A 2023; 127:835-841. [PMID: 36650121 DOI: 10.1021/acs.jpca.2c08024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent development of X-ray free-electron lasers and megaelectronvolt radio-frequency electron guns have made ultrafast X-ray and electron diffraction measurements possible, thereby capturing chemical dynamics with atomic-spatial and femtosecond-temporal resolutions. We present a unified formulation of standard homodyne-detected and heterodyne-detected signals for both techniques. Noting that X-rays scatter from molecular electrons while electrons scatter from both molecular electrons and nuclei, we show how the two diffraction signals can be combined to reveal novel chemical information that is unavailable by solely using each technique alone. By subtracting the homodyne-detected X-ray and electron diffraction signals, a mixed electronic-nuclear interference in electron diffraction can be identified with a self-heterodyne nature for the direct imaging of attosecond electron dynamics where the scattering off molecular nuclei serves as a local oscillator for the scattering off molecular electrons. By subtracting heterodyne-detected X-ray and electron diffraction, the purely nuclear charge density can be singled out.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, California92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| |
Collapse
|
37
|
Yong H, Sun S, Gu B, Mukamel S. Attosecond Charge Migration in Molecules Imaged by Combined X-ray and Electron Diffraction. J Am Chem Soc 2022; 144:20710-20716. [DOI: 10.1021/jacs.2c07997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Shichao Sun
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Bing Gu
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| |
Collapse
|
38
|
Chakraborty P, Liu Y, McClung S, Weinacht T, Matsika S. Nonadiabatic Excited State Dynamics of Organic Chromophores: Take-Home Messages. J Phys Chem A 2022; 126:6021-6031. [PMID: 36069531 DOI: 10.1021/acs.jpca.2c04671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonadiabatic excited state dynamics are important in a variety of processes. Theoretical and experimental developments have allowed for a great progress in this area, while combining the two is often necessary and the best approach to obtain insight into the photophysical behavior of molecules. In this Feature Article we use examples of our recent work combining time-resolved photoelectron spectroscopy with theoretical nonadiabatic dynamics to highlight important lessons we learned. We compare the nonadiabatic excited state dynamics of three different organic molecules with the aim of elucidating connections between structure and dynamics. Calculations and measurements are compared for uracil, 1,3-cyclooctadiene, and 1,3-cyclohexadiene. The comparison highlights the role of rigidity in influencing the dynamics and the difficulty of capturing the dynamics accurately with calculations.
Collapse
Affiliation(s)
- Pratip Chakraborty
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.,Division of Theoretical Chemistry and Biology, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Yusong Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States.,Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, United States
| | - Samuel McClung
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
39
|
Yong H, Rouxel JR, Keefer D, Mukamel S. Direct Monitoring of Conical Intersection Passage via Electronic Coherences in Twisted X-Ray Diffraction. PHYSICAL REVIEW LETTERS 2022; 129:103001. [PMID: 36112435 DOI: 10.1103/physrevlett.129.103001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Quantum coherences in electronic motions play a critical role in determining the pathways and outcomes of virtually all photophysical and photochemical molecular processes. However, the direct observation of electronic coherences in the vicinity of conical intersections remains a formidable challenge. We propose a novel time-resolved twisted x-ray diffraction technique that can directly monitor the electronic coherences created as the molecule passes through a conical intersection. We show that the contribution of electronic populations to this signal is canceled out when using twisted x-ray beams that carry a light orbital angular momentum, providing a direct measurement of transient electronic coherences in gas-phase molecules.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Jérémy R Rouxel
- University Lyon, UJM-Saint-Étienne, CNRS, Graduate School Optics Institute, Laboratoire Hubert Curien UMR 5516, Saint-Étienne 42023, France
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
40
|
Ki H, Kim TW, Moon J, Kim J, Lee Y, Heo J, Kim KH, Kong Q, Khakhulin D, Newby G, Kim J, Kim J, Wulff M, Ihee H. Photoactivation of triosmium dodecacarbonyl at 400 nm probed with time-resolved X-ray liquidography. Chem Commun (Camb) 2022; 58:7380-7383. [PMID: 35695475 DOI: 10.1039/d2cc02438a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoactivation mechanism of Os3(CO)12 at 400 nm is examined with time-resolved X-ray liquidography. The data reveal two pathways: the vibrational relaxation following an internal conversion to the electronic ground state and the ligand dissociation to form Os3(CO)11 with a ligand vacancy at the axial position.
Collapse
Affiliation(s)
- Hosung Ki
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea. .,Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do 58554, Republic of Korea
| | - Jiwon Moon
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jungmin Kim
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea. .,Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yunbeom Lee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea. .,Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Heo
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea. .,Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | | | - Gemma Newby
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Michael Wulff
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea. .,Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|