1
|
Cao X, Wen H, Tian D, Shi H, Xie K, Qiu J, Kou Y. UvCYP503 is required for stress response and pathogenicity in Ustilaginoidea virens. Virulence 2025; 16:2472877. [PMID: 40033930 PMCID: PMC11901397 DOI: 10.1080/21505594.2025.2472877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/27/2024] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
The fungus Ustilaginoidea virens, which impacts rice spikes, causes rice false smut (RFS), a significant prevalent disease in rice cultivation regions globally. Cytochrome P450 genes are known to be involved in secondary metabolism and pathogenesis in various species, but studies on CYP450 genes in U. virens are limited. In this research, a P450 family gene, CYP503, was found up-regulated during invasion stage of U. virens. Observation of fluorescence indicated that UvCYP503-GFP is situated within cytoplasm of hyphae. Disruption of CYP503 led to decreased hyphal development, conidiation, and pathogenicity. Additional RNA-seq assay revealed that UvCYP503 affects the transcript of genes associated with pathogenicity, various stress responses, and other CYP450 genes. In alignment with RNA-seq results, compared with wild-type, ΔUvcyp503 mutants showed increased sensitivity to cell wall stresses, but reduced sensitivity to osmotic and hyperosmotic stressors. Moreover, ΔUvcyp503 mutants exhibited decreased sensitivity to the fungicides difenoconazole and tebuconazole. This study represents a phenome-based functional analysis of a CYP503 gene in U. virens and provides valuable genetic resources for further research in filamentous fungi and other plant pathogens.
Collapse
Affiliation(s)
- Xiuxiu Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hui Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
2
|
Debnath P, Mahawar S, Singh G. A review on accessible techniques for the management of rice false smut: recent research and future outlook. PLANTA 2025; 261:137. [PMID: 40353957 DOI: 10.1007/s00425-025-04706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
MAIN CONCLUSION Rice false smut is an emerging threat to rice cultivation. Raising awareness about disease management strategies among scientists and rice growers is crucial to mitigating its impact. Modern advancements, including omics-based approaches such as genome assisted breeding, genetic engineering, genome editing, and nanotechnology, play a crucial role in developing effective management strategies to combat false smut. The world's rice supply is at risk from the fungal disease Ustilaginoidea virens, which causes rice false smut (RFS), can lead to significant production losses and quality degradation. In the past few decades, numerous strategies have been developed to combat this pervasive sickness, ranging from advanced biotechnology interventions to traditional farming practices. The development of nanotechnology has opened up new avenues for combating RFS by offering innovative ways to increase the precision and effectiveness of disease control tactics. This paper provides a comprehensive review of the long term strategies for managing rice fake smut, focusing on using multi-omics approaches combined with nanotechnology. Over the years, various strategies, from advanced biotechnology to traditional farming, have been developed to combat this disease. Nanotechnology offers innovative and efficient solutions for RFS management. We examined the past background of RFS management while assessing the merits and drawbacks of traditional techniques. Then, we explored the most recent developments in nano-technological applications like nano-pesticides, nanosensors, and nanoformulations, diagnostics developments, genome editing, molecular breeding along with metabolic engineering emphasizing how they could transform RFS control in different rice-growing areas globally. The current review is scrutinizes the foremost obstacles and applying sophisticated techniques for the management of RFS. The goal of this review is to close the gap between conventional wisdom and contemporary advancements by providing a comprehensive analysis of the diverse strategies needed to lessen the negative effects of RFS on the world's food security.
Collapse
Affiliation(s)
| | - Sonam Mahawar
- Maharanapratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Garima Singh
- Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
3
|
Pan X, Yue Y, Zhao F, Song T, Xu B, Li Z, Qi Z, Yu J, Cao H, Yu M, Shen Q, Xu J, Xiong W, Liu Y. Rhizosphere microbes facilitate the break of chlamydospore dormancy and root colonization of rice false smut fungi. Cell Host Microbe 2025:S1931-3128(25)00138-6. [PMID: 40306271 DOI: 10.1016/j.chom.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Dormant chlamydospore germination of fungal pathogens directly affects disease occurrence and severity. The rice false smut (RFS) fungus Ustilaginoidea virens produces abundant chlamydospores, but their germination process and roles in plant infection remain unclear. Here, we found that soil-borne chlamydospores are a major source of U. virens inoculum and impact RFS development. Rhizosphere microbiome analysis of high-susceptibility (HS) and low-susceptibility (LS) rice varieties revealed that HS varieties recruited bacteria from the Sphingomonadaceae family, thereby facilitating the breakdown of chlamydospore dormancy through secreted exopolysaccharides. Hyphae formed by germinating chlamydospores grew on the root surfaces, invaded the root cortex, and grew intercellularly, potentially spreading further to aboveground plant parts. Furthermore, field experiments confirmed that treating the root with 30% prothioconazole and 20% zinc thiazole effectively reduced RFS incidence. Overall, these findings enhance our understanding of chlamydospore germination in natural environments and inform strategies for disease control.
Collapse
Affiliation(s)
- Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Yang Yue
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fengjuan Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Boting Xu
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zhi Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China; College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jinrong Xu
- Purdue University Department of Botany and Plant Pathology, West Lafayette, IN 47907, USA
| | - Wu Xiong
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China; College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China.
| |
Collapse
|
4
|
Li DQ, Liu XL, Yuan M, Sun W, Zhou JM, Wang WM, Fan J. Understanding and enhancing rice resistance to false smut disease. J Genet Genomics 2025:S1673-8527(25)00087-6. [PMID: 40204126 DOI: 10.1016/j.jgg.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Flower-infecting fungi have caused many economically important diseases in crop production. The fungal pathogen Ustilaginoidea virens infects developing rice florets, causing false smut disease, which leads to reduced grain yield and quality, as well as contamination with mycotoxins that pose hazards to human health and food security. To ensure rice production, substantial efforts have been made on understanding the interaction between rice and U. virens. In this review, we summarize the current understanding of rice resistance mechanisms to U. virens. We discuss the evaluation of false smut resistance, quantitative resistance loci, potential defense strategies of rice panicles, pathogen effector-driven identification of resistance-related genes, and engineering of false smut resistance. We conclude by proposing an integrated defense system that includes disease avoidance, immune response, metabolic adaptation, and the inhibition of susceptibility factors. Furthermore, we outline four critical stages of interaction between rice and U. virens that are essential for understanding and enhancing organ-specific rice resistance to false smut disease.
Collapse
Affiliation(s)
- De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiao-Ling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Meng Yuan
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jian-Min Zhou
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China.
| |
Collapse
|
5
|
Wang S, Zhang Y, Qu L, Zhou Z, Zhai H, Wei S, Wang Y. Functional Analysis of Mannosyltransferase-Related Genes UvALGs in Ustilaginoidea virens. Int J Mol Sci 2025; 26:2979. [PMID: 40243604 PMCID: PMC11988645 DOI: 10.3390/ijms26072979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Rice false smut, caused by Ustilaginoidea virens, is one of the three major rice diseases in China. It not only seriously affects the rice yield and quality but also endangers human and animal health. Studying the pathogenic mechanism of U. virens has important theoretical significance and application value for clarifying the infection characteristics of the pathogen and cultivating disease-resistant varieties. Plant pathogenic fungi utilize secreted effectors to suppress plant immune responses, which can function in the apoplast or within host cells and are likely glycosylated. However, the posttranslational regulation of these effectors remains unexplored. Deletion of ΔUvALG led to the cessation of secondary infection hyphae growth and a notable decrease in virulence. We observed that ΔUvALG mutants triggered a significant increase in reactive species production within host cells, akin to ALG mutants, which plays a crucial role in halting the growth of infection hyphae in the mutants. ALG functions by sequestering chitin oligosaccharides to prevent their recognition by the rice chitin elicitor, thereby inhibiting the activation of innate immune responses, including reactive species production. Our findings reveal that ALG3 possesses three N-glycosylation sites, and the simultaneous Alg-mediated N-glycosylation of each site is essential for maintaining protein stability and chitin-binding activity, both of which are critical for its effector function. These outcomes underscore the necessity of the Alg-mediated N-glycosylation of ALG to evade host innate immunity.
Collapse
Affiliation(s)
- Shilong Wang
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.Z.); (Z.Z.); (H.Z.)
| | - Yating Zhang
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.Z.); (Z.Z.); (H.Z.)
| | - Lili Qu
- Liaoning Provincial Plant Protection and Quarantine Station, Shenyang 110034, China;
| | - Zengran Zhou
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.Z.); (Z.Z.); (H.Z.)
| | - Hongyang Zhai
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.Z.); (Z.Z.); (H.Z.)
| | - Songhong Wei
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.Z.); (Z.Z.); (H.Z.)
| | - Yan Wang
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.Z.); (Z.Z.); (H.Z.)
| |
Collapse
|
6
|
Li Y, Sun S, Li G, Yang Z, Xing Y, Wang R, Xuan Y, Yang X. The TOR Signaling Pathway Governs Fungal Development, Virulence and Ustiloxin Biosynthesis in Ustilaginoidea virens. J Fungi (Basel) 2025; 11:239. [PMID: 40278060 PMCID: PMC12028740 DOI: 10.3390/jof11040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Ustilaginoidea virens is an economically important plant pathogen that causes rice false smut, which causes yield reduction and produces mycotoxins in infected grains that pose a serious threat to human and animal health. The target of rapamycin (TOR) signaling pathway acts as a master regular in regulating cell growth and secondary metabolism in fungi. However, little is known about the function of the TOR pathway in regulating fungal development, pathogenicity and mycotoxin biosynthesis in U. virens. Here, we demonstrate that the TOR signaling pathway positively regulates the cell growth, conidiation and pathogenicity in U. virens through the biochemical inhibition of TOR kinases. The inhibition of TOR in U. virens (UvTOR) by rapamycin significantly induces the expression of genes related to mycotoxin biosynthesis, especially that of ustiloxins. Transcriptome analysis under TOR inhibition revealed that the TOR signaling pathway is a regulatory hub that governs U. virens growth and metabolism. A total of 275 differentially expressed genes (DEGs), consisting of 109 up-regulated DEGs and 166 down-regulated DEGs, were identified after rapamycin treatment. The up-regulated DEGs were enriched in amino acid- and acetyl-CoA-related metabolism pathways and the down-regulated DEGs were enriched in carbohydrate- and fatty acid-related metabolism pathways. Collectively, our results provide the first in-depth insight into the TOR signaling pathway in regulating vegetable growth, virulence and mycotoxin biosynthesis in U. virens.
Collapse
Affiliation(s)
- Yuejiao Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (S.S.)
| | - Shuqin Sun
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (S.S.)
| | - Guangsheng Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (S.S.)
| | - Zezhong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (S.S.)
| | - Yuqi Xing
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (S.S.)
| | - Ruixiang Wang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (S.S.)
| | - Yuanhu Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (S.S.)
| |
Collapse
|
7
|
Kordi M, Farrokhi N, Ahmadikhah A, Ingvarsson PK, Saidi A, Jahanfar M. Genome-wide association study of rice (Oryza sativa L.) inflorescence architecture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112382. [PMID: 39798670 DOI: 10.1016/j.plantsci.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
Rice yield strongly depends on panicle size and architecture but the genetics underlying these traits and their coordination with environmental cues through various signaling pathways have remained elusive. A genome-wide association study (GWAS) was performed to pinpoint the underlying genetic determinants for rice panicle architecture by analyzing 20 panicle-related traits using a data set consisting of 44,100 SNPs. We defined QTL windows around significant SNPs by the rate of LD decay for each chromosome and used these windows to identify putative candidate genes associated with the trait. Using a publicly available RNA-seq data set we performed analyses to identify the differentially expressed genes between stem and panicle with putative functions in panicle architecture. In total, 52 significant SNPs were identified, corresponding to 41 unique QTLs across the 12 rice chromosomes, with the most signals appearing on chromosome 1 (nine associated SNPs), and seven significant SNPs for each of chromosomes 8 and 12. Some novel genes such as Ankyrin, Duf, Kinesin and Brassinosteroid insensitive were found to be associated with panicle size. A haplotype analysis showed that genetic variation in haplotypes qMIL2 and qNSBBH21 were related to two traits, MIL, the greatest distance between two nodes on the rachis, and NSBBH, the number of primary branches in the bottom half of a panicle, respectively. Analysis of epistatic interactions revealed a marker affecting clustered traits. Several QTLs were identified on different chromosomes for the first time which may explain the phenotypic diversity of rice panicle architecture we observe in our collection of accessions. The identified candidate genes and haplotypes could be used in marker-assisted selection to improve rice yield through gene pyramiding.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Asadollah Ahmadikhah
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Pär K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Abbas Saidi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Jahanfar
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
8
|
Sathiyaseelan K, Das B, Ladhalakshmi D, Venu E, C V, Bashyal BM, Bag TK, Sinha P. Climatic drivers for assessment of false smut risk in rice ecosystems: A guide for planning effective management trials. Heliyon 2025; 11:e42528. [PMID: 40028603 PMCID: PMC11870191 DOI: 10.1016/j.heliyon.2025.e42528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Emergence of false smut (RFS) in rice agroecosystems is causing significant yield losses due to its direct impact on grains. To assess the factors associated with host-pathogen interaction, maximum entropy principle is used to identify bioclimatic variables behind the geo-spatial distribution patterns of RFS. Bioclimatic variables with ecological significance, derived from the monthly temperature and precipitation, such as precipitation in the wettest month, mean temperature of the warmest quarter and precipitation seasonality are linked to the occurrence of the disease. These three variables are identified as the strongest predictors of RFS distribution contributing 47.81 %, 26.63 % and 12.43 % respectively. Seasonal precipitation and its variability have played as a limiting factor for the disease. Temperature plays a crucial role in pathogen growth and development (mycelial growth, sclerotial germination and infection) and exerts influences on disease distribution. Spatial distribution pattern of the disease and its intensity, as well as the number of sclerotia/panicle development, germination and infection suitability, suggest that temperature response and daily precipitation during the booting stage have a significant impact on disease development. Number of favourable days composed of temperature response [f(T) > 20] and daily rainfall (>5 mm) is noted to be proportional to the RFS incidence (infected grains/panicle). RFS distribution pattern validated through ground truth data is noted to have a correspondence with rainfall pattern during the wettest month (June-Sep). The rainfall-induced monocyclic infection process at known stage of crop growth is implicated for evaluation of management options as effective fungicides are available.
Collapse
Affiliation(s)
| | - Bappa Das
- ICAR-Central Coastal Agricultural Research Institute, Goa, India
| | | | - Emmadi Venu
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Vimalkumar C
- ICAR-CISH Regional Research Station, Malda, India
| | | | - Tusar Kanti Bag
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Parimal Sinha
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Zhao W, He Z, Liao S, Yang M, Yang Y, Cheng B, Zhou E. Molecular characterization of a novel narnavirus from the plant-pathogenic fungus Ustilaginoidea virens. Arch Virol 2025; 170:55. [PMID: 39939540 DOI: 10.1007/s00705-025-06241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/07/2025] [Indexed: 02/14/2025]
Abstract
Mycoviruses are viruses that infect fungi, yeasts, and oomycetes and can replicate and multiply within them. They are widely distributed in plant- and animal-pathogenic fungi. In this study, we identified a novel positive-sense single-stranded RNA (+ ssRNA) mycovirus from Ustilaginoidea virens strain Uv339, the causal agent of rice false smut (RSF), and this virus was named "Ustilaginoidea virens narnavirus 5" (UvNV5). Sequence analysis revealed that UvNV5 has a complete genome length of 2091 nt and contains a single open reading frame (ORF) (nt 131-2038) encoding a 635-amino-acid (aa) RNA-dependent RNA polymerase (RdRp) with a molecular mass of 71.8 kDa. BLASTp analysis revealed that the RdRp of UvNV5 shares only 38.22% amino acid sequence identity with that of Ustilaginoidea virens narnavirus virus 13, its closest relative. Phylogenetic analysis indicated that UvNV5 clustered within a branch alongside members of the class Amabiliviricetes. In summary, UvNV5 is a novel mycovirus of the class Amabiliviricetes that infects U. virens.
Collapse
Affiliation(s)
- Wenhua Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenrui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sisi Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Mei Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yingqing Yang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Baoping Cheng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, 510642, China
| | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Guo M, Tariq L, Song F. Protein S-palmitoylation regulates the virulence of plant pathogenic fungi. mBio 2025; 16:e0347224. [PMID: 39688422 PMCID: PMC11796406 DOI: 10.1128/mbio.03472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Protein S-palmitoylation, a universal posttranslational modification catalyzed by a specific group of palmitoyltransferases, plays crucial roles in diverse biological processes across organisms by modulating protein functions. However, its roles in the virulence of plant pathogenic fungi remain underexplored. In a recent study, Y. Duan, P. Li, D. Zhang, L. Wang, et al. (mBio 15:e02704-24, 2024, https://doi.org/10.1128/mbio.02704-24) reported that the palmitoyltransferases UvPfa3 and UvPfa4 regulate the virulence of the rice false smut pathogen Ustilaginoidea virens. Through comprehensive characterization of S-palmitoylation sites, they revealed that S-palmitoylated proteins in U. virens are enriched in mitogen-activated protein (MAP) kinase and autophagy pathways, with MAP kinase UvSlt2 being a key target of UvPfa4-mediated S-palmitoylation. Further investigation demonstrated that S-palmitoylation of UvSlt2 is critical for its kinase activity, substrate interaction ability, and virulence function in U. virens. These findings reveal UvPfa4-mediated S-palmitoylation as a vital regulatory mechanism in U. virens virulence, highlighting the importance of protein S-palmitoylation in the pathogenicity of plant pathogenic fungi.
Collapse
Affiliation(s)
- Mengmeng Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Leeza Tariq
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Ma J, Wei L, Huang K, Wang D, Gao J, Chen X, Guo H, Gao S, Zhang M, Li S, Yu C, Zhao J, Wu J, Gu Q, Kim ST, Gupta R, Xiong G, Lo C, Liu Y, Wang Y. Biosynthesis of sakuranetin regulated by OsMPK6-OsWRKY67-OsNOMT cascade enhances resistance to false smut disease. THE NEW PHYTOLOGIST 2025; 245:1216-1231. [PMID: 39611538 DOI: 10.1111/nph.20308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
Rice false smut disease, caused by the fungal pathogen Ustilaginoidea virens, significantly restricts both the production and quality of rice grains. However, the molecular mechanism underlying rice resistance against U. virens remain largely elusive. Transcriptome analysis of rice panicles infected with U. virens revealing the crucial role of genes involved in sakuranetin biosynthesis in conferring resistance to the pathogen. In vitro assays demonstrated that sakuranetin was most effective at inhibiting mycelial growth, spore germination, and host infection by U. virens. The expression of OsNOMT, the key enzyme in sakuranetin biosynthesis, is directly regulated by the transcription factor OsWRKY67. Furthermore, OsMPK6, a mitogen-activated protein kinase, interacts with and phosphorylates OsWRKY67, thereby modulating sakuranetin biosynthesis and resistance to U. virens. Moreover, the exogenous application of synthetic sakuranetin significantly reduces U. virens infection. Our findings reveal that the OsMPK6-OsWRKY67-OsNOMT signaling cascade plays a pivotal role in rice resistance to U. virens by regulating sakuranetin biosynthesis.
Collapse
Affiliation(s)
- Jinbiao Ma
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lirong Wei
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keyi Huang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dacheng Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiameng Gao
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Chen
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huimin Guo
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shangyu Gao
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shujing Li
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenjie Yu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhao
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingni Wu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Gu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, South Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yiming Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Fu R, Zhao L, Chen C, Wang J, Chen Y, Lu D. Identification of Quantitative Trait Loci and Analysis of Novel Candidate Genes for Resistance to False Smut of Rice Based on SSR Molecular Markers. Biomolecules 2025; 15:186. [PMID: 40001489 PMCID: PMC11852790 DOI: 10.3390/biom15020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Rice false smut (RFS), an emerging disease caused by the fungus Ustilaginoidea virens (Cooke), reduces rice grain yield and quality in rice-planting regions worldwide. The identification of the genes or quantitative trait loci (QTLs) associated with RFS resistance is vital to resistance breeding and the mitigation of RFS damage. In this study, RFS resistance QTLs were located in the resistant variety IR77298-14-1-2::IRGC117374-1. A total of 4 RFS resistance QTLs were detected on rice chromosomes 1, 3, 5, and 12 in the F2 and F4 mapping populations using 119 polymorphic simple sequence repeat (SSR) molecular markers. Of these QTLs, qRFS3.01 and qRFS12.01-1 were repeatedly detected in both populations. Interestingly, QTL qRFS3.01 on chromosome 3 is a novel resistance locus that exhibited the largest phenotypic effect. These results suggest that SSR markers linked to qRFS3.01 are valuable for marker-assisted breeding for RFS resistance in rice. The prediction of putative candidate genes within qRFS3.01 revealed three resistance-related proteins containing an F-box domain, Myb-like DNA-binding domain, and kinase protein. In summary, our findings provide new QTLs/genes for resistance to RFS and will promote rice disease resistance through molecular-marker-assisted breeding.
Collapse
Affiliation(s)
- Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Liyu Zhao
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Yu Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| |
Collapse
|
13
|
Li P, Gu G, Hou X, Xu D, Dai J, Kuang Y, Wang M, Lai D, Zhou L. Detoxification of Ustiloxin A Through Oxidative Deamination and Decarboxylation by Endophytic Fungus Petriella setifera. Toxins (Basel) 2025; 17:48. [PMID: 39998066 PMCID: PMC11861864 DOI: 10.3390/toxins17020048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Ustiloxins are a group of cyclopeptide mycotoxins produced by rice false smut pathogen Villosiclava virens (anamorph: Ustilaginoidea virens) which seriously threaten the safety production of rice and the health of humans and livestock. Ustiloxin A, accounting for 60% of the total ustiloxins, is the main toxic component. Biotransformation, a process of modifying the functional groups of compounds by means of regio- or stereo-specific reactions catalyzed by the enzymes produced by organisms, has been considered as an efficient way to detoxify mycotoxins. In this study, the endophytic fungus Petriella setifera Nitaf10 was found to be able to detoxify ustiloxin A through biotransformation. Two transformed products were obtained by using the cell-free extract (CFE) containing intracellular enzymes of P. setifera Nitaf10. They were structurally characterized as novel ustiloxin analogs named ustiloxins A1 (1) and A2 (2) by analysis of the 1D and 2D NMR and HRESIMS spectra as well as by comparison with known ustiloxins. The cytotoxic activity of ustiloxins A1 (1) and A2 (2) was much weaker than that of ustiloxin A. The biotransformation of ustiloxin A was found to proceed via oxidative deamination and decarboxylation and was possibly catalyzed by the intracellular amine oxidase and oxidative decarboxylase in the CFE. An appropriate bioconversion was achieved by incubating ustiloxin A with the CFE prepared in 0.5 mol/L phosphate buffer (pH 7.0) for 24 to 48 h. The optimum initial pH values for the bioconversion of ustiloxin A were 7-9. Among eight metal ions (Co2+, Cu2+, Fe3+, Zn2+, Ba2+, Ca2+, Mg2+ and Mn2+) tested at 5 mmol/L, Cu2+, Fe3+ and Zn2+ totally inhibited the conversion of ustiloxin A. In conclusion, detoxification of ustiloxin A through oxidative deamination and decarboxylation is an efficient strategy.
Collapse
Affiliation(s)
- Peng Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (G.G.); (X.H.); (D.X.)
| | - Gan Gu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (G.G.); (X.H.); (D.X.)
| | - Xuwen Hou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (G.G.); (X.H.); (D.X.)
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (G.G.); (X.H.); (D.X.)
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China;
| | - Yu Kuang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Mingan Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China;
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (G.G.); (X.H.); (D.X.)
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (G.G.); (X.H.); (D.X.)
| |
Collapse
|
14
|
Zhang Y, Wu M, Zhang H, Li Y, Wang Y, Meng F, Zhao W, He S, Yin W, Luo CX. The Bacteria-Derived dsRNA Was Used for Spray-Induced Gene Silencing for Rice False Smut Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28246-28254. [PMID: 39663150 DOI: 10.1021/acs.jafc.4c05605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
False smut caused by Ustilaginoidea virens is one of the most destructive diseases in rice. The disease is primarily controlled with fungicides, leading to the development of fungicide resistance. Although spray-induced gene silencing (SIGS) has been utilized for disease management, it has not been applied to control rice false smut. In this study, we introduce a novel approach involving the in vivo synthesis and exogenous application of double-stranded RNA (dsRNA) to manage rice false smut disease. The UvCYP51, UvBI-1, and UvbZIP11 genes were selected as target genes and highly efficient fragments for gene silencing were identified through screening of silencing transformants. Although direct dsRNA uptake by U. virens was not observed, in vivo synthesis and application of dsRNA to rice effectively reduced the expression of target genes. Treatment with dsRNA targeting the genes resulted in a decrease in smut balls, providing a promising disease management strategy against rice false smut.
Collapse
Affiliation(s)
- Yujie Zhang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyao Wu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Zhang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Li
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufu Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fanzhu Meng
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Shun He
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixiao Yin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Duan Y, Li P, Zhang D, Wang L, Fang Y, Hu H, Mao Q, Zhou X, Zhao P, Li X, Wei J, Tang J, Pan L, Liu H, Chen X, Chen X, Hsiang T, Huang J, Zheng L. S-palmitoylation of MAP kinase is essential for fungal virulence. mBio 2024; 15:e0270424. [PMID: 39470248 PMCID: PMC11633104 DOI: 10.1128/mbio.02704-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
S-palmitoylation is an important reversible protein post-translational modification in organisms. However, its role in fungi is uncertain. Here, we found the treatment of the rice false fungus Ustilaginoidea virens with S-palmitoylation inhibitor 2 BP resulted in a significant decrease in fungal virulence. Comprehensive identification of S-palmitoylation sites and proteins in U. virens revealed a total of 4,089 S-palmitoylation sites identified among 2,192 proteins and that S-palmitoylated proteins were involved in diverse biological processes. Among the five palmitoyltransferases, UvPfa3 and UvPfa4 were found to regulate the pathogenicity of U. virens. We then performed quantitative proteomic analysis of ∆UvPfa3 and ∆UvPfa4 mutants. Interestingly, S-palmitoylated proteins were significantly enriched in the mitogen-activated protein kinase and autophagy pathways, and MAP kinase UvSlt2 was confirmed to be an S-palmitoylated protein which was palmitoylated by UvPfa4. Mutations of S-palmitoylation sites in UvSlt2 resulted in significantly reduced fungal virulence and decreased kinase enzymatic activity and phosphorylation levels. Simulations of molecular dynamics demonstrated mutation of S-palmitoylation sites in UvSlt2 causing decreased hydrophobic solvent-accessible surface area, thereby weakening the bonding force with its substrate UvRlm1. Taken together, S-palmitoylation promotes U. virens virulence through palmitoylation of MAP kinase UvSlt2 by palmitoyltransferase UvPfa4. This enhances the enzymatic phosphorylation activity of the kinase, thereby increasing hydrophobic solvent-accessible surface area and binding activity between the UvSlt2 enzyme and its substrate UvRlm1. Our studies provide a framework for dissecting the biological functions of S-palmitoylation and reveal an important role for S-palmitoylation in regulating the virulence of the pathogen.IMPORTANCES-palmitoylation is an important post-translational lipid modification of proteins. However, its role in fungi is uncertain. In this study, we found that S-palmitoylation promotes virulence of rice false smut fungus U. virens through palmitoylation of MAP kinase UvSlt2 by palmitoyltransferase UvPfa4. This enhances the enzymatic phosphorylation activity of the kinase, thereby increasing hydrophobic solvent-accessible surface area and binding activity between the UvSlt2 enzyme and its substrate UvRlm1. Our studies provide a framework for dissecting the biological functions of S-palmitoylation and reveal an important role for S-palmitoylation in regulating the virulence of the pathogen. This is the first functional study to reveal the role of S-palmitoylation in fungal virulence.
Collapse
Affiliation(s)
- Yuhang Duan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Pingping Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Deyao Zhang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Lili Wang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Yuan Fang
- Anhui Province Key Laboratory of Crop Integrated Pest Management/College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hong Hu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Qiulu Mao
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xiaolan Zhou
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Panpan Zhao
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xuechun Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Jintian Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Li Pan
- Life Science and Technology Center, China Seed Group Co,. Ltd, Wuhan, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management/College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Yu M, Song T, Yu J, Cao H, Pan X, Qi Z, Du Y, Liu W, Liu Y. UvVelC is important for conidiation and pathogenicity in the rice false smut pathogen Ustilaginoidea virens. Virulence 2024; 15:2301243. [PMID: 38240294 PMCID: PMC10802205 DOI: 10.1080/21505594.2023.2301243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Rice false smut disease is one of the most significant rice diseases worldwide. Ustilaginoidea virens is the causative agent of this disease. Although several developmental and pathogenic genes have been identified and functionally analyzed, the pathogenic molecular mechanisms of U. virens remain elusive. The velvet family regulatory proteins are involved in fungal development, conidiation, and pathogenicity. In this study, we demonstrated the function of the VelC homolog UvVELC in U. virens. We identified the velvet family protein UvVELC and characterized its functions using a target gene deletion-strategy. Deletion of UvVELC resulted in conidiation failure and pathogenicity. The UvVELC expression levels during infection suggested that this gene might be involved in the early infection process. UvVELC is also important in resistance to abiotic stresses, the utilization efficiency of glucose, stachyose, raffinose, and other sugars, and the expression of transport-related genes. Moreover, UvVELC could physically interact with UvVEA in yeast, and UvVELC/UvVEA double-knockout mutants also failed in conidiation and pathogenicity. These results indicate that UvVELC play a critical role in the conidiation and pathogenicity in U. virens. Functional analysis indicated that UvVELC-mediated conidiation and nutrient acquisition from rice regulates the pathogenicity of U. virens. Understanding the function of the UvVELC homolog could provide a potential molecular target for controlling rice false smut disease.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Insistant of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
17
|
Yin X, Gao X, Shen X, Ren F, Li Y, Zhou M, Zhang J, Duan Y. Resistance risk and mechanism of Ustilaginoidea virens to pydiflumetofen. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106200. [PMID: 39672629 DOI: 10.1016/j.pestbp.2024.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
Rice false smut, caused by Ustilaginoidea virens, is a devastating fungal disease in rice that not only leads to yield reduction but also poses a serious threat to food safety and human health due to the production of numerous mycotoxins. Pydiflumetofen, one of the most promising SDHI fungicides widely used for controlling various plant diseases, lacks available information regarding its antifungal activity against U. virens and the potential risk of resistance development in this pathogen. In this study, we evaluated the sensitivity of 33 field-isolated strains of U. virens to pydiflumetofen using mycelial growth inhibition method and assessed the potential for resistance development. The EC50 values for pydiflumetofen against the tested strains ranged from 0.0032 to 0.0123 μg/mL, with an average EC50 value of 0.0056 ± 0.0025 μg/mL. In addition, four strains of U. virens were randomly selected for chemical taming to evaluate their resistance risk to pydiflumetofen, resulting in the successful generation of eight stable and inheritable resistant mutants at a frequency of 1 %. These mutants exhibited significant differences in biological fitness compared to their respective parental strains. Cross-resistance tests revealed a correlation between pydiflumetofen and fluxapyroxad as well as fluopyram, but no evidence of cross-resistance was observed between pydiflumetofen and boscalid or tebuconazole. Therefore, we can conclude that the risk of resistance development in U. virens to pydiflumetofen is moderate. Finally, the target genes SDHB, SDHC, and SDHD in U. virens were initially identified, cloned, and sequenced to elucidate the mechanism underlying U. virens resistance to pydiflumetofen. Three mutation genotypes were found in the mutants: SDHB-H239Y, SDHB-H239L, and SDHC-A77V. The mutants carrying SDHB-H239Y exhibited low resistance, while SDHC-A77V showed moderate resistance, but the mutants with SDHB-H239L demonstrated high resistance. These findings contribute significantly to our comprehensive understanding of molecular mechanisms involved in the resistance of U. virens to pydiflumetofen, and provide an important reference for chemical control strategies against rice false smut in the field.
Collapse
Affiliation(s)
- Xiaoru Yin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinlong Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fuhao Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yige Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Sunani SK, Koti PS, Sunitha NC, Choudhary M, Jeevan B, Anilkumar C, Raghu S, Gadratagi BG, Bag MK, Acharya LK, Ram D, Bashyal BM, Das Mohapatra S. Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense. PLANTA 2024; 260:92. [PMID: 39261328 DOI: 10.1007/s00425-024-04523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.
Collapse
Affiliation(s)
- Sunil Kumar Sunani
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
- ICAR-Indian Institute of Pulse Research (RS), Bhubaneswar, Odisha, India
| | - Prasanna S Koti
- University of Agricultural Sciences, GKVK, Bangalore, Karnataka, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
- ICAR-National Centre for Integrated Pest Management, New Delhi, India
| | - B Jeevan
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA.
| | - S Raghu
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Manas Kumar Bag
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Dama Ram
- Department of Plant Pathology, Agriculture University, Jodhpur, Rajasthan, India
| | | | | |
Collapse
|
19
|
Duan Y, Wang Z, Fang Y, Pei Z, Hu H, Xu Q, Liu H, Chen X, Luo C, Huang J, Zheng L, Chen X. A secreted fungal laccase targets the receptor kinase OsSRF3 to inhibit OsBAK1-OsSRF3-mediated immunity in rice. Nat Commun 2024; 15:7891. [PMID: 39256395 PMCID: PMC11387757 DOI: 10.1038/s41467-024-52204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
The identification effector targets and characterization of their functions are crucial for understanding pathogen infection mechanisms and components of plant immunity. Here, we identify the effector UgsL, a ustilaginoidin synthetase with a key role in regulating virulence of the rice false smut fungus Ustilaginoidea virens. Heterologous expression of UgsL in rice (Oryza sativa) enhances plant susceptibility to multiple pathogens, and host-induced gene silencing of UgsL enhances plant resistance to U. virens, indicating that UgsL inhibits rice immunity. UgsL interacts with STRUBBELIG RECEPTOR KINASE 3 (OsSRF3). Genome editing and overexpression of OsSRF3 demonstrate that OsSRF3 plays a pivotal role in the resistance of rice to multiple pathogens. Remarkably, overexpressing OsSRF3 enhances resistance without adversely affecting plant growth or yield. We show that BRASSINOSTEROID RECEPTOR-ASSOCIATED KINASE 1 (OsBAK1) interacts with and phosphorylates OsSRF3 to activate pathogen-triggered immunity, inducing the mitogen-activated protein kinase cascade, a reactive oxygen species burst, callose deposition, and expression of defense-related genes. UgsL interferes with the phosphorylation of OsSRF3 by OsBAK1. Furthermore, UgsL mediates OsSRF3 degradation by facilitating its association with the ubiquitin-26S proteasome. Our results reveal that OsSRF3 positively regulates immunity in rice and that UgsL mediates its degradation, thereby inhibiting the activation of OsBAK1-OsSRF3-mediated immune pathways.
Collapse
Affiliation(s)
- Yuhang Duan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yuan Fang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Zhangxin Pei
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Hong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiutao Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Chaoxi Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
| | - Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
20
|
Pan Q, Lv T, Xu H, Fang H, Li M, Zhu J, Wang Y, Fan X, Xu P, Wang X, Wang Q, Matsumoto H, Wang M. Gut pathobiome mediates behavioral and developmental disorders in biotoxin-exposed amphibians. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100415. [PMID: 38577706 PMCID: PMC10992726 DOI: 10.1016/j.ese.2024.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
Emerging evidence suggests a link between alterations in the gut microbiome and adverse health outcomes in the hosts exposed to environmental pollutants. Yet, the causal relationships and underlying mechanisms remain largely undefined. Here we show that exposure to biotoxins can affect gut pathobiome assembly in amphibians, which in turn triggers the toxicity of exogenous pollutants. We used Xenopus laevis as a model in this study. Tadpoles exposed to tropolone demonstrated notable developmental impairments and increased locomotor activity, with a reduction in total length by 4.37%-22.48% and an increase in swimming speed by 49.96%-84.83%. Fusobacterium and Cetobacterium are predominant taxa in the gut pathobiome of tropolone-exposed tadpoles. The tropolone-induced developmental and behavioral disorders in the host were mediated by assembly of the gut pathobiome, leading to transcriptome reprogramming. This study not only advances our understanding of the intricate interactions between environmental pollutants, the gut pathobiome, and host health but also emphasizes the potential of the gut pathobiome in mediating the toxicological effects of environmental contaminants.
Collapse
Affiliation(s)
- Qianqian Pan
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tianxing Lv
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Haorong Xu
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongda Fang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiaping Zhu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yue Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Fan
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ping Xu
- Institution of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuguo Wang
- The Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qiangwei Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Haruna Matsumoto
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mengcen Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Fan Y, Zhao W, Tang X, Yang M, Yang Y, Zhang Z, Cheng B, Zhou E, He Z. Co-infection of Four Novel Mycoviruses from Three Lineages Confers Hypovirulence on Phytopathogenic Fungus Ustilaginoidea virens. RICE (NEW YORK, N.Y.) 2024; 17:44. [PMID: 39014281 PMCID: PMC11252108 DOI: 10.1186/s12284-024-00721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Rice false smut caused by Ustilaginoidea virens has become one of the most important diseases of rice. Mycoviruses are viruses that can infect fungi with the potential to control fungal diseases. However, little is known about the biocontrol role of hypoviruses in U. virens. In this study, we revealed that the hypovirulence-associated U. virens strain Uv325 was co-infected by four novel mycoviruses from three lineages, designated Ustilaginoidea virens RNA virus 16 (UvRV16), Ustilaginoidea virens botourmiavirus virus 8 (UvBV8), Ustilaginoidea virens botourmiavirus virus 9 (UvBV9), and Ustilaginoidea virens narnavirus virus 13 (UvNV13), respectively. The U. virens strain co-infected by four mycoviruses showed slower growth rates, reduced conidial yield, and attenuated pigmentation. We demonstrated that UvRV16 was not only the major factor responsible for the hypovirulent phenotype in U. vriens, but also able to prevent U. virens to accumulate more mycotoxin, thereby weakening the inhibitory effects on rice seed germination and seedling growth. Additionally, we indicated that UvRV16 can disrupt the antiviral response of U. virens by suppressing the transcriptional expression of multiple genes involved in autophagy and RNA silencing. In conclusion, our study provided new insights into the biological control of rice false smut.
Collapse
Affiliation(s)
- Yu Fan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhua Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolin Tang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Mei Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yingqing Yang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Zixuan Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Baoping Cheng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Key Laboratory of Green Prevention and Control On Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong, 510642, China.
| | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhenrui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Pandey N, Vaishnav R, Rajavat AS, Singh AN, Kumar S, Tripathi RM, Kumar M, Shrivastava N. Exploring the potential of Bacillus for crop productivity and sustainable solution for combating rice false smut disease. Front Microbiol 2024; 15:1405090. [PMID: 38863756 PMCID: PMC11165134 DOI: 10.3389/fmicb.2024.1405090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Rice false smut, which is caused by the soil-borne fungal pathogen Ustilaginoidea virens (U. virens), is one of the most threatening diseases in most of the rice-growing countries including India that causes 0.5-75% yield loss, low seed germination, and a reduction in seed quality. The assessment of yield loss helps to understand the relevance of disease severity and facilitates the implementation of appropriate management strategies. This study aimed to mitigate biotic stress in rice by employing a rhizobacterial-based bioformulation, which possesses diverse capabilities as both a plant growth promoter and a biocontrol agent against U. virens. Rhizobacteria were isolated from the soil of the rice rhizospheres from the healthy plant of the false smut affected zone. Furthermore, they were identified as Bacillus strains: B. subtilis (BR_4), B. licheniformis (BU_7), B. licheniformis (BU_8), and B. vallismortis (KU_7) via sequencing. Isolates were screened for their biocontrol potential against U. virens under in vitro conditions. The antagonistic study revealed that B. vallismortis (KU_7) inhibited U. virens the most (44.6%), followed by B. subtilis BR_4 (41.4%), B. licheniformis BU_7 (39.8%), and B. licheniformis BU_8 (43.5%). Various biochemical and plant growth promoting attributes, such as phosphate and Zn solubilization, IAA, ammonium, siderophore, and chitinase production, were also investigated for all the selected isolates. Furthermore, the potential of the isolates was tested in both in vitro and field conditions by employing talc-based bioformulation through bio-priming and root treatment. The application of bioformulation revealed a 20% decrease in disease incidence in plants treated with B. vallismortis (KU_7), a 60.5% increase in the biological yield, and a 45% increase in the grain yield. This eco-friendly approach not only controlled the disease but also improved the grain quality and reduced the chaffiness.
Collapse
Affiliation(s)
- Neha Pandey
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- ICAR- Indian Institute of Seed Science, Maunath Bhanjan, Uttar Pradesh, India
| | - Richa Vaishnav
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Asha Singh Rajavat
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Arvind Nath Singh
- ICAR- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Sanjay Kumar
- ICAR- Indian Institute of Seed Science, Maunath Bhanjan, Uttar Pradesh, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Madan Kumar
- ICAR- Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, Jharkhand, India
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
23
|
Molla KA. A trick for a treat: False smut pathogen manipulates plant defense to gain access to rice flower. THE PLANT CELL 2024; 36:1598-1599. [PMID: 38366568 PMCID: PMC11062428 DOI: 10.1093/plcell/koae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Kutubuddin A Molla
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- ICAR-National Rice Research Institute, Cuttack, India
| |
Collapse
|
24
|
Li GB, Liu J, He JX, Li GM, Zhao YD, Liu XL, Hu XH, Zhang X, Wu JL, Shen S, Liu XX, Zhu Y, He F, Gao H, Wang H, Zhao JH, Li Y, Huang F, Huang YY, Zhao ZX, Zhang JW, Zhou SX, Ji YP, Pu M, He M, Chen X, Wang J, Li W, Wu XJ, Ning Y, Sun W, Xu ZJ, Wang WM, Fan J. Rice false smut virulence protein subverts host chitin perception and signaling at lemma and palea for floral infection. THE PLANT CELL 2024; 36:2000-2020. [PMID: 38299379 PMCID: PMC11062437 DOI: 10.1093/plcell/koae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.
Collapse
Affiliation(s)
- Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Xue He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Gao-Meng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya-Dan Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Ling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621023, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Long Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuai Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Han Gao
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian-Jun Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenxian Sun
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Zheng-Jun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Yazhouwan National Laboratory, Sanya 572024, China
| |
Collapse
|
25
|
He Z, Zhao W, Fan Y, Wang L, Yang M, Yang Y, Zhou E. Genome characterization of a novel narnavirus infecting the plant-pathogenic fungus Ustilaginoidea virens. Arch Virol 2024; 169:78. [PMID: 38517587 DOI: 10.1007/s00705-024-06009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/15/2024] [Indexed: 03/24/2024]
Abstract
Mycoviruses are viruses that infect fungi and oomycetes. They are widespread in all major groups of plant-pathogenic fungi and oomycetes. To date, only the full genome of dsRNA mycoviruses and the contigs of positive-sense single-stranded RNA (+ssRNA) mycoviruses have been reported in Ustilaginoidea virens, which is the notorious causal agent of rice false smut (RFS). Here, we report the molecular characterization of a novel +ssRNA mycovirus, Ustilaginoidea virens narnavirus 4 (UvNV4), isolated from U. virens strain Uv418. UvNV4 has a genome of 3,131 nucleotides (nt) and possesses an open reading frame (ORF) predicted to encode an RNA-dependent RNA polymerase (RdRp) of 1,017 amino acids (aa) sequence with a molecular mass of 116.6 kDa. BLASTp analysis revealed that the RdRp showed 50.34% aa sequence identity to that of the previously described Zhangzhou Narna tick virus 1. Phylogenetic analysis indicated that UvNV4 is closely related to members of the family Narnaviridae. Taken together, these results clearly demonstrate that UvNV4 is a novel +ssRNA virus infecting U. virens.
Collapse
Affiliation(s)
- Zhenrui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhua Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Fan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Li Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Mei Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yingqing Yang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
26
|
Zhou L, Mubeen M, Iftikhar Y, Zheng H, Zhang Z, Wen J, Khan RAA, Sajid A, Solanki MK, Sohail MA, Kumar A, Massoud EES, Chen L. Rice false smut pathogen: implications for mycotoxin contamination, current status, and future perspectives. Front Microbiol 2024; 15:1344831. [PMID: 38585697 PMCID: PMC10996400 DOI: 10.3389/fmicb.2024.1344831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Rice serves as a staple food across various continents worldwide. The rice plant faces significant threats from a range of fungal, bacterial, and viral pathogens. Among these, rice false smut disease (RFS) caused by Villosiclava virens is one of the devastating diseases in rice fields. This disease is widespread in major rice-growing regions such as China, Pakistan, Bangladesh, India, and others, leading to significant losses in rice plantations. Various toxins are produced during the infection of this disease in rice plants, impacting the fertilization process as well. This review paper lightens the disease cycle, plant immunity, and infection process during RFS. Mycotoxin production in RFS affects rice plants in multiple ways, although the exact phenomena are still unknown.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Hongxia Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenhao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junli Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Ashara Sajid
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Muhammad Aamir Sohail
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ajay Kumar
- Amity University of Biotechnology, Amity University, Noida, India
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha, Saudi Arabia
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
27
|
Cao H, Gong H, Yu M, Pan X, Song T, Yu J, Qi Z, Du Y, Zhang R, Liu Y. The Ras GTPase-activating protein UvGap1 orchestrates conidiogenesis and pathogenesis in the rice false smut fungus Ustilaginoidea virens. MOLECULAR PLANT PATHOLOGY 2024; 25:e13448. [PMID: 38502297 PMCID: PMC10950028 DOI: 10.1111/mpp.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
Ras GTPase-activating proteins (Ras GAPs) act as negative regulators for Ras proteins and are involved in various signalling processes that influence cellular functions. Here, the function of four Ras GAPs, UvGap1 to UvGap4, was identified and analysed in Ustilaginoidea virens, the causal agent of rice false smut disease. Disruption of UvGAP1 or UvGAP2 resulted in reduced mycelial growth and an increased percentage of larger or dumbbell-shaped conidia. Notably, the mutant ΔUvgap1 completely lost its pathogenicity. Compared to the wild-type strain, the mutants ΔUvgap1, ΔUvgap2 and ΔUvgap3 exhibited reduced tolerance to H2 O2 oxidative stress. In particular, the ΔUvgap1 mutant was barely able to grow on the H2 O2 plate, and UvGAP1 was found to influence the expression level of genes involved in reactive oxygen species synthesis and scavenging. The intracellular cAMP level in the ΔUvgap1 mutant was elevated, as UvGap1 plays an important role in maintaining the intracellular cAMP level by affecting the expression of phosphodiesterases, which are linked to cAMP degradation in U. virens. In a yeast two-hybrid assay, UvRas1 and UvRasGef (Ras guanyl nucleotide exchange factor) physically interacted with UvGap1. UvRas2 was identified as an interacting partner of UvGap1 through a bimolecular fluorescence complementation assay and affinity capture-mass spectrometry analysis. Taken together, these findings suggest that the UvGAP1-mediated Ras pathway is essential for the development and pathogenicity of U. virens.
Collapse
Affiliation(s)
- Huijuan Cao
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Hao Gong
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Mina Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xiayan Pan
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Tianqiao Song
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Junjie Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Zhongqiang Qi
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yan Du
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Rongsheng Zhang
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yongfeng Liu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
28
|
Wang B, Duan G, Liu L, Long Z, Bai X, Ou M, Wang P, Jiang D, Li D, Sun W. UvHOS3-mediated histone deacetylation is essential for virulence and negatively regulates ustilaginoidin biosynthesis in Ustilaginoidea virens. MOLECULAR PLANT PATHOLOGY 2024; 25:e13429. [PMID: 38353606 PMCID: PMC10866089 DOI: 10.1111/mpp.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Ustilaginoidea virens is the causal agent of rice false smut, which has recently become one of the most important rice diseases worldwide. Ustilaginoidins, a major type of mycotoxins produced in false smut balls, greatly deteriorates grain quality. Histone acetylation and deacetylation are involved in regulating secondary metabolism in fungi. However, little is yet known on the functions of histone deacetylases (HDACs) in virulence and mycotoxin biosynthesis in U. virens. Here, we characterized the functions of the HDAC UvHOS3 in U. virens. The ΔUvhos3 deletion mutant exhibited the phenotypes of retarded growth, increased mycelial branches and reduced conidiation and virulence. The ΔUvhos3 mutants were more sensitive to sorbitol, sodium dodecyl sulphate and oxidative stress/H2 O2 . ΔUvhos3 generated significantly more ustilaginoidins. RNA-Seq and metabolomics analyses also revealed that UvHOS3 is a key negative player in regulating secondary metabolism, especially mycotoxin biosynthesis. Notably, UvHOS3 mediates deacetylation of H3 and H4 at H3K9, H3K18, H3K27 and H4K8 residues. Chromatin immunoprecipitation assays indicated that UvHOS3 regulates mycotoxin biosynthesis, particularly for ustilaginoidin and sorbicillinoid production, by modulating the acetylation level of H3K18. Collectively, this study deepens the understanding of molecular mechanisms of the HDAC UvHOS3 in regulating virulence and mycotoxin biosynthesis in phytopathogenic fungi.
Collapse
Affiliation(s)
- Bo Wang
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
- College of Plant ProtectionSanya Institute of China Agricultural UniversitySanyaChina
| | - Guohua Duan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Ling Liu
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Zhaoyi Long
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Xiaolong Bai
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Mingming Ou
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Peiying Wang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Du Jiang
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionSanya Institute of China Agricultural UniversitySanyaChina
| | - Dayong Li
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Wenxian Sun
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| |
Collapse
|
29
|
Zhang G, Zhou X, Liu S, Ma Y, Li H, Du Y, Cao Z, Sun L. Full-length transcriptomics study of Ustiloxins-induced hepatocyte injury. Toxicon 2024; 238:107604. [PMID: 38181838 DOI: 10.1016/j.toxicon.2024.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Ustiloxins is a mycotoxin produced by the metabolism of Rice false smut. Studies have shown that Ustiloxins may be toxic to animals, but there is still a lack of toxicological evidence. The liver, as the main organ for the biotransformation of foreign chemicals, may be the direct target organ of Ustiloxins toxicity. In this study, we found that cell viability decreased in a dose- and time-dependent manner when BNL CL.2 cells were treated with different concentrations of Ustiloxins (0, 5, 10, 20, 30, 40, 60, 80, 100, 150 and 200 μg/mL) for 24 and 48 h. In addition, scanning electron microscope observation showed that the cell membrane of the experimental group was damaged, with the appearance of apoptotic bodies. Moreover, the ROS and GSH levels were significantly increased in cells exposed to Ustiloxins. We analyzed the key action targets of Ustiloxins on hepatocyte injury using full-length transcriptomics. A total of 1099 differentially expressed genes were screened, of which 473 genes were up-regulated, and 626 genes were down-regulated. Besides, we also found that the expression of MCM7 and CDC45 in BNL CL.2 cells treated with Ustiloxins decreased, and the expression of CCl-2, CYP1b1, CYP4f13, and GSTM1 increased according to qRT-PCR. Ustiloxins might change CYP450 and GST-related genes, affect DNA replication and cell cycle, and lead to oxidative stress and liver cell injury.
Collapse
Affiliation(s)
- Guomei Zhang
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Xuming Zhou
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Shanshan Liu
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Youning Ma
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, China
| | - Han Li
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Yingchun Du
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Zhaoyun Cao
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, China.
| | - Lihua Sun
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.
| |
Collapse
|
30
|
Fu R, Zhao L, Chen C, Wang J, Lu D. Conjunctive Analysis of BSA-Seq and SSR Markers Unveil the Candidate Genes for Resistance to Rice False Smut. Biomolecules 2024; 14:79. [PMID: 38254679 PMCID: PMC10813778 DOI: 10.3390/biom14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Rice false smut (RFS) caused by the fungus Ustilaginoidea virens (Cook) leads to serious yield losses in rice. Identification of the gene or quantitative trait loci (QTLs) is crucial to resistance breeding and mitigation of RFS damage. In this study, we crossed a resistant variety, IR77298-14-1-2::IRGC117374-1, with a susceptible indica cultivar, 9311, and evaluated recombinant inbred lines in a greenhouse. The genetic analysis showed that the RFS resistance of IR77298-14-1-2::IRGC117374-1 was controlled by multiple recessive loci. We identified a novel QTL, qRFS12.01, for RFS resistance in IR77298-14-1-2::IRGC117374-1 by combining bulked segregant analysis with whole genome resequencing (BSA-seq) and simple sequence repeat (SSR) marker mapping approaches. The phenotypic effect of qRFS12.01 on RFS resistance reached 28.74%, suggesting that SSR markers linked to qRFS12.01 are valuable for marker-assisted breeding of RFS resistance in rice. The prediction of putative candidate genes within qRFS12.01 revealed five disease resistance proteins containing NB-ARC domains. In conclusion, our findings provide a new rice chromosome region carrying genes/QTLs for resistance to RFS.
Collapse
Affiliation(s)
- Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Liyu Zhao
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| |
Collapse
|
31
|
Wang M, Wang Z, Ding Y, Kang S, Jiang S, Yang Z, Xie Z, Wang J, Wei S, Huang J, Li D, Jiang X, Tang H. Host-pathogen interaction between pitaya and Neoscytalidium dimidiatum reveals the mechanisms of immune response associated with defense regulators and metabolic pathways. BMC PLANT BIOLOGY 2024; 24:4. [PMID: 38163897 PMCID: PMC10759344 DOI: 10.1186/s12870-023-04685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Understanding how plants and pathogens regulate each other's gene expression during their interactions is key to revealing the mechanisms of disease resistance and controlling the development of pathogens. Despite extensive studies on the molecular and genetic basis of plant immunity against pathogens, the influence of pitaya immunity on N. dimidiatum metabolism to restrict pathogen growth is poorly understood, and how N. dimidiatum breaks through pitaya defenses. In this study, we used the RNA-seq method to assess the expression profiles of pitaya and N. dimidiatum at 4 time periods after interactions to capture the early effects of N. dimidiatum on pitaya processes. RESULTS The study defined the establishment of an effective method for analyzing transcriptome interactions between pitaya and N. dimidiatum and to obtain global expression profiles. We identified gene expression clusters in both the host pitaya and the pathogen N. dimidiatum. The analysis showed that numerous differentially expressed genes (DEGs) involved in the recognition and defense of pitaya against N. dimidiatum, as well as N. dimidiatum's evasion of recognition and inhibition of pitaya. The major functional groups identified by GO and KEGG enrichment were responsible for plant and pathogen recognition, phytohormone signaling (such as salicylic acid, abscisic acid). Furthermore, the gene expression of 13 candidate genes involved in phytopathogen recognition, phytohormone receptors, and the plant resistance gene (PG), as well as 7 effector genes of N. dimidiatum, including glycoside hydrolases, pectinase, and putative genes, were validated by qPCR. By focusing on gene expression changes during interactions between pitaya and N. dimidiatum, we were able to observe the infection of N. dimidiatum and its effects on the expression of various defense components and host immune receptors. CONCLUSION Our data show that various regulators of the immune response are modified during interactions between pitaya and N. dimidiatum. Furthermore, the activation and repression of these genes are temporally coordinated. These findings provide a framework for better understanding the pathogenicity of N. dimidiatum and its role as an opportunistic pathogen. This offers the potential for a more effective defense against N. dimidiatum.
Collapse
Affiliation(s)
- Meng Wang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhouwen Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- Yazhou Bay Laboratory, Sanya, 572025, China
| | - Yi Ding
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Shaoling Kang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Senrong Jiang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Zhuangjia Yang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Zhan Xie
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jialin Wang
- College of Life Sciences, Hainan University, Haikou, 570228, China
| | - Shuangshuang Wei
- College of Life Sciences, Hainan University, Haikou, 570228, China
| | - Jiaquan Huang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Dongdong Li
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Xingyu Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Hua Tang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
32
|
Chen X, Liu C, Wang H, Liu Q, Yue Y, Duan Y, Wang Z, Zheng L, Chen X, Wang Y, Huang J, Xu Q, Pan Y. Ustilaginoidea virens-secreted effector Uv1809 suppresses rice immunity by enhancing OsSRT2-mediated histone deacetylation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:148-164. [PMID: 37715970 PMCID: PMC10754013 DOI: 10.1111/pbi.14174] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is a devastating rice (Oryza sativa) disease worldwide. However, the molecular mechanisms underlying U. virens-rice interactions are largely unknown. In this study, we identified a secreted protein, Uv1809, as a key virulence factor. Heterologous expression of Uv1809 in rice enhanced susceptibility to rice false smut and bacterial blight. Host-induced gene silencing of Uv1809 in rice enhanced resistance to U. virens, suggesting that Uv1809 inhibits rice immunity and promotes infection by U. virens. Uv1809 suppresses rice immunity by targeting and enhancing rice histone deacetylase OsSRT2-mediated histone deacetylation, thereby reducing H4K5ac and H4K8ac levels and interfering with the transcriptional activation of defence genes. CRISPR-Cas9 edited ossrt2 mutants showed no adverse effects in terms of growth and yield but displayed broad-spectrum resistance to rice pathogens, revealing a potentially valuable genetic resource for breeding disease resistance. Our study provides insight into defence mechanisms against plant pathogens that inactivate plant immunity at the epigenetic level.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Chen Liu
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Hailin Wang
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Qi Liu
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Yaping Yue
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuhang Duan
- The Key Lab of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Xiaolin Chen
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Yaohui Wang
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
- Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
33
|
Xue M, Hou X, Gu G, Dong J, Yang Y, Pan X, Zhang X, Xu D, Lai D, Zhou L. Activation of Ustilaginoidin Biosynthesis Gene uvpks1 in Villosiclava virens Albino Strain LN02 Influences Development, Stress Responses, and Inhibition of Rice Seed Germination. J Fungi (Basel) 2023; 10:31. [PMID: 38248941 PMCID: PMC10817433 DOI: 10.3390/jof10010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Villosiclava virens (anamorph: Ustilaginoidea virens) is the pathogen of rice false smut (RFS), which is a destructive rice fungal disease. The albino strain LN02 is a natural white-phenotype mutant of V. virens due to its incapability to produce toxic ustilaginoidins. In this study, three strains including the normal strain P1, albino strain LN02, and complemented strain uvpks1C-1 of the LN02 strain were employed to investigate the activation of the ustilaginoidin biosynthesis gene uvpks1 in the albino strain LN02 to influence sporulation, conidia germination, pigment production, stress responses, and the inhibition of rice seed germination. The activation of the ustilaginoidin biosynthesis gene uvpks1 increased fungal tolerances to NaCl-induced osmotic stress, Congo-red-induced cell wall stress, SDS-induced cell membrane stress, and H2O2-induced oxidative stress. The activation of uvpks1 also increased sporulation, conidia germination, pigment production, and the inhibition of rice seed germination. In addition, the activation of uvpks1 was able to increase the mycelial growth of the V. virens albino strain LN02 at 23 °C and a pH from 5.5 to 7.5. The findings help in understanding the effects of the activation of uvpks1 in albino strain LN02 on development, pigment production, stress responses, and the inhibition of rice seed germination by controlling ustilaginoidin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (X.H.); (G.G.); (J.D.); (Y.Y.); (X.P.); (X.Z.); (D.X.); (D.L.)
| |
Collapse
|
34
|
Wen H, Meng S, Xie S, Shi H, Qiu J, Jiang N, Kou Y. Sucrose non-fermenting protein kinase gene UvSnf1 is required for virulence in Ustilaginoidea virens. Virulence 2023; 14:2235460. [PMID: 37450576 PMCID: PMC10351473 DOI: 10.1080/21505594.2023.2235460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is becoming one of the most devastating diseases in rice production areas in the world. Revealing U. virens potential pathogenic mechanisms provides ideas for formulating more effective prevention and control strategies. Sucrose non-fermenting 1 (Snf1) protein kinase plays a critical role in activating transcription and suppressing gene expression, as well as in cellular response to various stresses, such as nutrient limitation. In our study, we identified the Snf1 homolog UvSnf1 and analyzed its biological functions in U. virens. The expression level of UvSnf1 was dramatically up-regulated during invasion, indicating that UvSnf1 may participate in infection. Phenotypic analyses of UvSnf1 deletion mutants revealed that UvSnf1 is necessary for hyphae growth, spore production, and virulence in U. virens. Moreover, UvSnf1 promotes U. virens to use unfavorable carbon sources when the sucrose is insufficient. In addition, deletion of UvSnf1 down-regulates the expression of the cell wall-degrading enzymes (CWDEs) genes under sucrose limitation conditions in U. virens. Further analyses showed that CWDEs (UvCut1 and UvXyp1) are not only involved in growth, spore production, and virulence but are also required for the utilization of carbon sources. In conclusion, this study demonstrates that UvSnf1 plays vital roles in virulence and carbon source utilization in U. virens, and one of the possible mechanisms is playing a role in regulating the expression of CWDE genes.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shuai Meng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shuwei Xie
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Nan Jiang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
35
|
Fan K, Yu Y, Hu Z, Qian S, Zhao Z, Meng J, Zheng S, Huang Q, Zhang Z, Nie D, Han Z. Antifungal Activity and Action Mechanisms of 2,4-Di- tert-butylphenol against Ustilaginoidea virens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17723-17732. [PMID: 37938806 DOI: 10.1021/acs.jafc.3c05157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ustilaginoidea virens is a destructive phytopathogenic fungus that causes false smut disease in rice. In this study, the natural product 2,4-di-tert-butylphenol (2,4-DTBP) was found to be an environmentally friendly and effective agent for the first time, which exhibited strong antifungal activity against U. virens, with an EC50 value of 0.087 mmol/L. The scanning electron microscopy, fluorescence staining, and biochemical assays indicated that 2,4-DTBP could destroy the cell wall, cell membrane, and cellular redox homeostasis of U. virens, ultimately resulting in fungal cell death. Through the transcriptomic analysis, a total of 353 genes were significantly upregulated and 367 genes were significantly downregulated, focusing on the spindle microtubule assembly, cell wall and membrane, redox homeostasis, mycotoxin biosynthesis, and intracellular metabolism. These results enhanced the understanding of the antifungal activity and action mechanisms of 2,4-DTBP against U. virens, supporting it to be a potential antifungal agent for the control of false smut disease.
Collapse
Affiliation(s)
- Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Yinan Yu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Shen'an Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Simin Zheng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
36
|
Zou J, Jiang C, Qiu S, Duan G, Wang G, Li D, Yu S, Zhao D, Sun W. An Ustilaginoidea virens glycoside hydrolase 42 protein is an essential virulence factor and elicits plant immunity as a PAMP. MOLECULAR PLANT PATHOLOGY 2023; 24:1414-1429. [PMID: 37452482 PMCID: PMC10576179 DOI: 10.1111/mpp.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Rice false smut, caused by the ascomycete fungus Ustilaginoidea virens, which infects rice florets before heading, severely threatens rice grain yield and quality worldwide. The U. virens genome encodes a number of glycoside hydrolase (GH) proteins. So far, the functions of these GHs in U. virens are largely unknown. In this study, we identified a GH42 protein secreted by U. virens, named UvGHF1, that exhibits β-galactosidase activity. UvGHF1 not only functions as an essential virulence factor during U. virens infection, but also serves as a pathogen-associated molecular pattern (PAMP) in Nicotiana benthamiana and rice. The PAMP activity of UvGHF1 is independent of its β-galactosidase activity. Moreover, UvGHF1 triggers cell death in N. benthamiana in a BAK1-dependent manner. Ectopic expression of UvGHF1 in rice induces pattern-triggered immunity and enhances rice resistance to fungal and bacterial diseases. RNA-seq analysis revealed that UvGHF1 expression in rice not only activates expression of many defence-related genes encoding leucine-rich repeat receptor-like kinases and WRKY and ERF transcription factors, but also induces diterpenoid biosynthesis and phenylpropanoid biosynthesis pathways. Therefore, UvGHF1 contributes to U. virens virulence, but is also recognized by the rice surveillance system to trigger plant immunity.
Collapse
Affiliation(s)
- Jiaying Zou
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Chunquan Jiang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Shanshan Qiu
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Guohua Duan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Guanqun Wang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Dayong Li
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Siwen Yu
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Dan Zhao
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Wenxian Sun
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
37
|
Hu Z, Qian S, Fan K, Yu Y, Liu X, Liu H, Meng J, Zhao Z, Han Z. Natural occurrence of ustiloxins in rice from five provinces in China and the removal efficiencies of different milling steps. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6272-6279. [PMID: 37163670 DOI: 10.1002/jsfa.12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND The widespread incidence of "false smut" disease in rice has caused extensive ustiloxin contamination around the world. Until now there has been a lack of knowledge regarding the natural occurrence of ustiloxins in paddy. The development of efficient removal methods is also still a challenge that remains unexplored. RESULTS In the current study, three main ustiloxins - ustiloxin A (UA), ustiloxin B (UB), and ustiloxin G (UG) - were determined simultaneously by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) in 206 paddy samples collected in 2021 from five rice-producing provinces in China. The predominant ustiloxin was UA with an occurrence of 46.1% and an average concentration of 49.71 μg kg-1 . This was followed by UB (31.1%, 13.31 μg kg-1 ) and UG (18.4%, 9.19 μg kg-1 ). No targeted ustiloxins were detected in white rice samples randomly collected from supermarkets in Shanghai. To reveal the causes, two approaches were tested for the removal of the ustiloxins: most of the targeted ustiloxins (>93%) were removed in brown rice by husking and, subsequently, all targeted ustiloxins (100%) were removed by whitening. CONCLUSION A wide distribution of ustiloxins was discovered in paddy samples in this study. The UA contaminations were significantly different depending on their origin, with the highest occurrence in paddy from Shanghai and Jiangsu, southeast coast provinces in China. Contamination by UG was also found in paddy for the first time and was strongly correlated with those of UA and UB. A combination of husking and whitening has been verified to be a practicable and promising way to ensure efficient removal and food safety. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shen'an Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yinan Yu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xing Liu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hao Liu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
38
|
Liu L, Wang B, Duan G, Wang J, Pan Z, Ou M, Bai X, Wang P, Zhao D, Nan N, Li D, Sun W. Histone Deacetylase UvHST2 Is a Global Regulator of Secondary Metabolism in Ustilaginoidea virens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13124-13136. [PMID: 37615365 DOI: 10.1021/acs.jafc.3c01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ustilaginoidea virens, the causal agent of rice false smut, produces a large amount of mycotoxins, including ustilaginoidins and sorbicillinoids. However, little is known about the regulatory mechanism of mycotoxin biosynthesis inU. virens. Here, we demonstrate that the NAD+-dependent histone deacetylase UvHST2 negatively regulates ustilaginoidin biosynthesis. UvHst2 knockout caused retarded hypha growth and reduced conidiation and pathogenicity inU. virens. Transcriptome analysis revealed that the transcription factor genes, transporter genes, and other tailoring genes in eight biosynthetic gene clusters (BGCs) including ustilaginoidin and sorbicillinoid BGCs were upregulated in ΔUvhst2. Interestingly, the UvHst2 deletion affects alternative splicing. Metabolomics revealed that UvHST2 negatively regulates the biosynthesis of various mycotoxins including ustilaginoidins, sorbicillin, ochratoxin B, zearalenone, and O-M-sterigmatocystin. Combined transcriptome and metabolome analyses uncover that UvHST2 positively regulates pathogenicity but negatively modulates the expression of BGCs involved in secondary metabolism. Collectively, UvHST2 functions as a global regulator of secondary metabolism inU. virens.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Bo Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Guohua Duan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Jing Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Zequn Pan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Mingming Ou
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Xiaolong Bai
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Peiying Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Dan Zhao
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Nan Nan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Dayong Li
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Hu X, Wang J, Zhang Y, Wu X, Li R, Li M. Visualization of the entire process of rice spikelet infection by Ustilaginoidea virens through nondestructive inoculation. Front Microbiol 2023; 14:1228597. [PMID: 37637108 PMCID: PMC10450503 DOI: 10.3389/fmicb.2023.1228597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Rice false smut caused by Ustilaginoidea virens, is a destructive fungal disease encountered in many rice-producing areas worldwide. To determine the process by which U. virens infects rice spikelets in the field. Methods The green fluorescent protein-labeled U. virens was used as an inoculum to conduct artificial inoculation on rice at the booting stage via non-destructive panicle sheath instillation inoculation. Results The results showed that the conidia of U. virens germinated on the surface of rice glumes and produced hyphae, which clustered at the mouth of rice glumes and entered the glumes through the gap between the palea and lemma. The conidia of U. virens colonized in rice floral organs, which led to pollen abortion of rice. U. virens wrapped the whole rice floral organ, and the floral organ-hyphae complex gradually expanded to open the glumes to form a rice false smut ball, which was two to three times larger than that observed in normal rice. Discussion Panicle sheath instillation inoculation was shown to be a non-destructive inoculation method that could simulate the natural infection of U. virens in the field. The entire infection process of U. virens was visualized, providing a theoretical reference for formulating strategies to control rice false smut in the field.
Collapse
Affiliation(s)
- Xianfeng Hu
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Jian Wang
- Institute of Crop Protection, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yubo Zhang
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Xiaomao Wu
- Institute of Crop Protection, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
40
|
Fang A, Zhang R, Qiao W, Peng T, Qin Y, Wang J, Tian B, Yu Y, Sun W, Yang Y, Bi C. Sensitivity Baselines, Resistance Monitoring, and Molecular Mechanisms of the Rice False Smut Pathogen Ustilaginoidea virens to Prochloraz and Azoxystrobin in Four Regions of Southern China. J Fungi (Basel) 2023; 9:832. [PMID: 37623603 PMCID: PMC10456073 DOI: 10.3390/jof9080832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is one of the most devastating fungal diseases of rice (Oryza sativa) worldwide. Prochloraz and azoxystrobin belong to the groups of demethylation inhibitors and quinone outside inhibitors, respectively, and are commonly used for controlling this disease. In this study, we analyzed the sensitivities of 100 U. virens isolates from Yunnan, Sichuan, Chongqing, and Zhejiang in Southern China to prochloraz and azoxystrobin. The ranges of EC50 for prochloraz and azoxystrobin were 0.004-0.536 and 0.020-0.510 μg/mL, with means and standard errors of 0.062 ± 0.008 and 0.120 ± 0.007 μg/mL, respectively. However, the sensitivity frequency distributions of U. virens to prochloraz and azoxystrobin indicated the emergence of subpopulations with decreased sensitivity. Therefore, the mean EC50 values of 74% and 68% of the isolates at the main peak, 0.031 ± 0.001 and 0.078 ± 0.004 μg/mL, were used as the sensitivity baselines of U. virens to prochloraz and azoxystrobin, respectively. We found significant sensitivity differences to azoxystrobin among different geographical populations and no correlation between the sensitivities of U. virens to prochloraz and azoxystrobin. Among 887 U. virens isolates, the isolate 5-3-1 from Zhejiang showed moderate resistance to prochloraz, with a resistance factor of 22.45, while no nucleotide variation in the 1986-bp upstream or 1827-bp gene regions of CYP51 from 5-3-1 was detected. Overexpression of CYP51 is probably responsible for its resistance to prochloraz. Finally, artificial inoculation showed that 5-3-1 was highly pathogenic to rice, suggesting that the resistance of U. virens to prochloraz must be monitored and managed in Zhejiang.
Collapse
Affiliation(s)
- Anfei Fang
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Ruixuan Zhang
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Wei Qiao
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Tao Peng
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Yubao Qin
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Jing Wang
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Binnian Tian
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Yang Yu
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Yuheng Yang
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Chaowei Bi
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| |
Collapse
|
41
|
Thomazella DPDT, Teixeira PJPL. Microbiome-mediated metabolic defence. NATURE PLANTS 2023; 9:1174-1175. [PMID: 37433973 DOI: 10.1038/s41477-023-01470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Affiliation(s)
| | - Paulo José Pereira Lima Teixeira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil.
| |
Collapse
|
42
|
Liu X, Matsumoto H, Lv T, Zhan C, Fang H, Pan Q, Xu H, Fan X, Chu T, Chen S, Qiao K, Ma Y, Sun L, Wang Q, Wang M. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease. Nat Microbiol 2023; 8:1419-1433. [PMID: 37142774 DOI: 10.1038/s41564-023-01379-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Mutualistic interactions between host plants and their microbiota have the potential to provide disease resistance. Most research has focused on the rhizosphere, but it is unclear how the microbiome associated with the aerial surface of plants protects against infection. Here we identify a metabolic defence underlying the mutualistic interaction between the panicle and the resident microbiota in rice to defend against a globally prevalent phytopathogen, Ustilaginoidea virens, which causes false-smut disease. Analysis of the 16S ribosomal RNA gene and internal transcribed spacer sequencing data identified keystone microbial taxa enriched in the disease-suppressive panicle, in particular Lactobacillus spp. and Aspergillus spp. Integration of these data with primary metabolism profiling, host genome editing and microbial isolate transplantation experiments revealed that plants with these taxa could resist U. virens infection in a host branched-chain amino acid (BCAA)-dependent manner. Leucine, a predominant BCAA, suppressed U. virens pathogenicity by inducing apoptosis-like cell death through H2O2 overproduction. Additionally, preliminary field experiments showed that leucine could be used in combination with chemical fungicides with a 50% reduction in dose but similar efficacy to higher fungicide concentrations. These findings may facilitate protection of crops from panicle diseases prevalent at a global scale.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Western Australia, Australia
| | - Haruna Matsumoto
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianxing Lv
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chengfang Zhan
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongda Fang
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qianqian Pan
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haorong Xu
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaoyan Fan
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tianyi Chu
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kun Qiao
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Youning Ma
- China National Rice Research Institute, Hangzhou, China
| | - Li Sun
- Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiangwei Wang
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
43
|
Chen X, Duan Y, Ren Z, Niu T, Xu Q, Wang Z, Zheng L, Wang Y, Chen X, Huang J, Pan Y. Post-Translational Modification β-Hydroxybutyrylation Regulates Ustilaginoidea virens Virulence. Mol Cell Proteomics 2023; 22:100616. [PMID: 37442371 PMCID: PMC10423879 DOI: 10.1016/j.mcpro.2023.100616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Lysine β-hydroxybutyrylation (Kbhb) is an evolutionarily conserved and widespread post-translational modification that is associated with active gene transcription and cellular proliferation. However, its role in phytopathogenic fungi remains unknown. Here, we characterized Kbhb in the rice false smut fungus Ustilaginoidea virens. We identified 2204 Kbhb sites in 852 proteins, which are involved in diverse biological processes. The mitogen-activated protein kinase UvSlt2 is a Kbhb protein, and a strain harboring a point mutation at K72, the Kbhb site of this protein, had decreased UvSlt2 activity and reduced fungal virulence. Molecular dynamic simulations revealed that K72bhb increases the hydrophobic solvent-accessible surface area of UvSlt2, thereby affecting its binding to its substrates. The mutation of K298bhb in the septin UvCdc10 resulted in reduced virulence and altered the subcellular localization of this protein. Moreover, we confirmed that the NAD+-dependent histone deacetylases UvSirt2 and UvSirt5 are the major enzymes that remove Kbhb in U. virens. Collectively, our findings identify regulatory elements of the Kbhb pathway and reveal important roles for Kbhb in regulating protein localization and enzymatic activity. These findings provide insight into the regulation of virulence in phytopathogenic fungi via post-translational modifications.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yuhang Duan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Taotao Niu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yaohui Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China; Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
44
|
Fu R, Wang J, Chen C, Liu Y, Zhao L, Lu D. Transcriptomic and Metabolomic Analyses Provide Insights into the Pathogenic Mechanism of the Rice False Smut Pathogen Ustilaginoidea virens. Int J Mol Sci 2023; 24:10805. [PMID: 37445981 DOI: 10.3390/ijms241310805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Rice false smut, caused by the fungal pathogen Ustilaginoidea virens, is a worldwide rice fungal disease. However, the molecular mechanism of the pathogenicity of the fungus U. virens remains unclear. To understand the molecular mechanism of pathogenesis of the fungus U. virens, we performed an integrated analysis of the transcriptome and metabolome of strongly (S) and weakly (W) virulent strains both before and after the infection of panicles. A total of 7932 differential expressed genes (DEGs) were identified using transcriptome analysis. Gene ontology (GO) and metabolic pathway enrichment analysis indicated that amino acid metabolism, autophagy-yeast, MAPK signaling pathway-yeast, and starch and sucrose metabolism were closely related to the pathogenicity of U. virens. Genes related to pathogenicity were significantly upregulated in the strongly virulent strain, and were ATG, MAPK, STE, TPS, and NTH genes. However, genes involved in the negative regulation of pathogenesis were significantly downregulated and contained TOR kinase, TORC1, and autophagy-related protein genes. Metabolome analysis identified 698 differentially accumulated metabolites (DAMs), including 13 categories of organic acids and derivatives, lipids and lipid-like molecules, organoheterocyclic compounds. The significantly enriched pathways of DAMs mainly included amino acids and carbohydrates, and they accumulated after infection by the S strain. To understand the relevance of DEGs and DAMs in the pathogenicity of U. virens, transcriptomic and metabolomic data were integrated and analyzed. These results further confirmed that the pathogenesis of U. virens was regulated by DEGs and DAMs related to these four pathways, involving arginine and proline metabolism, lysine biosynthesis, alanine, aspartate and glutamate metabolism, and starch and sugar metabolism. Therefore, we speculate that the pathogenicity of U. virens is closely related to the accumulation of amino acids and carbohydrates, and to the changes in the expression of related genes.
Collapse
Affiliation(s)
- Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Yao Liu
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Liyu Zhao
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| |
Collapse
|
45
|
Gu L, Wang Y, Xie S, Liu Y, Yan J, Yin W, Luo C. UvATG6 Interacts with BAX Inhibitor 1 Proteins and Plays Critical Roles in Growth, Conidiation, and Virulence in Ustilaginoidea virens. Microbiol Spectr 2023; 11:e0489822. [PMID: 37102873 PMCID: PMC10269921 DOI: 10.1128/spectrum.04898-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Autophagy and apoptosis are evolutionarily conserved catabolic processes involved in regulating development and cellular homeostasis. Bax inhibitor 1 (BI-1) and autophagy protein 6 (ATG6) perform essential functions in these roles, such as cellular differentiation and virulence in various filamentous fungi. However, the functions of ATG6 and BI-1 proteins in development and virulence in the rice false smut fungus Ustilaginoidea virens are still poorly understood. In this study, UvATG6 was characterized in U. virens. The deletion of UvATG6 almost abolished autophagy in U. virens and reduced growth, conidial production and germination, and virulence. Stress tolerance assays showed that UvATG6 mutants were sensitive to hyperosmotic, salt, and cell wall integrity stresses but were insensitive to oxidative stress. Furthermore, we found that UvATG6 interacted with UvBI-1 or UvBI-1b and suppressed Bax-induced cell death. We previously found that UvBI-1 could suppress Bax-induced cell death and was a negative regulator of mycelial growth and conidiation. Unlike UvBI-1, UvBI-1b could not suppress cell death. UvBI-1b-deleted mutants exhibited decreased growth and conidiation, while the UvBI-1 and UvBI-1b double deletion reduced the phenotype, indicating that UvBI-1 and UvBI-1b antagonistically regulate mycelial growth and conidiation. In addition, the UvBI-1b and double mutants exhibited decreased virulence. Our results provide evidence of the cross talk of autophagy and apoptosis in U. virens and give clues for studying other phytopathogenic fungi. IMPORTANCE Ustilaginoidea virens causes destructive panicle disease in rice, significantly threatening agricultural production. UvATG6 is required for autophagy and contributes to growth, conidiation, and virulence in U. virens. Additionally, it interacts with the Bax inhibitor 1 proteins UvBI-1 and UvBI-1b. UvBI-1 suppresses cell death induced by Bax, unlike UvBI-1b. UvBI-1 negatively regulates growth and conidiation, while UvBI-1b is required for these phenotypes. These results indicate that UvBI-1 and UvBI-1b may antagonistically regulate growth and conidiation. In addition, both of them contribute to virulence. Additionally, our results suggest cross talk between autophagy and apoptosis, contributing to the development, adaptability, and virulence of U. virens.
Collapse
Affiliation(s)
- Lifan Gu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yufu Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Songlin Xie
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yueran Liu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiali Yan
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weixiao Yin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
46
|
Shen E, Wang X, Lu Z, Zhou F, Ma W, Cui Z, Li Z, Li C, Lin Y. Overexpression of a beta-1,6-glucanase gene GluM in transgenic rice confers high resistance to rice blast, sheath blight and false smut. PEST MANAGEMENT SCIENCE 2023; 79:2152-2162. [PMID: 36729081 DOI: 10.1002/ps.7394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Frequent fungal diseases tend to lead to severe losses in rice production. As a main component of the fungal cell wall, glucan plays an important role in the growth and development of fungi. Glucanase can inhibit the growth of fungi by breaking glycosidic bonds, and may be a promising target for developing rice varieties with broad-spectrum disease resistance. RESULTS We transferred a codon-optimized β-1,6-glucanase gene (GluM) from myxobacteria into the japonica rice variety Zhonghua11 (ZH11), and obtained a large number of individual transgenic plants with GluM overexpression. Based on molecular analysis, three single-copy homozygous lines with GluM overexpression were selected for assessment of fungal disease resistance at the T3 generation. Compared with that of the recipient cultivar ZH11, the area of rice blast lesion in transgenic rice was reduced by 82.71%; that of sheath blight lesion was decreased by 35.76%-43.67%; the sheath blight resistance in the field was enhanced by an average of 0.75 grade over 3 years; and the incidence of diseased panicles due to rice false smut was decreased by 65.79%. More importantly, there was no obvious loss of yield (without a significant effect on agronomic traits). Furthermore, plants overexpressing a β-1,6-glucanase gene showed higher disease resistance than rice plants overexpressing a β-1,3-glucanase gene derived from tobacco. CONCLUSION The β-1,6-glucanase gene GluM can confer broad-spectrum disease resistance to rice, providing an environmentally friendly alternative way to effectively manage fungal pathogens in rice production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Enlong Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingchao Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoxi Lu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
47
|
Khanal S, Gaire SP, Zhou XG. Kernel Smut and False Smut: The Old-Emerging Diseases of Rice-A Review. PHYTOPATHOLOGY 2023; 113:931-944. [PMID: 36441871 DOI: 10.1094/phyto-06-22-0226-rvw] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Kernel smut, caused by Tilletia horrida, is a disease characterized by the replacement of rice grains with black sooty masses of teliospores or chlamydospores. Kernel smut differs from rice false smut, caused by Ustilaginoidea virens, in the color of chlamydospores. False smut is characterized by globose, velvety spore balls ranging from orangish yellow to greenish black in color. Both kernel smut and false smut have been persistent but are considered minor diseases in many countries since they were discovered in the late 1870s to the 1980s due to their sporadic outbreaks and limited economic impacts. In recent years, however, kernel smut and false smut have emerged as two of the most economically important diseases in rice, including organic rice, in many countries, especially in the United States. The increased use of susceptible rice cultivars, especially hybrids, excessive use of nitrogen fertilizer, and short crop rotations have resulted in an increase in kernel smut and false smut, causing significant losses in grain yield and quality. In this article, we provide a review of the distribution and economic importance of kernel smut; our current understanding of the taxonomy, biology, and epidemiology of kernel smut; and the genomics of the kernel smut fungus as compared with false smut and its causal agent. We also provide an update on the current management strategies of pathogen exclusion, cultivar resistance, fungicides, biological control, and cultural practices for kernel smut and false smut of rice.
Collapse
Affiliation(s)
- Sabin Khanal
- Texas A&M AgriLife Research Center, Beaumont, TX 77713
| | | | - Xin-Gen Zhou
- Texas A&M AgriLife Research Center, Beaumont, TX 77713
| |
Collapse
|
48
|
Fu X, Jin Y, Paul MJ, Yuan M, Liang X, Cui R, Huang Y, Peng W, Liang X. Inhibition of rice germination by ustiloxin A involves alteration in carbon metabolism and amino acid utilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1168985. [PMID: 37223794 PMCID: PMC10200953 DOI: 10.3389/fpls.2023.1168985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
Ustiloxins are the main mycotoxin in rice false smut, a devastating disease caused by Ustilaginoidea virens. A typical phytotoxicity of ustiloxins is strong inhibition of seed germination, but the physiological mechanism is not clear. Here, we show that the inhibition of rice germination by ustiloxin A (UA) is dose-dependent. The sugar availability in UA-treated embryo was lower while the starch residue in endosperm was higher. The transcripts and metabolites responsive to typical UA treatment were investigated. The expression of several SWEET genes responsible for sugar transport in embryo was down-regulated by UA. Glycolysis and pentose phosphate processes in embryo were transcriptionally repressed. Most of the amino acids detected in endosperm and embryo were variously decreased. Ribosomal RNAs for growth were inhibited while the secondary metabolite salicylic acid was also decreased under UA. Hence, we propose that the inhibition of seed germination by UA involves the block of sugar transport from endosperm to embryo, leading to altered carbon metabolism and amino acid utilization in rice plants. Our analysis provides a framework for understanding of the molecular mechanisms of ustiloxins on rice growth and in pathogen infection.
Collapse
Affiliation(s)
- Xiaoxiang Fu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Jin
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Matthew J. Paul
- Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Minxuan Yuan
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Xingwei Liang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Ruqiang Cui
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Wenwen Peng
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Xiaogui Liang
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Akbar MU, Aqeel M, Iqbal N, Zafar S, Noman A. Morpho-physiological characterization and metabolic profiling of rice lines for immunity to counter Helminthosporiumoryzae. Microb Pathog 2023; 179:106126. [PMID: 37100356 DOI: 10.1016/j.micpath.2023.106126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 04/28/2023]
Abstract
Heliminthosporium oryzae is a necrotrophic fungal pathogen that effect rice crops grown on millions of hectares. We evaluated nine newly establishing rice lines and one local variety for resistance against H. oryzae. Significant (P ≤ 0.05) differences in response to pathogen attack were recorded in all rice lines. Maximum disease resistance was recorded in Kharamana under pathogen attack as compared to uninfected plants. A comparison of decline in shoot length revealed that Kharamana and Sakh experienced minimum lost (9.21%, 17.23%) in shoot length respectively against control while Binicol exhibited highest reduction (35.04%) in shoot length due to H. oryzae attack. Post-infection observations of shoot fresh weight revealed 63% decline in Binicol and declared it as the most susceptible rice line. Sakh, Kharamana and Gervex exhibited minimum fresh weight decrease (19.86%, 19.24% and 17.64% respectively) as compared to other lines under pathogen attack. Maximum chlorophyll-a contents were recorded in Kharamana under control and post pathogen attackconditions. Following the inoculation of H. oryzae, SOD was increased up to 35% and 23% in Kharamana and Sakh. However, minimum POD activity was recorded in Gervex followed by Swarnalata, Kaosen and C-13 in non-inoculated and pathogen-inoculated plants. Significant decrease in ascorbic acid contents (73.7% and 70.8%) was observed in Gervex and Binicol that later contributed in their susceptibility to H. oryzae attack. Pathogen attack caused Significant (P ≤ 0.05) changes in secondary metabolites in all rice lines but minimum total flavonoids, anthocyanin and lignin were observed in Binicol in uninfected plants and attested its susceptibility to pathogen. In post-pathogen attack conditions, Kharamana showed best resistance against pathogen by exhibiting a significantly high and maximum value of morpho-physiological, and biochemical attributes. Our findings suggest that tested resistant lines can be further explored for multiple traits including molecular regulation of defense responses to breed immunity in rice varieties.
Collapse
Affiliation(s)
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Naeem Iqbal
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Sara Zafar
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan.
| |
Collapse
|
50
|
He N, Huang F, Lu L, Wang X, Li QQ, Yang D. SPR9 encodes a 60 S ribosomal protein that modulates panicle spreading and affects resistance to false smut in rice (Oryza sativa. L). BMC PLANT BIOLOGY 2023; 23:205. [PMID: 37081397 PMCID: PMC10116690 DOI: 10.1186/s12870-023-04172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The architecture of inflorescence in crops is a key agronomic feature determining grain yield and thus has been a major target trait of cereal domestication. RESULTS In this study, we show that a simple spreading panicle change in rice panicle shape, controlled by the Spreading Panicle 9 (SPR9) locus, also has a significant impact on the resistance to rice false smut (RFS). Meanwhile, we mapped a novel spr9 mutant gene between markers Indel5-18 and Indel5-22 encompassing a genomic region of 43-kb with six candidate genes. Through gene prediction and cDNA sequencing, we confirmed that LOC_Os05g38520 is the target gene in the spr9 mutant, which encodes 60 S ribosomal protein L36-2. Further analysis showed that the spr9 mutant is caused by a 1 bp deletion in the first exon that resulted in premature termination. Knockout experiments showed that the SPR9 gene is responsible for the spreading panicle phenotype of the spr9 mutant. Interestingly, the spr9 mutant was found to improve resistance to RFS without affecting major agronomic traits. Taken together, our results revealed that the spr9 allele has good application prospects in rice breeding for disease resistance and panicle improvement. CONCLUSIONS We report the map-based cloning and functional characterization of SPR9, which encodes a 60 S ribosomal protein that regulates spreading panicles and affects the resistance to false smut in rice.
Collapse
Affiliation(s)
- Niqing He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research and Development Center, Fuzhou, 350019, Fujian, China
| | - Fenghuang Huang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research and Development Center, Fuzhou, 350019, Fujian, China
| | - Libin Lu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research and Development Center, Fuzhou, 350019, Fujian, China
| | - Xun Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research and Development Center, Fuzhou, 350019, Fujian, China
| | - Qingshun Q Li
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research and Development Center, Fuzhou, 350019, Fujian, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Dewei Yang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research and Development Center, Fuzhou, 350019, Fujian, China.
| |
Collapse
|