1
|
Yuan Y, Biswas P, Zemke NR, Dang K, Wu Y, D’Antonio M, Xie Y, Yang Q, Dong K, Lau PK, Li D, Seng C, Bartosik W, Buchanan J, Lin L, Lancione R, Wang K, Lee S, Gibbs Z, Ecker J, Frazer K, Wang T, Preissl S, Wang A, Ayyagari R, Ren B. Single-cell analysis of the epigenome and 3D chromatin architecture in the human retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.28.630634. [PMID: 39764062 PMCID: PMC11703273 DOI: 10.1101/2024.12.28.630634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Most genetic risk variants linked to ocular diseases are non-protein coding and presumably contribute to disease through dysregulation of gene expression, however, deeper understanding of their mechanisms of action has been impeded by an incomplete annotation of the transcriptional regulatory elements across different retinal cell types. To address this knowledge gap, we carried out single-cell multiomics assays to investigate gene expression, chromatin accessibility, DNA methylome and 3D chromatin architecture in human retina, macula, and retinal pigment epithelium (RPE)/choroid. We identified 420,824 unique candidate regulatory elements and characterized their chromatin states in 23 sub-classes of retinal cells. Comparative analysis of chromatin landscapes between human and mouse retina cells further revealed both evolutionarily conserved and divergent retinal gene-regulatory programs. Leveraging the rapid advancements in deep-learning techniques, we developed sequence-based predictors to interpret non-coding risk variants of retina diseases. Our study establishes retina-wide, single-cell transcriptome, epigenome, and 3D genome atlases, and provides a resource for studying the gene regulatory programs of the human retina and relevant diseases.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Material Science, UC San Diego, La Jolla, CA 92037, USA
| | - Pooja Biswas
- Ophthalmology, Shiley Eye Institute, UC San Diego, La Jolla, CA 92037, USA
| | - Nathan R. Zemke
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Kelsey Dang
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Yue Wu
- Department of Biological Science, UC San Diego, La Jolla, CA 92037, USA
| | - Matteo D’Antonio
- Department of Biomedical Informatics, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA
| | - Qian Yang
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Keyi Dong
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Pik Ki Lau
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine in St.Louis, St. Louis, MO 63130, USA
| | - Chad Seng
- Department of Genetics, Washington University School of Medicine in St.Louis, St. Louis, MO 63130, USA
| | | | - Justin Buchanan
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Lin Lin
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Ryan Lancione
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Kangli Wang
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA
| | - Seoyeon Lee
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA
| | - Zane Gibbs
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA
| | - Joseph Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA,USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kelly Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine in St.Louis, St. Louis, MO 63130, USA
| | | | - Allen Wang
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Radha Ayyagari
- Ophthalmology, Shiley Eye Institute, UC San Diego, La Jolla, CA 92037, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Campello L, Brooks MJ, Fadl BR, Choi HS, Pal S, Swaroop A. Transcriptional Heterogeneity and Differential Response of Rod Photoreceptor Pathway Uncovered by Single-Cell RNA Sequencing of the Aging Mouse Retina. Aging Cell 2025:e70001. [PMID: 39954235 DOI: 10.1111/acel.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/27/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025] Open
Abstract
Visual function deteriorates throughout the natural course of aging. Age-related structural and functional adaptations are observed in the retina, the light-sensitive neuronal tissue of the eye where visual perception begins. Molecular mechanisms underlying retinal aging are still poorly understood, highlighting the need to identify biomarkers for better prognosis and alleviation of aging-associated vision impairment. Here, we investigate dynamics of transcriptional dysregulation in the retina and identify affected pathways within distinct retinal cell types. Using an optimized protocol for single-cell RNA sequencing of mouse retinas at 3, 12, 18, and 24 months, we detect a progressive increase in the number of differentially expressed genes across all retinal cell types. The extent and direction of expression changes varies, with photoreceptor, bipolar, and Müller cells showing the maximum number of differentially expressed genes at all age groups. Furthermore, our analyses uncover transcriptionally distinct, heterogeneous subpopulations of rod photoreceptors and bipolar cells, distributed across distinct areas of the retina. Our findings provide a plausible molecular explanation for enhanced susceptibility of rod cells to aging and correlate with the observed loss of scotopic sensitivity in elderly individuals.
Collapse
Affiliation(s)
- Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin R Fadl
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyo Sub Choi
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Soumitra Pal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Lin S, Gao M, Zhang J, Wu Y, Yu T, Peng Y, Jia Y, Zou H, Lu L, Li D, Ma Y. Sleep onset time as a mediator in the association between screen exposure and aging: a cross-sectional study. GeroScience 2025; 47:1239-1249. [PMID: 39190220 PMCID: PMC11872958 DOI: 10.1007/s11357-024-01321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
Excessive screen exposure has become a significant health concern. This study investigates the impact of screen time on aging in middle-aged and elderly populations. Healthy working adults over 45 years old in Shanghai, China, underwent general and ocular examinations. Questionnaires collected demographics, medical history, and screen exposure details. Aging was assessed using the retinal age gap, defined as the difference between the retinal age predicted by deep learning algorithms based on fundus images and chronological age. Pathway analysis tested the mediation effect of sleep duration and onset time on the relationship between screen usage and retinal age gap. The retinal age gap increased with longer screen exposure, from 0.49 ± 3.51 years in the lowest tertile to 5.13 ± 4.96 years in the highest tertile (Jonckheere-Terpstra test, p < 0.001). Each additional hour of screen exposure accelerated the retinal age gap by 0.087 years (95% CI, 0.027, 0.148, p = 0.005) in the fully adjusted linear model. Sleep onset time mediated the impact of screen usage on the retinal age gap (indirect effect, β = 0.11; 95% CI 0.04-0.24). The impact of screen usage in a light-off environment on the retinal age gap was fully mediated by sleep onset time (indirect effect, β = 0.22; 95% CI 0.07-0.38), with the proportion being 100%. Our study identified a correlation between excessive screen time and a wider retinal age gap in middle-aged and elderly individuals, likely due to delayed sleep onset. To mitigate the adverse effects on the retina and aging, it is important to limit screen usage and avoid screens before bedtime.
Collapse
Affiliation(s)
- Senlin Lin
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, No. 1440, Hongqiao Road, Shanghai, 200336, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Meng Gao
- Sijing Community Health Service Center, Shanghai, China
| | - Juzhao Zhang
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, No. 1440, Hongqiao Road, Shanghai, 200336, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yuting Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Yu
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, No. 1440, Hongqiao Road, Shanghai, 200336, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yajun Peng
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, No. 1440, Hongqiao Road, Shanghai, 200336, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yingnan Jia
- Key Lab of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 130 Dongan Road, Shanghai, 200032, China
- Health Communication Institute, Fudan University, Shanghai, 200032, China
| | - Haidong Zou
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, No. 1440, Hongqiao Road, Shanghai, 200336, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, China
| | - Lina Lu
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, No. 1440, Hongqiao Road, Shanghai, 200336, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| | - Deshang Li
- Shihudang Community Health Service Center, No. 1 to 5, Lane 50, Yanshou Road, Shanghai, China.
| | - Yingyan Ma
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, No. 1440, Hongqiao Road, Shanghai, 200336, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, China.
| |
Collapse
|
4
|
Koller A, Preishuber-Pflügl J, Mayr D, Brunner SM, Ladek AM, Runge C, Aigner L, Reitsamer HA, Trost A. Cysteinyl leukotriene receptor 1 modulates retinal immune cells, vascularity and proteolytic activity in aged mice. Aging (Albany NY) 2025; 17:308-328. [PMID: 39891615 DOI: 10.18632/aging.206193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Cysteinyl leukotrienes (CysLTs) modulate the immune response, the microvasculature, cell stress and the endosomal-lysosomal system, and are involved in cellular aging. Interestingly, CysLT receptor 1 (Cysltr1) is highly expressed in the retina, a tissue that is strongly affected by the aging process. Thus, we performed an introductory examination to determine a potential importance of Cysltr1 for cells in the neurovascular unit using qPCR and immunofluorescence analysis, and on proteolytic activity in the retinas of aged mice. Aged mice (~84 weeks) were treated orally with vehicle or 10 mg/kg montelukast (MTK), a specific Cysltr1 inhibitor, for 8 weeks, 5x/week. The retinas of young mice (~11 weeks) served as controls. Compared with young control mice, aged mice exhibited increased numbers of microglia and a reduced retinal capillary diameter, but these age-dependent changes were abrogated by MTK treatment. Retinal protein levels of the ubiquitin binding protein sequestosome-1 were amplified by aging, but were reduced by MTK treatment. Interestingly, retinal proteasome activity was decreased in aged mice, whereas Cysltr1 inhibition increased this activity. The reduction in immune cells caused by Cysltr1 suppression may dampen neuroinflammation, a known promoter of tissue aging. Additionally, an increase in capillary diameter after Cysltr1 inhibition could have a beneficial effect on blood flow in aged individuals. Furthermore, the increase in proteolytic activity upon Cysltr1 inhibition could prevent the accumulation of toxic deposits, which is a hallmark of aged tissue. Overall, Cysltr1 is a promising target for modulating the impact of aging on retinal tissue.
Collapse
Affiliation(s)
- Andreas Koller
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Julia Preishuber-Pflügl
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Daniela Mayr
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Susanne Maria Brunner
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Anja-Maria Ladek
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Christian Runge
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg 5020, Austria
| | - Herbert Anton Reitsamer
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| |
Collapse
|
5
|
Dey PN, Singh N, Zelinger L, Batz Z, Nellissery J, White Carreiro ND, Qian H, Li T, Fariss RN, Dong L, Swaroop A. Loss of paired immunoglobin-like type 2 receptor B gene associated with age-related macular degeneration impairs photoreceptor function in mouse retina. Hum Mol Genet 2025; 34:64-76. [PMID: 39532089 DOI: 10.1093/hmg/ddae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Genome-wide association studies have uncovered mostly non-coding variants at over 60 genetic loci linked to susceptibility for age-related macular degeneration (AMD). To ascertain the causal gene at the PILRB/PILRA locus, we used a CRISPR strategy to produce germline deletions in the mouse paired immunoglobin-like type 2 receptor (Pilr) genes that encode highly related activating (PILRB) and inhibitory (PILRA) receptors. We show that a combined loss of Pilrb1 and Pilrb2, but not Pilra, leads to an early but relatively stationary defect as the electroretinography (ERG) amplitudes of Pilrb1/2-/- mice exhibit a marked reduction as early as postnatal day 15 and do not show additional significant decrease at 3 and 12-months. No alterations are evident in Müller glia, microglia, bipolar, amacrine and horizontal cells based on immunohistochemistry using cell-type specific markers. PILRB immunostaining is specifically detected at the proximal part of photoreceptor outer segment. Reduced expression of select calcium-regulated phototransduction and synapse-associated proteins, including GCAP1 and 2, PDE6b, AIPL1, PSD95, and CTBP1 indicates dysregulation of calcium homeostasis as a possible mechanism of retinal phenotype in Pilrb1/2-/- mice. Our studies suggest a novel function of PILRB in retinal photoreceptors and an association of PILRB, but not PILRA, with AMD pathogenesis.
Collapse
Affiliation(s)
- Partha Narayan Dey
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Nivedita Singh
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Lina Zelinger
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Zachary Batz
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Noor D White Carreiro
- Biological Imaging Core, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Haohua Qian
- Visual Function Core Facility, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Tiansen Li
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| |
Collapse
|
6
|
Szilágyi A, Takács B, Szekeres R, Tarjányi V, Nagy D, Priksz D, Bombicz M, Kiss R, Szabó AM, Lehoczki A, Gesztelyi R, Juhász B, Szilvássy Z, Varga B. Effects of voluntary and forced physical exercise on the retinal health of aging Wistar rats. GeroScience 2024; 46:4707-4728. [PMID: 38795184 PMCID: PMC11336036 DOI: 10.1007/s11357-024-01208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
Aging is accompanied by an increased prevalence of degenerative conditions, including those affecting ocular health, which significantly impact quality of life and increase the burden on healthcare systems. Among these, retinal aging is of particular concern due to its direct link to vision impairment, a leading cause of disability in the elderly. Vision loss in the aging population is associated with heightened risks of cognitive decline, social isolation, and morbidity. This study addresses the critical gap in our understanding of modifiable lifestyle factors, such as physical exercise, that may mitigate retinal aging and its related pathologies. We investigated the effects of different exercise regimens-voluntary (recreational-type) and forced (high-intensity)-on the retinal health of aging Wistar rats (18-month-old), serving as a model for studying the translational potential of exercise interventions in humans. Male Wistar rats were divided into four groups: a young control (3-month-old) for baseline comparison, an aged sedentary control, an aged group engaging in voluntary exercise via a running wheel in their cage, and an aged group subjected to forced exercise on a treadmill for six sessions of 20 min each per week. After a 6-month experimental period, we assessed retinal function via electroretinography (ERG), measured retinal thickness histologically, and analyzed protein expression changes relevant to oxidative stress, inflammation, and anti-aging mechanisms. Our findings reveal that voluntary exercise positively impacts retinal function and morphology, reducing oxidative stress and inflammation markers while enhancing anti-aging protein expression. In contrast, forced exercise showed diminished benefits. These insights underscore the importance of exercise intensity and preference in preserving retinal health during aging. The study highlights the potential of recreational physical activity as a non-invasive strategy to counteract retinal aging, advocating for further research into exercise regimens as preventative therapies for age-related ocular degenerations.
Collapse
Affiliation(s)
- Anna Szilágyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Barbara Takács
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Réka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Vera Tarjányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Dávid Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Adrienn Mónika Szabó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary.
| |
Collapse
|
7
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
8
|
Zhou Y, Zhou W, Rao Y, He J, Huang Y, Zhao P, Li J. Dysregulated energy and protein homeostasis and the loss of GABAergic amacrine cells in aging retina. Exp Eye Res 2024; 245:109985. [PMID: 38945518 DOI: 10.1016/j.exer.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Aging is a major risk factor for the development or the worsening of retinal degenerative conditions. The intricate network of the neural retina determined that the retinal aging is a complicated process. The aim of this study is to delineate the transcriptomic changes of major retinal neurons during aging in C57BL/6 mice at single-cell level. We analyzed the transcriptional profiles of the photoreceptor, bipolar, amacrine, and Müller glial cells of 1.5-2 and 24-30 months old mice using single-cell RNA sequencing technique. We selectively confirmed the differences in gene expression using immunofluorescence staining and RNA in situ hybridization analysis. We found that each retinal cell type had unique changes upon aging. However, they all showed signs of dysregulated glucose and energy metabolism, and perturbed proteostasis. In particular, old Müller glia exhibited the most profound changes, including the upregulation of cell metabolism, stress-responses, antigen-presentation and immune responses and metal ion homeostasis. The dysregulated gliogenesis and differentiation was confirmed by the presence of Müller glia expressing rod-specific genes in the inner nuclear layer and the outer plexiform layer of the old retina. We further pinpointed the specific loss of GABAergic amacrine cells in old retina. Our study emphasized changes of amacrine and Müller glia during retinal aging, provided resources for further research on the molecular and cellular regulatory mechanisms underlying aging-associated retinal deterioration.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yue Huang
- Department of Ophthalmology, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 202150, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
9
|
Mondal AK, Gaur M, Advani J, Swaroop A. Epigenome-metabolism nexus in the retina: implications for aging and disease. Trends Genet 2024; 40:718-729. [PMID: 38782642 PMCID: PMC11303112 DOI: 10.1016/j.tig.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.
Collapse
Affiliation(s)
- Anupam K Mondal
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
He J, Xiong S, Zhou W, Qiu H, Rao Y, Liu Y, Shen G, Zhao P, Chen G, Li J. Long-term polystyrene nanoparticles exposure reduces electroretinal responses and exacerbates retinal degeneration induced by light exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134586. [PMID: 38776811 DOI: 10.1016/j.jhazmat.2024.134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.
Collapse
Affiliation(s)
- Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Guangquan Chen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China.
| |
Collapse
|
11
|
Huang H, Zeng J, Yu X, Du H, Wen C, Mao Y, Tang H, Kuang X, Liu W, Yu H, Liu H, Li B, Long C, Yan J, Shen H. Establishing chronic models of age-related macular degeneration via long-term iron ion overload. Am J Physiol Cell Physiol 2024; 326:C1367-C1383. [PMID: 38406826 DOI: 10.1152/ajpcell.00532.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Age-related macular degeneration (AMD) is characterized by the degenerative senescence in the retinal pigment epithelium (RPE) and photoreceptors, which is accompanied by the accumulation of iron ions in the aging retina. However, current models of acute oxidative stress are still insufficient to simulate the gradual progression of AMD. To address this, we established chronic injury models by exposing the aRPE-19 cells, 661W cells, and mouse retina to iron ion overload over time. Investigations at the levels of cell biology and molecular biology were performed. It was demonstrated that long-term treatment of excessive iron ions induced senescence-like morphological changes, decreased cell proliferation, and impaired mitochondrial function, contributing to apoptosis. Activation of the mitogen-activated protein kinase (MAPK) pathway and the downstream molecules were confirmed both in the aRPE-19 and 661W cells. Furthermore, iron ion overload resulted in dry AMD-like lesions and decreased visual function in the mouse retina. These findings suggest that chronic exposure to overloading iron ions plays a significant role in the pathogenesis of retinopathy and provide a potential model for future studies on AMD.NEW & NOTEWORTHY To explore the possibility of constructing reliable research carriers on age-related macular degeneration (AMD), iron ion overload was applied to establish models in vitro and in vivo. Subsequent investigations into cellular physiology and molecular biology confirmed the presence of senescence in these models. Through this study, we hope to provide a better option of feasible methods for future researches into AMD.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, People's Republic of China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Han Du
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chaojuan Wen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Mao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Han Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Liu
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, People's Republic of China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huijun Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Eye Fundus Department, Affiliated Aier Eye Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Bowen Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Brito M, Sorbier C, Mignet N, Boudy V, Borchard G, Vacher G. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int J Mol Sci 2024; 25:4099. [PMID: 38612907 PMCID: PMC11012607 DOI: 10.3390/ijms25074099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.
Collapse
Affiliation(s)
- Maëlis Brito
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Capucine Sorbier
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
| | - Vincent Boudy
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Gaëlle Vacher
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
13
|
Advani J, Mehta PA, Hamel AR, Mehrotra S, Kiel C, Strunz T, Corso-Díaz X, Kwicklis M, van Asten F, Ratnapriya R, Chew EY, Hernandez DG, Montezuma SR, Ferrington DA, Weber BHF, Segrè AV, Swaroop A. QTL mapping of human retina DNA methylation identifies 87 gene-epigenome interactions in age-related macular degeneration. Nat Commun 2024; 15:1972. [PMID: 38438351 PMCID: PMC10912779 DOI: 10.1038/s41467-024-46063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
DNA methylation provides a crucial epigenetic mark linking genetic variations to environmental influence. We have analyzed array-based DNA methylation profiles of 160 human retinas with co-measured RNA-seq and >8 million genetic variants, uncovering sites of genetic regulation in cis (37,453 methylation quantitative trait loci and 12,505 expression quantitative trait loci) and 13,747 DNA methylation loci affecting gene expression, with over one-third specific to the retina. Methylation and expression quantitative trait loci show non-random distribution and enrichment of biological processes related to synapse, mitochondria, and catabolism. Summary data-based Mendelian randomization and colocalization analyses identify 87 target genes where methylation and gene-expression changes likely mediate the genotype effect on age-related macular degeneration. Integrated pathway analysis reveals epigenetic regulation of immune response and metabolism including the glutathione pathway and glycolysis. Our study thus defines key roles of genetic variations driving methylation changes, prioritizes epigenetic control of gene expression, and suggests frameworks for regulation of macular degeneration pathology by genotype-environment interaction in retina.
Collapse
Affiliation(s)
- Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Puja A Mehta
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew R Hamel
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina Kiel
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madeline Kwicklis
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Freekje van Asten
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rinki Ratnapriya
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Doheny Eye Institute, Pasadena, CA, USA
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
| | - Ayellet V Segrè
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Mondal AK, Brock DC, Rowan S, Yang ZH, Rojulpote KV, Smith KM, Francisco SG, Bejarano E, English MA, Deik A, Jeanfavre S, Clish CB, Remaley AT, Taylor A, Swaroop A. Selective transcriptomic dysregulation of metabolic pathways in liver and retina by short- and long-term dietary hyperglycemia. iScience 2024; 27:108979. [PMID: 38333717 PMCID: PMC10850775 DOI: 10.1016/j.isci.2024.108979] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
A high glycemic index (HGI) diet induces hyperglycemia, a risk factor for diseases affecting multiple organ systems. Here, we evaluated tissue-specific adaptations in the liver and retina after feeding HGI diet to mice for 1 or 12 month. In the liver, genes associated with inflammation and fatty acid metabolism were altered within 1 month of HGI diet, whereas 12-month HGI diet-fed group showed dysregulated expression of cytochrome P450 genes and overexpression of lipogenic factors including Srebf1 and Elovl5. In contrast, retinal transcriptome exhibited HGI-related notable alterations in energy metabolism genes only after 12 months. Liver fatty acid profiles in HGI group revealed higher levels of monounsaturated and lower levels of saturated and polyunsaturated fatty acids. Additionally, HGI diet increased blood low-density lipoprotein, and diet-aging interactions affected expression of mitochondrial oxidative phosphorylation genes in the liver and disease-associated genes in retina. Thus, our findings provide new insights into retinal and hepatic adaptive mechanisms to dietary hyperglycemia.
Collapse
Affiliation(s)
- Anupam K. Mondal
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel C. Brock
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sheldon Rowan
- Laboratory for Nutrition & Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- Friedman School of Nutrition Science and Policy, and Department of Molecular and Chemical Biology, Tufts University, Boston, MA, USA
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Krishna Vamsi Rojulpote
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kelsey M. Smith
- Laboratory for Nutrition & Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- Friedman School of Nutrition Science and Policy, and Department of Molecular and Chemical Biology, Tufts University, Boston, MA, USA
| | - Sarah G. Francisco
- Laboratory for Nutrition & Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Eloy Bejarano
- Laboratory for Nutrition & Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Milton A. English
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Alan T. Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Allen Taylor
- Laboratory for Nutrition & Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- Friedman School of Nutrition Science and Policy, and Department of Molecular and Chemical Biology, Tufts University, Boston, MA, USA
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
15
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
16
|
Landowski M, Gogoi P, Ikeda S, Ikeda A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1355379. [PMID: 38576540 PMCID: PMC10993500 DOI: 10.3389/fopht.2024.1355379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Purnima Gogoi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Gierke K, Lux UT, Regus-Leidig H, Brandstätter JH. The first synapse in vision in the aging mouse retina. Front Cell Neurosci 2023; 17:1291054. [PMID: 38026697 PMCID: PMC10654782 DOI: 10.3389/fncel.2023.1291054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Vision is our primary sense, and maintaining it throughout our lifespan is crucial for our well-being. However, the retina, which initiates vision, suffers from an age-related, irreversible functional decline. What causes this functional decline, and how it might be treated, is still unclear. Synapses are the functional hub for signal transmission between neurons, and studies have shown that aging is widely associated with synaptic dysfunction. In this study, we examined the first synapse of the visual system - the rod and cone photoreceptor ribbon synapse - in the mouse retina using light and electron microscopy at 2-3 months, ~1 year, and >2 years of age. We asked, whether age-related changes in key synaptic components might be a driver of synaptic dysfunction and ultimately age-related functional decline during normal aging. We found sprouting of horizontal and bipolar cells, formation of ectopic photoreceptor ribbon synapses, and a decrease in the number of rod photoreceptors and photoreceptor ribbon synapses in the aged retina. However, the majority of the photoreceptors did not show obvious changes in the structural components and protein composition of their ribbon synapses. Noteworthy is the increase in mitochondrial size in rod photoreceptor terminals in the aged retina.
Collapse
Affiliation(s)
| | | | | | - Johann Helmut Brandstätter
- Animal Physiology/Neurobiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Jackson EK, Tofovic SP, Chen Y, Birder LA. 8-Aminopurines in the Cardiovascular and Renal Systems and Beyond. Hypertension 2023; 80:2265-2279. [PMID: 37503660 PMCID: PMC10592300 DOI: 10.1161/hypertensionaha.123.20582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Screening of compounds comprising 8-substituted guanine revealed that 8-aminoguanosine and 8-aminoguanine cause diuresis/natriuresis/glucosuria, yet decrease potassium excretion. Subsequent investigations demonstrated that 8-aminoguanosine's effects are mediated by its metabolite 8-aminoguanine. The mechanism by which 8-aminoguanine causes diuresis/natriuresis/glucosuria involves inhibition of PNPase (purine nucleoside phosphorylase), which increases renal interstitial inosine levels. Additional evidence suggests that inosine, via indirect or direct adenosine A2B receptor activation, increases renal medullary blood flow which enhances renal excretory function. Likely, 8-aminoguanine has pleiotropic actions that also alter renal excretory function. Indeed, the antikaliuretic effects of 8-aminoguanine are independent of PNPase inhibition. 8-Aminoguanine is an endogenous molecule; nitrosative stress leads to production of biomolecules containing 8-nitroguanine moieties. Degradation of these biomolecules releases 8-nitroguanosine and 8-nitro-2'-deoxyguanosine which are converted to 8-aminoguanine. Also, guanosine and guanine per se may contribute to 8-aminoguanine formation. 8-Aminoinosine, 8-aminohypoxanthine, and 8-aminoxanthine likewise induce diuresis/natriuresis/glucosuria, yet do not reduce potassium excretion. Thus, there are several pharmacologically active 8-aminopurines with nuanced effects on renal excretory function. Chronic treatment with 8-aminoguanine attenuates hypertension in deoxycorticosterone/salt rats, prevents strokes, and increases lifespan in Dahl salt-sensitive rats on a high salt diet and attenuates the metabolic syndrome in rats; 8-aminoguanosine retards progression of pulmonary hypertension in rats and anemia and organ damage in sickle cell mice. 8-Aminoguanine reverses age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines represent a new class of agents (and potentially endogenous factors) that have beneficial effects on the cardiovascular system and kidneys and may turn back the clock in age-associated diseases.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Stevan P. Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Yuanyuan Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Lori A. Birder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
19
|
Kim CH, Kim HY, Nah SY, Choi YK. The effects of Korean Red Ginseng on heme oxygenase-1 with a focus on mitochondrial function in pathophysiologic conditions. J Ginseng Res 2023; 47:615-621. [PMID: 37720574 PMCID: PMC10499582 DOI: 10.1016/j.jgr.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 09/19/2023] Open
Abstract
Korean Red Ginseng (KRG) plays a key role in heme oxygenase (HO)-1 induction under physical and moderate oxidative stress conditions. The transient and mild induction of HO-1 is beneficial for cell protection, mitochondrial function, regeneration, and intercellular communication. However, chronic HO-1 overexpression is detrimental in severely injured regions. Thus, in a chronic pathological state, diminishing HO-1-mediated ferroptosis is beneficial for a therapeutic approach. The molecular mechanisms by which KRG protects various cell types in the central nervous system have not yet been established, especially in terms of HO-1-mediated mitochondrial functions. Therefore, in this review, we discuss the multiple roles of KRG in the regulation of astrocytic HO-1 under pathophysiological conditions. More specifically, we discuss the role of the KRG-mediated astrocytic HO-1 pathway in regulating mitochondrial functions in acute and chronic neurodegenerative diseases as well as physiological conditions.
Collapse
Affiliation(s)
- Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Republic of Korea
| | - Hahn Young Kim
- Department of Neurology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Advani J, Corso-Diaz X, Kwicklis M, van Asten F, Ratnapriya R, Mehta P, Hamel A, Mahrotra S, Segrè A, Kiel C, Strunz T, Weber B, Chew E, Hernandez D, Montezuma S, Ferrington D, Swaroop A. QTL mapping of human retina DNA methylation identifies 87 gene-epigenome interactions in age-related macular degeneration. RESEARCH SQUARE 2023:rs.3.rs-3011096. [PMID: 37398472 PMCID: PMC10312909 DOI: 10.21203/rs.3.rs-3011096/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
DNA methylation (DNAm) provides a crucial epigenetic mark linking genetic variations to environmental influence. We analyzed array-based DNAm profiles of 160 human retinas with co-measured RNA-seq and > 8 million genetic variants, uncovering sites of genetic regulation in cis (37,453 mQTLs and 12,505 eQTLs) and 13,747 eQTMs (DNAm loci affecting gene expression), with over one-third specific to the retina. mQTLs and eQTMs show non-random distribution and enrichment of biological processes related to synapse, mitochondria, and catabolism. Summary data-based Mendelian randomization and colocalization analyses identify 87 target genes where methylation and gene-expression changes likely mediate the genotype effect on age-related macular degeneration (AMD). Integrated pathway analysis reveals epigenetic regulation of immune response and metabolism including the glutathione pathway and glycolysis. Our study thus defines key roles of genetic variations driving methylation changes, prioritizes epigenetic control of gene expression, and suggests frameworks for regulation of AMD pathology by genotype-environment interaction in retina.
Collapse
Affiliation(s)
| | | | | | | | | | - Puja Mehta
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Andrew Hamel
- Department of Ophthalmology, Massachusetts Eye and Ear
| | | | | | | | | | | | - Emily Chew
- National Eye Institute/National Institutes of Health
| | | | | | | | - Anand Swaroop
- National Eye Institute, National Institutes of Health
| |
Collapse
|
21
|
Kim H, Moon S, Lee D, Park J, Kim CH, Kim YM, Choi YK. Korean Red Ginseng-Induced SIRT3 Promotes the Tom22-HIF-1α Circuit in Normoxic Astrocytes. Cells 2023; 12:1512. [PMID: 37296633 PMCID: PMC10252242 DOI: 10.3390/cells12111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Astrocytes play a key role in brain functioning by providing energy to neurons. Increased astrocytic mitochondrial functions by Korean red ginseng extract (KRGE) have been investigated in previous studies. KRGE administration induces hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in astrocytes in the adult mouse brain cortex. VEGF expression can be controlled by transcription factors, such as the HIF-1α and estrogen-related receptor α (ERRα). However, the expression of ERRα is unchanged by KRGE in astrocytes of the mouse brain cortex. Instead, sirtuin 3 (SIRT3) expression is induced by KRGE in astrocytes. SIRT3 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that resides in the mitochondria and maintains mitochondrial homeostasis. Mitochondrial maintenance requires oxygen, and active mitochondria enhance oxygen consumption, resulting in hypoxia. The effects of SIRT3 on HIF-1α-mediated mitochondria functions induced by KRGE are not well established. We aimed to investigate the relationship between SIRT3 and HIF-1α in KRGE-treated normoxic astrocyte cells. Without changing the expression of the ERRα, small interfering ribonucleic acid targeted for SIRT3 in astrocytes substantially lowers the amount of KRGE-induced HIF-1α proteins. Reduced proline hydroxylase 2 (PHD2) expression restores HIF-1α protein levels in SIRT3-depleted astrocytes in normoxic cells treated with KRGE. The translocation of outer mitochondrial membranes 22 (Tom22) and Tom20 is controlled by the SIRT3-HIF-1α axis, which is activated by KRGE. KRGE-induced Tom22 increased oxygen consumption and mitochondrial membrane potential, as well as HIF-1α stability through PHD2. Taken together, in normoxic astrocytes, KRGE-induced SIRT3 activated the Tom22-HIF-1α circuit by increasing oxygen consumption in an ERRα-independent manner.
Collapse
Affiliation(s)
- Hyungsu Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Sunhong Moon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Dohyung Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Jinhong Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| |
Collapse
|
22
|
Jung E, Kim YE, Jeon HS, Yoo M, Kim M, Kim YM, Koh SH, Choi YK. Chronic hypoxia of endothelial cells boosts HIF-1α-NLRP1 circuit in Alzheimer's disease. Free Radic Biol Med 2023:S0891-5849(23)00427-6. [PMID: 37245530 DOI: 10.1016/j.freeradbiomed.2023.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Cerebral microvasculature of patients with Alzheimer's disease (AD) exhibits reduced capillary diameter and impaired blood flow. Molecular mechanisms of ischemic vessels affecting AD progressions have not been well established yet. In the present study, we found that in vivo triple (PS1M146V, APPswe, tauP301L) transgenic AD mouse model (3x-Tg AD) brains and retinas showed hypoxic vessels expressing hypoxyprobe and hypoxia inducible factor-1α (HIF-1α). To mimic in vivo hypoxic vessels, we used in vitro oxygen-glucose deprivation (OGD)-treated endothelial cells. HIF-1α protein was increased through reactive oxygen species (ROS) producing NADPH oxidases (NOX) (i.e., Nox2, Nox4). OGD-induced HIF-1α upregulated Nox2 and Nox4, demonstrating crosstalk between HIF-1α and NOX (i.e., Nox2, Nox4). Interestingly, NLR family pyrin domain containing 1 (NLRP1) protein was promoted by OGD, and such effect was blocked by downregulation of Nox4 and HIF-1α. Knockdown of NLRP1 also diminished OGD-mediated protein levels of Nox2, Nox4, and HIF-1α in human brain microvascular endothelial cells. These results showed interplay among HIF-1α, Nox4 and NLRP1 in OGD-treated endothelial cells. Expression of NLRP3 was not detected well in hypoxic endothelial cells of 3x-Tg AD retinas or OGD-treated endothelial cells. Instead, hypoxic endothelial cells of 3x-Tg AD brains and retinas markedly expressed NLRP1, the adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and interleukin-1β (IL-1β). Taken together, our results suggest that AD brains and retinas can trigger chronic hypoxia especially in microvascular endothelial cells, consequently leading to NLRP1 inflammasome formation and upregulation of ASC-caspase-1-IL-1β cascades. In addition, NLRP1 can stimulate HIF-1α expression and form HIF-1α-NLRP1 circuit. These consequences might further destroy vascular system in AD.
Collapse
Affiliation(s)
- Eunyoung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ye Eun Kim
- Department of Neurology, Hanyang University Guri Hospital, Guri, 11923, Republic of Korea
| | - Hui Su Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Myeongjong Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Minsu Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, 24341, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri, 11923, Republic of Korea.
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
23
|
Escobedo SE, McGovern SE, Jauregui-Lozano JP, Stanhope SC, Anik P, Singhal K, DeBernardis R, Weake VM. Targeted RNAi screen identifies transcriptional mechanisms that prevent premature degeneration of adult photoreceptors. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2023; 1:1187980. [PMID: 37901602 PMCID: PMC10603763 DOI: 10.3389/freae.2023.1187980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Aging is associated with a decline in visual function and increased prevalence of ocular disease, correlating with changes in the transcriptome and epigenome of cells in the eye. Here, we sought to identify the transcriptional mechanisms that are necessary to maintain photoreceptor viability and function during aging. To do this, we performed a targeted photoreceptor-specific RNAi screen in Drosophila to identify transcriptional regulators whose knockdown results in premature, age-dependent retinal degeneration. From an initial set of 155 RNAi lines each targeting a unique gene and spanning a diverse set of transcription factors, chromatin remodelers, and histone modifiers, we identified 18 high-confidence target genes whose decreased expression in adult photoreceptors leads to premature and progressive retinal degeneration. These 18 target genes were enriched for factors involved in the regulation of transcription initiation, pausing, and elongation, suggesting that these processes are essential for maintaining the health of aging photoreceptors. To identify the genes regulated by these factors, we profiled the photoreceptor transcriptome in a subset of lines. Strikingly, two of the 18 target genes, Spt5 and domino, show similar changes in gene expression to those observed in photoreceptors with advanced age. Together, our data suggest that dysregulation of factors involved in transcription initiation and elongation plays a key role in shaping the transcriptome of aging photoreceptors. Further, our findings indicate that the age-dependent changes in gene expression not only correlate but might also contribute to an increased risk of retinal degeneration.
Collapse
Affiliation(s)
- Spencer E. Escobedo
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Sarah E. McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | | | - Sarah C. Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Paul Anik
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Kratika Singhal
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Ryan DeBernardis
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
24
|
Jauregui-Lozano J, McGovern SE, Bakhle KM, Hagins AC, Weake VM. Establishing the contribution of active histone methylation marks to the aging transcriptional landscape of Drosophila photoreceptors. Sci Rep 2023; 13:5105. [PMID: 36991154 PMCID: PMC10060402 DOI: 10.1038/s41598-023-32273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Studies in multiple organisms have shown that aging is accompanied by several molecular phenotypes that include dysregulation of chromatin. Since chromatin regulates DNA-based processes such as transcription, alterations in chromatin modifications could impact the transcriptome and function of aging cells. In flies, as in mammals, the aging eye undergoes changes in gene expression that correlate with declining visual function and increased risk of retinal degeneration. However, the causes of these transcriptome changes are poorly understood. Here, we profiled chromatin marks associated with active transcription in the aging Drosophila eye to understand how chromatin modulates transcriptional outputs. We found that both H3K4me3 and H3K36me3 globally decrease across all actively expressed genes with age. However, we found no correlation with changes in differential gene expression. Downregulation of the H3K36me3 methyltransferase Set2 in young photoreceptors revealed significant changes in splicing events that overlapped significantly with those observed in aging photoreceptors. These overlapping splicing events impacted multiple genes involved in phototransduction and neuronal function. Since proper splicing is essential for visual behavior, and because aging Drosophila undergo a decrease in visual function, our data suggest that H3K36me3 could play a role in maintaining visual function in the aging eye through regulating alternative splicing.
Collapse
Affiliation(s)
- Juan Jauregui-Lozano
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
- University of California San Diego, San Diego, CA, 92093, USA
| | - Sarah E McGovern
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Kimaya M Bakhle
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Arrianna C Hagins
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
25
|
Yang X, Huang Z, Xu M, Chen Y, Cao M, Yi G, Fu M. Autophagy in the retinal neurovascular unit: New perspectives into diabetic retinopathy. J Diabetes 2023; 15:382-396. [PMID: 36864557 PMCID: PMC10172025 DOI: 10.1111/1753-0407.13373] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most prevalent retinal disorders worldwide, and it is a major cause of vision impairment in individuals of productive age. Research has demonstrated the significance of autophagy in DR, which is a critical intracellular homeostasis mechanism required for the destruction and recovery of cytoplasmic components. Autophagy maintains the physiological function of senescent and impaired organelles under stress situations, thereby regulating cell fate via various signals. As the retina's functional and fundamental unit, the retinal neurovascular unit (NVU) is critical in keeping the retinal environment's stability and supporting the needs of retinal metabolism. However, autophagy is essential for the normal NVU structure and function. We discuss the strong association between DR and autophagy in this review, as well as the many kinds of autophagy and its crucial physiological activities in the retina. By evaluating the pathological changes of retinal NVU in DR and the latest advancements in the molecular mechanisms of autophagy that may be involved in the pathophysiology of DR in NVU, we seek to propose new ideas and methods for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Xiongyi Yang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Zexin Huang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Mei Xu
- The Second People's Hospital of Jingmen, Jingmen, Hubei, People's Republic of China
| | - Yanxia Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, P. R. China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
26
|
Skowronska-Krawczyk D. Hallmarks of Aging: Causes and Consequences. AGING BIOLOGY 2023; 1:20230011. [PMID: 38274125 PMCID: PMC10809922 DOI: 10.59368/agingbio.20230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In a recent review article published in Cell, López-Otín and colleagues conducted an exhaustive literature review and described 12 hallmarks of aging. The updated model of aging comprehensively captures the key characteristics of the aging phenotype and incorporates new pathways that play a crucial role in age-related processes. Although the updated hallmarks of aging provide a useful framework for describing the phenotype of aging, aging itself is a result of mechanistically complex and interrelated processes that happen during the lifespan of the organism. Here, I propose to shift the focus from a systematic description and categorization of the hallmarks of aging to a model that separates the early, molecular origins of changes from cellular and tissue responses and represents the sequential and causative character of changes in aging. The proposed model aims to prompt discussion among the aging research community, guide future efforts in the field, and provide new ideas for investigation.
Collapse
Affiliation(s)
- Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
27
|
Malek G, Campisi J, Kitazawa K, Webster C, Lakkaraju A, Skowronska-Krawczyk D. Does senescence play a role in age-related macular degeneration? Exp Eye Res 2022; 225:109254. [PMID: 36150544 PMCID: PMC10032649 DOI: 10.1016/j.exer.2022.109254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022]
Abstract
Advanced age is the most established risk factor for developing age-related macular degeneration (AMD), one of the leading causes of visual impairment in the elderly, in Western and developed countries. Similarly, after middle age, there is an exponential increase in pathologic molecular and cellular events that can induce senescence, traditionally defined as an irreversible loss of the cells' ability to divide and most recently reported to also occur in select post-mitotic and terminally differentiated cells, such as neurons. Together these facts raise the question as to whether or not cellular senescence, may play a role in the development of AMD. A number of studies have reported the effect of ocular-relevant inducers of senescence using primarily in vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must be considered. Fewer studies have explored the presence and/or impact of senescent cells in in vivo models that present with phenotypic features of AMD, leaving this an open field for further investigation. The goal of this review is to discuss current thoughts on the potential role of senescence in AMD development and progression, with consideration of the model systems used and their relevance to human disease.
Collapse
Affiliation(s)
- Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA, USA; Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Corey Webster
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
28
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
29
|
Choi YK. An Altered Neurovascular System in Aging-Related Eye Diseases. Int J Mol Sci 2022; 23:ijms232214104. [PMID: 36430581 PMCID: PMC9694120 DOI: 10.3390/ijms232214104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The eye has a complex and metabolically active neurovascular system. Repeated light injuries induce aging and trigger age-dependent eye diseases. Damage to blood vessels is related to the disruption of the blood-retinal barrier (BRB), altered cellular communication, disrupted mitochondrial functions, and exacerbated aggregated protein accumulation. Vascular complications, such as insufficient blood supply and BRB disruption, have been suggested to play a role in glaucoma, age-related macular degeneration (AMD), and Alzheimer's disease (AD), resulting in neuronal cell death. Neuronal loss can induce vision loss. In this review, we discuss the importance of the neurovascular system in the eye, especially in aging-related diseases such as glaucoma, AMD, and AD. Beneficial molecular pathways to prevent or slow down retinal pathologic processes will also be discussed.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
30
|
Antonelli G, Parravano M, Barbano L, Costanzo E, Bertelli M, Medori MC, Parisi V, Ziccardi L. Multimodal Study of PRPH2 Gene-Related Retinal Phenotypes. Diagnostics (Basel) 2022; 12:diagnostics12081851. [PMID: 36010202 PMCID: PMC9406607 DOI: 10.3390/diagnostics12081851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
PRPH2 gene mutations are frequently found in inherited retinal dystrophies (IRD) and are associated with a wide spectrum of clinical phenotypes. We studied 28 subjects affected by IRD carrying pathogenic PRPH2 mutations, belonging to 11 unrelated families. Functional tests (best-corrected visual acuity measurement, chromatic test, visual field, full-field, 30 Hz flicker, and multifocal electroretinogram), morphological retino-choroidal imaging (optical coherence tomography, optical coherence tomography angiography, and fundus autofluorescence), and clinical data were collected and analyzed. Common primary complaints, with onset in their 40s, were visual acuity reduction and abnormal dark adaptation. Visual acuity ranged from light perception to 20/20 Snellen. Visual field peripheral constriction and central scotoma were found. Chromatic sense was reduced in one third of patients. Electrophysiological tests were abnormal in most of the patients. Choroidal neovascular lesions were detected in five patients. Three novel PRPH2 variants were found in four different families. Based on the present multimodal study, we identified seven distinct PRPH2 phenotypes in 11 unrelated families carrying either different mutations or the same mutation, both within the same family or among them. Fundus autofluorescence modality turned out to be the most adequate imaging method for early recognition of this dystrophy, and the optical coherence tomography angiography was highly informative to promptly detect choroidal neovascularization, even in the presence of the extensive chorioretinal atrophy phenotype.
Collapse
Affiliation(s)
- Giulio Antonelli
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
| | - Mariacristina Parravano
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
- Correspondence: ; Tel.: +39-067-705-2963
| | - Lucilla Barbano
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
| | - Eliana Costanzo
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
| | - Matteo Bertelli
- MAGI’S LAB, Via Delle Maioliche 57/D, 38068 Rovereto, Italy; (M.B.); (M.C.M.)
- MAGI EUREGIO, Via Maso Delle Pieve 60/A, 39100 Bolzano, Italy
- MAGISNAT, Atlanta Tech Park, 107 Technology, Parkway, Peachtree Corners, GA 30092, USA
| | - Maria Chiara Medori
- MAGI’S LAB, Via Delle Maioliche 57/D, 38068 Rovereto, Italy; (M.B.); (M.C.M.)
| | - Vincenzo Parisi
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
| | - Lucia Ziccardi
- IRCCS—Fondazione Bietti, Via Livenza 3, 00198 Rome, Italy; (G.A.); (L.B.); (E.C.); (V.P.); (L.Z.)
| |
Collapse
|
31
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
32
|
Peng Q, Tseng RMWW, Tham YC, Cheng CY, Rim TH. Detection of Systemic Diseases From Ocular Images Using Artificial Intelligence: A Systematic Review. Asia Pac J Ophthalmol (Phila) 2022; 11:126-139. [PMID: 35533332 DOI: 10.1097/apo.0000000000000515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Despite the huge investment in health care, there is still a lack of precise and easily accessible screening systems. With proven associations to many systemic diseases, the eye could potentially provide a credible perspective as a novel screening tool. This systematic review aims to summarize the current applications of ocular image-based artificial intelligence on the detection of systemic diseases and suggest future trends for systemic disease screening. METHODS A systematic search was conducted on September 1, 2021, using 3 databases-PubMed, Google Scholar, and Web of Science library. Date restrictions were not imposed and search terms covering ocular images, systemic diseases, and artificial intelligence aspects were used. RESULTS Thirty-three papers were included in this systematic review. A spectrum of target diseases was observed, and this included but was not limited to cardio-cerebrovascular diseases, central nervous system diseases, renal dysfunctions, and hepatological diseases. Additionally, one- third of the papers included risk factor predictions for the respective systemic diseases. CONCLUSIONS Ocular image - based artificial intelligence possesses potential diagnostic power to screen various systemic diseases and has also demonstrated the ability to detect Alzheimer and chronic kidney diseases at early stages. Further research is needed to validate these models for real-world implementation.
Collapse
Affiliation(s)
- Qingsheng Peng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Clinical and Translational Sciences Program, Duke-NUS Medical School, Singapore
| | | | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Tyler Hyungtaek Rim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| |
Collapse
|
33
|
Zouache MA. Variability in Retinal Neuron Populations and Associated Variations in Mass Transport Systems of the Retina in Health and Aging. Front Aging Neurosci 2022; 14:778404. [PMID: 35283756 PMCID: PMC8914054 DOI: 10.3389/fnagi.2022.778404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is associated with a broad range of visual impairments that can have dramatic consequences on the quality of life of those impacted. These changes are driven by a complex series of alterations affecting interactions between multiple cellular and extracellular elements. The resilience of many of these interactions may be key to minimal loss of visual function in aging; yet many of them remain poorly understood. In this review, we focus on the relation between retinal neurons and their respective mass transport systems. These metabolite delivery systems include the retinal vasculature, which lies within the inner portion of the retina, and the choroidal vasculature located externally to the retinal tissue. A framework for investigation is proposed and applied to identify the structures and processes determining retinal mass transport at the cellular and tissue levels. Spatial variability in the structure of the retina and changes observed in aging are then harnessed to explore the relation between variations in neuron populations and those seen among retinal metabolite delivery systems. Existing data demonstrate that the relation between inner retinal neurons and their mass transport systems is different in nature from that observed between the outer retina and choroid. The most prominent structural changes observed across the eye and in aging are seen in Bruch's membrane, which forms a selective barrier to mass transfers at the interface between the choroidal vasculature and the outer retina.
Collapse
Affiliation(s)
- Moussa A. Zouache
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Escobedo SE, Stanhope SC, Dong Z, Weake VM. Aging and Light Stress Result in Overlapping and Unique Gene Expression Changes in Photoreceptors. Genes (Basel) 2022; 13:264. [PMID: 35205309 PMCID: PMC8872477 DOI: 10.3390/genes13020264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Advanced age is one of the leading risk factors for vision loss and eye disease. Photoreceptors are the primary sensory neurons of the eye. The extended photoreceptor cell lifespan, in addition to its high metabolic needs due to phototransduction, makes it critical for these neurons to continually respond to the stresses associated with aging by mounting an appropriate gene expression response. Here, we sought to untangle the more general neuronal age-dependent transcriptional signature of photoreceptors with that induced by light stress. To do this, we aged flies or exposed them to various durations of blue light, followed by photoreceptor nuclei-specific transcriptome profiling. Using this approach, we identified genes that are both common and uniquely regulated by aging and light induced stress. Whereas both age and blue light induce expression of DNA repair genes and a neuronal-specific signature of death, both conditions result in downregulation of phototransduction. Interestingly, blue light uniquely induced genes that directly counteract the overactivation of the phototransduction signaling cascade. Lastly, unique gene expression changes in aging photoreceptors included the downregulation of genes involved in membrane potential homeostasis and mitochondrial function, as well as the upregulation of immune response genes. We propose that light stress contributes to the aging transcriptome of photoreceptors, but that there are also other environmental or intrinsic factors involved in age-associated photoreceptor gene expression signatures.
Collapse
Affiliation(s)
- Spencer E. Escobedo
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; (S.E.E.); (S.C.S.); (Z.D.)
| | - Sarah C. Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; (S.E.E.); (S.C.S.); (Z.D.)
| | - Ziyu Dong
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; (S.E.E.); (S.C.S.); (Z.D.)
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; (S.E.E.); (S.C.S.); (Z.D.)
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
35
|
Jauregui-Lozano J, Hall H, Stanhope SC, Bakhle K, Marlin MM, Weake VM. The Clock:Cycle complex is a major transcriptional regulator of Drosophila photoreceptors that protects the eye from retinal degeneration and oxidative stress. PLoS Genet 2022; 18:e1010021. [PMID: 35100266 PMCID: PMC8830735 DOI: 10.1371/journal.pgen.1010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aging eye experiences physiological changes that include decreased visual function and increased risk of retinal degeneration. Although there are transcriptomic signatures in the aging retina that correlate with these physiological changes, the gene regulatory mechanisms that contribute to cellular homeostasis during aging remain to be determined. Here, we integrated ATAC-seq and RNA-seq data to identify 57 transcription factors that showed differential activity in aging Drosophila photoreceptors. These 57 age-regulated transcription factors include two circadian regulators, Clock and Cycle, that showed sustained increased activity during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15-20% of genes including key components of the phototransduction machinery and many eye-specific transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors leads to changes in activity of 37 transcription factors and causes a progressive decrease in global levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent retinal degeneration and increased oxidative stress, independent of light exposure. Together, our data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the aging eye by directing gene regulatory networks that maintain expression of the phototransduction machinery and counteract oxidative stress.
Collapse
Affiliation(s)
- Juan Jauregui-Lozano
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Hana Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Sarah C. Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Kimaya Bakhle
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Makayla M. Marlin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|