1
|
Webb J, Zhao M, Campbell AH, Paul NA, Cummins SF, Eamens AL. The microRNA Pathway of Macroalgae: Its Similarities and Differences to the Plant and Animal microRNA Pathways. Genes (Basel) 2025; 16:442. [PMID: 40282402 DOI: 10.3390/genes16040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
In plants and animals, the microRNA (miRNA) class of small regulatory RNA plays an essential role in controlling gene expression in all aspects of development, to respond to environmental stress, or to defend against pathogen attack. This well-established master regulatory role for miRNAs has led to each protein-mediated step of both the plant and animal miRNA pathways being thoroughly characterized. Furthermore, this degree of characterization has led to the development of a suite of miRNA-based technologies for gene expression manipulation for fundamental research or for use in industrial or medical applications. In direct contrast, molecular research on the miRNA pathway of macroalgae, specifically seaweeds (marine macroalgae), remains in its infancy. However, the molecular research conducted to date on the seaweed miRNA pathway has shown that it shares functional features specific to either the plant or animal miRNA pathway. In addition, of the small number of seaweed species where miRNA data is available, little sequence conservation of individual miRNAs exists. These preliminary findings show the pressing need for substantive research into the seaweed miRNA pathway to advance our current understanding of this essential gene expression regulatory process. Such research will also generate the knowledge required to develop novel miRNA-based technologies for use in seaweeds. In this review, we compare and contrast the seaweed miRNA pathway to those well-characterized pathways of plants and animals and outline the low degree of miRNA sequence conservation across the polyphyletic group known as the seaweeds.
Collapse
Affiliation(s)
- Jessica Webb
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Min Zhao
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Alexandra H Campbell
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Nicholas A Paul
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Scott F Cummins
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Andrew L Eamens
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
2
|
Hussein A, Abdelsattar M, Radwan KH, Osman E, Abdeldaym EA, Abdelhadi AA, Abdallah NA. Streamlining the defense mechanism involving miRNA/mRNA and phytohormones during mycorrhiza-fusarium infecting tomato roots. BRAZ J BIOL 2025; 84:e280450. [PMID: 40197894 DOI: 10.1590/1519-6984.280450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 04/10/2025] Open
Abstract
This study was carried out to identify the relationship between miRNAs/ targets and phytohormone-related genes associated with Rhizophagus irregularis/ F. oxysporum f. sp. lycopersici (Fol) interaction through post-infection of tomato roots at different stages. Furthermore, to address the role of miRNA-mediated families in regulating plant hormone crosstalk during plant-microbe interactions, including salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), auxin (AUX) and 5 ethylene (ET). In this study, Expression levels of ethylene-responsive genes reflect antagonism between arbuscular mycorrhizal fungi (AMF) and ET, re-modulating immunoregulatory capacity in tomato. On the other hand, our data reinforce that overexpression of AP2 and ERF1 delay senescence in Fol-infected tomato plants by downregulating the expression level of SPL3. Moreover, a balance between TCP4, miR164, and miR319b transcript levels suggests that their interaction attenuates senescence under AMF infection. Measurements of phytohormone production under AMF/Fol infection at 30 days post-inoculation (dpi) showed significantly lower hormone production in the resistant genotype (Heinz 'Hz') compared to the susceptible genotype (Castle Rock 'CR') by 36, 17, and 14% for ET, ABA, and JA, respectively. These findings potentially imply that modifications in Heinz's hormonal signaling are prompting host changes, which lead to decreased phytohormone levels. This study provides an applied basis for further research on the molecular mechanism and challenges associated with the continuous cropping of tomato by R. irregulari under the deleterious effects of Fusarium on late stages of root infection.
Collapse
Affiliation(s)
- A Hussein
- Agricultural Research Center - ARC, Agricultural Genetic Engineering Research Institute - AGERI, Plant Molecular Biology Department, Giza, Egypt
| | - M Abdelsattar
- Agricultural Research Center - ARC, Agricultural Genetic Engineering Research Institute - AGERI, Plant Molecular Biology Department, Giza, Egypt
| | - K H Radwan
- Agricultural Research Center - ARC, Agricultural Genetic Engineering Research Institute - AGERI, Microbial Molecular Biology Department, Giza, Egypt
- Academy of Scientific Research and Technology - ASRT, National Biotechnology Network of Expertise, Egypt
| | - E Osman
- Cairo University, Faculty of Agriculture, Department of Genetics, Giza, Egypt
| | - E A Abdeldaym
- Cairo University, Faculty of Agriculture, Department of Vegetable Crops, Giza, Egypt
| | - A A Abdelhadi
- Academy of Scientific Research and Technology - ASRT, National Biotechnology Network of Expertise, Egypt
- Cairo University, Faculty of Agriculture, Department of Genetics, Giza, Egypt
| | - N A Abdallah
- Academy of Scientific Research and Technology - ASRT, National Biotechnology Network of Expertise, Egypt
- Cairo University, Faculty of Agriculture, Department of Genetics, Giza, Egypt
| |
Collapse
|
3
|
Zhang J, Yin R, Xue Y, Qin R, Wang X, Wu S, Zhu J, Li YS, Zhang C, Wei Y. Advances in the study of epithelial mesenchymal transition in cancer progression: Role of miRNAs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:69-90. [PMID: 40185337 DOI: 10.1016/j.pbiomolbio.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Epithelial-mesenchymal transition (EMT) has been extensively studied for its roles in tumor metastasis, the generation and maintenance of cancer stem cells and treatment resistance. Epithelial mesenchymal plasticity allows cells to switch between various states within the epithelial-mesenchymal spectrum, resulting in a mixed epithelial/mesenchymal phenotypic profile. This plasticity underlies the acquisition of multiple malignant features during cancer progression and poses challenges for EMT in tumors. MicroRNAs (miRNAs) in the microenvironment affect numerous signaling processes through diverse mechanisms, influencing physiological activities. This paper reviews recent advances in EMT, the role of different hybrid states in tumor progression, and the important role of miRNAs in EMT. Furthermore, it explores the relationship between miRNA-based EMT therapies and their implications for clinical practice, discussing how ongoing developments may enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Jia Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| | - Yongwang Xue
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Rong Qin
- Department of Medical Oncology, Jiangsu University Affiliated People's Hospital, Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Xuequan Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shuming Wu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Jun Zhu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yan-Shuang Li
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| |
Collapse
|
4
|
Jeyaraj A, Liu S, Han R, Zhao Y, Elango T, Wang Y, Chen X, Zhuang J, Li X. The regulation of auxin receptor gene CsAFB2 by csn-miR393a confers resistance against Colletotrichum gloeosporioides in tea plants. MOLECULAR PLANT PATHOLOGY 2025; 26:e13499. [PMID: 40151091 PMCID: PMC11950636 DOI: 10.1111/mpp.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 03/29/2025]
Abstract
Anthracnose, a severe disease caused by Colletotrichum, affects diverse crops and leads to significant economic losses through pronounced fruit/leaf lesions. MicroRNAs (miRNAs) play crucial roles in modulating gene expression in response to disease resistance, defence responses and plant immunity. However, the regulatory mechanisms of miRNAs in responses to Colletotrichum gloeosporioides remain unknown in tea plants. Our study revealed that csn-miR393a targets auxin receptor gene CsAFB2 during resistance to C. gloeosporioides in tea plants by comparing the resistant cultivar Zhongcha108 to the susceptible cultivar Longjing43. Through Nicotiana benthamiana leaf co-transformation assays, we demonstrated that csn-miR393a suppresses the expression of CsAFB2, and csn-miR393a target mimic blocks the function of csn-miR393a, leading to increase in the expression of CsAFB2. Repression of transcripts in tea leaves by antisense oligonucleotides demonstrated that csn-miR393a negatively affects the tea plant defence by regulating reactive oxygen species homoeostasis, PR gene expression and catechin accumulation. To further validate the regulatory mechanisms of csn-miR393a, we developed transgenic tea plants overexpressing CsAFB2, resulting in enhanced resistance responses against C. gloeosporioides. Additionally, transgenic N. benthamiana lines overexpressing a csn-miR393a target mimic provided further evidence that csn-miR393a negatively regulates the tea plant defence response against C. gloeosporioides by suppressing CsAFB2. Therefore, manipulating csn-miR393a or its target gene, CsAFB2, has the potential to strengthen the tea plant's resistance against tea anthracnose.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Shujing Liu
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Rui Han
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yuxin Zhao
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | | | - Yuhua Wang
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xuan Chen
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jing Zhuang
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xinghui Li
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
5
|
Swain SP, Bisht N, Kumar S. Comprehensive study of tRNA-derived fragments in plants for biotic stress responses. Funct Integr Genomics 2025; 25:70. [PMID: 40131555 DOI: 10.1007/s10142-025-01576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Plant growth and development are often disrupted by biological stressors as they interfere with the regulatory pathways. Among the key regulators, transfer-RNA-derived fragments (tRFs) have emerged as key players in plant defense mechanisms. While tRF-mediated responses to abiotic stress have been well studied, their role in biotic stress remains less understood, as various stressors may elicit different regulatory systems. In this study, tRF-mediated biotic responses in three species, viz. Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum are investigated using in-silico approaches. Analysis of predicted tRFs across various biotic stress conditions reveals specific interactions with mRNA targets, microRNAs (miRNAs), and transposable elements (TEs), highlighting their regulatory significance in plant adaptation mechanisms. These findings provide new insights into tRF-mediated stress responses and establish a computational framework for further functional studies. The study's database is publicly available at http://www.nipgr.ac.in/PbtRFdb .
Collapse
Affiliation(s)
- Supriya P Swain
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niyati Bisht
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Chen X, Shao T, Dong W, Lin J, Dai L, Ma Y, Zhou Z, Long X. Identification and Characterization of Copper-Responsive miRNAs and Their Target Genes in Jerusalem Artichoke. PLANTS (BASEL, SWITZERLAND) 2025; 14:955. [PMID: 40265832 PMCID: PMC11945104 DOI: 10.3390/plants14060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
microRNAs (miRNAs) are key regulators of gene expression in plants, significantly contributing to various biological processes and stress responses. While their roles have been extensively studied in Arabidopsis thaliana and other model plants, the response of miRNAs to copper (Cu) stress in Jerusalem artichoke remains unknown. This study addresses this gap by investigating Cu-responsive miRNAs and their regulatory roles in Jerusalem artichoke under Cu stress. Through small RNA library analysis, six miRNA families-miR168, miR394, miR397, miR398, miR408, and miR858-were identified in Cu-stressed and control plants of the Jerusalem artichoke cv. NY1. These miRNAs possess characteristic stem-loop precursor structures and detectable miRNA* sequences, with miR858 having unusually long precursors (1524-6448 nt). This study outlines a framework for miRNA-mediated Cu stress responses in Jerusalem artichoke, highlighting the roles of both well-established Cu-responsive miRNAs (miR397, miR398, and miR408) and other conserved miRNAs (miR168, miR394, and miR858). These miRNAs are suggested to influence Cu stress adaptation by modulating target genes involved in essential metabolic, physiological, and morphological processes, offering new insights into miRNA-mediated stress regulation in plants.
Collapse
Affiliation(s)
- Xi Chen
- Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 211800, China
| | - Tianyun Shao
- Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 211800, China
| | - Wenhan Dong
- Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 211800, China
| | - Jiayan Lin
- Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 211800, China
| | - Lixiang Dai
- Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 211800, China
| | - Yilong Ma
- Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 211800, China
| | - Zhaosheng Zhou
- Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 211800, China
| | - Xiaohua Long
- Institute of Crop Sciences, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| |
Collapse
|
7
|
Diaz C, Ayobahan SU, Simon S, Zühl L, Schiermeyer A, Eilebrecht E, Eilebrecht S. Classification of and detection techniques for RNAi-induced effects in GM plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1535384. [PMID: 40123947 PMCID: PMC11925957 DOI: 10.3389/fpls.2025.1535384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/08/2025] [Indexed: 03/25/2025]
Abstract
RNA interference (RNAi) is a biotechnological tool used for gene silencing in plants, with both endogenous and exogenous applications. Endogenous approaches, such as host-induced gene silencing (HIGS), involve genetically modified (GM) plants, while exogenous methods include spray-induced gene silencing (SIGS). The RNAi mechanism hinges on the introduction of double-stranded RNA (dsRNA), which is processed into short interfering RNAs (siRNAs) that degrade specific messenger RNAs (mRNAs). However, unintended effects on non-target organisms and GM plants are a concern due to sequence homologies or siRNA-induced epigenetic changes. Regulatory bodies such as the EPA and EFSA emphasize the need for comprehensive risk assessments. Detecting unintended effects is complex, often relying on bioinformatic tools and untargeted analyses like transcriptomics and metabolomics, though these methods require extensive genomic data. This review aims to classify mechanisms of RNAi effects induced by short interfering RNA from different sources in plants and to identify technologies that can be used to detect these effects. In addition, practical case studies are summarized and discussed in which previously unintended RNAi effects in genetically modified plants have been investigated. Current literature is limited but suggests RNAi is relatively specific, with few unintended effects observed in GM crops. However, further studies are needed to fully understand and mitigate potential risks, particularly those related to transcriptional gene silencing (TGS) mechanisms, which are less predictable than post-transcriptional gene silencing (PTGS). Particularly the application of untargeted approaches such as small RNA sequencing and transcriptomics is recommended for thorough and comprehensive risk assessments.
Collapse
Affiliation(s)
- Cecilia Diaz
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Steve U. Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Samson Simon
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Luise Zühl
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Andreas Schiermeyer
- Department Plant Sciences & Bio-Hybrids, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
8
|
Ashoori N, Fotovat R, MohseniFard E. Effects of cold and methyl jasmonate on the expression of miRNAs and target genes in response to vernalisation in two wheat cultivars ( Triticum aestivum L.). FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24130. [PMID: 40146734 DOI: 10.1071/fp24130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Wheat undergoes significant physiological changes during winter, driven by processes such as cold acclimation and vernalisation that are regulated by gene expression and phytohormones. We investigate the effects of methyl jasmonate (MeJA) and cold treatments on the expression of three specific miRNAs and the associated target genes in Baz spring wheat and Norstar winter wheat using qRT-PCR analysis. Our objective was to examine the impact of MeJA on vernalisation and cold adaptation in these genotypes. Results showed that MeJA had no significant impact on vernalisation and acclimation in Baz, while the compound decreased these traits in Norstar. Additionally, the expression of miRNAs in Norstar was significantly reduced after a 2-day cold treatment, particularly for miR156 and further reduced after 14days for miR172 and miR319 . In contrast, Baz showed varied gene expression responses, with an increase in miRNA levels after the 14-day cold treatment. MeJA combined with a 2-day cold treatment suppressed the expression of SPL , AP2 and MYB3 target genes, with the most pronounced suppression observed in SPL . However, AP2 was induced after 14-day cold treatment in both cultivars. The study highlighted an inverse relationship between miRNAs and target genes under vernalisation conditions, underscoring the complex regulatory interactions between genotype, miRNAs and the associated target genes. Therefore, these findings provide new insights into how MeJA and cold treatments modulate miRNA and gene expression, enhancing our understanding of wheat's adaptive response mechanisms.
Collapse
Affiliation(s)
- Nooshin Ashoori
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, 45371-38791, Zanjan, Iran
| | - Reza Fotovat
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, 45371-38791, Zanjan, Iran
| | - Ehsan MohseniFard
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, 45371-38791, Zanjan, Iran
| |
Collapse
|
9
|
Cisneros AE, Alarcia A, Llorens-Gámez JJ, Puertes A, Juárez-Molina M, Primc A, Carbonell A. Syn-tasiR-VIGS: virus-based targeted RNAi in plants by synthetic trans-acting small interfering RNAs derived from minimal precursors. Nucleic Acids Res 2025; 53:gkaf183. [PMID: 40105245 PMCID: PMC11920798 DOI: 10.1093/nar/gkaf183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Synthetic trans-acting small interfering RNAs (syn-tasiRNAs) are 21-nucleotide (nt) small RNAs designed to silence plant transcripts with high specificity. Their use as biotechnological tools for functional genomics and crop improvement is limited by the need to transgenically express long TAS precursors to produce syn-tasiRNAs in vivo. Here, we show that authentic and highly effective syn-tasiRNAs can be produced from minimal, non-TAS precursors consisting of a 22-nt endogenous microRNA target site, an 11-nt spacer, and the 21 nt syn-tasiRNA sequence(s). These minimal precursors, when transgenically expressed in Arabidopsis thaliana and Nicotiana benthamiana, generated highly phased syn-tasiRNAs that silenced one or multiple plant genes with high efficacy. Remarkably, minimal but not full-length TAS precursors produced authentic syn-tasiRNAs and induced widespread gene silencing in N. benthamiana when expressed from an RNA virus, which can be applied by spraying infectious crude extracts onto leaves in a transgene-free manner. This strategy, named syn-tasiRNA-based virus-induced gene silencing (syn-tasiR-VIGS), was further used to vaccinate plants against a pathogenic virus, resulting in complete plant immunization. Our results reveal that syn-tasiRNA precursors can be significantly shortened without compromising silencing efficacy, and that syn-tasiR-VIGS represents a versatile, scalable, and nontransgenic platform for precision RNA interference and antiviral vaccination in plants.
Collapse
Affiliation(s)
- Adriana E Cisneros
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Ana Alarcia
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Juan José Llorens-Gámez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Ana Puertes
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| | - María Juárez-Molina
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Anamarija Primc
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
10
|
Palani T, Selvakumar D, Nathan B, Shanmugam V, Duraisamy K, Mannu J. Deciphering the impact of microRNAs in plant biology: a review of computational insights and experimental validation. Mol Biol Rep 2025; 52:209. [PMID: 39913060 DOI: 10.1007/s11033-025-10273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Exploring the complex world of microRNA (miRNA) biogenesis and functions in plants is essential for understanding their diverse regulatory mechanisms. This review highlights the processes involved in miRNA biogenesis and their crucial roles in growth and development of plant, stress responses, and nutrient homeostasis. miRNAs play a central role in various developmental processes, including the transition from the juvenile to adult stage, the growth of shoot apical meristem, leaf and floral morphogenesis, and the determination of flowering time. By presenting the current state of research, we focus on the vital role of computational tools and databases in deciphering the regulatory networks controlled by miRNAs, which helps us navigate the intricate world of plant biology. Furthermore, it stresses the importance of experimental validation techniques in confirming computational predictions, ensuring that miRNA research is reliable and robust. As the field continues to grow, this review emphasizes the urgent need for integrated approaches, to deepen our knowledge of plant miRNA biology and its implications. These insights will pave the way for advancements in crop improvement, stress resilience, and biotechnological innovations.
Collapse
Affiliation(s)
- Tamilarasi Palani
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Divya Selvakumar
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Bharathi Nathan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Varanavasiappan Shanmugam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kavithamani Duraisamy
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
11
|
Admoni Y, Fridrich A, Weavers PK, Aharoni R, Razin T, Salinas-Saavedra M, Rabani M, Frank U, Moran Y. miRNA-target complementarity in cnidarians resembles its counterpart in plants. EMBO Rep 2025; 26:836-859. [PMID: 39747665 PMCID: PMC11811051 DOI: 10.1038/s44319-024-00350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/30/2023] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
microRNAs (miRNAs) are important post-transcriptional regulators that activate silencing mechanisms by annealing to mRNA transcripts. While plant miRNAs match their targets with nearly-full complementarity leading to mRNA cleavage, miRNAs in most animals require only a short sequence called 'seed' to inhibit target translation. Recent findings showed that miRNAs in cnidarians, early-branching metazoans, act similarly to plant miRNAs, by exhibiting full complementarity and target cleavage; however, it remained unknown if seed-based regulation was possible in cnidarians. Here, we investigate the miRNA-target complementarity requirements for miRNA activity in the cnidarian Nematostella vectensis. We show that bilaterian-like complementarity of seed-only or seed and supplementary 3' matches are insufficient for miRNA-mediated knockdown. Furthermore, miRNA-target mismatches in the cleavage site decrease knockdown efficiency. Finally, miRNA silencing of a target with three seed binding sites in the 3' untranslated region that mimics typical miRNA targeting was repressed in zebrafish but not in Nematostella and another cnidarian, Hydractinia symbiolongicarpus. Altogether, these results unravel striking similarities between plant and cnidarian miRNAs supporting a possible common evolutionary origin of miRNAs in plants and animals.
Collapse
Affiliation(s)
- Yael Admoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Paris K Weavers
- Center for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Talya Razin
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Miguel Salinas-Saavedra
- Center for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Michal Rabani
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Uri Frank
- Center for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
12
|
Liu S, Yang J, Zhang N, Si H. Genome-wide analysis of non-coding RNA reveals the role of a novel miR319c for tuber dormancy release process in potato. HORTICULTURE RESEARCH 2025; 12:uhae303. [PMID: 39949878 PMCID: PMC11822407 DOI: 10.1093/hr/uhae303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/21/2024] [Indexed: 02/16/2025]
Abstract
Tuber dormancy and sprouting are significant for potato cultivation, storage, and processing. Although the substantial role of microRNAs (miRNAs) in some biological processes has been recognized, the critical role of miRNA in breaking potato tuber dormancy is not well understood to date. In this investigation, we expand research on miRNA-mediated gene regulation in tuber dormancy release. In this work, 204 known and 192 novel miRNAs were identified. One hundred thirty-six differentially expressed miRNAs (DE-miRNAs) were also screened out, of which 56 DE-miRNAs were regulated by temperature during tuber dormancy release. Additionally, degradome sequencing revealed that 821 target genes for 202 miRNAs were discovered. Among them, 63 target genes and 48 miRNAs were predicted to be involved in plant hormone signaling pathways. This study used degradome sequencing, tobacco cotransformation system, and β-glucuronidase (GUS) staining technology to confirm that stu-miR319c can target StTCP26 and StTCP27 and effectively suppress their expression. The transgenic approach exhibited that stu-miR319c overexpressed tubers sprouted in advance, while silent expression of stu-miR319c showed delayed sprouting. Treatment of wild-type tubers with exogenous MeJA revealed that 1 mg/L MeJA significantly broke dormancy and enhanced potato sprouting ability. Furthermore, transgenic tubers revealed variance in jasmonic acid (JA) content and relative expression of genes associated with the JA synthesis pathway, including StAOC, StLOX2, and StLOX4, suggesting that the miR319c may participate in the JA pathway to regulate tuber dormancy release. In summary, our research offers evidence that miRNA regulates potato dormancy release and supports the idea that stu-miR319c is a unique epigenetic regulator for dormancy-sprouting transition in potatoes.
Collapse
Affiliation(s)
- Shengyan Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| |
Collapse
|
13
|
Mohamed AA, Wang PY, Bartel DP, Vos SM. The structural basis for RNA slicing by human Argonaute2. Cell Rep 2025; 44:115166. [PMID: 39932188 PMCID: PMC11893014 DOI: 10.1016/j.celrep.2024.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Argonaute (AGO) proteins associate with guide RNAs to form complexes that slice transcripts that pair to the guide. This slicing drives post-transcriptional gene silencing through RNA interference (RNAi), which is essential for many eukaryotes and the basis for new clinical therapies. Despite this importance, structural information on eukaryotic AGOs in a fully paired, slicing-competent conformation-hypothesized to be intrinsically unstable-has been lacking. Here, we present the cryogenic electron microscopy structure of a human AGO-guide complex bound to a fully paired target, revealing structural rearrangements that enable this conformation. Critically, the N domain of AGO rotates to allow the RNA full access to the central channel and forms contacts that license rapid slicing. Moreover, a conserved loop in the PIWI domain secures the RNA near the active site to enhance slicing rate and specificity. These results explain how AGO accommodates targets possessing pairing specificity typically observed in biological and clinical slicing substrates.
Collapse
Affiliation(s)
- Abdallah A Mohamed
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Peter Y Wang
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - David P Bartel
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA.
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
14
|
Hong UVT, Tamiru-Oli M, Hurgobin B, Lewsey MG. Genomic and cell-specific regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:35-51. [PMID: 39046316 PMCID: PMC11659185 DOI: 10.1093/jxb/erae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Opium poppy is a crop of great commercial value as a source of several opium alkaloids for the pharmaceutical industries including morphine, codeine, thebaine, noscapine, and papaverine. Most enzymes involved in benzylisoquinoline alkaloid (BIA) biosynthesis in opium poppy have been functionally characterized, and opium poppy currently serves as a model system to study BIA metabolism in plants. BIA biosynthesis in opium poppy involves two biosynthetic gene clusters associated respectively with the morphine and noscapine branches. Recent reports have shown that genes in the same cluster are co-expressed, suggesting they might also be co-regulated. However, the transcriptional regulation of opium poppy BIA biosynthesis is not well studied. Opium poppy BIA biosynthesis involves three cell types associated with the phloem system: companion cells, sieve elements, and laticifers. The transcripts and enzymes associated with BIA biosynthesis are distributed across cell types, requiring the translocation of key enzymes and pathway intermediates between cell types. Together, these suggest that the regulation of BIA biosynthesis in opium poppy is multilayered and complex, involving biochemical, genomic, and physiological mechanisms. In this review, we highlight recent advances in genome sequencing and single cell and spatial transcriptomics with a focus on how these efforts can improve our understanding of the genomic and cell-specific regulation of BIA biosynthesis. Such knowledge is vital for opium poppy genetic improvement and metabolic engineering efforts targeting the modulation of alkaloid yield and composition.
Collapse
Affiliation(s)
- Uyen Vu Thuy Hong
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Plant, Animal and Soil Sciences, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| | - Muluneh Tamiru-Oli
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Plant, Animal and Soil Sciences, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| | - Bhavna Hurgobin
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Plant, Animal and Soil Sciences, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| | - Mathew G Lewsey
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Plant, Animal and Soil Sciences, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence in Plants for Space, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
15
|
Khaksefidi RE, Chen W, Shen C, Langridge P, Tucker MR, Zhang D. The role of Ancestral MicroRNAs in grass inflorescence development. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154417. [PMID: 39754787 DOI: 10.1016/j.jplph.2024.154417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks. MicroRNAs (miRNAs) have emerged as fundamental modulators of gene expression at the transcriptional and/or post-transcriptional level in plant inflorescence development. First discovered more than three decades ago, miRNAs have proved to be revolutionary in advancing our mechanistic understanding of gene expression. This review highlights current knowledge of downstream target genes and pathways of some highly conserved miRNAs that regulate the maintenance, identity, and activity of inflorescence and floral meristems in economically and agriculturally important grass species, including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Furthermore, we summarize emerging regulatory networks of miRNAs and their targets to suggest new avenues and strategies for application of miRNAs as a tool to enhance crop yield and performance.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi Khaksefidi
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Weiwei Chen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Chaoqun Shen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peter Langridge
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Wheat Initiative, Julius Kühn Institute, 14195, Berlin, Germany
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Dabing Zhang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
16
|
Krivmane B, Ruņģis DE. Differential microRNA and Target Gene Expression in Scots Pine ( Pinus sylvestris L.) Needles in Response to Methyl Jasmonate Treatment. Genes (Basel) 2024; 16:26. [PMID: 39858573 PMCID: PMC11765084 DOI: 10.3390/genes16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background/objectives: Methyl jasmonate is a plant signaling molecule involved in a wide range of functions, including stress responses. This study investigates the relative differential expression of microRNAs and their target genes in response to methyl jasmonate treatment of Scots pine needles. Methods: A combined strategy of high-throughput sequencing and in silico prediction of potential target genes was implemented. Results: a total of 58 differentially expressed (DE) microRNAs (miRNAs) (43 up-regulated and 15 down-regulated), belonging to 29 miRNA families, were identified. The 41 DE miRNAs from 17 families were conifer-specific miRNA families-miR946, miR947, miR950, miR1312, miR1313, miR1314, miR3693, miR3107, miR11452, miR11466, miR11487, miR11490, miR11504, miR11511, miR11532, miR11544, and miR11551. The other DE miRNAs (miR159, miR164, miR169, miR396, miR397, miR398, miR408, miR535) were conserved miRNAs, which are also found in angiosperm species. Transcriptome analysis identified 389 gene transcripts with 562 miRNA-target sites targeted by 57 of the 58 DE miRNAs. Of these, 250 target genes with 138 different GO annotations were found for the 41 DE conifer-specific conserved miRNAs. Conclusions: The 26 DE miRNAs from 14 DE miRNA families, of which almost all (12 families, 24 miRNAs) are conifer specific, and were associated with 68 disease resistance and TMV resistance proteins, TIR-NBS-LRR, LRR receptor-like serine/threonine-protein kinase, putative CC-NBS-LRR protein, and putative NBS-LRR protein target transcripts with 29 target gene GO term descriptions. Some of the genes targeted by conifer-specific miRNAs have been previously reported to be targeted by other miRNAs in angiosperms, indicating that the miRNA-target gene regulation system can vary between species.
Collapse
Affiliation(s)
| | - Dainis Edgars Ruņģis
- Latvian State Forest Research Institute “Silava”, 111 Rigas St., LV-2169 Salaspils, Latvia;
| |
Collapse
|
17
|
Yang J, Lu X, Hu S, Yang X, Cao X. microRNA858 represses the transcription factor gene SbMYB47 and regulates flavonoid biosynthesis in Scutellaria baicalensis. PLANT PHYSIOLOGY 2024; 197:kiae607. [PMID: 39520698 DOI: 10.1093/plphys/kiae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRNAs) are noncoding endogenous single-stranded RNAs that regulate target gene expression by reducing their transcription and translation. Several miRNAs in plants function in secondary metabolism. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine that contains flavonoids (baicalin, wogonoside, and baicalein) as its main active ingredients. Although the S. baicalensis genome sequence has been published, information regarding its miRNAs is lacking. In this study, 12 small RNA libraries of different S. baicalensis tissues were compiled, including roots, stems, leaves, and flowers. A total of 129 miRNAs were identified, including 99 miRNAs from 27 miRNA families and 30 predicted miRNAs. Furthermore, 46 reliable target genes of 15 miRNA families were revealed using psRNATarget and confirmed by degradome sequencing. It was speculated that the microRNA858 (miR858)-SbMYB47 module might be involved in flavonoid biosynthesis. Transient assays in Nicotiana benthamiana leaves indicated that miR858 targets SbMYB47 and suppresses its expression. Artificial miRNA-mediated knockdown of miR858 and overexpression of SbMYB47 significantly increased the flavonoid content in S. baicalensis hairy roots, while SbMYB47 knockdown inhibited flavonoid accumulation. Yeast one-hybrid and dual-luciferase assays indicated that SbMYB47 directly binds to and activates the S. baicalensis phenylalanine ammonia-lyase 3 (SbPAL-3) and flavone synthase II (SbFNSⅡ-2) promoters. Our findings reveal the link between the miR858-SbMYB47 module and flavonoid biosynthesis, providing a potential strategy for the production of flavonoids with important pharmacological activities through metabolic engineering.
Collapse
Affiliation(s)
- Jiaxin Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
- Department of Pharmacy, Medicine School, Xi'an International University, Xi'an 710077, China
| | - Xiayang Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| | - Suying Hu
- Shaanxi Institute of Microbiology, Xi'an 710043, China
| | - Xiaozeng Yang
- Institute of Botany, Chinese of Academy Sciences, Beijing 100093, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
18
|
Ouyang W, Sun H, Wang Y. Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement. J Genet Genomics 2024:S1673-8527(24)00364-3. [PMID: 39716571 DOI: 10.1016/j.jgg.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species. These include previously novel structural RNA fragments as well as numerous cell- and tissue-specific sRNAs that are active during distinct developmental stages, thereby enhancing our understanding of the precise and dynamic regulatory roles of sRNAs in plant development regulation. Additionally, a notable feature of sRNAs is their capacity for amplification and movement between cells and tissues, which facilitates long-distance communication-an adaptation critical to plants due to their sessile nature. In this review, we will discuss the classification and mechanisms of action of sRNAs, using legumes as a primary example due to their essential engagement for the unique organ establishment of root nodules and long-distance signaling, and further illustrating the potential applications of sRNAs in modern agricultural breeding and environmentally sustainable plant protection strategies.
Collapse
Affiliation(s)
- Wenqi Ouyang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China
| | - Hongda Sun
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
19
|
Lin K, Yi Z, Lv S, Zhang B, Guo Z, Li Y. Uncovering the key lncRNAs in regulating cadmium accumulation and translocation in sweet sorghum. PLANTA 2024; 261:12. [PMID: 39661199 DOI: 10.1007/s00425-024-04589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
MAIN CONCLUSION 1988 lncRNAs were identified in sweet sorghum roots under cadmium treatment; lncRNA 15962 and lncRNA 11558 were validated to be the key lncRNAs involved in regulating cadmium accumulation and translocation. Cadmium (Cd) has become one of the most harmful and widespread pollutants with industry development. Sweet sorghum is an ideal plant for phytoremediation of Cd-contaminated soil. However, little is known about the regulatory role of long non-coding RNAs (lncRNAs) associated with Cd stress response in sweet sorghum. Here, lncRNA-seq was carried out in the roots of two contrasting sweet sorghum genotypes (high-Cd accumulation genotype 'H18', and low-Cd accumulation genotype 'L69'). A total of 1988 lncRNAs were characterized, including 52 and 69 differentially expressed lncRNAs in 'H18' and 'L69' in response to Cd stress, respectively. Furthermore, the trans- or cis-target genes of lncRNAs were investigated. Then, 65 lncRNAs were characterized as the probable target of 117 miRNAs and 1888 genes were identified as putative cis-target genes of Cd-responsive lncRNAs. The dual-luciferase reporter assay indicated lncRNA 15962 may serve as the endogenous target mimics of sbi-miR5565e, which targeted two genes (Sobic.005G212900 and Sobic.009G144700) involved in cell wall metabolism. Four cis-target genes including SbYS1 which encoding a Cd chelate transporter, were up-regulated by overexpression of their corresponding lncRNAs in sweet sorghum protoplasts, suggesting the positive regulatory role of lncRNAs to these cis-target genes. Moreover, the expression of SbYS1 decreased when lncRNA 11558 was inhibited by exogenous miRNA application in 'H18' seedlings, further demonstrating the positive regulatory role of lncRNA 11558 to SbYS1. Altogether, our findings shed light on the regulatory role of lncRNAs associated with Cd accumulation and translocation in sweet sorghum.
Collapse
Affiliation(s)
- Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zijin Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
20
|
Shankar N, Nath U. Advantage looping: Gene regulatory circuits between microRNAs and their target transcription factors in plants. PLANT PHYSIOLOGY 2024; 196:2304-2319. [PMID: 39230893 DOI: 10.1093/plphys/kiae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
The 20 to 24 nucleotide microRNAs (miRNAs) and their target transcription factors (TF) have emerged as key regulators of diverse processes in plants, including organ development and environmental resilience. In several instances, the mature miRNAs degrade the TF-encoding transcripts, while their protein products in turn bind to the promoters of the respective miRNA-encoding genes and regulate their expression, thus forming feedback loops (FBLs) or feedforward loops (FFLs). Computational analysis suggested that such miRNA-TF loops are recurrent motifs in gene regulatory networks (GRNs) in plants as well as animals. In recent years, modeling and experimental studies have suggested that plant miRNA-TF loops in GRNs play critical roles in driving organ development and abiotic stress responses. Here, we discuss the miRNA-TF FBLs and FFLs that have been identified and studied in plants over the past decade. We then provide some insights into the possible roles of such motifs within GRNs. Lastly, we provide perspectives on future directions for dissecting the functions of miRNA-centric GRNs in plants.
Collapse
Affiliation(s)
- Naveen Shankar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
21
|
Zhao J, Song W, Zhang X. Genetic and molecular regulation of fruit development in cucumber. THE NEW PHYTOLOGIST 2024; 244:1742-1749. [PMID: 39400327 DOI: 10.1111/nph.20192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Fruit development can be generally classified into a set of biologically sequential stages including fruit initiation, growth, and ripening. Cucumber, a globally important vegetable crop, displays two important features during fruit development: parthenocarpy at fruit initiation and prematurity at harvest for consumption. Therefore, fruit growth plays essential role for cucumber yield and quality formation, and has become the research hot spot in cucumber fruit development. Here, we describe recent advances in molecular mechanisms underlying fruit growth in cucumber, include key players and regulatory networks controlling fruit length variation, fruit neck elongation, and locule development. We also provide insights into future directions for scientific research and breeding strategies in cucumber.
Collapse
Affiliation(s)
- Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
22
|
Xie S, Li H, Lu J, Li J, Song Z, Jiang H. A Novel Member of miR169 Family Negatively Regulates Maize Resistance Against Bipolaris maydis. PLANT DISEASE 2024; 108:3518-3526. [PMID: 38982675 DOI: 10.1094/pdis-02-24-0398-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
MicroRNAs (miRNAs) have been confirmed to play important roles in plant defense response. However, the key maize miRNAs involved in the defense response against Bipolaris maydis are very limited. In this study, a novel member of the miR169 family in response to B. maydis, named zma-miR169s, was discovered and investigated. The expression levels of pre-miR169s and zma-miR169s were significantly repressed during B. maydis infection. The CRISPR/Cas9-induced zma-miR169s mutant exhibited more resistance against B. maydis, whereas overexpression of zma-miR169s enhanced susceptibility, supporting that zma-miR169s might play a negative role in maize resistance. Moreover, RNA-seq and Gene Ontology analysis showed that differentially expressed genes were highly enriched in the oxidation-reduction process and plant hormone pathway. Hence, reactive oxygen species (ROS) and plant hormone levels were further investigated. ROS detection confirmed that the zma-miR169s mutant accumulated more ROS, while less ROS was detected in transgenic maize OE-miR169s. Furthermore, more remarkable changes in PR-1 expression levels and salicylic acid (SA) contents were detected in the zma-miR169s mutant compared with wild-type and transgenic maize during B. maydis infection. Additionally, nuclear transcription factors (NF-YA1 and NF-YA13) were identified as targets regulated by zma-miR169s through the agrobacterium-mediated transient expression method. Overexpression of ZmNF-YA13 enhanced Arabidopsis resistance to Pseudomonas syringae pv. tomato DC3000. Taken together, our results suggest that zma-miR169s negatively regulates maize defense responses by influencing ROS accumulation and the SA-dependent signaling pathway.
Collapse
Affiliation(s)
- Shanshan Xie
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Han Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jiale Lu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jing Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zheng Song
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Zhang F, Ling LZ, Gao LZ. Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:3281. [PMID: 39683074 DOI: 10.3390/plants13233281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Although genome-wide studies have identified a number of candidate regions evolving under selection in domesticated animals and cultivated plants, few attempts have been made, from the point of a definite biological process, to assess sequence variation and characterize the regimes of the selection on miRNA-associated motifs. Here, we performed a genome-wide dissection of nucleotide variation and selection of miRNA targets associated with rice flower development. By sampling and resequencing 26 miRNA targets for globally diverse representative populations of Asian cultivated rice and wild relatives, we found that purifying selection has reduced genetic variation at the conserved miRNA binding sites on the whole, and highly conserved miRNA binding sequences were maintained in the studied rice populations. Conversely, non-neutral evolution of positive and/or artificial selection accelerates the elevated variations at nonconserved binding sites in a population-specific behavior which may have contributed to flower development-related phenotypic variation. Taken together, our results elucidate that miRNA targets involved in flower development are under distinctive selection regimes during rice evolution.
Collapse
Affiliation(s)
- Fen Zhang
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China
| | - Li-Zhen Ling
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, 132, Lanhei Road, Kunming 650204, China
| | - Li-Zhi Gao
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, 132, Lanhei Road, Kunming 650204, China
| |
Collapse
|
24
|
Zhu C, Zhang Z, Liu Z, Shi W, Zhang D, Zhao B, Sun J. '140R' Rootstock Regulates Resveratrol Content in 'Cabernet Sauvignon' Grapevine Leaves Through miRNA. PLANTS (BASEL, SWITZERLAND) 2024; 13:3057. [PMID: 39519974 PMCID: PMC11548312 DOI: 10.3390/plants13213057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Grafting is important for increasing the resistance of grapevines to environmental stress, improving fruit quality, and shortening the reproductive period. In this study, 'Cabernet Sauvignon' (CS) grafted on the resistant rootstock 140R (CS/140R), self-grafted grapevines of the resistant rootstock 140R (140R/140R), and self-grafted grapevines of CS (CS/CS) were subjected to high-throughput sequencing; small RNA (sRNA) libraries were constructed, and miRNAs responsive to the grafting process were identified. A total of 177 known miRNAs and 267 novel miRNAs were identified. Many miRNAs responsive to the grafting process were significantly down-regulated in CS/140R leaves relative to CS/CS leaves, such as vvi-miR171c, vvi-miR171e, et al., suggesting that the expression of these miRNAs might be affected by grafting. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the differentially expressed miRNAs regulated the expression of genes in the phenylpropanoid synthesis pathway. Grapevine leaves transiently overexpressing vvi-miR171c were assayed, and the expression of the target gene, VvMYB154, and the resveratrol content were decreased, indicating that vvi-miR171c negatively regulates the expression of VvMYB154. In sum, 140R increased the resveratrol content of the scion by grafting, down-regulating the expression of vvi-miR171c. These results provide new information that will aid future analyses of the effects of grafting on the content of secondary metabolites.
Collapse
Affiliation(s)
- Chunmei Zhu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Zhijun Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Zhiyu Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Wenchao Shi
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Dongliang Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Baolong Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Junli Sun
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| |
Collapse
|
25
|
Pasculli E, Gadaleta RM, Arconzo M, Cariello M, Moschetta A. The Role of Exogenous microRNAs on Human Health: The Plant-Human Trans-Kingdom Hypothesis. Nutrients 2024; 16:3658. [PMID: 39519491 PMCID: PMC11547593 DOI: 10.3390/nu16213658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
MicroRNAs (miRNAs) are small, endogenous, single-stranded RNAs that act on gene silencing at the post-transcriptional level by binding to a target messenger RNA (mRNA), leading to its degradation or inhibiting translation into functional proteins. The key role of miRNAs in development, proliferation, differentiation andapoptosis has been deeply investigated, revealing that deregulation in their expression is critical in various diseases, such as metabolic disorders and cancer. Since these small molecules initially evolved as a mechanism of protection against viruses and transposable elements, the fascinating hypothesis that they can move between organisms both of the same or different species has been postulated. Trans-kingdom is the term used to define the migration that occurs between species. This mechanism has been well analyzed between plants and their pests, in order to boost defense and increase pathogenicity, respectively. Intriguingly, in the last decades, the plant-human trans-kingdom migration via food intake hypothesis arose. In particular, various studies highlighted the ability of exogenous miRNAs, abundant in the mainly consumed plant-derived food, to enter the human body affecting gene expression. Notably, plant miRNAs can resist the strict conditions of the gastrointestinal tract through a methylation step that occurs during miRNA maturation, conferring high stability to these small molecules. Recent studies observed the anti-tumoral, immune modulator and anti-inflammatory abilities of trans-kingdom interaction between plant and human. Here, we depict the existing knowledge and discuss the fascinating plant-human trans-kingdom interaction, highlighting first the eventual role of plant miRNAs from foods on our somatic gene identity card and then the potential impact of using plant miRNAs as novel therapeutic avenues.
Collapse
Affiliation(s)
- Emanuela Pasculli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Maria Arconzo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
26
|
Zhang X, Zhu X, Chen L, Fan H, Liu X, Yang N, Wang Y, Duan Y. Functional Identification of miR2119 Targeting ADHs in Modulating Soybean Resistance to Heterodera glycines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21461-21474. [PMID: 39311099 PMCID: PMC11450968 DOI: 10.1021/acs.jafc.4c05000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is a sedentary endoparasite nematode that results in severe economic losses in soybean crops. miRNAs play crucial roles in plant responses to nematode. However, the role of miR2119 responding to SCN stress in soybean. Here, we demonstrated that the transcript levels of polycistronic precursors containing miR2119 and miR398a were significantly reduced in soybean upon nematode infection. Promoter of the miR2119-398a precursor analysis was conducted containing a GUS reporter gene. GUS activity assays demonstrated a decrease in miR2119-398a promoter during SCN infection. Overexpression of polycistronic precursor miR2119-398a (OE-premiR2119-398a) and miR2119 precursor (OE-premiR2119) rendered soybean more susceptible to SCN. Conversely, silencing miR2119 (STTM2119) increased soybean resistance against SCN. Furthermore, RNA-seq analysis revealed that miR2119 is involved in many defense signaling pathways. GUS reporter gene assays demonstrated that miR2119 targets GmADH1.1a and GmADH1.1b. Functional analysis indicated that ADHs act as a major role in responding to H. glycines by modulating reactive oxygen species (ROS) levels. Together, the findings reveal a novel mechanism by which the polycistronic precursor miR2119-398a coordinately regulates in response to H. glycines. Additionally, miR2119 becomes an essential element contributing to H. glycines by modulating ADH activity and ROS homeostasis in soybean.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| | - Xiaofeng Zhu
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| | - Lijie Chen
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| | - Haiyan Fan
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| | - Xiaoyu Liu
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Ning Yang
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| | - Yuanyuan Wang
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Biological Science and Technology, Shenyang
Agricultural University, Shenyang 110866, China
| | - Yuxi Duan
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| |
Collapse
|
27
|
Huang Y, Yue E, Lian G, Lu J, Ran L, Ma S, Wang K, Bai Y, Han N, Bian H, Guo F. Novel mechanism of MicroRNA408 in callus formation from rice mature embryo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:769-787. [PMID: 39265046 DOI: 10.1111/tpj.17019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Mature embryos are the main explants of tissue culture used in rice transgenic technology. However, the mechanism of mature embryo callus formation remains unclear. In this study, a microRNA-mediated gene regulatory network of rice calli was established using degradome sequencing. We identified a microRNA, OsmiR408, that regulates the formation of the callus derived from the mature rice embryo. OsUCLACYANIN 30 (OsUCL 30), a target gene of OsmiR408, was the most abundant cleavage mRNA in rice callus. OsUCL17 was verified as a target gene of OsmiR408 using RNA ligase-mediated 5'-RACE. In analysis of the OsmiR408 promoter reporter line and pri-miR408 transcript level, the promoter activity and transcript level of MIR408 were increased dramatically during callus formation. In phenotypic observations, OsmiR408 knockout caused severe defects in mature embryo callus formation, whereas OsmiR408 overexpression promoted callus formation. Transcriptome analysis demonstrated that OsUCLs and certain genes related to the plant hormone signal transduction and phenylpropanoid-flavonoid biosynthesis pathway had different differential expression patterns between OsmiR408 knockout and overexpression calli. Thus, OsmiR408 may regulate callus formation mainly by affecting plant hormone signal transduction and phenylpropanoid-flavonoid biosynthesis pathway. Our findings provide insight into OsmiR408/UCLs module function in callus formation.
Collapse
Affiliation(s)
- Yizi Huang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Erkui Yue
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Guiwei Lian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinhan Lu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| | - Le Ran
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| | - Shengyun Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaiqiang Wang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| | - Yu Bai
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu Guo
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Seed Industry Laboratory, Yazhou Bay Science and Technology City, Sanya, 572025, China
| |
Collapse
|
28
|
Sakuraba Y, Yang M, Yanagisawa S. HASTY-mediated miRNA dynamics modulate nitrogen starvation-induced leaf senescence in Arabidopsis. Nat Commun 2024; 15:7913. [PMID: 39256370 PMCID: PMC11387735 DOI: 10.1038/s41467-024-52339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Nitrogen (N) deficiency responses are essential for plant survival and reproduction. Here, via an expression genome-wide association study (eGWAS), we reveal a mechanism that regulates microRNA (miRNA) dynamics necessary for N deficiency responses in Arabidopsis. Differential expression levels of three NAC transcription factor (TF) genes involved in leaf N deficiency responses among Arabidopsis accessions are most significantly associated with polymorphisms in HASTY (HST), which encodes an importin/exportin family protein responsible for the generation of mature miRNAs. HST acts as a negative regulator of N deficiency-induced leaf senescence, and the disruption and overexpression of HST differently modifies miRNA dynamics in response to N deficiency, altering levels of miRNAs targeting transcripts. Interestingly, N deficiency prevents the interaction of HST with HST-interacting proteins, DCL1 and RAN1, and some miRNAs. This suggests that HST-mediated regulation of miRNA dynamics collectively controls regulations mediated by multiple N deficiency response-associated NAC TFs, thereby being central to the N deficiency response network.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Mailun Yang
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
29
|
Mohamed AA, Wang PY, Bartel DP, Vos SM. The structural basis for RNA slicing by human Argonaute2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608718. [PMID: 39229170 PMCID: PMC11370433 DOI: 10.1101/2024.08.19.608718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Argonaute (AGO) proteins associate with guide RNAs to form complexes that slice transcripts that pair to the guide. This slicing drives post-transcriptional gene-silencing pathways that are essential for many eukaryotes and the basis for new clinical therapies. Despite this importance, structural information on eukaryotic AGOs in a fully paired, slicing-competent conformation-hypothesized to be intrinsically unstable-has been lacking. Here we present the cryogenic-electron microscopy structure of a human AGO-guide complex bound to a fully paired target, revealing structural rearrangements that enable this conformation. Critically, the N domain of AGO rotates to allow the RNA full access to the central channel and forms contacts that license rapid slicing. Moreover, a conserved loop in the PIWI domain secures the RNA near the active site to enhance slicing rate and specificity. These results explain how AGO accommodates targets possessing the pairing specificity typically observed in biological and clinical slicing substrates.
Collapse
Affiliation(s)
- Abdallah A. Mohamed
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- These authors contributed equally
| | - Peter Y. Wang
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- These authors contributed equally
| | - David P. Bartel
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
| | - Seychelle M. Vos
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Lead contact
| |
Collapse
|
30
|
Zhang X, Zhu X, Chen L, Fan H, Liu X, Yang N, Duan Y, Wang Y. MiR398b Targets Superoxide Dismutase Genes in Soybean in Defense Against Heterodera glycines via Modulating Reactive Oxygen Species Homeostasis. PHYTOPATHOLOGY 2024; 114:1950-1962. [PMID: 38970805 DOI: 10.1094/phyto-09-23-0343-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
MicroRNAs play crucial roles in plant defense responses. However, the underlying mechanism by which miR398b contributes to soybean responses to soybean cyst nematode (Heterodera glycines) remains elusive. In this study, by using Agrobacterium rhizogenes-mediated transformation of soybean hairy roots, we observed that miR398b and target genes GmCCS and GmCSD1b played vital functions in soybean-H. glycines interaction. The study revealed that the abundance of miR398b was downregulated by H. glycines infection, and overexpression of miR398b enhanced the susceptibility of soybean to H. glycines. Conversely, silencing of miR398b improved soybean resistance to H. glycines. Detection assays revealed that miR398b rapidly senses stress-induced reactive oxygen species, leading to the repression of target genes GmCCS and GmCSD1b and regulating the accumulation of plant defense genes against nematode infection. Moreover, exogenous synthetic ds-miR398b enhanced soybean sensitivity to H. glycines by modulating H2O2 and O2- levels. Functional analysis demonstrated that overexpression of GmCCS and GmCSD1b in soybean enhanced resistance to H. glycines. RNA interference-mediated repression of GmCCS and GmCSD1b in soybean increased susceptibility to H. glycines. RNA sequencing revealed that a majority of differentially expressed genes in overexpressed GmCCS were associated with oxidative stress. Overall, the results indicate that miR398b targets superoxide dismutase genes, which negatively regulate soybean resistance to H. glycines via modulating reactive oxygen species levels and defense signals.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Ning Yang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
31
|
Chai W, Li H, Xu H, Zhu Q, Li S, Yuan C, Ji W, Wang J, Sheng L. ZmDST44 Gene Is a Positive Regulator in Plant Drought Stress Tolerance. BIOLOGY 2024; 13:552. [PMID: 39194490 DOI: 10.3390/biology13080552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Improving drought tolerance in plants is essential for increasing crop yields under water-limited conditions. In this study, we investigated the functional role of the maize gene ZmDST44, which is targeted by the miRNA ZmmiR139. Our results indicate that ZmmiR139 regulates ZmDST44 by cleaving its mRNA, as confirmed by inverse expression patterns and 5'-RACE analysis. Overexpression of ZmDST44 in Arabidopsis, rice, and maize resulted in significant enhancements in drought tolerance. Transgenic plants exhibited reduced malondialdehyde (MDA) levels, increased proline accumulation, and upregulation of drought-responsive genes compared to wild-type plants. Transgenic Arabidopsis and rice showed improved drought resistance and higher post-drought recovery rates, and transgenic maize displayed lower sensitivity to drought stress. These findings suggest that ZmDST44 acts as a positive regulator of drought tolerance across different plant species and holds promise for developing drought-resistant crops through genetic engineering.
Collapse
Affiliation(s)
- Wenbo Chai
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Hongtao Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Hanyuan Xu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Qing Zhu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Shufen Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Chao Yuan
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Wei Ji
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Jun Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Lei Sheng
- Anhui Academy of Agricultural Sciences, Hefei 230036, China
| |
Collapse
|
32
|
Fan S, Tang Y, Zhu N, Meng Q, Zhou Y, Zhao Y, Xu J, Gu C, Dai S, Zhu B, Yuan X. Analyzing the defense response mechanism of Atractylodes macrocephala to Fusarium oxysporum through small RNA and degradome sequencing. FRONTIERS IN PLANT SCIENCE 2024; 15:1415209. [PMID: 39104842 PMCID: PMC11298489 DOI: 10.3389/fpls.2024.1415209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Introduction Fusarium oxysporum is a significant soil-borne fungal pathogen that affects over 100 plant species, including crucial crops like tomatoes, bananas, cotton, cucumbers, and watermelons, leading to wilting, yellowing, growth inhibition, and ultimately plant death. The root rot disease of A. macrocephala, caused by F. oxysporum, is one of the most serious diseases in continuous cropping, which seriously affects its sustainable development. Methods In this study, we explored the interaction between A. macrocephala and F. oxysporum through integrated small RNA (sRNA) and degradome sequencing to uncover the microRNA (miRNA)-mediated defense mechanisms. Results We identified colonization of F. oxysporum in A. macrocephala roots on day 6. Nine sRNA samples were sequenced to examine the dynamic changes in miRNA expression in A. macrocephala infected by F. oxysporum at 0, 6, and 12 days after inoculation. Furthermore, we using degradome sequencing and quantitative real-time PCR (qRT-PCR), validated four miRNA/target regulatory units involved in A. macrocephala-F. oxysporum interactions. Discussion This study provides new insights into the molecular mechanisms underlying A. macrocephala's early defense against F. oxysporum infection, suggesting directions for enhancing resistance against this pathogen.
Collapse
Affiliation(s)
- Sen Fan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunjia Tang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Na Zhu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingling Meng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanguang Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujin Zhao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyan Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijie Dai
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
33
|
Li Q, Wang Y, Sun Z, Li H, Liu H. The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development. Int J Mol Sci 2024; 25:7680. [PMID: 39062923 PMCID: PMC11276867 DOI: 10.3390/ijms25147680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In the realm of plant biology, small RNAs (sRNAs) are imperative in the orchestration of gene expression, playing pivotal roles across a spectrum of developmental sequences and responses to environmental stressors. The biosynthetic cascade of sRNAs is characterized by an elaborate network of enzymatic pathways that meticulously process double-stranded RNA (dsRNA) precursors into sRNA molecules, typically 20 to 30 nucleotides in length. These sRNAs, chiefly microRNAs (miRNAs) and small interfering RNAs (siRNAs), are integral in guiding the RNA-induced silencing complex (RISC) to selectively target messenger RNAs (mRNAs) for post-transcriptional modulation. This regulation is achieved either through the targeted cleavage or the suppression of translational efficiency of the mRNAs. In plant development, sRNAs are integral to the modulation of key pathways that govern growth patterns, organ differentiation, and developmental timing. The biogenesis of sRNA itself is a fine-tuned process, beginning with transcription and proceeding through a series of processing steps involving Dicer-like enzymes and RNA-binding proteins. Recent advances in the field have illuminated the complex processes underlying the generation and function of small RNAs (sRNAs), including the identification of new sRNA categories and the clarification of their involvement in the intercommunication among diverse regulatory pathways. This review endeavors to evaluate the contemporary comprehension of sRNA biosynthesis and to underscore the pivotal role these molecules play in directing the intricate performance of plant developmental processes.
Collapse
Affiliation(s)
| | | | | | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| |
Collapse
|
34
|
Gelaw TA, Sanan-Mishra N. Molecular priming with H 2O 2 and proline triggers antioxidant enzyme signals in maize seedlings during drought stress. Biochim Biophys Acta Gen Subj 2024; 1868:130633. [PMID: 38762030 DOI: 10.1016/j.bbagen.2024.130633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Drought and water stress impose major limitations to crops, including Maize, as they affect the plant biology at multiple levels. Drought activates the cellular signalling machinery to maintain the osmotic and ROS homeostasis for controlling plant response and adaptation to stress. Molecular priming of seeds plays a significant role in imparting stress tolerance by helping plants to remember the stress, which improves their response when they encounter stress again. METHODS In this study, we examined the effect of priming maize seeds with H2O2 and proline, individually or in combination, on response to drought stress. We investigated the role of molecular priming on the physiological, biochemical and molecular response of maize seedlings during drought stress. RESULTS We observed that seed-priming played a significant role in mediating stress tolerance of seedlings under drought stress as indicated by changes in growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression. Seed-priming resulted in reduced expression of specific miRNAs to increase target transcripts associated with synthesis of osmolytes and maintenance of ROS homeostasis for reducing potential damage to the cellular components. CONCLUSIONS Seed-priming induced changes in the growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression, though the response was dependent on the genotype, as well as concentration and combination of the priming agents.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India; Department of Biotechnology, College of Agriculture and Natural Resource Sciences, Debre Birhan University, 445 Debre Birhan, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India.
| |
Collapse
|
35
|
Carr JP. Engineered Resistance to Tobamoviruses. Viruses 2024; 16:1007. [PMID: 39066170 PMCID: PMC11281658 DOI: 10.3390/v16071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco mosaic virus (TMV) was the first virus to be studied in detail and, for many years, TMV and other tobamoviruses, particularly tomato mosaic virus (ToMV) and tobamoviruses infecting pepper (Capsicum spp.), were serious crop pathogens. By the end of the twentieth and for the first decade of the twenty-first century, tobamoviruses were under some degree of control due to introgression of resistance genes into commercial tomato and pepper lines. However, tobamoviruses remained important models for molecular biology, biotechnology and bio-nanotechnology. Recently, tobamoviruses have again become serious crop pathogens due to the advent of tomato brown rugose fruit virus, which overcomes tomato resistance against TMV and ToMV, and the slow but apparently inexorable worldwide spread of cucumber green mottle mosaic virus, which threatens all cucurbit crops. This review discusses a range of mainly molecular biology-based approaches for protecting crops against tobamoviruses. These include cross-protection (using mild tobamovirus strains to 'immunize' plants against severe strains), expressing viral gene products in transgenic plants to inhibit the viral infection cycle, inducing RNA silencing against tobamoviruses by expressing virus-derived RNA sequences in planta or by direct application of double-stranded RNA molecules to non-engineered plants, gene editing of host susceptibility factors, and the transfer and optimization of natural resistance genes.
Collapse
Affiliation(s)
- John Peter Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
36
|
Patil BL, Tripathi S. Differential expression of microRNAs in response to Papaya ringspot virus infection in differentially responding genotypes of papaya ( Carica papaya L.) and its wild relative. FRONTIERS IN PLANT SCIENCE 2024; 15:1398437. [PMID: 38966149 PMCID: PMC11222417 DOI: 10.3389/fpls.2024.1398437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
Papaya ringspot virus (PRSV) is one of the most devastating viruses of papaya that has significantly hampered papaya production across the globe. Although PRSV resistance is known in some of its wild relatives, such as Vasconcellea cauliflora and in some of the improved papaya genotypes, the molecular basis of this resistance mechanism has not been studied and understood. Plant microRNAs are an important class of small RNAs that regulate the gene expression in several plant species against the invading plant pathogens. These miRNAs are known to manifest the expression of genes involved in resistance against plant pathogens, through modulation of the plant's biochemistry and physiology. In this study we made an attempt to study the overall expression pattern of small RNAs and more specifically the miRNAs in different papaya genotypes from India, that exhibit varying levels of tolerance or resistance to PRSV. Our study found that the expression of some of the miRNAs was differentially regulated in these papaya genotypes and they had entirely different miRNA expression profile in healthy and PRSV infected symptomatic plants. This data may help in improvement of papaya cultivars for resistance against PRSV through new breeding initiatives or biotechnological approaches such as genome editing.
Collapse
Affiliation(s)
| | - Savarni Tripathi
- ICAR-Indian Agricultural Research Institute, Regional Station, Pune, India
| |
Collapse
|
37
|
Deng K, Li Z, Huang T, Huang J. Noncoding RNAs in regulation of plant secondary metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108718. [PMID: 38733939 DOI: 10.1016/j.plaphy.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Plant secondary metabolites (PSMs) are a large class of structurally diverse molecules, mainly consisting of terpenoids, phenolic compounds, and nitrogen-containing compounds, which play active roles in plant development and stress responses. The biosynthetic processes of PSMs are governed by a sophisticated regulatory network at multiple levels. Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) may serve as post-transcriptional regulators for plant secondary metabolism through acting on genes encoding either transcription factors or participating enzymes in relevant metabolic pathways. High-throughput sequencing technologies have facilitated the large-scale identifications of ncRNAs potentially involved in plant secondary metabolism in model plant species as well as certain species with enriched production of specific types of PSMs. Moreover, a series of miRNA-target modules have been functionally characterized to be responsible for regulating PSM biosynthesis and accumulation in plants under abiotic or biotic stresses. In this review, we will provide an overview of current findings on the ncRNA-mediated regulation of plant secondary metabolism with special attention to its participation in plant stress responses, and discuss possible issues to be addressed in future fundamental research and breeding practice.
Collapse
Affiliation(s)
- Keyin Deng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jianzi Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
38
|
Xie H, Su F, Niu Q, Geng L, Cao X, Song M, Dong J, Zheng Z, Guo R, Zhang Y, Deng Y, Ji Z, Pang K, Zhu JK, Zhu J. Knockout of miR396 genes increases seed size and yield in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1148-1157. [PMID: 38597776 DOI: 10.1111/jipb.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Yield improvement has long been an important task for soybean breeding in the world in order to meet the increasing demand for food and animal feed. miR396 genes have been shown to negatively regulate grain size in rice, but whether miR396 family members may function in a similar manner in soybean is unknown. Here, we generated eight soybean mutants harboring different combinations of homozygous mutations in the six soybean miR396 genes through genome editing with clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas)12SF01 in the elite soybean cultivar Zhonghuang 302 (ZH302). Four triple mutants (mir396aci, mir396acd, mir396adf, and mir396cdf), two quadruple mutants (mir396abcd and mir396acfi), and two quintuple mutants (mir396abcdf and mir396bcdfi) were characterized. We found that plants of all the mir396 mutants produced larger seeds compared to ZH302 plants. Field tests showed that mir396adf and mir396cdf plants have significantly increased yield in growth zones with relatively high latitude which are suited for ZH302 and moderately increased yield in lower latitude. In contrast, mir396abcdf and mir396bcdfi plants have increased plant height and decreased yield in growth zones with relatively high latitude due to lodging issues, but they are suited for low latitude growth zones with increased yield without lodging problems. Taken together, our study demonstrated that loss-of-function of miR396 genes leads to significantly enlarged seed size and increased yield in soybean, providing valuable germplasms for breeding high-yield soybean.
Collapse
Affiliation(s)
- Hongtao Xie
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Center for Biological Breeding Technology, Research Institute of Frontier Science, Anhui Agricultural University, Hefei, 230036, China
- Bellagen Biotechnology Co. Ltd, Jinan, 250000, China
| | - Fei Su
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572025, China
| | - Qingfeng Niu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Center for Biological Breeding Technology, Research Institute of Frontier Science, Anhui Agricultural University, Hefei, 230036, China
| | - Leping Geng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Center for Biological Breeding Technology, Research Institute of Frontier Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xuesong Cao
- Southern University of Science, and Technology, Shenzhen, 518055, China
| | - Minglei Song
- Southern University of Science, and Technology, Shenzhen, 518055, China
| | - Jinsong Dong
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572025, China
| | - Zai Zheng
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Rui Guo
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572025, China
| | - Yang Zhang
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572025, China
| | - Yuanwei Deng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Center for Biological Breeding Technology, Research Institute of Frontier Science, Anhui Agricultural University, Hefei, 230036, China
| | - Zhanbo Ji
- Bellagen Biotechnology Co. Ltd, Jinan, 250000, China
| | - Kang Pang
- Bellagen Biotechnology Co. Ltd, Jinan, 250000, China
| | - Jian-Kang Zhu
- Southern University of Science, and Technology, Shenzhen, 518055, China
| | - Jianhua Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Center for Biological Breeding Technology, Research Institute of Frontier Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
39
|
Divya D, Robin AHK, Cho LH, Kim D, Lee DJ, Kim CK, Chung MY. Genome-wide characterization and expression profiling of E2F/DP gene family members in response to abiotic stress in tomato (Solanum lycopersicum L.). BMC PLANT BIOLOGY 2024; 24:436. [PMID: 38773361 PMCID: PMC11110339 DOI: 10.1186/s12870-024-05107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND E2F/DP (Eukaryotic 2 transcription factor/dimerization partner) family proteins play an essential function in the cell cycle development of higher organisms. E2F/DP family genes have been reported only in a few plant species. However, comprehensive genome-wide characterization analysis of the E2F/DP gene family of Solanum lycopersicum has not been reported so far. RESULTS This study identified eight nonredundant SlE2F/DP genes that were classified into seven groups in the phylogenetic analysis. All eight genes had a single E2F-TDP domain and few genes had additional domains. Two segmental duplication gene pairs were observed within tomato, in addition to cis-regulatory elements, miRNA target sites and phosphorylation sites which play an important role in plant development and stress response in tomato. To explore the three-dimensional (3D) models and gene ontology (GO) annotations of SlE2F/DP proteins, we pointed to their putative transporter activity and their interaction with several putative ligands. The localization of SlE2F/DP-GFP fused proteins in the nucleus and endoplasmic reticulum suggested that they may act in other biological functions. Expression studies revealed the differential expression pattern of most of the SlE2F/DP genes in various organs. Moreover, the expression of E2F/DP genes against abiotic stress, particularly SlE2F/DP2 and/or SlE2F/DP7, was upregulated in response to heat, salt, cold and ABA treatment. Furthermore, the co-expression analysis of SlE2F/DP genes with multiple metabolic pathways was co-expressed with defence genes, transcription factors and so on, suggested their crucial role in various biological processes. CONCLUSIONS Overall, our findings provide a way to understand the structure and function of SlE2F/DP genes; it might be helpful to improve fruit development and tolerance against abiotic stress through marker-assisted selection or transgenic approaches.
Collapse
Affiliation(s)
- Dhanasekar Divya
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do, 50463, Republic of Korea
| | - Dohyeon Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do, 50463, Republic of Korea
| | - Do-Jin Lee
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea.
| |
Collapse
|
40
|
Xie L, Bi Y, He C, Situ J, Wang M, Kong G, Xi P, Jiang Z, Li M. Unveiling microRNA-like small RNAs implicated in the initial infection of Fusarium oxysporum f. sp. cubense through small RNA sequencing. Mycology 2024; 16:293-308. [PMID: 40083400 PMCID: PMC11899247 DOI: 10.1080/21501203.2024.2345917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 03/16/2025] Open
Abstract
Banana Fusarium wilt (BFW), caused by Fusarium oxysporum f. sp. cubense (Foc), poses a major challenge to the worldwide banana industry. Fungal microRNA-like small RNAs (milRNAs) play crucial roles in regulating fungal growth, conidiation, development, and pathogenicity. However, the milRNAs and their functions in the pathogenesis of Foc remain poorly understood. In this study, we employed high-throughput sequencing and bioinformatics to profile Foc sRNAs during both pure culture and early infection stages. Our analysis identified six milRNAs exhibiting significantly upregulated expression at the initial Foc infection. Of these, milR106's biogenesis was found to be Dicer-dependent, whereas milR87, milR133, milR138, and milR148 were associated with Dicer and Argonaute proteins. Genetic manipulation and phenotype analysis confirmed that milR106 is crucial for Foc virulence by regulating conidiation, hydrogen peroxide sensitivity, and infective growth. Gene Ontology analysis of milRNA targets in the banana genome revealed enrichment in defence response to fungus and cellular response to hypoxia, implying the importance of these target genes in response to pathogen infection. In conclusion, our sRNA profiling of Foc identified several infection-induced milRNAs. The corresponding results provide valuable molecular targets for the development of an efficient strategy to control BFW.
Collapse
Affiliation(s)
- Lifei Xie
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yuntian Bi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Chengcheng He
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Meng Wang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Edelbroek B, Kjellin J, Biryukova I, Liao Z, Lundberg T, Noegel A, Eichinger L, Friedländer M, Söderbom F. Evolution of microRNAs in Amoebozoa and implications for the origin of multicellularity. Nucleic Acids Res 2024; 52:3121-3136. [PMID: 38375870 PMCID: PMC11014262 DOI: 10.1093/nar/gkae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in both plants and animals. They are thought to have evolved convergently in these lineages and hypothesized to have played a role in the evolution of multicellularity. In line with this hypothesis, miRNAs have so far only been described in few unicellular eukaryotes. Here, we investigate the presence and evolution of miRNAs in Amoebozoa, focusing on species belonging to Acanthamoeba, Physarum and dictyostelid taxonomic groups, representing a range of unicellular and multicellular lifestyles. miRNAs that adhere to both the stringent plant and animal miRNA criteria were identified in all examined amoebae, expanding the total number of protists harbouring miRNAs from 7 to 15. We found conserved miRNAs between closely related species, but the majority of species feature only unique miRNAs. This shows rapid gain and/or loss of miRNAs in Amoebozoa, further illustrated by a detailed comparison between two evolutionary closely related dictyostelids. Additionally, loss of miRNAs in the Dictyostelium discoideum drnB mutant did not seem to affect multicellular development and, hence, demonstrates that the presence of miRNAs does not appear to be a strict requirement for the transition from uni- to multicellular life.
Collapse
Affiliation(s)
- Bart Edelbroek
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Jonas Kjellin
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Zhen Liao
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Torgny Lundberg
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Angelika A Noegel
- Centre for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Marc R Friedländer
- Science for Life Laboratory, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
42
|
Saroha M, Arya A, Singh G, Sharma P. Genome-wide expression analysis of novel heat-responsive microRNAs and their targets in contrasting wheat genotypes at reproductive stage under terminal heat stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1328114. [PMID: 38660446 PMCID: PMC11039868 DOI: 10.3389/fpls.2024.1328114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Introduction Heat stress at terminal stage of wheat is critical and leads to huge yield losses worldwide. microRNAs (miRNAs) play significant regulatory roles in gene expression associated with abiotic and biotic stress at the post-transcriptional level. Methods In the present study, we carried out a comparative analysis of miRNAs and their targets in flag leaves as well as developing seeds of heat tolerant (RAJ3765) and heat susceptible (HUW510) wheat genotypes under heat stress and normal conditions using small RNA and degradome sequencing. Results and discussion A total of 84 conserved miRNAs belonging to 35 miRNA families and 93 novel miRNAs were identified in the 8 libraries. Tae-miR9672a-3p, tae-miR9774, tae-miR9669-5p, and tae-miR5048-5p showed the highest expression under heat stress. Tae-miR9775, tae-miR9662b-3p, tae-miR1120a, tae-miR5084, tae-miR1122a, tae-miR5085, tae-miR1118, tae-miR1130a, tae-miR9678-3p, tae-miR7757-5p, tae-miR9668-5p, tae-miR5050, tae-miR9652-5p, and tae-miR9679-5p were expressed only in the tolerant genotype, indicating their role in heat tolerance. Comparison between heat-treated and control groups revealed that 146 known and 57 novel miRNAs were differentially expressed in the various tissues. Eight degradome libraries sequence identified 457 targets of the differentially expressed miRNAs. Functional analysis of the targets indicated their involvement in photosynthesis, spliceosome, biosynthesis of nucleotide sugars and protein processing in the endoplasmic reticulum, arginine and proline metabolism and endocytosis. Conclusion This study increases the number of identified and novel miRNAs along with their roles involved in heat stress response in contrasting genotypes at two developing stages of wheat.
Collapse
Affiliation(s)
- Monika Saroha
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Aditi Arya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Gyanendra Singh
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
43
|
Li Q, Zhang Z, Li K, Zhu Y, Sun K, He C. Identification of microRNAs and their target genes associated with chasmogamous and cleistogamous flower development in Viola prionantha. PLANTA 2024; 259:116. [PMID: 38592549 DOI: 10.1007/s00425-024-04398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION Differentially expressed microRNAs were found associated with the development of chasmogamous and cleistogamous flowers in Viola prionantha, revealing potential roles of microRNAs in the developmental evolution of dimorphic flowers. In Viola prionantha, chasmogamous (CH) flowers are induced by short daylight, while cleistogamous (CL) flowers are triggered by long daylight. How environmental factors and microRNAs (miRNAs) affect dimorphic flower formation remains unknown. In this study, small RNA sequencing was performed on CH and CL floral buds at different developmental stages in V. prionantha, differentially expressed miRNAs (DEmiRNAs) were identified, and their target genes were predicted. In CL flowers, Viola prionantha miR393 (vpr-miR393a/b) and vpr-miRN3366 were highly expressed, while in CH flowers, vpr-miRN2005, vpr-miR172e-2, vpr-miR166m-3, vpr-miR396f-2, and vpr-miR482d-2 were highly expressed. In the auxin-activated signaling pathway, vpr-miR393a/b and vpr-miRN2005 could target Vpr-TIR1/AFB and Vpr-ARF2, respectively, and other DEmiRNAs could target genes involved in the regulation of transcription, e.g., Vpr-AP2-7. Moreover, Vpr-UFO and Vpr-YAB5, the main regulators in petal and stamen development, were co-expressed with Vpr-TIR1/AFB and Vpr-ARF2 and showed lower expression in CL flowers than in CH flowers. Some V. prionantha genes relating to the stress/defense responses were co-expressed with Vpr-TIR1/AFB, Vpr-ARF2, and Vpr-AP2-7 and highly expressed in CL flowers. Therefore, in V. prionantha, CH-CL flower development may be regulated by the identified DEmiRNAs and their target genes, thus providing the first insight into the formation of dimorphic flowers in Viola.
Collapse
Affiliation(s)
- Qiaoxia Li
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China.
| | - Zuoming Zhang
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Kunpeng Li
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Zhu
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Kun Sun
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Luo Y, Wang L, Zhu J, Tian J, You L, Luo Q, Li J, Yao Q, Duan D. The grapevine miR827a regulates the synthesis of stilbenes by targeting VqMYB14 and gives rise to susceptibility in plant immunity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:95. [PMID: 38582777 DOI: 10.1007/s00122-024-04599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Grapevine (Vitis vinifera L.) is an economically important fruit crop cultivated worldwide. In China, grapevine cultivation is very extensive, and a few Vitis grapes have excellent pathogen and stress resistance, but the molecular mechanisms underlying the grapevine response to stress remain unclear. In this study, a microRNA (miRNA; miR827a), which negatively regulates its target gene VqMYB14, a key regulatory role in the synthesis of stilbenes, was identified in Vitis quinquangularis (V. quinquangularis) using transcriptome sequencing. Using overexpression and silencing approaches, we found that miR827a regulates the synthesis of stilbenes by targeting VqMYB14. We used flagellin N-terminal 22-amino-acid peptide (flg22), the representative elicitor in plant basal immunity, as the elicitor to verify whether miR827a is involved in the basal immunity of V. quinquangularis. Furthermore, the promoter activity of miR827a was alleviated in transgenic grape protoplasts and Arabidopsis thaliana following treatment with flg22 and Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000), respectively. In addition, yeast one-hybrid and dual luciferase reporter assay revealed that the ethylene transcription factor VqERF057 acted as a key regulator in the inhibition of miR827a transcription. These results will contribute to the understanding of the biological functions of miR827a in grapevine and clarify the molecular mechanism of the interaction between miR827a and VqMYB14.
Collapse
Affiliation(s)
- Yangyang Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Linxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jie Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jingwen Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lin You
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qin Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qian Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
45
|
Wang Y, Tang X, Lu J. Convergent and divergent evolution of microRNA-mediated regulation in metazoans. Biol Rev Camb Philos Soc 2024; 99:525-545. [PMID: 37987240 DOI: 10.1111/brv.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The evolution of microRNAs (miRNAs) has been studied extensively to understand their roles in gene regulation and evolutionary processes. This review focuses on how miRNA-mediated regulation has evolved in bilaterian animals, highlighting both convergent and divergent evolution. Since animals and plants display significant differences in miRNA biogenesis and target recognition, the 'independent origin' hypothesis proposes that miRNA pathways in these groups independently evolved from the RNA interference (RNAi) pathway, leading to modern miRNA repertoires through convergent evolution. However, recent evidence raises the alternative possibility that the miRNA pathway might have already existed in the last common ancestor of eukaryotes, and that the differences in miRNA pathway and miRNA repertoires among animal and plant lineages arise from lineage-specific innovations and losses of miRNA pathways, miRNA acquisition, and loss of miRNAs after eukaryotic divergence. The repertoire of miRNAs has considerably expanded during bilaterian evolution, primarily through de novo creation and duplication processes, generating new miRNAs. Although ancient functionally established miRNAs are rarely lost, many newly emerged miRNAs are transient and lineage specific, following a birth-death evolutionary pattern aligning with the 'out-of-the-testis' and 'transcriptional control' hypotheses. Our focus then shifts to the convergent molecular evolution of miRNAs. We summarize how miRNA clustering and seed mimicry contribute to this phenomenon, and we review how miRNAs from different sources converge to degrade maternal messenger RNAs (mRNAs) during animal development. Additionally, we describe how miRNAs evolve across species due to changes in sequence, seed shifting, arm switching, and spatiotemporal expression patterns, which can result in variations in target sites among orthologous miRNAs across distant strains or species. We also provide a summary of the current understanding regarding how the target sites of orthologous miRNAs can vary across strains or distantly related species. Although many paralogous miRNAs retain their seed or mature sequences after duplication, alterations can occur in the seed or mature sequences or expression patterns of paralogous miRNAs, leading to functional diversification. We discuss our current understanding of the functional divergence between duplicated miRNAs, and illustrate how the functional diversification of duplicated miRNAs impacts target site evolution. By investigating these topics, we aim to enhance our current understanding of the functions and evolutionary dynamics of miRNAs. Additionally, we shed light on the existing challenges in miRNA evolutionary studies, particularly the complexity of deciphering the role of miRNA-mediated regulatory network evolution in shaping gene expression divergence and phenotypic differences among species.
Collapse
Affiliation(s)
- Yirong Wang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
46
|
Guo S, Li Y, Wang Y, Xu Y, Li Y, Wu P, Wu J, Wang L, Liu X, Chen Z. OsmiR5519 regulates grain size and weight and down-regulates sucrose synthase gene RSUS2 in rice (Oryza sativa L.). PLANTA 2024; 259:106. [PMID: 38554181 DOI: 10.1007/s00425-024-04377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
MAIN CONCLUSION The up-regulation of OsmiR5519 results in the decrease of grain size, weight and seed setting rate. OsmiR5519 plays important roles in the process of grain filling and down-regulates sucrose synthase gene RSUS2. MicroRNAs (miRNAs) are one class of small non-coding RNAs that act as crucial regulators of plant growth and development. In rice, the conserved miRNAs were revealed to regulate the yield components, but the function of rice-specific miRNAs has been rarely studied. The rice-specific OsmiR5519 was found to be abundantly expressed during reproductive development, but its biological roles remain unknown. In this study, the function of rice-specific OsmiR5519 was characterized with the miR5519-overexpressing line (miR5519-OE) and miR5519-silenced line (STTM5519). At seedling stage, the content of sucrose, glucose and fructose was obviously lower in the leaves of miR5519-OE lines than those of wild-type (WT) line. The grain size and weight were decreased significantly in miR5519-OE lines, compared to those of WT rice. The cell width of hull in miR5519-OE was smaller than that in WT. The seed setting rate was notably reduced in miR5519-OE lines, but not in STTM5519 lines. Cytological observation demonstrated that the inadequate grain filling was the main reason for the decline of seed setting rate in miR5519-OE lines. The percentage of the defects of grain amounted to 40% in miR5519-OE lines, which almost equaled to the decreased value of seed setting rate. Furthermore, the sucrose synthase gene RSUS2 was identified as a target of OsmiR5519 via RNA ligase-mediated 3'-amplification of cDNA ends (3'-RLM-RACE), dual luciferase assays and transient expression assays. In summary, our results suggest that OsmiR5519 regulates grain size and weight and down-regulates RSUS2 in rice.
Collapse
Affiliation(s)
- Shengyuan Guo
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yajuan Li
- Experimental Basis and Practical Training Center, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Wang
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yangwen Xu
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuting Li
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Wu
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
47
|
Zavallo D, Cara N, Leone M, Crescente JM, Marfil C, Masuelli R, Asurmendi S. Assessing small RNA profiles in potato diploid hybrid and its resynthesized allopolyploid reveals conserved abundance with distinct genomic distribution. PLANT CELL REPORTS 2024; 43:85. [PMID: 38453711 DOI: 10.1007/s00299-024-03170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
KEY MESSAGE The shock produced by the allopolyploidization process on a potato interspecific diploid hybrid displays a non-random remobilization of the small RNAs profile on a variety of genomic features. Allopolyploidy, a complex process involving interspecific hybridization and whole genome duplication, significantly impacts plant evolution, leading to the emergence of novel phenotypes. Polyploids often present phenotypic nuances that enhance adaptability, enabling them to compete better and occasionally to colonize new habitats. Whole-genome duplication represents a genomic "shock" that can trigger genetic and epigenetic changes that yield novel expression patterns. In this work, we investigate the polyploidization effect on a diploid interspecific hybrid obtained through the cross between the cultivated potato Solanum tuberosum and the wild potato Solanum kurtzianum, by assessing the small RNAs (sRNAs) profile of the parental diploid hybrid and its derived allopolyploid. Small RNAs are key components of the epigenetic mechanisms involved in silencing by RNA-directed DNA Methylation (RdDM). A sRNA sequencing (sRNA-Seq) analysis was performed to individually profile the 21 to 22 nucleotide (21 to 22-nt) and 24-nt sRNA size classes due to their unique mechanism of biogenesis and mode of function. The composition and distribution of different genomic features and differentially accumulated (DA) sRNAs were evaluated throughout the potato genome. We selected a subset of genes associated with DA sRNAs for messenger RNA (mRNA) expression analysis to assess potential impacts on the transcriptome. Interestingly, we noted that 24-nt DA sRNAs that exclusively mapped to exons were correlated with differentially expressed mRNAs between genotypes, while this behavior was not observed when 24-nt DA sRNAs were mapped to intronic regions. These findings collectively emphasize the nonstochastic nature of sRNA remobilization in response to the genomic shock induced by allopolyploidization.
Collapse
Affiliation(s)
- Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, 1686, Hurlingham, CP, Argentina
| | - Nicolas Cara
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias (FCA), CONICET-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Melisa Leone
- Universidad Nacional de Hurlingham, Instituto de Biotecnología, Av. Vergara 2222 (B1688GEZ), Villa Tesei, Buenos Aires, Argentina
| | - Juan Manuel Crescente
- Grupo Biotecnología y Recursos Genéticos, EEA INTA Marcos Juárez, Ruta 12 Km 3, 2580, Marcos Juárez, Argentina
| | - Carlos Marfil
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA-Mendoza-INTA), San Martín 3853, Luján de Cuyo, 5534, Mendoza, Argentina
| | - Ricardo Masuelli
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias (FCA), CONICET-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, 1686, Hurlingham, CP, Argentina.
| |
Collapse
|
48
|
Liu J, Ren Y, Sun Y, Yin Y, Han B, Zhang L, Song Y, Zhang Z, Xu Y, Fan D, Li J, Liu H, Ma C. Identification and Analysis of the MIR399 Gene Family in Grapevine Reveal Their Potential Functions in Abiotic Stress. Int J Mol Sci 2024; 25:2979. [PMID: 38474225 PMCID: PMC10931670 DOI: 10.3390/ijms25052979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
MiR399 plays an important role in plant growth and development. The objective of the present study was to elucidate the evolutionary characteristics of the MIR399 gene family in grapevine and investigate its role in stress response. To comprehensively investigate the functions of miR399 in grapevine, nine members of the Vvi-MIR399 family were identified based on the genome, using a miRBase database search, located on four chromosomes (Chr 2, Chr 10, Chr 15, and Chr 16). The lengths of the Vvi-miR399 precursor sequences ranged from 82 to 122 nt and they formed stable stem-loop structures, indicating that they could produce microRNAs (miRNAs). Furthermore, our results suggested that the 2 to 20 nt region of miR399 mature sequences were relatively conserved among family members. Phylogenetic analysis revealed that the Vvi-MIR399 members of dicots (Arabidopsis, tomato, and sweet orange) and monocots (rice and grapevine) could be divided into three clades, and most of the Vvi-MIR399s were closely related to sweet orange in dicots. Promoter analysis of Vvi-MIR399s showed that the majority of the predicted cis-elements were related to stress response. A total of 66.7% (6/9) of the Vvi-MIR399 promoters harbored drought, GA, and SA response elements, and 44.4% (4/9) of the Vvi-MIRR399 promoters also presented elements involved in ABA and MeJA response. The expression trend of Vvi-MIR399s was consistent in different tissues, with the lowest expression level in mature and young fruits and the highest expression level in stems and young leaves. However, nine Vvi-MIR399s and four target genes showed different expression patterns when exposed to low light, high light, heat, cold, drought, and salt stress. Interestingly, a putative target of Vvi-MIR399 targeted multiple genes; for example, seven Vvi-MIR399s simultaneously targeted VIT_213s0067g03280.1. Furthermore, overexpression of Vvi_MIR399e and Vvi_MIR399f in Arabidopsis enhanced tolerance to drought compared with wild-type (WT). In contrast, the survival rate of Vvi_MIR399d-overexpressed plants were zero after drought stress. In conclusion, Vvi-MIR399e and Vvi-MIR399f, which are related to drought tolerance in grapevine, provide candidate genes for future drought resistance breeding.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Yi Ren
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Sun
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Yonggang Yin
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Bin Han
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Lipeng Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Luo H, Yang J, Liu S, Li S, Si H, Zhang N. Control of Plant Height and Lateral Root Development via Stu-miR156 Regulation of SPL9 Transcription Factor in Potato. PLANTS (BASEL, SWITZERLAND) 2024; 13:723. [PMID: 38475569 DOI: 10.3390/plants13050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding small-molecule RNAs that usually regulate the expression of target genes at the post-transcriptional level. miR156 is one of a class of evolutionarily highly conserved miRNA families. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor is one of the target genes that is regulated by miR156. SPL transcription factors are involved in regulating plant growth and development, hormone response, stress response, and photosynthesis. In the present study, transgenic potato plants with overexpressed miR156 were obtained via the Agrobacterium-mediated transformation method. The results showed that the expression levels of the target gene, StSPL9, were all downregulated in the transgenic plants with overexpressed Stu-miR156. Compared with those of the control plants, the plant height and root length of the transgenic plants were significantly decreased, while the number of lateral roots was significantly increased. These results revealed that the miR156/SPLs module was involved in regulating potato plant height and root growth.
Collapse
Affiliation(s)
- Hongyu Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengyan Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
50
|
Scacchi E, Paszkiewicz G, Thi Nguyen K, Meda S, Burian A, de Back W, Timmermans MCP. A diffusible small-RNA-based Turing system dynamically coordinates organ polarity. NATURE PLANTS 2024; 10:412-422. [PMID: 38409292 DOI: 10.1038/s41477-024-01634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
The formation of a flat and thin leaf presents a developmentally challenging problem, requiring intricate regulation of adaxial-abaxial (top-bottom) polarity. The patterning principles controlling the spatial arrangement of these domains during organ growth have remained unclear. Here we show that this regulation in Arabidopsis thaliana is achieved by an organ-autonomous Turing reaction-diffusion system centred on mobile small RNAs. The data illustrate how Turing dynamics transiently instructed by prepatterned information is sufficient to self-sustain properly oriented polarity in a dynamic, growing organ, presenting intriguing parallels to left-right patterning in the vertebrate embryo. Computational modelling demonstrates that this self-organizing system continuously adapts to coordinate the robust planar polarity of a flat leaf while affording flexibility to generate the tissue patterns of evolutionarily diverse organ shapes. Our findings identify a small-RNA-based Turing network as a dynamic regulator of organ polarity that accounts for leaf shape diversity at the level of the individual organ, plant or species.
Collapse
Affiliation(s)
- Emanuele Scacchi
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany.
| | - Gael Paszkiewicz
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Khoa Thi Nguyen
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Shreyas Meda
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Agata Burian
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Walter de Back
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | |
Collapse
|