1
|
Yaschenko AE, Alonso JM, Stepanova AN. Arabidopsis as a model for translational research. THE PLANT CELL 2024:koae065. [PMID: 38411602 DOI: 10.1093/plcell/koae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Arabidopsis thaliana is currently the most-studied plant species on earth, with an unprecedented number of genetic, genomic, and molecular resources having been generated in this plant model. In the era of translating foundational discoveries to crops and beyond, we aimed to highlight the utility and challenges of using Arabidopsis as a reference for applied plant biology research, agricultural innovation, biotechnology, and medicine. We hope that this review will inspire the next generation of plant biologists to continue leveraging Arabidopsis as a robust and convenient experimental system to address fundamental and applied questions in biology. We aim to encourage lab and field scientists alike to take advantage of the vast Arabidopsis datasets, annotations, germplasm, constructs, methods, molecular and computational tools in our pursuit to advance understanding of plant biology and help feed the world's growing population. We envision that the power of Arabidopsis-inspired biotechnologies and foundational discoveries will continue to fuel the development of resilient, high-yielding, nutritious plants for the betterment of plant and animal health and greater environmental sustainability.
Collapse
Affiliation(s)
- Anna E Yaschenko
- Department of Plant and Microbial Biology, Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Krishnamurthy A, Ferl RJ, Paul A. Comparing RNA-Seq and microarray gene expression data in two zones of the Arabidopsis root apex relevant to spaceflight. APPLICATIONS IN PLANT SCIENCES 2018; 6:e01197. [PMID: 30473943 PMCID: PMC6240453 DOI: 10.1002/aps3.1197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/07/2018] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY The root apex is an important region involved in environmental sensing, but comprises a very small part of the root. Obtaining root apex transcriptomes is therefore challenging when the samples are limited. The feasibility of using tiny root sections for transcriptome analysis was examined, comparing RNA sequencing (RNA-Seq) to microarrays in characterizing genes that are relevant to spaceflight. METHODS Arabidopsis thaliana Columbia ecotype (Col-0) roots were sectioned into Zone 1 (0.5 mm; root cap and meristematic zone) and Zone 2 (1.5 mm; transition, elongation, and growth-terminating zone). Differential gene expression in each was compared. RESULTS Both microarrays and RNA-Seq proved applicable to the small samples. A total of 4180 genes were differentially expressed (with fold changes of 2 or greater) between Zone 1 and Zone 2. In addition, 771 unique genes and 19 novel transcriptionally active regions were identified by RNA-Seq that were not detected in microarrays. However, microarrays detected spaceflight-relevant genes that were missed in RNA-Seq. DISCUSSION Single root tip subsections can be used for transcriptome analysis using either RNA-Seq or microarrays. Both RNA-Seq and microarrays provided novel information. These data suggest that techniques for dealing with small, rare samples from spaceflight can be further enhanced, and that RNA-Seq may miss some spaceflight-relevant changes in gene expression.
Collapse
Affiliation(s)
- Aparna Krishnamurthy
- Department of Horticultural SciencesProgram in Plant Molecular and Cellular BiologyUniversity of FloridaGainesvilleFlorida32611USA
| | - Robert J. Ferl
- Department of Horticultural SciencesProgram in Plant Molecular and Cellular BiologyUniversity of FloridaGainesvilleFlorida32611USA
- Interdisciplinary Center for BiotechnologyUniversity of FloridaGainesvilleFlorida32611USA
| | - Anna‐Lisa Paul
- Department of Horticultural SciencesProgram in Plant Molecular and Cellular BiologyUniversity of FloridaGainesvilleFlorida32611USA
| |
Collapse
|
3
|
Sakai K, Taconnat L, Borrega N, Yansouni J, Brunaud V, Paysant-Le Roux C, Delannoy E, Martin Magniette ML, Lepiniec L, Faure JD, Balzergue S, Dubreucq B. Combining laser-assisted microdissection (LAM) and RNA-seq allows to perform a comprehensive transcriptomic analysis of epidermal cells of Arabidopsis embryo. PLANT METHODS 2018; 14:10. [PMID: 29434651 PMCID: PMC5797369 DOI: 10.1186/s13007-018-0275-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/15/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. METHODS AND RESULTS We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. CONCLUSION This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.
Collapse
Affiliation(s)
- Kaori Sakai
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Ludivine Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Nero Borrega
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Jennifer Yansouni
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Christine Paysant-Le Roux
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Marie-Laure Martin Magniette
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Jean Denis Faure
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
- Present Address: IRHS, Université d’Angers, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université Bretagne Loire, 49045 Angers, France
| | - Bertrand Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| |
Collapse
|
4
|
Qiao Z, Pingault L, Zogli P, Langevin M, Rech N, Farmer A, Libault M. A comparative genomic and transcriptomic analysis at the level of isolated root hair cells reveals new conserved root hair regulatory elements. PLANT MOLECULAR BIOLOGY 2017; 94:641-655. [PMID: 28687904 DOI: 10.1007/s11103-017-0630-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE A comparative transcriptomic and genomic analysis between Arabidopsis thaliana and Glycine max root hair genes reveals the evolution of the expression of plant genes after speciation and whole genome duplication. Our understanding of the conservation and divergence of the expression patterns of genes between plant species is limited by the quality of the genomic and transcriptomic resources available. Specifically, the transcriptomes generated from plant organs are the reflection of the contribution of the different cell types composing the samples weighted by their relative abundances in the sample. These contributions can vary between plant species leading to the generation of datasets which are difficult to compare. To gain a deeper understanding of the evolution of gene transcription in and between plant species, we performed a comparative transcriptomic and genomic analysis at the level of one single plant cell type, the root hair cell, and between two model plants: Arabidopsis (Arabidopsis thaliana) and soybean (Glycine max). These two species, which diverged 90 million years ago, were selected as models based on the large amount of genomic and root hair transcriptomic information currently available. Our analysis revealed in detail the transcriptional divergence and conservation between soybean paralogs (i.e., the soybean genome is the product of two successive whole genome duplications) and between Arabidopsis and soybean orthologs in this single plant cell type. Taking advantage of this evolutionary study, we combined bioinformatics, molecular, cellular and microscopic tools to characterize plant promoter sequences and the discovery of two root hair regulatory elements (RHE1 and RHE2) consistently and specifically active in plant root hair cells.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Lise Pingault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Prince Zogli
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Micaela Langevin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Niccole Rech
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
5
|
Abstract
Fluorescence-activated cell sorting (FACS) is a powerful method for the analysis of cell type-specific transcriptome profiles, DNA or histone modifications, and chemical compounds. In plants, it has been employed mainly with root and shoot tissue in combination with cell wall digestion on cellular and nuclear content. However, many tissues are recalcitrant to cell separation and are therefore not readily accessible for FACS analysis. Here, we lay out a detailed protocol for the generation of transcriptional profiles from fluorescently labeled nuclei. The protocol described in this chapter has been used successfully to generate a transcriptional map of the early Arabidopsis thaliana embryo.
Collapse
|
6
|
Huang L, Schiefelbein J. Conserved Gene Expression Programs in Developing Roots from Diverse Plants. THE PLANT CELL 2015; 27:2119-32. [PMID: 26265761 PMCID: PMC4568505 DOI: 10.1105/tpc.15.00328] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/13/2015] [Accepted: 07/26/2015] [Indexed: 05/20/2023]
Abstract
The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.
Collapse
Affiliation(s)
- Ling Huang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
7
|
Wang D, Deal RB. Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq. Methods Mol Biol 2015; 1284:3-25. [PMID: 25757765 DOI: 10.1007/978-1-4939-2444-8_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Plants consist of many functionally specialized cell types, each with its own unique epigenome, transcriptome, and proteome. Characterization of these cell type-specific properties is essential to understanding cell fate specification and the responses of individual cell types to the environment. In this chapter we describe an approach to map chromatin features in specific cell types of Arabidopsis thaliana using nuclei purification from individual cell types with the INTACT method (isolation of nuclei tagged in specific cell types) followed by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq). The INTACT system employs two transgenes to generate affinity-labeled nuclei in the cell type of interest, and these tagged nuclei can then be selectively purified from tissue homogenates. The primary transgene encodes the nuclear tagging fusion protein (NTF), which consists of a nuclear envelope-targeting domain, the green fluorescent protein, and a biotin ligase recognition peptide, while the second transgene encodes the E. coli biotin ligase (BirA), which selectively biotinylates NTF. Expression of NTF and BirA in a specific cell type thus yields nuclei that are coated with biotin and can be purified by virtue of their affinity for streptavidin-coated magnetic beads. Compared with the original INTACT nuclei purification protocol, the procedure presented here is greatly simplified and shortened. After nuclei purification, we provide detailed instructions for chromatin isolation, shearing, and immunoprecipitation. Finally, we present a low input ChIP-seq library preparation protocol based on the nano-ChIP-seq method of Adli and Bernstein, and we describe multiplex Illumina sequencing of these libraries to produce high quality, cell type-specific epigenome profiles at a relatively low cost. The procedures given here are optimized for Arabidopsis but should be easily adaptable to other plant species.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, O. Wayne Rollins Research Center, Emory University, 1510 Clifton Road NE, Atlanta, GA, 30322, USA
| | | |
Collapse
|
8
|
del Pozo JC, Ramirez-Parra E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. PLANT, CELL & ENVIRONMENT 2014; 37:2722-37. [PMID: 24716850 DOI: 10.1111/pce.12344] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/29/2014] [Indexed: 05/21/2023]
Abstract
Whole genome duplication (autopolyploidy) is common in many plant species and often leads to better adaptation to adverse environmental conditions. However, little is known about the physiological and molecular mechanisms underlying these adaptations. Drought is one of the major environmental conditions limiting plant growth and development. Here, we report that, in Arabidopsis thaliana, tetraploidy promotes alterations in cell proliferation and organ size in a tissue-dependent manner. Furthermore, it potentiates plant tolerance to salt and drought stresses and decreases transpiration rate, likely through controlling stomata density and closure, abscisic acid (ABA) signalling and reactive oxygen species (ROS) homeostasis. Our transcriptomic analyses revealed that tetraploidy mainly regulates the expression of genes involved in redox homeostasis and ABA and stress response. Taken together, our data have shed light on the molecular basis associated with stress tolerance in autopolyploid plants.
Collapse
Affiliation(s)
- Juan C del Pozo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
| | | |
Collapse
|
9
|
Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrère S, Sallet E, Courcelle E, Moreau S, Debellé F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:817-37. [PMID: 24483147 DOI: 10.1111/tpj.12442] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/02/2014] [Indexed: 05/19/2023]
Abstract
Rhizobium-induced root nodules are specialized organs for symbiotic nitrogen fixation. Indeterminate-type nodules are formed from an apical meristem and exhibit a spatial zonation which corresponds to successive developmental stages. To get a dynamic and integrated view of plant and bacterial gene expression associated with nodule development, we used a sensitive and comprehensive approach based upon oriented high-depth RNA sequencing coupled to laser microdissection of nodule regions. This study, focused on the association between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti, led to the production of 942 million sequencing read pairs that were unambiguously mapped on plant and bacterial genomes. Bioinformatic and statistical analyses enabled in-depth comparison, at a whole-genome level, of gene expression in specific nodule zones. Previously characterized symbiotic genes displayed the expected spatial pattern of expression, thus validating the robustness of our approach. We illustrate the use of this resource by examining gene expression associated with three essential elements of nodule development, namely meristem activity, cell differentiation and selected signaling processes related to bacterial Nod factors and redox status. We found that transcription factor genes essential for the control of the root apical meristem were also expressed in the nodule meristem, while the plant mRNAs most enriched in nodules compared with roots were mostly associated with zones comprising both plant and bacterial partners. The data, accessible on a dedicated website, represent a rich resource for microbiologists and plant biologists to address a variety of questions of both fundamental and applied interest.
Collapse
Affiliation(s)
- Brice Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Golani Y, Kaye Y, Gilhar O, Ercetin M, Gillaspy G, Levine A. Inositol polyphosphate phosphatidylinositol 5-phosphatase9 (At5ptase9) controls plant salt tolerance by regulating endocytosis. MOLECULAR PLANT 2013; 6:1781-1794. [PMID: 23658066 DOI: 10.1093/mp/sst072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phosphatidylinositol 5-phosphatases (5PTases) that hydrolyze the 5' position of the inositol ring are key components of membrane trafficking system. Recently, we reported that mutation in At5PTase7 gene reduced production of reactive oxygen species (ROS) and decreased expression of stress-responsive genes, resulting in increased salt sensitivity. Here, we describe an even more salt-sensitive 5ptase mutant, At5ptase9, which also hydrolyzes the 5' phosphate groups specifically from membrane-bound phosphatidylinositides. Interestingly, the mutants were more tolerant to osmotic stress. We analyzed the main cellular processes that may be affected by the mutation, such as production of ROS, influx of calcium, and induction of salt-response genes. The At5ptase9 mutants showed reduced ROS production and Ca(2+) influx, as well as decreased fluid-phase endocytosis. Inhibition of endocytosis by phenylarsine oxide or Tyrphostin A23 in wild-type plants blocked these responses. Induction of salt-responsive genes in wild-type plants was also suppressed by the endocytosis inhibitors. Thus, inhibition of endocytosis in wild-type plants mimicked the salt stress responses, observed in the At5ptase9 mutants. In summary, our results show a key non-redundant role of At5PTase7 and 9 isozymes, and underscore the localization of membrane-bound PtdIns in regulating plant salt tolerance by coordinating the endocytosis, ROS production, Ca(2+) influx, and induction of stress-responsive genes.
Collapse
Affiliation(s)
- Yael Golani
- a Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Givat-Ram Campus, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Interrogating the cell-specific transcriptome forms an important component of understanding the role that specific cells play in assisting a plant to overcome abiotic stress. Among the challenges arising when extracting RNA from individual plant cells are: the isolation of pure cell populations; the small yield of material when isolating specific cell types, and ensuring an accurate representation of the transcriptome from each cell type after amplification of RNA. Here we describe two approaches for isolating RNA from specific cell types-single cell sampling and analysis (SiCSA) and laser capture microdissection. Isolated RNA can then be directly sampled qualitatively using reverse transcription PCR (RT-PCR) or amplified for profiling -multiple specific genes using quantitative RT-PCR and genome-wide transcript analyses.
Collapse
Affiliation(s)
- Stuart J Roy
- Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA, Australia.
| | | | | | | | | |
Collapse
|
12
|
Riedel N, Berg J. Statistical mechanics approach to the sample deconvolution problem. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042715. [PMID: 23679457 DOI: 10.1103/physreve.87.042715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Indexed: 06/02/2023]
Abstract
In a multicellular organism different cell types express a gene in different amounts. Samples from which gene expression levels can be measured typically contain a mixture of different cell types; the resulting measurements thus give only averages over the different cell types present. Based on fluctuations in the mixture proportions from sample to sample it is in principle possible to reconstruct the underlying expression levels of each cell type: to deconvolute the sample. We use a statistical mechanics approach to the problem of deconvoluting such partial concentrations from mixed samples, explore this approach using Markov chain Monte Carlo simulations, and give analytical results for when and how well samples can be unmixed.
Collapse
Affiliation(s)
- N Riedel
- Institut für Theoretische Physik, University of Cologne - Zülpicher Strasse 77, 50937 Köln, Germany Sybacol, University of Cologne, Germany.
| | | |
Collapse
|
13
|
Wuest SE, Schmid MW, Grossniklaus U. Cell-specific expression profiling of rare cell types as exemplified by its impact on our understanding of female gametophyte development. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:41-9. [PMID: 23276786 DOI: 10.1016/j.pbi.2012.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/03/2012] [Indexed: 05/20/2023]
Abstract
Expression profiling of single cells can yield insights into cell specification, cellular differentiation processes, and cell type-specific responses to environmental stimuli. Recent work has established excellent tools to perform genome-wide expression studies of individual cell types, even if the cells of interest occur at low frequency within an organ. We review the advances and impact of gene expression studies of rare cell types, as exemplified by recently gained insights into the development and function of the angiosperm female gametophyte. The detailed transcriptional characterization of different stages during female gametophyte development has significantly helped to improve our understanding of cellular specification or cell-cell communication processes. Next-generation sequencing approaches--used increasingly for expression profiling--will now allow for comparative approaches that focus on agriculturally, ecologically or evolutionarily relevant aspects of plant reproduction.
Collapse
Affiliation(s)
- Samuel E Wuest
- Institute of Evolutionary Biology and Environmental Studies & Zürich-Basel Plant Science Center, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
14
|
Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge RW, Jackson SA. The fate of duplicated genes in a polyploid plant genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:143-53. [PMID: 22974547 DOI: 10.1111/tpj.12026] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/09/2012] [Accepted: 09/10/2012] [Indexed: 05/18/2023]
Abstract
Polyploidy is generally not tolerated in animals, but is widespread in plant genomes and may result in extensive genetic redundancy. The fate of duplicated genes is poorly understood, both functionally and evolutionarily. Soybean (Glycine max L.) has undergone two separate polyploidy events (13 and 59 million years ago) that have resulted in 75% of its genes being present in multiple copies. It therefore constitutes a good model to study the impact of whole-genome duplication on gene expression. Using RNA-seq, we tested the functional fate of a set of approximately 18 000 duplicated genes. Across seven tissues tested, approximately 50% of paralogs were differentially expressed and thus had undergone expression sub-functionalization. Based on gene ontology and expression data, our analysis also revealed that only a small proportion of the duplicated genes have been neo-functionalized or non-functionalized. In addition, duplicated genes were often found in collinear blocks, and several blocks of duplicated genes were co-regulated, suggesting some type of epigenetic or positional regulation. We also found that transcription factors and ribosomal protein genes were differentially expressed in many tissues, suggesting that the main consequence of polyploidy in soybean may be at the regulatory level.
Collapse
Affiliation(s)
- Anne Roulin
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- Zoologisches Institut, Universität Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Paul L Auer
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marc Libault
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jessica Schlueter
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- College of Computing and Informatics, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Greg May
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Rebecca W Doerge
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Scott A Jackson
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| |
Collapse
|
15
|
Bailey-Serres J. Microgenomics: genome-scale, cell-specific monitoring of multiple gene regulation tiers. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:293-325. [PMID: 23451787 DOI: 10.1146/annurev-arplant-050312-120035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The expression of nuclear protein-coding genes is controlled by dynamic mechanisms ranging from DNA methylation, chromatin modification, and gene transcription to mRNA maturation, turnover, and translation and the posttranslational control of protein function. A genome-scale assessment of the spatiotemporal regulation of gene expression is essential for a comprehensive understanding of gene regulatory networks. However, there are major obstacles to the precise evaluation of gene regulation in multicellular plant organs; these include the monitoring of regulatory processes at levels other than steady-state transcript abundance, resolution of gene regulation in individual cells or cell types, and effective assessment of transient gene activity manifested during development or in response to external cues. This review surveys the advantages and applications of microgenomics technologies that enable panoramic quantitation of cell-type-specific expression in plants, focusing on the importance of querying gene activity at multiple steps in the continuum, from histone modification to selective translation.
Collapse
Affiliation(s)
- J Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
16
|
González-Carranza ZH, Shahid AA, Zhang L, Liu Y, Ninsuwan U, Roberts JA. A novel approach to dissect the abscission process in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:1342-56. [PMID: 22992509 PMCID: PMC3490599 DOI: 10.1104/pp.112.205955] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/16/2012] [Indexed: 05/20/2023]
Abstract
Abscission is the consequence of a specialized layer of cells undergoing a complex series of molecular and biochemical events. Analysis of the specific molecular changes associated with abscission is hampered by contamination from neighboring nonseparating tissues. Moreover, studies of abscission frequently involve the examination of events that take place in isolated segments of tissue exposed to nonphysiological concentrations of ethylene or indole-3-acetic acid for protracted periods (more than 24 h) of time. To resolve these problems, we have adopted the use of a transgenic line of Arabidopsis (Arabidopsis thaliana) where the promoter of an abscission-specific polygalacturonase gene (At2g41850/ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2) has been fused to a green fluorescent protein reporter. RNA was extracted from green fluorescent protein-tagged cells, released from abscising floral organs, and used to generate a complementary DNA library. This library was used to probe a microarray, and a population of abscission-related transcripts was studied in detail. Seven novel abscission-related genes were identified, four of which encode proteins of unknown function. Reverse transcription-polymerase chain reaction analyses and promoter fusions to the β-glucuronidase reporter gene confirmed the expression of these genes in the abscission zone and revealed other places of expression during seedling development. Three of these genes were studied further by crossing reporter lines to the abscission mutants inflorescence deficient in abscission (ida) and blade-on-petiole1 (bop1)/bop2 and an IDA-overexpressing line. Phenotypic analysis of an At3g14380 transfer DNA insertion line indicates that this gene plays a functional role in floral organ shedding. This strategy has enabled us to uncover new genes involved in abscission, and their possible contribution to the process is discussed.
Collapse
Affiliation(s)
- Zinnia Haydee González-Carranza
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
17
|
Richards CL, Rosas U, Banta J, Bhambhra N, Purugganan MD. Genome-wide patterns of Arabidopsis gene expression in nature. PLoS Genet 2012; 8:e1002662. [PMID: 22532807 PMCID: PMC3330097 DOI: 10.1371/journal.pgen.1002662] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 03/05/2012] [Indexed: 02/01/2023] Open
Abstract
Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days, spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field, and accession and flowering status (vegetative versus flowering) were strong components of transcriptional variation in this plant. We identified between ∼110 and 190 time-varying gene expression clusters in the field, many of which were significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal components of vegetative shoot gene expression (PC(veg)) correlate to temperature and precipitation occurrence in the field. The largest PC(veg) axes included thermoregulatory genes while the second major PC(veg) was associated with precipitation and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a framework for further understanding the genetic networks that are deployed in natural environments, and we connect plant molecular genetics in the laboratory to plant organismal ecology in the wild.
Collapse
Affiliation(s)
- Christina L. Richards
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Integrative Biology, University of South Florida, Tampa, Florida, United States of America
| | - Ulises Rosas
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Joshua Banta
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, University of Texas at Tyler, Tyler, Texas, United States of America
| | - Naeha Bhambhra
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Michael D. Purugganan
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| |
Collapse
|
18
|
Javelle M, Marco CF, Timmermans M. In situ hybridization for the precise localization of transcripts in plants. J Vis Exp 2011:e3328. [PMID: 22143276 PMCID: PMC3308598 DOI: 10.3791/3328] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
With the advances in genomics research of the past decade, plant biology has seen numerous studies presenting large-scale quantitative analyses of gene expression. Microarray and next generation sequencing approaches are being used to investigate developmental, physiological and stress response processes, dissect epigenetic and small RNA pathways, and build large gene regulatory networks1-3. While these techniques facilitate the simultaneous analysis of large gene sets, they typically provide a very limited spatiotemporal resolution of gene expression changes. This limitation can be partially overcome by using either profiling method in conjunction with lasermicrodissection or fluorescence-activated cell sorting4-7. However, to fully understand the biological role of a gene, knowledge of its spatiotemporal pattern of expression at a cellular resolution is essential. Particularly, when studying development or the effects of environmental stimuli and mutants can the detailed analysis of a gene's expression pattern become essential. For instance, subtle quantitative differences in the expression levels of key regulatory genes can lead to dramatic phenotypes when associated with the loss or gain of expression in specific cell types. Several methods are routinely used for the detailed examination of gene expression patterns. One is through analysis of transgenic reporter lines. Such analysis can, however, become time-consuming when analyzing multiple genes or working in plants recalcitrant to transformation. Moreover, an independent validation to ensure that the transgene expression pattern mimics that of the endogenous gene is typically required. Immunohistochemical protein localization or mRNA in situ hybridization present relatively fast alternatives for the direct visualization of gene expression within cells and tissues. The latter has the distinct advantage that it can be readily used on any gene of interest. In situ hybridization allows detection of target mRNAs in cells by hybridization with a labeled anti-sense RNA probe obtained by in vitro transcription of the gene of interest. Here we outline a protocol for the in situ localization of gene expression in plants that is highly sensitivity and specific. It is optimized for use with paraformaldehyde fixed, paraffin-embedded sections, which give excellent preservation of histology, and DIG-labeled probes that are visualized by immuno-detection and alkaline-phosphatase colorimetric reaction. This protocol has been successfully applied to a number of tissues from a wide range of plant species, and can be used to analyze expression of mRNAs as well as small RNAs8-14.
Collapse
|
19
|
van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE. The draft genome and transcriptome of Cannabis sativa. Genome Biol 2011; 12:R102. [PMID: 22014239 PMCID: PMC3359589 DOI: 10.1186/gb-2011-12-10-r102] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2011] [Indexed: 11/10/2022] Open
Abstract
Background Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. Results We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. Conclusions The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.
Collapse
Affiliation(s)
- Harm van Bakel
- Banting and Best Department of Medical Research and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Kryvych S, Kleessen S, Ebert B, Kersten B, Fisahn J. Proteomics - The key to understanding systems biology of Arabidopsis trichomes. PHYTOCHEMISTRY 2011; 72:1061-1070. [PMID: 20952039 DOI: 10.1016/j.phytochem.2010.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/09/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Abstract
Every multicellular organism consists of numerous organs, tissues and specific cell types. To gain detailed knowledge about the morphogenesis of these complex structures, it is inevitable to advance biochemical analyses to ultimate spatial and temporal resolution since individual cell types contribute differently to the overall performance of living objects. Single cell sampling combined with systems biological approaches was recently applied to investigations of Arabidopsis thaliana trichomes (leaf hairs). These are single celled structures that provide ideal model systems to address various aspects of plant cell development and differentiation at the level of individual cells. A previously suggested function of trichomes in plant stress responses could thus be confirmed. Furthermore, trichome-specific "omics" data collected in several laboratories are mutually conclusive which demonstrates the applicability of systems biological approaches at the single cell level.
Collapse
Affiliation(s)
- Sergiy Kryvych
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
21
|
Jiao Y, Meyerowitz EM. Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol Syst Biol 2011; 6:419. [PMID: 20924354 PMCID: PMC2990639 DOI: 10.1038/msb.2010.76] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 08/27/2010] [Indexed: 02/07/2023] Open
Abstract
Combining translating ribosome affinity purification with RNA-seq for cell-specific profiling of translating RNAs in developing flowers. Cell type comparisons of cell type-specific hormone responses, promoter motifs, coexpressed cognate binding factor candidates, and splicing isoforms. Widespread post-transcriptional regulation at both the intron splicing and translational stages. A new class of noncoding RNAs associated with polysomes.
What constitutes a differentiated cell type? How much do cell types differ in their transcription of genes? The development and functions of tissues rely on constant interactions among distinct and nonequivalent cell types. Answering these questions will require quantitative information on transcriptomes, proteomes, protein–protein interactions, protein–nucleic acid interactions, and metabolomes at cellular resolution. The systems approaches emerging in biology promise to explain properties of biological systems based on genome-wide measurements of expression, interaction, regulation, and metabolism. To facilitate a systems approach, it is essential first to capture such components in a global manner, ideally at cellular resolution. Recently, microarray analysis of transcriptomes has been extended to a cellular level of resolution by using laser microdissection or fluorescence-activated sorting (for review, see Nelson et al, 2008). These methods have been limited by stresses associated with cellular separation and isolation procedures, and biases associated with mandatory RNA amplification steps. A newly developed method, translating ribosome affinity purification (TRAP; Zanetti et al, 2005; Heiman et al, 2008; Mustroph et al, 2009), circumvents these problems by epitopetagging a ribosomal protein in specific cellular domains to selectively purify polysomes. We combined TRAP with deep sequencing, which we term TRAP-seq, to provide cell-level spatiotemporal maps for Arabidopsis early floral development at single-base resolution. Flower development in Arabidopsis has been studied extensively and is one of the best understood aspects of plant development (for review, see Krizek and Fletcher, 2005). Genetic analysis of homeotic mutants established the ABC model, in which three classes of regulatory genes, A, B and C, work in a combinatorial manner to confer organ identities of four whorls (Coen and Meyerowitz, 1991). Each class of regulatory gene is expressed in a specific and evolutionarily conserved domain, and the action of the class A, B and C genes is necessary for specification of organ identity (Figure 1A). Using TRAP-seq, we purified cell-specific translating mRNA populations, which we and others call the translatome, from the A, B and C domains of early developing flowers, in which floral patterning and the specification of floral organs is established. To achieve temporal specificity, we used a floral induction system to facilitate collection of early stage flowers (Wellmer et al, 2006). The combination of TRAP-seq with domain-specific promoters and this floral induction system enabled fine spatiotemporal isolation of translating mRNA in specific cellular domains, and at specific developmental stages. Multiple lines of evidence confirmed the specificity of this approach, including detecting the expression in expected domains but not in other domains for well-studied flower marker genes and known physiological functions (Figures 1B–D and 2A–C). Furthermore, we provide numerous examples from flower development in which a spatiotemporal map of rigorously comparable cell-specific translatomes makes possible new views of the properties of cell domains not evident in data obtained from whole organs or tissues, including patterns of transcription and cis-regulation, new physiological differences among cell domains and between flower stages, putative hormone-active centers, and splicing events specific for flower domains (Figure 2A–D). Such findings may provide new targets for reverse genetics studies and may aid in the formulation and validation of interaction and pathway networks. Beside cellular heterogeneity, the transcriptome is regulated at several steps through the life of mRNA molecules, which are not directly available through traditional transcriptome profiling of total mRNA abundance. By comparing the translatome and transcriptome, we integratively profiled two key posttranscriptional control points, intron splicing and translation state. From our translatome-wide profiling, we (i) confirmed that both posttranscriptional regulation control points were used by a large portion of the transcriptome; (ii) identified a number of cis-acting features within the coding or noncoding sequences that correlate with splicing or translation state; and (iii) revealed correlation between each regulation mechanism and gene function. Our transcriptome-wide surveys have highlighted target genes transcripts of which are probably under extensive posttranscriptional regulation during flower development. Finally, we reported the finding of a large number of polysome-associated ncRNAs. About one-third of all annotated ncRNA in the Arabidopsis genome were observed co-purified with polysomes. Coding capacity analysis confirmed that most of them are real ncRNA without conserved ORFs. The group of polysome-associated ncRNA reported in this study is a potential new addition to the expanding riboregulator catalog; they could have roles in translational regulation during early flower development. Determining both the expression levels of mRNA and the regulation of its translation is important in understanding specialized cell functions. In this study, we describe both the expression profiles of cells within spatiotemporal domains of the Arabidopsis thaliana flower and the post-transcriptional regulation of these mRNAs, at nucleotide resolution. We express a tagged ribosomal protein under the promoters of three master regulators of flower development. By precipitating tagged polysomes, we isolated cell type-specific mRNAs that are probably translating, and quantified those mRNAs through deep sequencing. Cell type comparisons identified known cell-specific transcripts and uncovered many new ones, from which we inferred cell type-specific hormone responses, promoter motifs and coexpressed cognate binding factor candidates, and splicing isoforms. By comparing translating mRNAs with steady-state overall transcripts, we found evidence for widespread post-transcriptional regulation at both the intron splicing and translational stages. Sequence analyses identified structural features associated with each step. Finally, we identified a new class of noncoding RNAs associated with polysomes. Findings from our profiling lead to new hypotheses in the understanding of flower development.
Collapse
Affiliation(s)
- Yuling Jiao
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
22
|
Takahara H, Endl E, O'Connell R. Isolation of fungal infection structures from plant tissue by flow cytometry for cell-specific transcriptome analysis. Methods Mol Biol 2011; 729:3-13. [PMID: 21365480 DOI: 10.1007/978-1-61779-065-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many plant pathogenic fungi differentiate a series of highly specialized infection structures to invade and colonize host tissues. Especially at early stages of infection, the ratio of fungal to plant biomass is very low. To investigate cell-specific patterns of gene expression, it is necessary to purify the fungal structures of interest from infected plants. We describe here a method to isolate the biotrophic hyphae of Colletotrichum higginsianum from Arabidopsis leaves, based on a combination of pre-enrichment by isopycnic centrifugation followed by further purification by fluorescence-activated cell sorting. This protocol efficiently eliminates contamination by plant components and nontarget fungal cell-types. Moreover, the isolated cells remain alive, providing high-quality RNA for library construction. The method can be readily adapted for cell-specific transcriptome analysis in other plant-microbe interactions.
Collapse
Affiliation(s)
- Hiroyuki Takahara
- Department of Bioproduction Science, Ishikawa Prefectural University, Ishikawa, Japan
| | | | | |
Collapse
|
23
|
Caño-Delgado A, Lee JY, Demura T. Regulatory Mechanisms for Specification and Patterning of Plant Vascular Tissues. Annu Rev Cell Dev Biol 2010; 26:605-37. [DOI: 10.1146/annurev-cellbio-100109-104107] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Caño-Delgado
- Molecular Genetics Department, Center for Research in Agricultural Genomics, Barcelona 08034, Spain;
| | - Ji-Young Lee
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853;
- Department of Plant Biology, Cornell University, Ithaca, NY 14853
| | - Taku Demura
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0136, Japan;
| |
Collapse
|
24
|
Conn S, Gilliham M. Comparative physiology of elemental distributions in plants. ANNALS OF BOTANY 2010; 105:1081-102. [PMID: 20410048 PMCID: PMC2887064 DOI: 10.1093/aob/mcq027] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/16/2009] [Accepted: 12/16/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants contain relatively few cell types, each contributing a specialized role in shaping plant function. With respect to plant nutrition, different cell types accumulate certain elements in varying amounts within their storage vacuole. The role and mechanisms underlying cell-specific distribution of elements in plants is poorly understood. SCOPE The phenomenon of cell-specific elemental accumulation has been briefly reviewed previously, but recent technological advances with the potential to probe mechanisms underlying elemental compartmentation have warranted an updated evaluation. We have taken this opportunity to catalogue many of the studies, and techniques used for, recording cell-specific compartmentation of particular elements. More importantly, we use three case-study elements (Ca, Cd and Na) to highlight the basis of such phenomena in terms of their physiological implications and underpinning mechanisms; we also link such distributions to the expression of known ion or solute transporters. CONCLUSIONS Element accumulation patterns are clearly defined by expression of key ion or solute transporters. Although the location of element accumulation is fairly robust, alterations in expression of certain solute transporters, through genetic modifications or by growth under stress, result in perturbations to these patterns. However, redundancy or induced pleiotropic expression effects may complicate attempts to characterize the pathways that lead to cell-specific elemental distribution. Accumulation of one element often has consequences on the accumulation of others, which seems to be driven largely to maintain vacuolar and cytoplasmic osmolarity and charge balance, and also serves as a detoxification mechanism. Altered cell-specific transcriptomics can be shown, in part, to explain some of this compensation.
Collapse
Affiliation(s)
- Simon Conn
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
25
|
Merret R, Moulia B, Hummel I, Cohen D, Dreyer E, Bogeat-Triboulot MB. Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism. BMC Biol 2010; 8:18. [PMID: 20202192 PMCID: PMC2845557 DOI: 10.1186/1741-7007-8-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/04/2010] [Indexed: 01/09/2023] Open
Abstract
Background Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment. Results We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-β in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1β were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression. Conclusions We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this framework in our view opens a new way to dissect the molecular basis of growth regulation, even in non-model species or complex structures.
Collapse
Affiliation(s)
- Rémy Merret
- INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France
| | | | | | | | | | | |
Collapse
|
26
|
Iyer-Pascuzzi AS, Benfey PN. Fluorescence-activated cell sorting in plant developmental biology. Methods Mol Biol 2010; 655:313-319. [PMID: 20734270 DOI: 10.1007/978-1-60761-765-5_21] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Understanding the development of an organ requires knowledge of gene, protein, and metabolite expression in the specific cell types and tissues that comprise the organ. Fluorescence-activated cell sorting (FACS) is an efficient method to isolate specific cells of interest, and the information gained from this approach has been integral to plant developmental biology. The Benfey lab has developed this method to examine gene expression profiles of different cell types in the Arabidopsis root under both standard and stress conditions. In addition to gene expression, downstream applications of FACS include proteomic and metabolite analysis. This is a powerful method to examine biological functions of specific cell types and tissues with a systems biology approach.
Collapse
Affiliation(s)
- Anjali S Iyer-Pascuzzi
- Department of Biology and NIH Center for Systems Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
27
|
Kangasjärvi S, Nurmi M, Tikkanen M, Aro EM. Cell-specific mechanisms and systemic signalling as emerging themes in light acclimation of C3 plants. PLANT, CELL & ENVIRONMENT 2009; 32:1230-1240. [PMID: 19344335 DOI: 10.1111/j.1365-3040.2009.01982.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chloroplasts perform essential signalling functions in light acclimation and various stress responses in plants. Research on chloroplast signalling has provided fundamental information concerning the diversity of cellular responses to changing environmental conditions. Evidence has also accumulated indicating that different cell types possess specialized roles in regulation of leaf development and stress acclimation when challenged by environmental cues. Leaf veins are flanked by a layer of elongated chloroplast-containing bundle sheath cells, which due to their central position hold the potential to control the flux of information inside the leaves. Indeed, a specific role for bundle sheath cells in plant acclimation to various light regimes is currently emerging. Moreover, perception of light stress initiates systemic signals that spread through the vasculature to confer stress resistance in non-exposed parts of the plant. Such long-distance signalling functions are related to unique characteristics of reactive oxygen species and their detoxification in bundle sheath cells. Novel techniques for analysis of distinct tissue types, together with Arabidopsis thaliana mutants with vasculature-specific phenotypes, have proven instrumental in dissection of structural hierarchy among regulatory processes in leaves. This review emphasizes the current knowledge concerning the role of vascular bundle sheath cells in light-dependent acclimation processes of C3 plants.
Collapse
|
28
|
Ckurshumova W, Koizumi K, Chatfield SP, Sanchez-Buelna SU, Gangaeva AE, McKenzie R, Berleth T. Tissue-Specific GAL4 Expression Patterns as a Resource Enabling Targeted Gene Expression, Cell Type-Specific Transcript Profiling and Gene Function Characterization in the Arabidopsis Vascular System. ACTA ACUST UNITED AC 2008; 50:141-50. [DOI: 10.1093/pcp/pcn180] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Nelson T, Gandotra N, Tausta SL. Plant cell types: reporting and sampling with new technologies. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:567-73. [PMID: 18653377 DOI: 10.1016/j.pbi.2008.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 05/21/2023]
Abstract
Plants have relatively few cell types, but their specialized functions and their interactions are essential for physiology, development, and defense. The contributions of individual cells have been distinguished by methods including in situ reporting, cell sampling, and cell separation, thus far mostly limited to measurement of single transcripts, proteins, or metabolites. Advances in transcriptomics, proteomics, metabolomics, and activity assays with small samples and in the modeling of these data into networks of expression, regulation, interaction, and metabolism make it possible to evaluate the roles of cell types at system levels. Recent analyses include cell types of developing roots, bundle sheath and mesophyll cells of C4-type leaves, xylem and phloem cells of vascular systems, and specialized regions of embryos and shoot apices.
Collapse
Affiliation(s)
- Timothy Nelson
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208104, New Haven, CT 06520-8104, USA.
| | | | | |
Collapse
|
30
|
Ebert B, Melle C, Lieckfeldt E, Zöller D, von Eggeling F, Fisahn J. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1227-37. [PMID: 18423788 DOI: 10.1016/j.jplph.2008.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/22/2008] [Accepted: 01/25/2008] [Indexed: 05/24/2023]
Abstract
Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.
Collapse
Affiliation(s)
- Berit Ebert
- Max-Planck-Institute of Molecular Plant Physiology, 14776 Potsdam OT Golm, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Laubinger S, Zeller G, Henz SR, Sachsenberg T, Widmer CK, Naouar N, Vuylsteke M, Schölkopf B, Rätsch G, Weigel D. At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biol 2008; 9:R112. [PMID: 18613972 PMCID: PMC2530869 DOI: 10.1186/gb-2008-9-7-r112] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/12/2008] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage.
Collapse
Affiliation(s)
- Sascha Laubinger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstr, 37-39, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang C, Barthelson RA, Lambert GM, Galbraith DW. Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. PLANT PHYSIOLOGY 2008; 147:30-40. [PMID: 18354040 PMCID: PMC2330299 DOI: 10.1104/pp.107.115246] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 03/13/2008] [Indexed: 05/18/2023]
Abstract
We describe a simple and highly effective means for global identification of genes that are expressed within specific cell types within complex tissues. It involves transgenic expression of nuclear-targeted green fluorescent protein in a cell-type-specific manner. The fluorescent nuclei are then purified from homogenates by fluorescence-activated sorting, and the RNAs employed as targets for microarray hybridization. We demonstrate the validity of the approach through the identification of 12 genes that are selectively expressed in phloem.
Collapse
Affiliation(s)
- Changqing Zhang
- Department of Plant Sciences , The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.
Collapse
|
34
|
Hovav R, Udall JA, Hovav E, Rapp R, Flagel L, Wendel JF. A majority of cotton genes are expressed in single-celled fiber. PLANTA 2008; 227:319-29. [PMID: 17849148 DOI: 10.1007/s00425-007-0619-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/24/2007] [Indexed: 05/11/2023]
Abstract
Multicellular eukaryotes contain a diversity of cell types, presumably differing from one another in the suite of genes expressed during development. At present, little is known about the proportion of the genome transcribed in most cell types, nor the degree to which global patterns of expression change during cellular differentiation. To address these questions in a model plant system, we studied the unique and highly exaggerated single-celled, epidermal seed trichomes ("cotton") of cultivated cotton (Gossypium hirsutum). By taking advantage of advances in expression profiling and microarray technology, we evaluated the transcriptome of cotton fibers across a developmental time-course, from a few days post-anthesis through primary and secondary wall synthesis stages. Comparisons of gene expression in populations of developing cotton fiber cells to genetically complex reference samples derived from 6 different cotton organs demonstrated that a remarkably high proportion of the cotton genome is transcribed, with 75-94% of the total genome transcribed at each stage. Compared to the reference samples, more than half of all genes were up-regulated during at least one stage of fiber development. These genes were clustered into seven groups of expression profiles that provided new insight into biological processes governing fiber development. Genes implicated in vesicle coating and trafficking were found to be overexpressed throughout all stages of fiber development studied, indicating their important role in maintaining rapid growth of this unique plant cell.
Collapse
Affiliation(s)
- Ran Hovav
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Yu Y, Lashbrook CC, Hannapel DJ. Tissue integrity and RNA quality of laser microdissected phloem of potato. PLANTA 2007; 226:797-803. [PMID: 17387510 DOI: 10.1007/s00425-007-0509-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 03/04/2007] [Indexed: 05/05/2023]
Abstract
The phloem is an important conduit for the transport of signaling molecules including RNA. Phloem sap has served as a source of RNA to profile uncontaminated phloem transcriptomes but its collection is difficult in many species. Laser capture microdissection techniques offer a valuable alternative for isolating RNA from specific vascular cells. In potato (Solanum tuberosum L.), there are seven BEL1-like transcription factors expressed throughout the plant with diverse functions. The RNA of one of these, StBEL5, moves through the phloem from the leaf to stolon tips to regulate tuber formation. In this study, the presence of several BEL RNAs and one Knotted1-like RNA was determined in phloem cells collected by laser microdissection coupled to laser pressure catapulting (LMPC). Three fixatives were compared for their effect on cell morphology and RNA quality in transverse sections of stems of potato. For optimum tissue integrity and quality of RNA from potato stem sections, the best results were achieved using ethanol acetate as the fixative. In addition, the RT-PCR results demonstrated the presence of six out of seven of the StBEL RNAs and a potato Knox RNA in phloem cells.
Collapse
Affiliation(s)
- Yueyue Yu
- Molecular, Cellular, and Developmental Biology Major, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
36
|
Steffen JG, Kang IH, Macfarlane J, Drews GN. Identification of genes expressed in the Arabidopsis female gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:281-92. [PMID: 17559508 DOI: 10.1111/j.1365-313x.2007.03137.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The angiosperm female gametophyte typically consists of one egg cell, two synergid cells, one central cell, and three antipodal cells. Each of these four cell types has unique structural features and performs unique functions that are essential for the reproductive process. The gene regulatory networks conferring these four phenotypic states are largely uncharacterized. As a first step towards dissecting the gene regulatory networks of the female gametophyte, we have identified a large collection of genes expressed in specific cells of the Arabidopsis thaliana female gametophyte. We identified these genes using a differential expression screen based on reduced expression in determinant infertile1 (dif1) ovules, which lack female gametophytes. We hybridized ovule RNA probes with Affymetrix ATH1 genome arrays and validated the identified genes using real-time RT-PCR. These assays identified 71 genes exhibiting reduced expression in dif1 ovules. We further validated 45 of these genes using promoter::GFP fusions and 43 were expressed in the female gametophyte. In the context of the ovule, 11 genes were expressed exclusively in the antipodal cells, 11 genes were expressed exclusively or predominantly in the central cell, 17 genes were expressed exclusively or predominantly in the synergid cells, one gene was expressed exclusively in the egg cell, and three genes were expressed strongly in multiple cells of the female gametophyte. These genes provide insights into the molecular processes functioning in the female gametophyte and can be used as starting points to dissect the gene regulatory networks functioning during differentiation of the four female gametophyte cell types.
Collapse
Affiliation(s)
- Joshua G Steffen
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | | | | | | |
Collapse
|
37
|
Poole R, Barker G, Wilson ID, Coghill JA, Edwards KJ. Measuring global gene expression in polyploidy; a cautionary note from allohexaploid wheat. Funct Integr Genomics 2007; 7:207-19. [PMID: 17364174 DOI: 10.1007/s10142-007-0046-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 12/20/2006] [Accepted: 01/30/2007] [Indexed: 12/24/2022]
Abstract
The number of global gene expression studies has increased significantly in recent years. It is assumed that the different techniques employed report similar levels of gene expression for each sequence type. While this may be true for many species, polyploids containing homoeologous and paralogous gene copies represent a unique situation. In this paper, we describe the comparison of the Affymetrix GeneChip Wheat Genome Array, an in-house custom-spotted complementary DNA array and quantitative reverse transcription-polymerase chain reaction (PCR) for the study of gene expression in hexaploid wheat. Analysis of the data generated from each platform revealed little concordance and suggested that global comparisons are not possible. Potential causes of these inter-platform discrepancies were investigated and revealed to be due to the inability of the platforms to discriminate between different but related transcripts. Our results also showed that the traditionally used array validation technique, quantitative reverse transcription PCR, differs in its discriminatory ability, resulting in the poor confirmation rates seen in previous polyploid studies. These findings have implications for gene expression studies in polyploid organisms and highlight the need for homoeologous- and paralogous-specific arrays when investigating polyploid gene expression.
Collapse
Affiliation(s)
- Rebecca Poole
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | | | | | | |
Collapse
|
38
|
Ruan YL. Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single-celled cotton fibre. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:1-10. [PMID: 32689326 DOI: 10.1071/fp06234] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 11/21/2006] [Indexed: 05/24/2023]
Abstract
Higher plants comprise mixtures of some 40 different cell types, and this often complicates the interpretation of data obtained at the tissue level. Studies for a given cell type may provide novel insights into the mechanisms underlying defined cellular and developmental processes. In this regard, the cotton fibre represents an excellent single-cell model to study the control of rapid cell elongation and cellulose synthesis. These single cells, initiated from the ovule epidermis at anthesis, typically elongate to ~3-5 cm in the tetraploid species before they switch to intensive secondary cell wall cellulose synthesis. By maturity, more than 94% of fibre weight is cellulose. To unravel the mechanisms of fibre elongation and cellulose synthesis, two hypotheses have been examined: (a) that sucrose degradation and utilisation mediated by sucrose synthase (Sus) may play roles in fibre development and (b) that symplastic isolation of the fibre cells may be required for their rapid elongation. Reverse genetic and biochemical analyses have revealed the critical role that Sus plays in fibre initiation and early elongation. Late in development, plasma-membrane and cell wall association of Sus protein seems to be involved in rapid cellulose synthesis. Cell biology and gene expression studies showed a temporary closure of fibre plasmodesmata (PD), probably due to the deposition of callose, at the rapid phase of elongation. The duration of the PD closure correlates positively with the final fibre length attained. These data support the view that PD closure may be required for fibres to achieve extended elongation. The branching of PD towards the secondary cell wall stage is postulated to function as a molecule sieve for tight control of macromolecule trafficking into fibres to sustain intensive cellulose synthesis.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.Email
| |
Collapse
|
39
|
Demura T, Fukuda H. Transcriptional regulation in wood formation. TRENDS IN PLANT SCIENCE 2007; 12:64-70. [PMID: 17224301 DOI: 10.1016/j.tplants.2006.12.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/06/2006] [Accepted: 12/20/2006] [Indexed: 05/13/2023]
Abstract
Wood (i.e. xylem tissue) in trees is mainly composed of two types of cells, fibres and tracheary elements. Recent molecular studies of various trees, as well as the non-tree species Arabidopsis thaliana and Zinnia elegans, have revealed coordinated gene expression during differentiation of these cells in wood and the presence of several transcription factors that might govern the complex networks of transcriptional regulation. This article reviews recent findings concerning the regulation of genes by transcription factors involved in wood formation such as AUXIN RESPONSE FACTOR (ARF), CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII), KANADI (KAN), MYB and NAM/ATAF/CUC (NAC).
Collapse
Affiliation(s)
- Taku Demura
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan.
| | | |
Collapse
|
40
|
Ohtsu K, Takahashi H, Schnable PS, Nakazono M. Cell type-specific gene expression profiling in plants by using a combination of laser microdissection and high-throughput technologies. PLANT & CELL PHYSIOLOGY 2007; 48:3-7. [PMID: 17148694 DOI: 10.1093/pcp/pcl049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Laser microdissection (LM) allows for the isolation of specific cells of interest from heterogeneous tissues under direct microscopic visualization with the assistance of a laser beam. By permitting global analyses of gene expression and metabolites in the selected cells, it is a powerful tool for understanding the biological processes in individual cell types during development or in response to various stimuli. Recently, LM technology has been successfully applied to the separation of individual plant cell types. Here, we provide an overview of applications of LM combined with high-throughput technologies including transcript analyses [microarrays, serial analysis of gene expression (SAGE) and 454-sequencing], proteomic analyses and metabolomic profiling, for cell type-specific gene expression analyses in plants.
Collapse
Affiliation(s)
- Kazuhiro Ohtsu
- Department of Agronomy, Iowa State University, Ames, IA 50011-3650, USA
| | | | | | | |
Collapse
|