1
|
Liu Z, Han J, Su S, Zeng Q, Wu Z, Yuan J, Yang J. Histone lactylation facilitates MCM7 expression to maintain stemness and radio-resistance in hepatocellular carcinoma. Biochem Pharmacol 2025; 236:116887. [PMID: 40118288 DOI: 10.1016/j.bcp.2025.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cancer stem cells (CSCs) play an essential role in tumor initiation and therapy resistance. Histone lactylation as a novel epigenetic modification could regulate the gene transcription process during tumor progression. Nevertheless, researches have not well examined its role in maintaining CSC properties. Our study identified Minichromosome maintenance complex component 7 (MCM7) as a candidate gene in Hepatocellular carcinoma (HCC) with diagnostic and prognostic values, and Real-time quantitative PCR (qRT-PCR), Western blot (WB), and Immunohistochemistry (IHC) assays ascertained its obviously higher expressions in HCC cells and tissues. Ectopic of MCM7 could increase the expression of CSC-related genes and enhance spheroid both in size and in number. Suppression of MCM7 could strengthen the efficacy of radiotherapy verified by Cell counting kit-8 (CCK-8) and colony formation assays. The subcutaneous xenograft model indicated that suppression of MCM7 could inhibit CSC properties and the efficacy of radiotherapy in vivo. Mechanistically, histone lactylation could facilitate MCM7 expression, and both messenger RNA (mRNA) and protein level of MCM7 expression presented an obvious decrease due to 2-DG (glycolysis inhibitor) treatment and an obvious increase due to Rotenone (glycolysis activator) treatment. Rescue experiments verified that histone lactylation was necessary for MCM7 to promote CSC properties and radio-resistance in HCC. Arsenic trioxide (ATO) targeting MCM7 could inhibit the CSC phenotypes and enhance the efficacy of radiotherapy in vivo and in vitro. Collectively, histone lactylation could transcriptionally activate MCM7 to accelerate proliferation and radio-resistance through enhancing CSC properties. ATO targeting MCM7 could inhibit CSCs phenotypes and synergistically increase the efficacy of radiation therapy.
Collapse
Affiliation(s)
- Zijian Liu
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaqi Han
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shitong Su
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiwen Zeng
- Institute of Organ Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingsheng Yuan
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Organ Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jian Yang
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Organ Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Li L, Wang S, Fu S, Chen Z, Wang P, Zhao Y. Human ATP-binding proteins: Structural features, functional diversity, and pharmacotherapeutic potential in disease: A review. Int J Biol Macromol 2025; 308:142303. [PMID: 40118416 DOI: 10.1016/j.ijbiomac.2025.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
ATP-binding proteins (ABPs) form diverse and essential protein families across living organisms. Early life forms likely relied on simple chemical reactions for energy, but with the emergence of ABPs and their evolving functions, organisms became capable of more efficient energy storage and utilization, which drove the complexity of metabolic and life processes. By binding and hydrolyzing ATP through conserved structural motifs such as the Walker motifs, ABPs play critical roles in material transport, signal transduction, cellular structure maintenance, motility, and cell cycle regulation. Dysfunctions arising from mutations, deletions, or misregulation of ABPs are linked to a variety of human diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. The growing recognition of ABPs' significance in disease progression highlights their relevance not only in basic biology but also in clinical applications, particularly as biomarkers and therapeutic targets. This review provides a comprehensive overview of human ABPs, detailing their structural and functional roles, their involvement in disease mechanisms, and the latest advances in understanding their clinical relevance. Additionally, it identifies current research gaps and offers new perspectives for future investigations and therapeutic strategies.
Collapse
Affiliation(s)
- Letong Li
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, PR China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhen Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Nie Z, Liu Y, Xu L, Wang Y, Wang M, Zhou W, Zhu H, Zhao M, Wang S, Zhang H, Geng M, Peng M, Zeng H, Zhang Y, Zhu P, Shen W. Selenium nanoparticles attenuate retinal pathological angiogenesis by disrupting cell cycle distribution. Nanomedicine (Lond) 2025; 20:803-816. [PMID: 40114604 PMCID: PMC11988272 DOI: 10.1080/17435889.2025.2480046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
AIM This study aims to explore the mechanism by which selenium nanoparticles (SeNPs) inhibit retinal neovascularization (RNV) and to identify a more effective treatment for pathological RNV. MATERIALS & METHODS The characterization and identification of the synthesized selenium nanoparticles (SeNPs) were conducted to investigate their effects on the function of human umbilical vein endothelial cells (HUVECs), retinal blood vessel development in mice, and the impact on oxygen-induced retinopathy. Tritium-labeled thymine was utilized to label newly synthesized DNA both in vivo and in vitro, allowing for the observation of SeNPs' effects on cell proliferation. Additionally, flow cytometry, immunofluorescence, and western blotting techniques were employed to elucidate the mechanisms by which SeNPs inhibit retinal neovascularization. RESULTS SeNPs can significantly inhibit the functions of vascular endothelial cells, particularly their proliferation, both in vivo and in vitro. The SeNPs achieve this by modulating the expression of cell cycle-related proteins through the regulation of the PI3K-AKT-p21 axis, which in turn inhibits the transition of the cell cycle from the G1 phase to the S phase. CONCLUSION SeNPs may be a novel treatment for the interference of retinal neovascularization.
Collapse
Affiliation(s)
- Zheng Nie
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongxuan Liu
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Xu
- Department of Laboratory Diagnosis, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Wang
- Department of Reproductive Medicine Center, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mengzhu Wang
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen Zhou
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huimin Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Min Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shikun Wang
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongjian Zhang
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
| | - Meijing Geng
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
| | - Mai Peng
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hao Zeng
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengxi Zhu
- Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Yuan YW, Yue ZQ, Zhou Q, Sheng J, Zou YH, Fan LJ, Xu H, Xin L. TFAP4 Regulation of MCM5 Activates the PI3K/AKT Pathway to Promote Invasion and Metastasis of Gastric Cancer. Dig Dis Sci 2025; 70:1411-1427. [PMID: 39971831 DOI: 10.1007/s10620-025-08897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
AIMS To investigate the role of transcription factor activating enhancer-binding protein 4 (TFAP4) in gastric cancer (GC) progression and elucidate its mechanism in promoting metastasis and invasion through the PI3K/AKT signaling pathway. METHODS Bioinformatics analysis was performed to assess TFAP4 expression in GC tissues. Clinical specimens were collected and validated for TFAP4 expression. Functional assays were conducted to evaluate the effects of TFAP4 overexpression and inhibition on GC cell proliferation, invasion, and metastasis. In vivo studies with HGC27 cells in BALB/c nude mice were used to assess tumor growth and metastasis. Mechanistic analysis included the measurement of MCM5 expression and activation of the PI3K/AKT signaling pathway, with PI3K inhibitor LY294002 and MCM5 knockdown applied to confirm the pathways involved. RESULTS Elevated TFAP4 expression was observed in GC tissues, and its overexpression promoted GC cell proliferation, invasion, and metastasis. Conversely, TFAP4 inhibition suppressed these behaviors. In vivo studies confirmed that TFAP4 knockdown reduced tumor growth and metastasis in nude mice. Mechanistically, TFAP4 was found to activate MCM5, which in turn facilitated GC cell invasion and metastasis. Furthermore, TFAP4 and MCM5 activated the PI3K/AKT signaling pathway, as evidenced by increased p-PI3K and p-AKT expression. The effects of TFAP4 overexpression were reversed by MCM5 knockdown or treatment with the PI3K inhibitor LY294002. CONCLUSION The TFAP4-MCM5 signaling axis promotes GC progression through the PI3K/AKT pathway, suggesting that targeting this axis could provide a potential therapeutic strategy for managing gastric cancer.
Collapse
Affiliation(s)
- Yi-Wu Yuan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Zhen-Qi Yue
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Qi Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Jie Sheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Yong-Hui Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Luo-Jun Fan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Hesong Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Lin Xin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China.
| |
Collapse
|
5
|
Gansau J, Grossi E, Rodriguez L, Wang M, Laudier DM, Chaudhary S, Hecht AC, Fu W, Sebra R, Liu CJ, Iatridis JC. TNFR1-mediated senescence and lack of TNFR2-signaling limit human intervertebral disc cell repair potential in degenerative conditions. Osteoarthritis Cartilage 2025:S1063-4584(25)00868-4. [PMID: 40139648 DOI: 10.1016/j.joca.2025.02.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE To identify mechanisms and treatment targets in painful intervertebral disc (IVD) degeneration (IVDD) progression with a focus on pro-inflammatory tumor necrosis factor-alpha (TNFα)-receptor-1 (TNFR1) and pro-reparative TNFα receptor-2 (TNFR2) signaling. DESIGN IVDD tissues and cells from IVDD and autopsy subjects were analyzed with single-cell RNA-sequencing to identify cell populations expressing TNFR1 and TNFR2, and multiplexed array to identify inflammatory proteins in IVDD conditioned media (CM). Bulk RNA-seq evaluated inflammatory and cell cycle states of human annulus fibrosus (hAF) cells challenged with CM. hAF cell responses to TNFR1 and TNFR2 modulation were evaluated by treatment with TNFR1- and TNFR2-blocking antibodies and TNFR2-activator Atsttrin. RESULTS IVDD CM chemokines and cytokines were expressed primarily by a small macrophage population and at low levels by native IVD cells. CM-treated hAF cells exhibited TNFα-signaling responses with reduced metabolic rates (MTT: 0.75 [95%CI:0.67 to 0.82]), limited inflammatory responses (inferred from heatmap of 50 differentially expressed genes), and senescence (10.4% SA-β-Gal+ cells [95%CI:6.99 to 13.8]). TNFR1-inhibition sufficiently restored hAF cell metabolism to enable robust pro-inflammatory responses to the complex IVDD CM cytokine mixture (multiple assays,). TNFR2-staining was limited on human IVD cell membranes and TNFR2 modulation had no effect on hAF cells, together suggesting a lack of TNFR2-signaling in native IVD cells. CONCLUSIONS Secreted proteins from IVDD CM caused hAF cells to have reduced metabolic rates, attenuated inflammatory responses, and senescence indicating a TNFR1-dominated response with metabolic impairment. Meanwhile, human IVD cells lacked reparative TNFR2-signaling since its modulation caused no effects, to suggest enhanced TNFR2-signaling in IVD repair may need recruitment or delivery of macrophages or other TNFR2-expressing cells.
Collapse
Affiliation(s)
- Jennifer Gansau
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Levon Rodriguez
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Damien M Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saad Chaudhary
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew C Hecht
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenyu Fu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
| | - James C Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
6
|
Davis BEM, Snedeker J, Ranjan R, Wooten M, Barton SS, Blundon J, Chen X. Increased levels of lagging strand polymerase α in an adult stem cell lineage affect replication-coupled histone incorporation. SCIENCE ADVANCES 2025; 11:eadu6799. [PMID: 40020063 PMCID: PMC11870066 DOI: 10.1126/sciadv.adu6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
Stem cells display asymmetric histone inheritance, while nonstem progenitor cells exhibit symmetric patterns in the Drosophila male germ line. Here, we report that components involved in lagging strand synthesis, DNA polymerases α and δ, have substantially reduced levels in stem cells compared to progenitor cells, and this promotes local asymmetry of parental histone incorporation at the replication fork. Compromising Polα genetically induces the local replication-coupled histone incorporation pattern in progenitor cells to resemble that in stem cells, seen by both nuclear localization patterns and chromatin fibers. This is recapitulated using a Polα inhibitor in a concentration-dependent manner. The local old versus new histone asymmetry is comparable between stem cells and progenitor cells at both S phase and M phase. Together, these results indicate that developmentally programmed expression of key DNA replication components is important to shape stem cell chromatin. Furthermore, manipulating one crucial DNA replication component can induce replication-coupled histone dynamics in nonstem cells to resemble those in stem cells.
Collapse
Affiliation(s)
- Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Savannah Sáde Barton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Joshua Blundon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Tang WG, Feng JF, Li X, Sun QM, Hu JW, Ma XL, Nie YY, Xu Y, Sun J, Chang QM. MCM3 promotes hepatocellular carcinoma progression via Epithelial-mesenchymal Transition through AKT/Twist signaling pathway. Ann Hepatol 2025; 30:101785. [PMID: 39978465 DOI: 10.1016/j.aohep.2025.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
INTRODUCTION AND OBJECTIVES Hepatocellular carcinoma (HCC), a leading cause of cancer fatalities, challenges clinicians with high recurrence and metastasis rates, urging the need for novel prognostic markers and therapeutic avenues. Minichromosome maintenance complex component 3 (MCM3) has been implicated in various cancers, but its role in HCC is not well-characterized. MATERIALS AND METHODS We investigated MCM3 expression in HCC through cell line and patient sample analyses, functional assays to determine its effect on cellular behaviors, and signal pathway exploration. RESULTS Elevated MCM3 expression was identified in both HCC cell lines and patient tissues, correlating with microvascular invasion, advanced cancer stage, and reduced survival. Functionally, MCM3 fueled HCC cellular proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and expedited tumor growth in vivo. Mechanistically, MCM3 was found to potentiate EMT by upregulating Twist via the AKT signaling pathway. CONCLUSIONS MCM3 emerges as an oncogenic influencer in HCC, driving disease progression through the AKT/Twist axis. Its expression patterns hold prognostic value, and targeting MCM3 may offer a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Wei-Guo Tang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Jin-Feng Feng
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Xian Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, PR China
| | - Qi-Man Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, PR China
| | - Jin-Wu Hu
- Department of Liver Cancer, Shanghai Geriatrics Medical Center, 2560 Chunshen Road, Shanghai 201104, China
| | - Xiao-Lu Ma
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, PR China
| | - Yan-Yan Nie
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, PR China
| | - Jian Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, PR China.
| | - Qi-Meng Chang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
8
|
Yao S, Yue Z, Ye S, Liang X, Li Y, Gan H, Zhou J. Identification of MCM2-Interacting Proteins Associated with Replication Initiation Using APEX2-Based Proximity Labeling Technology. Int J Mol Sci 2025; 26:1020. [PMID: 39940790 PMCID: PMC11816892 DOI: 10.3390/ijms26031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
DNA replication is a crucial biological process that ensures the accurate transmission of genetic information, underpinning the growth, development, and reproduction of organisms. Abnormalities in DNA replication are a primary source of genomic instability and tumorigenesis. During DNA replication, the assembly of the pre-RC at the G1-G1/S transition is a crucial licensing step that ensures the successful initiation of replication. Although many pre-replication complex (pre-RC) proteins have been identified, technical limitations hinder the detection of transiently interacting proteins. The APEX system employs peroxidase-mediated rapid labeling with high catalytic efficiency, enabling protein labeling within one minute and detection of transient protein interactions. MCM2 is a key component of the eukaryotic replication initiation complex, which is essential for DNA replication. In this study, we fused MCM2 with enhanced APEX2 to perform in situ biotinylation. By combining this approach with mass spectrometry, we identified proteins proximal to the replication initiation complex in synchronized mouse ESCs and NIH/3T3. Through a comparison of the results from both cell types, we identified some candidate proteins. Interactions between MCM2 and the candidate proteins CD2BP2, VRK1, and GTSE1 were confirmed by bimolecular fluorescence complementation. This research establishes a basis for further study of the component proteins of the conserved DNA replication initiation complex and the transient regulatory network involving its proximal proteins.
Collapse
Affiliation(s)
- Sitong Yao
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Zhen Yue
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Jiaqi Zhou
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| |
Collapse
|
9
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
10
|
Gao H, Yuan X, Wang J, Yan Y, Zhang X, He T, Lin X, Zhang H, Liu Z. Knockdown of Fzr inhibited the growth of Nilaparvata lugens by blocking endocycle. PEST MANAGEMENT SCIENCE 2025; 81:36-43. [PMID: 39229824 DOI: 10.1002/ps.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND The endocycle can generate cells referred to as 'polyploid'. Fizzy-related protein (Fzr) plays an important role in driving the mitosis-to-endocycle transition. The brown planthopper (BPH), Nilaparvata lugens (Stål), a serious insect pest, feeds exclusively on rice. However, polyploidy and its regulatory mechanisms are poorly understood in BPH. RESULTS Here, we found that the ploidy levels of follicles H (FH) and accessory gland (AG) significantly increased with BPH age when examining the polyploidy of FH and AG of salivary glands. Fzr was identified as an important regulator for polyploidy in BPH salivary gland. Knockdown of Fzr resulted in a decrease in cell size and DNA content in nymph salivary glands. Fzr knockdown transcriptionally upregulated cyclin-dependent kinase 1 (CDK1), CDK2, cyclin A (CycA) and CycB, and downregulated CycD, CycE, Myc and mini-chromosome maintenance protein 2-7 (MCM2-7). Phenotypically, Fzr knockdown significantly suppressed salivary protein production, feeding and survival in BPH nymphs. CONCLUSION Our results show that BPH salivary glands exhibit obvious polyploidy, and Fzr positively regulates the endocycle in nymph salivary gland. These findings provide clues for the study of the regulatory mechanisms of insect polyploidy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tianshun He
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Han L, Dai Q, He C, Xu J, Cui L, Xie X, Zhang Z, Zhuang M, Li X, Lu M. A tetrahedral DNA nanoplatform with ultrasound-triggered biomimetic nanocarriers for targeted siMCM2 delivery and reversal of imatinib resistance in gastrointestinal stromal tumors. CHEMICAL ENGINEERING JOURNAL 2025; 504:158843. [DOI: 10.1016/j.cej.2024.158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
12
|
Malysa A, Zhang XM, Bepler G. Minichromosome Maintenance Proteins: From DNA Replication to the DNA Damage Response. Cells 2024; 14:12. [PMID: 39791713 PMCID: PMC11719910 DOI: 10.3390/cells14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system. Dysfunctional DNA replication and DDR are a source of genomic instability, causing heritable mutations that drive cancer evolutions. The family of minichromosome maintenance (MCM) proteins plays an important role not only in DNA replication but also in DDR. Here, we will review the current strides of MCM proteins in these integrated processes as well as the acetylation/deacetylation of MCM proteins and the value of MCMs as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | - Gerold Bepler
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA; (A.M.); (X.M.Z.)
| |
Collapse
|
13
|
Wu Z, Hindle MM, Bishop VR, Reid AMA, Miedzinska K, Pérez JH, Krause JS, Wingfield JC, Meddle SL, Smith J. Response strategies to acute and chronic environmental stress in the arctic breeding Lapland longspur (Calcarius lapponicus). Commun Biol 2024; 7:1654. [PMID: 39702772 DOI: 10.1038/s42003-024-07370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The potentially devastating effects of climate change have raised awareness of the need to understand how the biology of wild animals is influenced by extreme-weather events. We investigate how a wild arctic-breeding bird, the Lapland longspur (Calcarius lapponicus), responds to different environmental perturbations and its coping strategies. We explore the transcriptomic response to environmental adversity during the transition from arrival at the breeding grounds to incubation on the Arctic tundra. The effects of an extremely cold spring on arrival and a severe storm during incubation are examined through RNA-seq analysis of pertinent tissues sampled across the breeding cycle. The stress response, circadian rhythms, reproduction, and metabolism are all affected. A key gene of the Hypothalamic-Pituitary-Adrenal axis, FKBP5, was significantly up-regulated in hypothalamus. The genome assembly and gene expression profiles provide comprehensive resources for future studies. Our findings on different coping strategies to chronic and acute stressors will contribute to understanding the interplay between changing environments and genomic regulation.
Collapse
Affiliation(s)
- Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK.
| | - Matthew M Hindle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Valerie R Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Angus M A Reid
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Jonathan H Pérez
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
- Department of Biology, University of South Alabama, Mobile, AL, USA
| | - Jesse S Krause
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Simone L Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| |
Collapse
|
14
|
Bi F, Bao Q, Liu H, Sun J, Dai W, Li A, Zhang J, He P. Molecular mechanisms underlying the effects of antibiotics on the growth and development of green tide algae Ulva prolifera. MARINE POLLUTION BULLETIN 2024; 209:117128. [PMID: 39432985 DOI: 10.1016/j.marpolbul.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Different types of algae exhibit varied sensitivities to antibiotics, influencing their growth by eradicating epiphytic bacteria. This study explored the impact of co-culturing neomycin sulfate, polymyxin B, and penicillin G on the growth and development of Ulva prolifera gametophytes. The findings revealed a significant influence of antibiotics on the morphology, growth, chlorophyll fluorescence parameters, and CAT activity of U. prolifera. The 16S rDNA sequencing revealed a significant decrease in the abundance of Maribacter spp. after antibiotic treatment of U. prolifera. Antibiotic treatment caused up-regulation of genes related to cellulose synthase, tubulin, and ribosomal protein. Conversely, key genes in the DNA replication pathway, such as mcm and Polε, were down-regulated, influencing cell division and resulting in irregular algal shapes. The up-regulation of enzyme genes in the C3 and C4 pathways, CAT, and drug metabolism genes enhanced the antioxidant and photosynthetic capacities of U. prolifera, providing a certain resilience to stress.
Collapse
Affiliation(s)
- Fangling Bi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qunjing Bao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jingyi Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Dai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Aiqin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
15
|
Yang L, Liu X, Zhen L, Liu Y, Wu L, Xu W, Peng L, Xie C. ANXA4 restricts HBV replication by inhibiting autophagic degradation of MCM2 in chronic hepatitis B. BMC Med 2024; 22:521. [PMID: 39511535 PMCID: PMC11546334 DOI: 10.1186/s12916-024-03724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is an enveloped DNA virus that causes chronic hepatitis B (CHB) infection. Annexin, a Ca2+-activated protein, is widely expressed in various organs and tissues and has potential utility in disease diagnosis and treatment. However, the relationship between the annexin family and CHB remains unclear. METHODS Clinical samples from hepatitis patients and donors or healthy individuals were collected. Transcriptome sequencing in CHB liver tissues and HBV-infected cells were performed. HepG2.2.15 cells with the full-length HBV genome and HBV-infected HepG2-NTCP cell models were established. HBV-infected mouse model was constructed and adeno-associated virus was utilized. RESULTS ANXA4 expression was elevated during CHB infection. ANXA4 knockdown promoted HBV replication and aggravated liver injury, while ANXA4 overexpression alleviated that. Mechanistically, autophagy pathway was activated by ANXA4 deficiency, promoting autophagic degradation of minichromosome maintenance complex component 2 (MCM2). MCM2 inhibition activated HBV replication, while MCM2 overexpression attenuated ANXA4 deficiency-induced HBV replication and liver injury. Clinically, the expression of hepatitis B viral protein was negatively correlated with the ANXA4 levels, and CHB patients with high ANXA4 levels (> 8 ng/ml) showed higher sensitivity to interferon therapy. CONCLUSIONS ANXA4 functions as a protective factor during HBV infection. ANXA4 expression is elevated under HBV attack to restrict HBV replication by inhibiting autophagic degradation of MCM2, thereby alleviating liver injury and suppressing the CHB infection process. ANXA4 also enhances the sensitivity of CHB patients to interferon therapy. Therefore, ANXA4 is expected to be a new target for CHB treatment and prognostic evaluation.
Collapse
Affiliation(s)
- Luo Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Breast Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of General Surgery, Jinan, Shandong, China
| | - Xianzhi Liu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Limin Zhen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lina Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenxiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Kim C, Zhu Z, Barbazuk WB, Bacher RL, Vulpe CD. Time-course characterization of whole-transcriptome dynamics of HepG2/C3A spheroids and its toxicological implications. Toxicol Lett 2024; 401:125-138. [PMID: 39368564 DOI: 10.1016/j.toxlet.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Physiologically relevant in vitro models are a priority in predictive toxicology to replace and/or reduce animal experiments. The compromised toxicant metabolism of many immortalized human liver cell lines grown as monolayers as compared to in vivo metabolism limits their physiological relevance. However, recent efforts to culture liver cells in a 3D environment, such as spheroids, to better mimic the in vivo conditions, may enhance the toxicant metabolism of human liver cell lines. In this study, we characterized the dynamic changes in the transcriptome of HepG2/C3A hepatocarcinoma cell spheroids maintained in a clinostat system (CelVivo) to gain insight into the metabolic capacity of this model as a function of spheroid size and culture time. We assessed morphological changes (size, necrotic core), cell health, and proliferation rate from initial spheroid seeding to 35 days of continuous culture in conjunction with a time-course (0, 3, 7, 10, 14, 21, 28 days) of the transcriptome (TempO-Seq, BioSpyder). The phenotypic characteristics of HepG2/C3A growing in spheroids were comparable to monolayer growth until ∼Day 12 (Day 10-14) when a significant decrease in cell doubling rate was noted which was concurrent with down-regulation of cell proliferation and cell cycle pathways over this time period. Principal component analysis of the transcriptome data suggests that the Day 3, 7, and 10 spheroids are pronouncedly different from the Day 14, 21, and 28 spheroids in support of a biological transition time point during the long-term 3D spheroid cultures. The expression of genes encoding cellular components involved in toxicant metabolism and transport rapidly increased during the early time points of spheroids to peak at Day 7 or Day 10 as compared to monolayer cultures with a gradual decrease in expression with further culture, suggesting the most metabolically responsive time window for exposure studies. Overall, we provide baseline information on the cellular and molecular characterization, with a particular focus on toxicant metabolic capacity dynamics and cell growth, of HepG2/C3A 3D spheroid cultures over time.
Collapse
Affiliation(s)
- Chanhee Kim
- Center for Human and Environmental Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Zhaohan Zhu
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, United States; University of Florida Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Rhonda L Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Christopher D Vulpe
- Center for Human and Environmental Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
17
|
Berger N, Kugler B, Han D, Li M, Nguyen P, Anderson M, Zhang S, Cai C, Zou K. Voluntary Exercise Attenuates Tumor Growth in a Preclinical Model of Castration-Resistant Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.617081. [PMID: 39464116 PMCID: PMC11507860 DOI: 10.1101/2024.10.16.617081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Purpose To examine the effects of voluntary exercise training on tumor growth and explore the underlying intratumoral molecular pathways and processes responsible for the beneficial effects of VWR on tumor initiation and progression in a mouse model of Castration-Resistant Prostate Cancer (CRPC). Methods Male immunodeficient mice (SCID) were castrated and subcutaneously inoculated with human CWR-22RV1 cancer cells to construct CRPC xenograft model before randomly assigned to either voluntary wheel running (VWR) or sedentary (SED) group (n=6/group). After three weeks, tumor tissues were collected. Tumor size was measured and calculated. mRNA expression of markers of DNA replication, Androgen Receptor (AR) signaling, and mitochondrial dynamics was determined by RT-PCR. Protein expression of mitochondrial content and dynamics was determined by western blotting. Finally, RNA-sequencing analysis was performed in the tumor tissues. Results Voluntary wheel running resulted in smaller tumor volume at the initial stage and attenuated tumor progression throughout the time course (P < 0.05). The reduction of tumor volume in VWR group was coincided with lower mRNA expression of DNA replication markers ( MCM2 , MCM6 , and MCM7 ), AR signaling ( ELOVL5 and FKBP5 ) and regulatory proteins of mitochondrial fission (Drp1 and Fis1) and fusion (MFN1 and OPA1) when compared to the SED group (P<0.05). More importantly, RNA sequencing data further revealed that pathways related to pathways related to angiogenesis, extracellular matrix formation and endothelial cell proliferation were downregulated. Conclusions Three weeks of VWR was effective in delaying tumor initiation and progression, which coincided with reduced transcription of DNA replication, AR signaling targets and mitochondrial dynamics. We further identified reduced molecular pathways/processes related to angiogenesis that may be responsible for the delayed tumor initiation and progression by VWR.
Collapse
|
18
|
Tye BK. Four decades of Eukaryotic DNA replication: From yeast genetics to high-resolution cryo-EM structures of the replisome. Proc Natl Acad Sci U S A 2024; 121:e2415231121. [PMID: 39365830 PMCID: PMC11494305 DOI: 10.1073/pnas.2415231121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
I had my eyes set on DNA replication research when I took my first molecular biology course in graduate school. My election to the National Academy of Sciences came just when I was retiring from active research. It gives me an opportunity to reflect on my personal journey in eukaryotic DNA replication research, which started as a thought experiment and culminated in witnessing the determination of the cryoelectron microscopic structure of the yeast replisome in the act of transferring histone-encoded epigenetic information at the replication fork. I would like to dedicate this inaugural article to my talented trainees and valuable collaborators in gratitude for the joy they gave me in this journey. I also want to thank my mentors who instilled in me the purpose of science. I hope junior scientists will not be disheartened by the marathon nature of research, but mindful enough to integrate and pause for other equally fun and meaningful activities of life into the marathon.
Collapse
Affiliation(s)
- Bik-Kwoon Tye
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
19
|
Chen M, Wu G, Lu Y, Sun S, Yu Z, Pan X, Chen W, Xu H, Qiu H, He W, Li X, Wang X, Luo Y, Du Y, Wu J, Wei K, Zhang W, Liu Z, He Z. A p21-ATD mouse model for monitoring and eliminating senescent cells and its application in liver regeneration post injury. Mol Ther 2024; 32:2992-3011. [PMID: 38582962 PMCID: PMC11403235 DOI: 10.1016/j.ymthe.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.
Collapse
Affiliation(s)
- Miaomiao Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Guoxiu Wu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Yanli Lu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Shiwen Sun
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Zhao Yu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xin Pan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Wenjian Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Hongyu Xu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Hua Qiu
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P.R. China
| | - Weizhi He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xiuhua Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xicheng Wang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi Luo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Yuan Du
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P.R. China
| | - Jialing Wu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Ke Wei
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhiying He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China.
| |
Collapse
|
20
|
Jia J, Yu C. The Role of the MCM2-7 Helicase Subunit MCM2 in Epigenetic Inheritance. BIOLOGY 2024; 13:572. [PMID: 39194510 DOI: 10.3390/biology13080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
Recycling histone proteins from parental chromatin, a process known as parental histone transfer, is an important component in chromosome replication and is essential for epigenetic inheritance. We review recent advances in our understanding of the recycling mechanism of parental histone H3-H4 tetramers (parH3:H4tet), emphasizing the pivotal role of the DNA replisome. In particular, we highlight the function of the MCM2-7 helicase subunit Mcm2 as a histone H3-H4 tetramer chaperone. Disruption of this histone chaperone's functions affects mouse embryonic stem cell differentiation and can lead to embryonic lethality in mice, underscoring the crucial role of the replisome in maintaining epigenomic stability.
Collapse
Affiliation(s)
- Jing Jia
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Chuanhe Yu
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
21
|
Gansau J, Grossi E, Rodriguez L, Wang M, Laudier DM, Chaudhary S, Hecht AC, Fu W, Sebra R, Liu C, Iatridis JC. TNFR1-mediated senescence and lack of TNFR2-signaling limit human intervertebral disc cell repair in back pain conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581620. [PMID: 38948728 PMCID: PMC11212922 DOI: 10.1101/2024.02.22.581620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Poor intervertebral disc (IVD) healing causes IVD degeneration (IVDD) and progression to herniation and back pain. This study identified distinct roles of TNFα-receptors (TNFRs) in contributing to poor healing in painful IVDD. We first isolated IVDD tissue of back pain subjects and determined the complex pro-inflammatory mixture contained many chemokines for recruiting inflammatory cells. Single-cell RNA-sequencing of human IVDD tissues revealed these pro-inflammatory cytokines were dominantly expressed by a small macrophage-population. Human annulus fibrosus (hAF) cells treated with IVDD-conditioned media (CM) underwent senescence with greatly reduced metabolic rates and limited inflammatory responses. TNFR1 inhibition partially restored hAF cell metabolism sufficiently to enable a robust chemokine and cytokine response to CM. We showed that the pro-reparative TNFR2 was very limited on hIVD cell membranes so that TNFR2 inhibition with blocking antibodies or activation using Atsttrin had no effect on hAF cells with CM challenge. However, TNFR2 was expressed in high levels on macrophages identified in scRNA-seq analyses, suggesting their role in repair responses. Results therefore point to therapeutic strategies for painful IVDD involving immunomodulation of TNFR1 signaling in IVD cells to enhance metabolism and enable a more robust inflammatory response including recruitment or delivery of TNFR2 expressing immune cells to enhance IVD repair.
Collapse
Affiliation(s)
- Jennifer Gansau
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Levon Rodriguez
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Damien M. Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Saad Chaudhary
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Andrew C. Hecht
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Wenyu Fu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Chuanju Liu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - James C. Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
22
|
Tian W, Zhao J, Zhang X, Li P, Li X, Hong Y, Li S. RUNX1 regulates MCM2/CDC20 to promote COAD progression modified by deubiquitination of USP31. Sci Rep 2024; 14:13906. [PMID: 38886545 PMCID: PMC11183096 DOI: 10.1038/s41598-024-64726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Xuening Li
- Dalian Medical University, Dalian, China
| | - Yuan Hong
- Clinical Laboratory Center, Dalian Municipal Central Hospital, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
23
|
Wu J, Yu F, Di Z, Bian L, Yang J, Wang L, Jiang Q, Yin Y, Zhang L. Transcriptome analysis of adipose tissue and muscle of Laiwu and Duroc pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:134-143. [PMID: 38766520 PMCID: PMC11101945 DOI: 10.1016/j.aninu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 05/22/2024]
Abstract
Fat content is an important trait in pig production. Adipose tissue and muscle are important sites for fat deposition and affect production efficiency and quality. To regulate the fat content in these tissues, we need to understand the mechanisms behind fat deposition. Laiwu pigs, a Chinese indigenous breed, have significantly higher fat content in both adipose tissue and muscle than commercial breeds such as Duroc. In this study, we analyzed the transcriptomes in adipose tissue and muscle of 21-d-old Laiwu and Duroc piglets. Results showed that there were 828 and 671 differentially expressed genes (DEG) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), respectively. Functional enrichment analysis showed that these DEG were enriched in metabolic pathways, especially carbohydrate and lipid metabolism. Additionally, in the longissimus muscle (LM) and psoas muscle (PM), 312 and 335 DEG were identified, demonstrating enrichment in the cell cycle and metabolic pathways. The protein-protein interaction (PPI) networks of these DEG were analyzed and potential hub genes were identified, such as FBP1 and SCD in adipose tissues and RRM2 and GADL1 in muscles. Meanwhile, results showed that there were common DEG between adipose tissue and muscle, such as LDHB, THRSP, and DGAT2. These findings showed that there are significant differences in the transcriptomes of the adipose tissue and muscle between Laiwu and Duroc piglets (P < 0.05), especially in metabolic patterns. This insight serves to advance our comprehensive understanding of metabolic regulation in these tissues and provide targets for fat content regulation.
Collapse
Affiliation(s)
- Jie Wu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fangyuan Yu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhaoyang Di
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liwen Bian
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Lin Zhang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
24
|
Kamal MM, Mia MS, Faruque MO, Rabby MG, Islam MN, Talukder MEK, Wani TA, Rahman MA, Hasan MM. In silico functional, structural and pathogenicity analysis of missense single nucleotide polymorphisms in human MCM6 gene. Sci Rep 2024; 14:11607. [PMID: 38773180 PMCID: PMC11109216 DOI: 10.1038/s41598-024-62299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) are one of the most common determinants and potential biomarkers of human disease pathogenesis. SNPs could alter amino acid residues, leading to the loss of structural and functional integrity of the encoded protein. In humans, members of the minichromosome maintenance (MCM) family play a vital role in cell proliferation and have a significant impact on tumorigenesis. Among the MCM members, the molecular mechanism of how missense SNPs of minichromosome maintenance complex component 6 (MCM6) contribute to DNA replication and tumor pathogenesis is underexplored and needs to be elucidated. Hence, a series of sequence and structure-based computational tools were utilized to determine how mutations affect the corresponding MCM6 protein. From the dbSNP database, among 15,009 SNPs in the MCM6 gene, 642 missense SNPs (4.28%), 291 synonymous SNPs (1.94%), and 12,500 intron SNPs (83.28%) were observed. Out of the 642 missense SNPs, 33 were found to be deleterious during the SIFT analysis. Among these, 11 missense SNPs (I123S, R207C, R222C, L449F, V456M, D463G, H556Y, R602H, R633W, R658C, and P815T) were found as deleterious, probably damaging, affective and disease-associated. Then, I123S, R207C, R222C, V456M, D463G, R602H, R633W, and R658C missense SNPs were found to be highly harmful. Six missense SNPs (I123S, R207C, V456M, D463G, R602H, and R633W) had the potential to destabilize the corresponding protein as predicted by DynaMut2. Interestingly, five high-risk mutations (I123S, V456M, D463G, R602H, and R633W) were distributed in two domains (PF00493 and PF14551). During molecular dynamics simulations analysis, consistent fluctuation in RMSD and RMSF values, high Rg and hydrogen bonds in mutant proteins compared to wild-type revealed that these mutations might alter the protein structure and stability of the corresponding protein. Hence, the results from the analyses guide the exploration of the mechanism by which these missense SNPs of the MCM6 gene alter the structural integrity and functional properties of the protein, which could guide the identification of ways to minimize the harmful effects of these mutations in humans.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Sohel Mia
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Omar Faruque
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Numan Islam
- Department of Food Engineering, North Pacific International University of Bangladesh, Dhaka, Bangladesh
| | | | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - M Atikur Rahman
- Department of Biological Sciences, Alabama State University, 915 S Jackson St, Montgomery, AL, 36104, USA.
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
25
|
Theofilatos D, Ho T, Waitt G, Äijö T, Schiapparelli LM, Soderblom EJ, Tsagaratou A. Deciphering the TET3 interactome in primary thymic developing T cells. iScience 2024; 27:109782. [PMID: 38711449 PMCID: PMC11070343 DOI: 10.1016/j.isci.2024.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Ten-eleven translocation (TET) proteins are DNA dioxygenases that mediate active DNA demethylation. TET3 is the most highly expressed TET protein in thymic developing T cells. TET3, either independently or in cooperation with TET1 or TET2, has been implicated in T cell lineage specification by regulating DNA demethylation. However, TET-deficient mice exhibit complex phenotypes, suggesting that TET3 exerts multifaceted roles, potentially by interacting with other proteins. We performed liquid chromatography with tandem mass spectrometry in primary developing T cells to identify TET3 interacting partners in endogenous, in vivo conditions. We discover TET3 interacting partners. Our data establish that TET3 participates in a plethora of fundamental biological processes, such as transcriptional regulation, RNA polymerase elongation, splicing, DNA repair, and DNA replication. This resource brings in the spotlight emerging functions of TET3 and sets the stage for systematic studies to dissect the precise mechanistic contributions of TET3 in shaping T cell biology.
Collapse
Affiliation(s)
- Dimitris Theofilatos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tricia Ho
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Greg Waitt
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Tarmo Äijö
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Snedeker J, Davis BEM, Ranjan R, Wooten M, Blundon J, Chen X. Reduced Levels of Lagging Strand Polymerases Shape Stem Cell Chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591383. [PMID: 38746451 PMCID: PMC11092439 DOI: 10.1101/2024.04.26.591383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stem cells display asymmetric histone inheritance while non-stem progenitor cells exhibit symmetric patterns in the Drosophila male germline lineage. Here, we report that components involved in lagging strand synthesis, such as DNA polymerase α and δ (Polα and Polδ), have significantly reduced levels in stem cells compared to progenitor cells. Compromising Polα genetically induces the replication-coupled histone incorporation pattern in progenitor cells to be indistinguishable from that in stem cells, which can be recapitulated using a Polα inhibitor in a concentration-dependent manner. Furthermore, stem cell-derived chromatin fibers display a higher degree of old histone recycling by the leading strand compared to progenitor cell-derived chromatin fibers. However, upon reducing Polα levels in progenitor cells, the chromatin fibers now display asymmetric old histone recycling just like GSC-derived fibers. The old versus new histone asymmetry is comparable between stem cells and progenitor cells at both S-phase and M-phase. Together, these results indicate that developmentally programmed expression of key DNA replication components is important to shape stem cell chromatin. Furthermore, manipulating one crucial DNA replication component can induce replication-coupled histone dynamics in non-stem cells in a manner similar to that in stem cells.
Collapse
Affiliation(s)
- Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Current address: Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Joshua Blundon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| |
Collapse
|
27
|
Tian Y, Zhou Y, Chen F, Qian S, Hu X, Zhang B, Liu Q. Research progress in MCM family: Focus on the tumor treatment resistance. Biomed Pharmacother 2024; 173:116408. [PMID: 38479176 DOI: 10.1016/j.biopha.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.
Collapse
Affiliation(s)
- Yuxuan Tian
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410078, PR China
| | - Fuxin Chen
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Siyi Qian
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Xingming Hu
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Bin Zhang
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Qiang Liu
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
28
|
Zhang X, Yang W, Blair D, Hu W, Yin M. RNA-seq analysis reveals changes in mRNA expression during development in Daphnia mitsukuri. BMC Genomics 2024; 25:302. [PMID: 38515024 PMCID: PMC10958850 DOI: 10.1186/s12864-024-10210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Temporal transcriptional variation is a major contributor to functional evolution and the developmental process. Parthenogenetic water fleas of the genus Daphnia (Cladocera) provide an ideal model to characterize gene expression patterns across distinct developmental stages. Herein, we report RNA-seq data for female Daphnia mitsukuri at three developmental stages: the embryo, juvenile (three timepoints) and adult. Comparisons of gene expression patterns among these three developmental stages and weighted gene co-expression network analysis based on expression data across developmental stages identified sets of genes underpinning each of the developmental stages of D. mitsukuri. Specifically, highly expressed genes (HEGs) at the embryonic developmental stage were associated with cell proliferation, ensuring the necessary foundation for subsequent development; HEGs at the juvenile stages were associated with chemosensory perception, visual perception and neurotransmission, allowing individuals to enhance detection of potential environmental risks; HEGs at the adult stage were associated with antioxidative defensive systems, enabling adults to mount an efficient response to perceived environmental risks. Additionally, we found a significant overlap between expanded gene families of Daphnia species and HEGs at the juvenile stages, and these genes were associated with visual perception and neurotransmission. Our work provides a resource of developmental transcriptomes, and comparative analyses that characterize gene expression dynamics throughout development of Daphnia.
Collapse
Affiliation(s)
- Xiuping Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Wenwu Yang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville Qld, 4811, Australia
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China.
| |
Collapse
|
29
|
Feng X, Song D, Liu X, Liang Y, Jiang P, Wu S, Liu F. RNF125‑mediated ubiquitination of MCM6 regulates the proliferation of human liver hepatocellular carcinoma cells. Oncol Lett 2024; 27:105. [PMID: 38298426 PMCID: PMC10829068 DOI: 10.3892/ol.2024.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated mortality worldwide. Minichromosome maintenance proteins (MCMs), particularly MCM2-7, are upregulated in various cancers, including HCC. The aim of the present study was to investigate the role of MCM2-7 in human liver HCC (LIHC) and the regulation of the protein homeostasis of MCM6 by a specific E3 ligase. Bioinformatics analyses demonstrated that MCM2-7 were highly expressed in LIHC compared with corresponding normal tissues at the mRNA and protein levels, and patients with LIHC and high mRNA expression levels of MCM2, MCM3, MCM6 and MCM7 had poor overall survival rates. Cell Counting Kit-8 and colony formation assays revealed that the knockdown of MCM2, MCM3, MCM6 or MCM7 in Huh7 and Hep3B HCC cells inhibited cell proliferation and colony formation. In addition, pull-down, co-immunoprecipitation and ubiquitination assays demonstrated that RNF125 interacts with MCM6 and mediates its ubiquitination. Furthermore, co-transfection experiments indicated that RNF125 promoted the proliferation of HCC cells mainly through MCM6. In summary, the present study suggests that the RNF125-MCM6 axis plays an important role in the regulation of HCC cell proliferation and is a promising therapeutic target for the treatment of LIHC.
Collapse
Affiliation(s)
- Xueyi Feng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of General Surgery, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237005, P.R. China
| | - Dongqiang Song
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Xiaolan Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yongkang Liang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of General Surgery, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237005, P.R. China
| | - Pin Jiang
- Department of General Surgery, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237005, P.R. China
| | - Shenwei Wu
- Department of General Surgery, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237005, P.R. China
| | - Fubao Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
30
|
Shi Q, Xu G, Jiang Y, Yang J, Han X, Wang Q, Li Y, Zhang Z, Wang K, Peng H, Chen F, Ma Y, Zhao L, Chen Y, Liu Z, Yang L, Jia X, Wen T, Tong Z, Cui X, Li F. Phospholipase PLCE1 Promotes Transcription and Phosphorylation of MCM7 to Drive Tumor Progression in Esophageal Cancer. Cancer Res 2024; 84:560-576. [PMID: 38117512 DOI: 10.1158/0008-5472.can-23-1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Phospholipase C epsilon 1 (PLCE1) is a well-established susceptibility gene for esophageal squamous cell carcinoma (ESCC). Identification of the underlying mechanism(s) regulated by PLCE1 could lead to a better understanding of ESCC tumorigenesis. In this study, we found that PLCE1 enhances tumor progression by regulating the replicative helicase MCM7 via two pathways. PLCE1 activated PKCα-mediated phosphorylation of E2F1, which led to the transcriptional activation of MCM7 and miR-106b-5p. The increased expression of miR-106b-5p, located in intron 13 of MCM7, suppressed autophagy and apoptosis by targeting Beclin-1 and RBL2, respectively. Moreover, MCM7 cooperated with the miR-106b-25 cluster to promote PLCE1-dependent cell-cycle progression both in vivo and in vitro. In addition, PLCE1 potentiated the phosphorylation of MCM7 at six threonine residues by the atypical kinase RIOK2, which promoted MCM complex assembly, chromatin loading, and cell-cycle progression. Inhibition of PLCE1 or RIOK2 hampered MCM7-mediated DNA replication, resulting in G1-S arrest. Furthermore, MCM7 overexpression in ESCC correlated with poor patient survival. Overall, these findings provide insights into the role of PLCE1 as an oncogenic regulator, a promising prognostic biomarker, and a potential therapeutic target in ESCC. SIGNIFICANCE PLCE1 promotes tumor progression in ESCC by activating PKCα-mediated phosphorylation of E2F1 to upregulate MCM7 and miR-106b-5p expression and by potentiating MCM7 phosphorylation by RIOK2.
Collapse
Affiliation(s)
- Qi Shi
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Guixuan Xu
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Yuliang Jiang
- Department of Oncology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ju Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, P.R. China
| | - Xueping Han
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Qian Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Ya Li
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Zhiyu Zhang
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Kaige Wang
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Fangfang Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Yandi Ma
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Linyue Zhao
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Yunzhao Chen
- Department of Pathology, The people's Hospital of Suzhou National Hi-Tech District, Suzhou, P.R. China
| | - Zheng Liu
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Xingyuan Jia
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Tao Wen
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Feng Li
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| |
Collapse
|
31
|
Lee J, Lee BK, Gross JM. Brd activity regulates Müller glia-dependent retinal regeneration in zebrafish. Glia 2023; 71:2866-2883. [PMID: 37584502 DOI: 10.1002/glia.24457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
The zebrafish retina possesses tremendous regenerative potential. Müller glia underlie retinal regeneration through their ability to reprogram and generate multipotent neuronal progenitors that re-differentiate into lost neurons. Many factors required for Müller glia reprogramming and proliferation have been identified; however, we know little about the epigenetic and transcriptional regulation of these genes during regeneration. Here, we determined whether transcriptional regulation by members of the Bromodomain (Brd) family is required for Müller glia-dependent retinal regeneration. Our data demonstrate that three brd genes were expressed in Müller glia upon injury. brd2a and brd2b were expressed in all Müller glia and brd4 was expressed only in reprogramming Müller glia. Utilizing (+)-JQ1, a pharmacological inhibitor of Brd function, we demonstrate that transcriptional regulation by Brds plays a critical role in Müller glia reprogramming and regeneration. (+)-JQ1 treatment prevented cell cycle re-entry of Müller glia and the generation of neurogenic progenitors. Modulating the (+)-JQ1 exposure window, we identified the first 48 h post-injury as the time-period during which Müller glia reprogramming occurs. (+)-JQ1 treatments after 48 h post-injury had no effect on the re-differentiation of UV cones, indicating that Brd function is required only for Müller glia reprogramming and not subsequent specification/differentiation events. Brd inhibition also prevented the expression of reprogramming genes like ascl1a and lepb in Müller glia, but not effector genes like mmp9, nor did it affect microglial recruitment after injury. These results demonstrate that transcriptional regulation by Brds plays a critical role during Müller glia-dependent retinal regeneration in zebrafish.
Collapse
Affiliation(s)
- Jiwoon Lee
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
32
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. The Response of the Replication Apparatus to Leading Template Strand Blocks. Cells 2023; 12:2607. [PMID: 37998342 PMCID: PMC10670059 DOI: 10.3390/cells12222607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Duplication of the genome requires the replication apparatus to overcome a variety of impediments, including covalent DNA adducts, the most challenging of which is on the leading template strand. Replisomes consist of two functional units, a helicase to unwind DNA and polymerases to synthesize it. The helicase is a multi-protein complex that encircles the leading template strand and makes the first contact with a leading strand adduct. The size of the channel in the helicase would appear to preclude transit by large adducts such as DNA: protein complexes (DPC). Here we discuss some of the extensively studied pathways that support replication restart after replisome encounters with leading template strand adducts. We also call attention to recent work that highlights the tolerance of the helicase for adducts ostensibly too large to pass through the central channel.
Collapse
Affiliation(s)
| | | | | | | | - Michael M. Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (M.A.B.)
| |
Collapse
|
33
|
Kobayashi G, Hayashi T, Sentani K, Uraoka N, Fukui T, Kido A, Katsuya N, Ishikawa A, Babasaki T, Sekino Y, Nose H, Arihiro K, Hinata N, Oue N. MCM4 expression is associated with high-grade histology, tumor progression and poor prognosis in urothelial carcinoma. Diagn Pathol 2023; 18:106. [PMID: 37737200 PMCID: PMC10515259 DOI: 10.1186/s13000-023-01392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND We previously reported Minichromosome maintenance 4 (MCM4) overexpression in gastric cancer. However, the clinicopathological significance of MCM4 in urothelial carcinoma (UC) has not been investigated. To clarify the clinicopathological significance of MCM4 in UC, we investigated MCM4 expression with immunohistochemistry (IHC). METHODS We analyzed the expression and distribution of MCM4 in 124 upper tract urothelial carcinoma (UTUC) samples by IHC. Additionally, using 108 urine samples, we analyzed MCM4 Immunocytochemistry (ICC) expression in urine cytology. RESULTS In normal urothelium, MCM4 expression was weak or absent. Meanwhile, the strong nuclear expression of MCM4 was observed in UTUC tissues, and it was detected in 77 (62%) of a total of 124 UTUC cases. MCM4-positive UTUC cases were associated with nodular/flat morphology, high grade, high T stage, and poor prognosis. Moreover, MCM4 expression was significantly higher in the invasive front than in the tumor surface. Similar results were also obtained in TCGA bladder cancer cohort. Additionally, MCM4 expression was associated with high expression of Ki-67, HER2, EGFR, and p53 in UTUC. Among representative cancer-related molecules, MCM4 had an independent predictive value for progression-free survival and high-grade UC. ICC for MCM4 was also performed on urine cytology slides and showed that the nuclear expression of MCM4 was more frequently found in UC cells than in non-neoplastic cells. The diagnostic accuracy of urine cytology was improved by combining MCM4 immunostaining with cytology. CONCLUSION These results suggest that MCM4 might be a useful predictive biomarker for high-grade histology, tumor progression and poor prognosis in UC. Moreover, ICC for MCM4 might be helpful for UC detection as additional markers in the cytomorphology-based diagnosis.
Collapse
Affiliation(s)
- Go Kobayashi
- Department of Pathology, Kure-Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, -2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuhiro Sentani
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Naohiro Uraoka
- Department of Pathology, Kure-Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Hiroshima, Japan
| | - Takafumi Fukui
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aya Kido
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Narutaka Katsuya
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Ishikawa
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Babasaki
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, -2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yohei Sekino
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, -2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroyuki Nose
- Department of Urology, Kure-Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuyuki Hinata
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, -2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohide Oue
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
34
|
Luo Y, Yang Y, Yang C, Li C, Hu R, Geng W, Kang X, Lin H. UBE3A and MCM6 synergistically regulate the proliferation and migration of lung adenocarcinoma cells. FEBS Open Bio 2023; 13:1756-1771. [PMID: 37454373 PMCID: PMC10476561 DOI: 10.1002/2211-5463.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/16/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Lung cancer is a leading cause of mortality worldwide and shows substantial clinical and biomolecular heterogeneity. Currently, specific therapeutic strategies are lacking, so effective drug targets are urgently needed. E6AP/UBE3A is a multifaceted ubiquitin ligase that controls various signaling pathways implicated in neurological diseases and various cancers; however, its role in lung cancer is incompletely understood. Here, MCM6 was identified as an interacting partner of E6AP using the yeast two-hybrid assay. MCM2 and MCM4 were then shown to interact with E6AP. E6AP knockout enhanced the ubiquitination of MCM2/4/6, suggesting that E6AP was not the E3 ubiquitin ligase for these three MCM proteins. Ablation of E6AP inhibited proliferation and migration, but had no significant effect on apoptosis in A549 and H1975 cells, and proliferation and migration inhibition was also observed in MCM6 knockdown cells. Furthermore, ablation of MCM6 and E6AP synergistically suppressed the proliferation and migration of A549 and H1975 cells. To verify the above findings in vivo, we established tumor models in nude mice and identified that the tumorigenicity of human lung adenocarcinoma (LUAD) cells was synergistically regulated by MCM6 and E6AP. Moreover, the expression levels of MCM6 and E6AP were higher in LUAD tissues than in adjacent tissues. Furthermore, the expression levels of MCM6 and E6AP were positively correlated in human LUAD samples. Thus, our study suggests that the interaction of E6AP and MCM proteins plays an important role in the progression of LUAD, which might offer potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Yanyan Luo
- Department of Pain, Wenzhou Key Laboratory of Perioperative MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityChina
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell Science, Chinese Academy of SciencesShanghaiChina
| | - Yun Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell Science, Chinese Academy of SciencesShanghaiChina
- School of MedicineGuizhou UniversityGuiyangChina
| | - Cong Yang
- Cancer Center, School of Medicine, Shanghai Tenth People's HospitalfTongji UniversityShanghaiChina
| | - Chuanyin Li
- Cancer Center, School of Medicine, Shanghai Tenth People's HospitalfTongji UniversityShanghaiChina
| | - Ronggui Hu
- Department of Pain, Wenzhou Key Laboratory of Perioperative MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityChina
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell Science, Chinese Academy of SciencesShanghaiChina
| | - Wujun Geng
- Department of Pain, Wenzhou Key Laboratory of Perioperative MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityChina
| | - Xianhui Kang
- Department of Pain, Wenzhou Key Laboratory of Perioperative MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityChina
- Department of Anesthesiology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hai Lin
- Department of Pain, Wenzhou Key Laboratory of Perioperative MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityChina
| |
Collapse
|
35
|
Fiorentino V, Pizzimenti C, Franchina M, Rossi ED, Tralongo P, Carlino A, Larocca LM, Martini M, Fadda G, Pierconti F. Bladder Epicheck Test: A Novel Tool to Support Urothelial Carcinoma Diagnosis in Urine Samples. Int J Mol Sci 2023; 24:12489. [PMID: 37569864 PMCID: PMC10420163 DOI: 10.3390/ijms241512489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Bladder cancer and upper urothelial tract carcinoma are common diseases with a high risk of recurrence, thus necessitating follow-up after initial treatment. The management of non-muscle invasive bladder carcinoma (NMIBC) after transurethral resection involves surveillance, intravesical therapy, and cytology with cystoscopy. Urinary cytology, cystoscopy, and radiological evaluation of the upper urinary tract are recommended during follow-up in the international urological guidelines. Cystoscopy is the standard examination for the first assessment and follow-up of NMIBC, and urine cytology is a widely used urinary test with high sensitivity for high-grade urothelial carcinoma (HGUC) and carcinoma in situ (CIS). In recent years, various urinary assays, including DNA methylation markers, have been used to detect bladder tumors. Among these, the Bladder EpiCheck test is one of the most widely used and is based on analysis of the methylation profile of urothelial cells to detect bladder neoplasms. This review assesses the importance of methylation analysis and the Bladder EpiCheck test as urinary biomarkers for diagnosing urothelial carcinomas in patients in follow-up for NMIBC, helping cytology and cystoscopy in doubtful cases. A combined approach of cytology and methylation analysis is suggested not only to diagnose HGUC, but also to predict clinical and histological recurrences.
Collapse
Affiliation(s)
- Vincenzo Fiorentino
- Department of Human Pathology of the Adult and Developmental Age “G. Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (G.F.)
| | - Cristina Pizzimenti
- PhD Programme in Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Mariausilia Franchina
- Department of Human Pathology of the Adult and Developmental Age “G. Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (G.F.)
| | - Esther Diana Rossi
- Department of Women, Children and Public Health Sciences, Catholic University of the Sacred Heart, Agostino Gemelli IRCCS University Hospital Foundation, 00168 Rome, Italy; (E.D.R.); (P.T.); (A.C.); (F.P.)
| | - Pietro Tralongo
- Department of Women, Children and Public Health Sciences, Catholic University of the Sacred Heart, Agostino Gemelli IRCCS University Hospital Foundation, 00168 Rome, Italy; (E.D.R.); (P.T.); (A.C.); (F.P.)
| | - Angela Carlino
- Department of Women, Children and Public Health Sciences, Catholic University of the Sacred Heart, Agostino Gemelli IRCCS University Hospital Foundation, 00168 Rome, Italy; (E.D.R.); (P.T.); (A.C.); (F.P.)
| | - Luigi Maria Larocca
- Department of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences (UniCamillus), 00131 Rome, Italy;
| | - Maurizio Martini
- Department of Human Pathology of the Adult and Developmental Age “G. Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (G.F.)
| | - Guido Fadda
- Department of Human Pathology of the Adult and Developmental Age “G. Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (G.F.)
| | - Francesco Pierconti
- Department of Women, Children and Public Health Sciences, Catholic University of the Sacred Heart, Agostino Gemelli IRCCS University Hospital Foundation, 00168 Rome, Italy; (E.D.R.); (P.T.); (A.C.); (F.P.)
| |
Collapse
|
36
|
Ding X, Singh P, Schimenti K, Tran TN, Fragoza R, Hardy J, Orwig KE, Olszewska M, Kurpisz MK, Yatsenko AN, Conrad DF, Yu H, Schimenti JC. In vivo versus in silico assessment of potentially pathogenic missense variants in human reproductive genes. Proc Natl Acad Sci U S A 2023; 120:e2219925120. [PMID: 37459509 PMCID: PMC10372637 DOI: 10.1073/pnas.2219925120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling. To determine the consequences of these variants in key fertility genes, we functionally evaluated 11 missense variants in the genes ANKRD31, BRDT, DMC1, EXO1, FKBP6, MCM9, M1AP, MEI1, MSH4 and SEPT12 by generating genome-edited mouse models. Nine variants were classified as deleterious by most functional prediction algorithms, and two disrupted a protein-protein interaction (PPI) in the yeast two hybrid (Y2H) assay. Though these genes are essential for normal meiosis or spermiogenesis in mice, only one variant, observed in the MCM9 gene of a male infertility patient, compromised fertility or gametogenesis in the mouse models. To explore the disconnect between predictions and outcomes, we compared pathogenicity calls of missense variants made by ten widely used algorithms to 1) those annotated in ClinVar and 2) those evaluated in mice. All the algorithms performed poorly in terms of predicting the effects of human missense variants modeled in mice. These studies emphasize caution in the genetic diagnoses of infertile patients based primarily on pathogenicity prediction algorithms and emphasize the need for alternative and efficient in vitro or in vivo functional validation models for more effective and accurate VUS description to either pathogenic or benign categories.
Collapse
Affiliation(s)
- Xinbao Ding
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Priti Singh
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Kerry Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Tina N. Tran
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Robert Fragoza
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Jimmaline Hardy
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Kyle E. Orwig
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Maciej K. Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Alexander N. Yatsenko
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Donald F. Conrad
- Oregon Health & Science University, Division of Genetics, Oregon National Primate Research Center, Beaverton, OR97006
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - John C. Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| |
Collapse
|
37
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
38
|
Balasooriya GI, Spector DL. Allele pairing at Sun1-enriched domains at the nuclear periphery via T1A3 tandem DNA repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536031. [PMID: 37066204 PMCID: PMC10104147 DOI: 10.1101/2023.04.07.536031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Spatiotemporal gene regulation is fundamental to the biology of diploid cells. Therefore, effective communication between two alleles and their geometry in the nucleus is important. However, the mechanism that fine-tunes the expression from each of the two alleles of an autosome is enigmatic. Establishing an allele-specific gene expression visualization system in living cells, we show that alleles of biallelically expressed Cth and Ttc4 genes are paired prior to acquiring monoallelic expression. We found that active alleles of monoallelic genes are preferentially localized at Sun1-enriched domains at the nuclear periphery. These peripherally localized active DNA loci are enriched with adenine-thymidine-rich tandem repeats that interact with Hnrnpd and reside in a Hi-C-defined A compartment within the B compartment. Our results demonstrate the biological significance of T 1 A 3 tandem repeat sequences in genome organization and how the regulation of gene expression, at the level of individual alleles, relates to their spatial arrangement.
Collapse
|
39
|
Jin HL, Duan S, Zhang P, Yang Z, Zeng Y, Chen Z, Hong L, Li M, Luo L, Chang Z, Hu J, Wang HB. Dual roles for CND1 in maintenance of nuclear and chloroplast genome stability in plants. Cell Rep 2023; 42:112268. [PMID: 36933214 DOI: 10.1016/j.celrep.2023.112268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The coordination of chloroplast and nuclear genome status is critical for plant cell function. Here, we report that Arabidopsis CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in the chloroplast and the nucleus. CND1 localizes to both compartments, and complete loss of CND1 results in embryo lethality. Partial loss of CND1 disturbs nuclear cell-cycle progression and photosynthetic activity. CND1 binds to nuclear pre-replication complexes and DNA replication origins and regulates nuclear genome stability. In chloroplasts, CND1 interacts with and facilitates binding of the regulator of chloroplast genome stability WHY1 to chloroplast DNA. The defects in nuclear cell-cycle progression and photosynthesis of cnd1 mutants are respectively rescued by compartment-restricted CND1 localization. Light promotes the association of CND1 with HSP90 and its import into chloroplasts. This study provides a paradigm of the convergence of genome status across organelles to coordinately regulate cell cycle to control plant growth and development.
Collapse
Affiliation(s)
- Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 263, Longxi Avenue, Guangzhou, China.
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Pengxiang Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Ziyue Yang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Yunping Zeng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Ziqi Chen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Liu Hong
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Mengshu Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lujun Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhenyi Chang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Jiliang Hu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
40
|
Identification of the Interaction between Minichromosome Maintenance Proteins and the Core Protein of Hepatitis B Virus. Curr Issues Mol Biol 2023; 45:752-764. [PMID: 36661536 PMCID: PMC9857746 DOI: 10.3390/cimb45010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Chronic HBV infection is a major cause of cirrhosis and hepatocellular carcinoma. Finding host factors involved in the viral life cycle and elucidating their mechanisms is essential for developing innovative strategies for treating HBV. The HBV core protein has pleiotropic roles in HBV replication; thus, finding the interactions between the core protein and host factors is important in clarifying the mechanism of viral infection and proliferation. Recent studies have revealed that core proteins are involved in cccDNA formation, transcriptional regulation, and RNA metabolism, in addition to their primary functions of capsid formation and pgRNA packaging. Here, we report the interaction of the core protein with MCMs, which have an essential role in host DNA replication. The knockdown of MCM2 led to increased viral replication during infection, suggesting that MCM2 serves as a restriction factor for HBV proliferation. This study opens the possibility of elucidating the relationship between core proteins and host factors and their function in viral proliferation.
Collapse
|
41
|
Samdani MN, Reza R, Morshed N, Asaduzzaman M, Islam ABMMK. Ligand-based modelling for screening natural compounds targeting Minichromosome Maintenance Complex Component-7 for potential anticancer effects. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2022.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
42
|
Yang X, Wang C, Nie H, Zhou J, He X, Ou C. Minichromosome maintenance gene family: potential therapeutic targets and prognostic biomarkers for lung squamous cell carcinoma. Aging (Albany NY) 2022; 14:9167-9185. [PMID: 36445337 PMCID: PMC9740372 DOI: 10.18632/aging.204399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
The minichromosome maintenance (MCM) gene family comprises of ten members with key roles in eukaryotic DNA replication and are associated with the occurrence and progression of many tumors. However, whether the MCM family contributes to lung squamous cell carcinoma (LUSC) is unclear. In this study, we performed bioinformatic analysis to identify the roles of MCM genes in patients with LUSC. We also evaluated their differential gene expression, prognostic correlation, DNA methylation, functional enrichment of genetic alterations, and immunomodulation. According to the Tumor Immune Estimation Resource database, the expression of MCM2-10 mRNA was elevated in LUSC tissues. According to the Gene Expression Profiling Interactive Analysis database, MCM2-8 and MCM10 were considerably upregulated in LUSC tissues, and protein levels of all MCMs were increased in LUSC tissues. In addition, among the MCM family members, the expression of MCM3 and MCM7 showed the strongest correlation with the prognoses of patients with LUSC. To clarify the role and mechanisms of the MCM family, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment studies were performed. We detected a significant correlation between the expression patterns of MCM family members and infiltrating immune cells. In conclusion, our results improve the understanding of the aberrant expression of MCM family members in LUSC. These findings demonstrate the potential of the MCM family as therapeutic targets and biomarkers for the diagnosis and prognosis of LUSC.
Collapse
Affiliation(s)
- Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
43
|
Two Distinct Modes of DNA Binding by an MCM Helicase Enable DNA Translocation. Int J Mol Sci 2022; 23:ijms232314678. [PMID: 36499022 PMCID: PMC9735655 DOI: 10.3390/ijms232314678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
A six-subunit ATPase ring forms the central hub of the replication forks in all domains of life. This ring performs a helicase function to separate the two complementary DNA strands to be replicated and drives the replication machinery along the DNA. Disruption of this helicase/ATPase ring is associated with genetic instability and diseases such as cancer. The helicase/ATPase rings of eukaryotes and archaea consist of six minichromosome maintenance (MCM) proteins. Prior structural studies have shown that MCM rings bind one encircled strand of DNA in a spiral staircase, suggesting that the ring pulls this strand of DNA through its central pore in a hand-over-hand mechanism where the subunit at the bottom of the staircase dissociates from DNA and re-binds DNA one step above the staircase. With high-resolution cryo-EM, we show that the MCM ring of the archaeal organism Saccharolobus solfataricus binds an encircled DNA strand in two different modes with different numbers of subunits engaged to DNA, illustrating a plausible mechanism for the alternating steps of DNA dissociation and re-association that occur during DNA translocation.
Collapse
|
44
|
Yang S, Yuan Y, Ren W, Wang H, Zhao Z, Zhao H, Zhao Q, Chen X, Jiang X, Zhang L. MCM4 is a novel prognostic biomarker and promotes cancer cell growth in glioma. Front Oncol 2022; 12:1004324. [PMID: 36465369 PMCID: PMC9713251 DOI: 10.3389/fonc.2022.1004324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Gliomas account for 75% of all primary malignant brain tumors in adults and result in high mortality. Accumulated evidence has declared the minichromosome maintenance protein complex (MCM) gene family plays a critical role in modulating the cell cycle and DNA replication stress. However, the biological function and clinic characterization of nine MCM members in low-grade glioma are not yet clarified. METHODS In this study, we utilized diverse public databases, including The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Rembrandt, Human Protein Atlas (HPA), Linkedomics, cbioportal, Tumor and Immune System Interaction Database (TISIDB), single-sample GSEA (ssGSEA), Tumor Immune Estimation Resource (TIMER), Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal databases to explore the mRNA and protein expression profiles, gene mutation, clinical features, diagnosis, prognosis, signaling pathway, tumor mutational burden (TMB), immune subtype, immune cell infiltration, immune modulator and drug sensitivity of nine MCMs. Afterward, qRT-PCR was utilized to detect the expression of the MCM family in glioblastoma multiforme (GBM) cell lines. The one-, three-, or five-year survival rate was predicted by utilizing a nomogram established by cox proportional hazard regression. RESULTS In this study, we found that nine MCMs were consistently up-regulated in glioma tissues and glioma cell lines. Elevated nine MCMs expressions were significantly correlated with a higher tumor stage, isocitrate dehydrogenase (IDH) mutates, 1p/19q codeletion, histological type, and primary therapy outcome. Survival analyses showed that higher expression of MCM2-MCM8 (minichromosome maintenance protein2-8) and MCM10 (minichromosome maintenance protein 10) were linked with poor overall survival (OS) and progression-free survival (PFS) in glioma patients. On the other hand, up-regulated MCM2-MCM8 and MCM10 were significantly associated with shorter disease-specific survival (DSS) in glioma patients. Univariate and multivariate analyses revealed that MCM2 (minichromosome maintenance protein2), MCM4 (minichromosome maintenance protein 4), MCM6 (minichromosome maintenance protein 6), MCM7 (minichromosome maintenance protein 7) expression and tumor grade, 1p/19q codeletion, age, and primary therapy outcome were independent factors correlated with the clinical outcome of glioma patients. More importantly, a prognostic MCMs model constructed using the above five prognostic genes could predict the overall survival of glioma patients with medium-to-high accuracy. Furthermore, functional enrichment analysis indicated that MCMs principal participated in regulating cell cycle and DNA replication. DNA copy number variation (CNV) and DNA methylation significantly affect the expression of MCMs. Finally, we uncover that MCMs expression is highly correlated with immune cell infiltration, immune modulator, TMB, and drug sensitivity. CONCLUSIONS In summary, this finding confirmed that MCM4 is a potential target of precision therapy for patients with glioma.
Collapse
Affiliation(s)
- Shu Yang
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yixiao Yuan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Haiyu Wang
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhong Zhao
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Heng Zhao
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qizhe Zhao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Chen
- First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
45
|
Molecular Biomarkers of Malignant Transformation in Head and Neck Dysplasia. Cancers (Basel) 2022; 14:cancers14225581. [PMID: 36428690 PMCID: PMC9688631 DOI: 10.3390/cancers14225581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) and its treatments are associated with substantial morbidity, often resulting in cosmetic deformity and loss of physiologic functions including speech and swallowing. Despite advancements in treatment, 5-year survival rates for mucosal malignancies remain below 70%. Effective prevention of HNSCC demands an understanding of the molecular pathways of carcinogenesis. Specifically, defining features of pre-cancerous dysplastic lesions that indicate a better or worse prognosis is necessary to help identify patients who are likely to develop a carcinoma and allow a more aggressive approach to management. There remains a need for identification of biomarkers that can provide both early prognostic and predictive value in clinical decision-making by serving as both therapeutic targets as well as predictors of therapy response. Here, we comprehensively review the most frequently altered molecular biomarkers of malignant transformation in head and neck dysplasia. These markers are involved in a wide range of cellular processes in head and neck carcinogenesis, including extracellular matrix degradation, cell motility and invasion, cell-cell adhesion, solute transport, immortalization, metabolism, the cell cycle and apoptosis, transcription, and cell signaling.
Collapse
|
46
|
MCM2 in human cancer: functions, mechanisms, and clinical significance. Mol Med 2022; 28:128. [PMID: 36303105 PMCID: PMC9615236 DOI: 10.1186/s10020-022-00555-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aberrant DNA replication is the main source of genomic instability that leads to tumorigenesis and progression. MCM2, a core subunit of eukaryotic helicase, plays a vital role in DNA replication. The dysfunction of MCM2 results in the occurrence and progression of multiple cancers through impairing DNA replication and cell proliferation. Conclusions MCM2 is a vital regulator in DNA replication. The overexpression of MCM2 was detected in multiple types of cancers, and the dysfunction of MCM2 was correlated with the progression and poor prognoses of malignant tumors. According to the altered expression of MCM2 and its correlation with clinicopathological features of cancer patients, MCM2 was thought to be a sensitive biomarker for cancer diagnosis, prognosis, and chemotherapy response. The anti-tumor effect induced by MCM2 inhibition implies the potential of MCM2 to be a novel therapeutic target for cancer treatment. Since DNA replication stress, which may stimulate anti-tumor immunity, frequently occurs in MCM2 deficient cells, it also proposes the possibility that MCM2 targeting improves the effect of tumor immunotherapy.
Collapse
|
47
|
Volarić J, Thallmair S, Feringa BL, Szymanski W. Photoswitchable, Water‐soluble Bis‐azobenzene Cross‐linkers with Enhanced Properties for Biological Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jana Volarić
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies Frankfurt Institute for Advanced Studies GERMANY
| | - Ben L. Feringa
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Wiktor Szymanski
- University Medical Center Groningen Department of Radiology Hanzeplein 1 9747AG Groningen NETHERLANDS
| |
Collapse
|
48
|
Jacquet A, Dormoy V, Lorenzato M, Durlach A. Preliminary results on a proposed histopathological assessment of predictive factors for basal cell carcinoma recurrence after primary free margin excision. SKIN HEALTH AND DISEASE 2022; 2:e88. [PMID: 35677922 PMCID: PMC9168020 DOI: 10.1002/ski2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
Background Basal cell carcinoma (BCC) incidence is steadily increasing but therapeutic solutions remain limited and present a public health challenge. Aims To identify predictive factors of BCC recurrence after primary free margin excision, with automated methods, by evaluating cell proliferation, the Hedgehog pathway activation and primary cilia. Materials and Methods This case–control study included 32 patients (16 with recurrence occurring at least 6 months after complete resection, and 16 without recurrence) who underwent surgery for BCC. Formalin‐fixed paraffin‐embedded cutaneous resections were processed for immunohistochemistry or immunostaining with the following primary antibodies: mouse anti‐MCM6, rabbit anti‐ARL13B and rabbit anti‐GLI1. Results BCC recurrence after free margin excision was significantly linked to a higher proliferative index (p < 0.001) and a lower cilia count (p = 0.041) in the primary lesion. No significant differences were observed regarding cilia length (p = 0.39) or GLI1‐positive nuclei. Discussion The complex interplay between essential signaling pathways, cell proliferation and cilia requires further experimental investigations in the context of BCC recurrence. Conclusion A higher proliferative index evaluated with MCM6 antibody could be a useful prognosis marker of BCC risk of recurrence. The lower cilia count in the primary lesion unveiled novel perspectives to understand BCC recurrence molecular mechanisms.
Collapse
Affiliation(s)
- A. Jacquet
- Service of Pathology CHU Reims University Hospital of Reims Reims France
| | - V. Dormoy
- Inserm P3Cell UMR‐S1250 SFR CAP‐SANTE University of Reims Champagne‐Ardenne Reims France
| | - M. Lorenzato
- Service of Pathology CHU Reims University Hospital of Reims Reims France
| | - A. Durlach
- Service of Pathology CHU Reims University Hospital of Reims Reims France
- Inserm P3Cell UMR‐S1250 SFR CAP‐SANTE University of Reims Champagne‐Ardenne Reims France
| |
Collapse
|
49
|
Yuan J, Lan H, Huang D, Guo X, Liu C, Liu S, Zhang P, Cheng Y, Xiao S. Multi-Omics Analysis of MCM2 as a Promising Biomarker in Pan-Cancer. Front Cell Dev Biol 2022; 10:852135. [PMID: 35693940 PMCID: PMC9174984 DOI: 10.3389/fcell.2022.852135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Minichromosome maintenance 2 (MCM2) is a member of the minichromosomal maintenance family of proteins that mainly regulates DNA replication and the cell cycle and is involved in regulating cancer cell proliferation in various cancers. Previous studies have reported that MCM2 plays a pivotal role in cell proliferation and cancer development. However, few articles have systematically reported the pathogenic roles of MCM2 across cancers. Therefore, the present pan-cancer study was conducted. Various computational tools were used to investigate the MCM2 expression level, genetic mutation rate, and regulating mechanism, immune infiltration, tumor diagnosis and prognosis, therapeutic response and drug sensitivity of various cancers. The expression and function of MCM2 were examined by Western blotting and CCK-8 assays. MCM2 was significantly upregulated in almost all cancers and cancer subtypes in The Cancer Genome Atlas and was closely associated with tumor mutation burden, tumor stage, and immune therapy response. Upregulation of MCM2 expression may be correlated with a high level of alterations rate. MCM2 expression was associated with the infiltration of various immune cells and molecules and markedly associated with a poor prognosis. Western blotting and CCK-8 assays revealed that MCM2 expression was significantly upregulated in melanoma cell lines. Our results also suggested that MCM2 promotes cell proliferation in vitro by activating cell proliferation pathways such as the Akt signaling pathways. This study explored the oncogenic role of MCM2 across cancers, provided data on the underlying mechanisms of these cancers for further research and demonstrated that MCM2 may be a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hua Lan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongqing Huang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gynecology, The Second Hospital of Zhuzhou, Zhuzhou, China
| | - Xiaohui Guo
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chu Liu
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuping Liu
- Department of Rehabilitation, Changsha Central Hospital of University of South China, Changsha, China
| | - Peng Zhang
- Graduate Collaborative Training Base of the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yan Cheng, ; Songshu Xiao,
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yan Cheng, ; Songshu Xiao,
| |
Collapse
|
50
|
Targeted inhibition of the expression of both MCM5 and MCM7 by miRNA-214 impedes DNA replication and tumorigenesis in hepatocellular carcinoma cells. Cancer Lett 2022; 539:215677. [DOI: 10.1016/j.canlet.2022.215677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
|