1
|
Lu L, Qi Z, Wang H, Chen Z, Song Z, Li Z, Wang X, Zhao B, Wei X, Shao Y, Wang Z, Tu J, Song X. The Hcp2b of APEC induces mitochondrial damage in chicken DF-1 cells. Avian Pathol 2025; 54:325-333. [PMID: 39552458 DOI: 10.1080/03079457.2024.2431803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/19/2024]
Abstract
The haemolysin co-regulatory protein (Hcp) plays a significant role in the pathogenicity of avian pathogenic Escherichia coli (APEC) as an effector protein of the type VI secretion system (T6SS) to the host. Meanwhile, mitochondria in the host are the target of effector proteins of various secretion systems. Here, we explored the effects of APEC effector Hcp2b on the mitochondria of DF-1 cells and found that Hcp2b results in damage in mitochondria. Next, 68 target proteins in DF-1 cell lysates were identified that interacted with Hcp2b by streptavidin-biotin pull-down assay combined with LC-MS/MS, among which ADP/ATP transporter carrier (SLC25A4) is a mitochondria-associated protein; protein docking analysis showed that Hcp2b binds well to SLC25A4. Therefore, we hypothesize that the Hcp2b contributes to mitochondrial damage in DF-1 cells through interaction with the SLC25A4.
Collapse
Affiliation(s)
- Liting Lu
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zhao Qi
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Haiyang Wang
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zhe Chen
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zichao Song
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Ziqi Li
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiaoru Wang
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Bingyu Zhao
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiyang Wei
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Ying Shao
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zhenyu Wang
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jian Tu
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiangjun Song
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
2
|
Li P, Fan Z, Huang Y, Luo L, Wu X. Mitochondrial dynamics at the intersection of macrophage polarization and metabolism. Front Immunol 2025; 16:1520814. [PMID: 40196123 PMCID: PMC11973336 DOI: 10.3389/fimmu.2025.1520814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Macrophages are vital sentinels in innate immunity, and their functions cannot be performed without internal metabolic reprogramming. Mitochondrial dynamics, especially mitochondrial fusion and fission, contributes to the maintenance of mitochondrial homeostasis. The link between mitochondrial dynamics and macrophages in the past has focused on the immune function of macrophages. We innovatively summarize and propose a link between mitochondrial dynamics and macrophage metabolism. Among them, fusion-related FAM73b, MTCH2, SLP-2 (Stomatin-like protein 2), and mtSIRT, and fission-related Fis1 and MTP18 may be the link between mitochondrial dynamics and macrophage metabolism association. Furthermore, post-translational modifications (PTMs) of mtSIRT play prominent roles in mitochondrial dynamics-macrophage metabolism connection, such as deacetylates and hypersuccinylation. MicroRNAs such as miR-150, miR-15b, and miR-125b are also possible entry points. The metabolic reprogramming of macrophages through the regulation of mitochondrial dynamics helps improve their adaptability and resistance to adverse environments and provides therapeutic possibilities for various diseases.
Collapse
Affiliation(s)
- Pan Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Zhengbo Fan
- People’s Government of Huangshui Town, Shizhu Tujia Autonomous County, Chongqing, China
| | - Yanlan Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liang Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Xu Z, Tang J, Gong Y, Zhang J, Zou Y. Atomistic Insights into the Stabilization of TDP-43 Protofibrils by ATP. J Chem Inf Model 2024; 64:7639-7649. [PMID: 39292611 DOI: 10.1021/acs.jcim.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The aberrant accumulation of the transactive response deoxyribonucleic acid (DNA)-binding protein of 43 kDa (TDP-43) aggregates in the cytoplasm of motor neurons is the main pathological hallmark of amyotrophic lateral sclerosis (ALS). Previous experiments reported that adenosine triphosphate (ATP), the universal energy currency for all living cells, could induce aggregation and enhance the folding of TDP-43 fibrillar aggregates. However, the significance of ATP on TDP-43 fibrillation and the mechanism behind it remain elusive. In this work, we conducted multiple atomistic molecular dynamics (MD) simulations totaling 20 μs to search the critical nucleus size of TDP-43282-360 and investigate the impact of ATP molecules on preformed protofibrils. The results reveal that the trimer is the critical nucleus for TDP-43282-360 fibril formation and the tetramer is the minimal stable nucleus. When ATP molecules bind to the TDP-43282-360 trimer and tetramer, they can consolidate the TDP-43282-360 protofibrils by increasing the content of the β-sheet structure and promoting the formation of hydrogen bonds (H-bonds). Binding site analyses show that the N-terminus of TDP-43282-360 protofibrils is the main binding site of ATP, and R293 dominates the direct binding of ATP. Further analyses reveal that the π-π, cation-π, salt bridge, and H-bonding interactions together contribute to the binding of ATP to TDP-43282-360 protofibrils. This study decoded the detailed stabilization mechanism of protofibrillar TDP-43282-360 oligomers by ATP, and may provide new avenues for the development of drug design against ALS.
Collapse
Affiliation(s)
- Zhengdong Xu
- Department of Physical Education, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Jiaxing Tang
- College of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Yehong Gong
- General Education Center, Westlake University, 600 Dunyu Road, Hangzhou 310030, People's Republic of China
| | - Jianxin Zhang
- Department of Physical Education, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310007, People's Republic of China
| |
Collapse
|
4
|
Li Y, Shi X, Xu J, Huang X, Feng J, Huang Y, Liu K, Yu F. Proteomics-based analysis on the stress response mechanism of Bidens pilosa L. under cadmium exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132761. [PMID: 37837780 DOI: 10.1016/j.jhazmat.2023.132761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Bidens pilosa L. (B. pilosa) has great potential for the phytoremediation of cadmium (Cd)-contaminated soils. However, the molecular mechanism underlying Cd tolerance and detoxification in B. pilosa is still unclear. In the present study, a 4D label-free quantification technique combined with liquid chromatography-parallel reaction monitoring mass spectrometry was used to explore the stress response mechanism of B. pilosa. Proteomic analysis revealed 213 and 319 differentially expressed proteins (DEPs) in the roots and leaves of B. pilosa, respectively, and 12 target proteins were selected for further analysis. SWISS-MODEL was used to predict the 3D structures of the target proteins. The cation-ATPase-N structural domain and an ATPase-E1-E2 motif, which help to regulate ATPase function, were detected in the TR10519_c0_g1_ORF protein. In addition, the TR6620_c0_g1_ORF_1 and TR611_c1_g1_ORF proteins contained peroxidase-1 and peroxidase-2 motifs. The TR11239_c0_g1_ORF protein was found to belong to the Fe-SOD family, to have a dimeric structure and to contain a relatively high proportion of α-helices but few β-sheets, which play important roles in reactive oxygen intermediate scavenging. Thus, the current study provides an overview of the proteomic response of B. pilosa in scavenging of Cd-induced reactive oxygen intermediates and reveals key proteins involved in the stress response of B. pilosa under Cd exposure.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Xinwei Shi
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Jie Xu
- College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Xiaofang Huang
- College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Jingpei Feng
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yuanyuan Huang
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
5
|
Li F, Zhang F, Yi X, Quan LL, Yang X, Yin C, Ma Z, Wu R, Zhao W, Ling M, Lang L, Hussein A, Feng S, Fu Y, Wang J, Liang S, Zhu C, Wang L, Zhu X, Gao P, Xi Q, Zhang Y, Zhang L, Shu G, Jiang Q, Wang S. Proline hydroxylase 2 (PHD2) promotes brown adipose thermogenesis by enhancing the hydroxylation of UCP1. Mol Metab 2023; 73:101747. [PMID: 37279828 PMCID: PMC10293773 DOI: 10.1016/j.molmet.2023.101747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) plays a crucial role in regulating non-shivering thermogenesis under cold exposure. Proline hydroxylases (PHDs) were found to be involved in adipocyte differentiation and lipid deposition. However, the effects of PHDs on regulatory mechanisms of BAT thermogenesis are not fully understood. METHODS We detected the expression of PHDs in different adipose tissues by using immunoblotting and real-time PCR. Further, immunoblotting, real-time PCR, and immunostaining were performed to determine the correlation between proline hydroxylase 2 (PHD2) and UCP1 expression. Inhibitor of PHDs and PHD2-sgRNA viruses were used to construct the PHD2-deficiency model in vivo and in vitro to investigate the impacts of PHD2 on BAT thermogenesis. Afterward, the interaction between UCP1 and PHD2 and the hydroxylation modification level of UCP1 were verified by Co-IP assays and immunoblotting. Finally, the effect of specific proline hydroxylation on the expression/activity of UCP1 was further confirmed by site-directed mutation of UCP1 and mass spectrometry analysis. RESULTS PHD2, but not PHD1 and PHD3, was highly enriched in BAT, colocalized, and positively correlated with UCP1. Inhibition or knockdown of PHD2 significantly suppressed BAT thermogenesis under cold exposure and aggravated obesity of mice fed HFD. Mechanistically, mitochondrial PHD2 bound to UCP1 and regulated the hydroxylation level of UCP1, which was enhanced by thermogenic activation and attenuated by PHD2 knockdown. Furthermore, PHD2-dependent hydroxylation of UCP1 promoted the expression and stability of UCP1 protein. Mutation of the specific prolines (Pro-33, 133, and 232) in UCP1 significantly mitigated the PHD2-elevated UCP1 hydroxylation level and reversed the PHD2-increased UCP1 stability. CONCLUSIONS This study suggested an important role for PHD2 in BAT thermogenesis regulation by enhancing the hydroxylation of UCP1.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lu Lu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Cong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zewei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ruifan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Abdelaziz Hussein
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Junfeng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shuyi Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Wen's Foodstuffs Group Co., Ltd, Yunfu 527400, PR China.
| |
Collapse
|
6
|
Atlante A, Valenti D. Mitochondria Have Made a Long Evolutionary Path from Ancient Bacteria Immigrants within Eukaryotic Cells to Essential Cellular Hosts and Key Players in Human Health and Disease. Curr Issues Mol Biol 2023; 45:4451-4479. [PMID: 37232752 PMCID: PMC10217700 DOI: 10.3390/cimb45050283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondria have made a long evolutionary path from ancient bacteria immigrants within the eukaryotic cell to become key players for the cell, assuming crucial multitasking skills critical for human health and disease. Traditionally identified as the powerhouses of eukaryotic cells due to their central role in energy metabolism, these chemiosmotic machines that synthesize ATP are known as the only maternally inherited organelles with their own genome, where mutations can cause diseases, opening up the field of mitochondrial medicine. More recently, the omics era has highlighted mitochondria as biosynthetic and signaling organelles influencing the behaviors of cells and organisms, making mitochondria the most studied organelles in the biomedical sciences. In this review, we will especially focus on certain 'novelties' in mitochondrial biology "left in the shadows" because, although they have been discovered for some time, they are still not taken with due consideration. We will focus on certain particularities of these organelles, for example, those relating to their metabolism and energy efficiency. In particular, some of their functions that reflect the type of cell in which they reside will be critically discussed, for example, the role of some carriers that are strictly functional to the typical metabolism of the cell or to the tissue specialization. Furthermore, some diseases in whose pathogenesis, surprisingly, mitochondria are involved will be mentioned.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
7
|
Shao W, Zhang Y, Chen C, Xing Y. Function of the Mitochondrial Transport Protein BcMtp1 in Regulating Vegetative Development, Asexual Reproduction, Stress Response, Fungicide Sensitivity, and Virulence of Botrytis cinerea. J Fungi (Basel) 2022; 9:jof9010025. [PMID: 36675846 PMCID: PMC9864816 DOI: 10.3390/jof9010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In model fungi, mitochondrial transport proteins (MTPs), also known as "mitochondrial carriers" (MC), are known to facilitate the exchange of biochemical substances across the mitochondrial inner membrane. In this study, we characterized an MTP in Botrytis cinerea homologous to the known MTPs in Saccharomyces cerevisiae designated BcMtp1. The BcMtp1 deletion mutant phenotype was strikingly defective in vegetative development, conidiation, and sclerotia production. In addition, ΔBcMtp1 showed increased sensitivity to osmotic stress, oxidative stress, and cell wall biogenesis inhibitors. In the pathogenicity assay, ΔBcMtp1 displayed compromised virulence on various host-plant tissues. The BcMtp1 deletion mutant phenotype was rescued by transforming the wild-type BcMtp1 variant into the mutant. Together, these data indicate that BcMtp1 is critical for vegetative development, asexual reproduction, stress tolerance, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Wenyong Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Department of Plant Pathology, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (C.C.); (Y.X.)
| | - Yujun Xing
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: (C.C.); (Y.X.)
| |
Collapse
|
8
|
Ley-Ngardigal S, Bertolin G. Approaches to monitor ATP levels in living cells: where do we stand? FEBS J 2022; 289:7940-7969. [PMID: 34437768 DOI: 10.1111/febs.16169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
ATP is the most universal and essential energy molecule in cells. This is due to its ability to store cellular energy in form of high-energy phosphate bonds, which are extremely stable and readily usable by the cell. This energy is key for a variety of biological functions such as cell growth and division, metabolism, and signaling, and for the turnover of biomolecules. Understanding how ATP is produced and hydrolyzed with a spatiotemporal resolution is necessary to understand its functions both in physiological and in pathological contexts. In this review, first we will describe the organization of the electron transport chain and ATP synthase, the main molecular motor for ATP production in mitochondria. Second, we will review the biochemical assays currently available to estimate ATP quantities in cells, and we will compare their readouts, strengths, and weaknesses. Finally, we will explore the palette of genetically encoded biosensors designed for microscopy-based approaches, and show how their spatiotemporal resolution opened up the possibility to follow ATP levels in living cells.
Collapse
Affiliation(s)
- Seyta Ley-Ngardigal
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France.,LVMH Research Perfumes and Cosmetics, Saint-Jean-de-Braye, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France
| |
Collapse
|
9
|
Oliveira NF, Machuqueiro M. Novel US-CpHMD Protocol to Study the Protonation-Dependent Mechanism of the ATP/ADP Carrier. J Chem Inf Model 2022; 62:2550-2560. [PMID: 35442654 PMCID: PMC9775199 DOI: 10.1021/acs.jcim.2c00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have designed a protocol combining constant-pH molecular dynamics (CpHMD) simulations with an umbrella sampling (US) scheme (US-CpHMD) to study the mechanism of ADP/ATP transport (import and export) by their inner mitochondrial membrane carrier protein [ADP/ATP carrier (AAC)]. The US scheme helped overcome the limitations of sampling the slow kinetics involved in these substrates' transport, while CpHMD simulations provided an unprecedented realism by correctly capturing the associated protonation changes. The import of anionic substrates along the mitochondrial membrane has a strong energetic disadvantage due to a smaller substrate concentration and an unfavorable membrane potential. These limitations may have created an evolutionary pressure on AAC to develop specific features benefiting the import of ADP. In our work, the potential of mean force profiles showed a clear selectivity in the import of ADP compared to ATP, while in the export, no selectivity was observed. We also observed that AAC sequestered both substrates at longer distances in the import compared to the export process. Furthermore, only in the import process do we observe transient protonation of both substrates when going through the AAC cavity, which is an important advantage to counteract the unfavorable mitochondrial membrane potential. Finally, we observed a substrate-induced disruption of the matrix salt-bridge network, which can promote the conformational transition (from the C- to M-state) required to complete the import process. This work unraveled several important structural features where the complex electrostatic interactions were pivotal to interpreting the protein function and illustrated the potential of applying the US-CpHMD protocol to other transport processes involving membrane proteins.
Collapse
|
10
|
The effects of cardiolipin on the structural dynamics of the mitochondrial ADP/ATP carrier in its cytosol-open state. J Lipid Res 2022; 63:100227. [PMID: 35569528 PMCID: PMC9189224 DOI: 10.1016/j.jlr.2022.100227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
|
11
|
Yao S, Yi Q, Ma B, Mao X, Chen Y, Guan MX, Cang X. Mechanistic insights into multiple-step transport of mitochondrial ADP/ATP carrier. Comput Struct Biotechnol J 2022; 20:1829-1840. [PMID: 35521544 PMCID: PMC9046947 DOI: 10.1016/j.csbj.2022.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
The ADP/ATP carrier (AAC) is crucial for mitochondrial functions by importing ADP and exporting ATP across the inner mitochondrial membrane. However, the mechanism of highly specific ADP recognition and transport by AAC remains largely elusive. In this work, spontaneous ADP binding process to the ground c-state AAC was investigated through rigorous molecular dynamics simulations of over 31 microseconds in total. With improved simulation strategy, we have successfully identified a highly specific ADP binding site in the upper region of the cavity, and this site exhibits selectivity for ADP over ATP based on free-energy calculations. Sequence analyses on adenine nucleotide transporters also suggest that this subgroup uses the upper region of the cavity, rather than the previously proposed central binding site located at the bottom of the cavity to discriminate their substrates. Identification of the new site unveils the unusually high substrate specificity of AAC and explains the dependence of transport on the flexibility between anti and syn glycosidic conformers of ADP. Moreover, this new site together with the central site supports early biochemical findings. In light of these early findings, our simulations described a multi-step model in which the carrier uses different sites for substrate attraction, recognition and conformational transition. These results provide new insights into the transport mechanism of AAC and other adenine nucleotide transporters.
Collapse
Key Words
- AAC, ADP/ADP carrier
- ATP translocases
- CATR, carboxyatractyloside
- CoA, coenzyme A
- GDC, Graves disease carrier protein, or SLC25A16
- MCF, mitochondrial carrier family
- MD simulation, molecular dynamics simulation PCA, Principal component analysis
- Mitochondrial ADP
- OXPHOS, oxidative phosphorylation
- SCaMCs, short Ca2+-binding mitochondrial carrier, or Mg-ATP/Pi carrier
- Solute carrier family 25, molecular dynamics simulation
- Substrate recognition
- Transporter
- c-state, cytosol-open state
- m-state, matrix-open state
Collapse
Affiliation(s)
- Shihao Yao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiuzi Yi
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Boyuan Ma
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoting Mao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Institute of Genetics, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
12
|
Learning from Yeast about Mitochondrial Carriers. Microorganisms 2021; 9:microorganisms9102044. [PMID: 34683364 PMCID: PMC8539049 DOI: 10.3390/microorganisms9102044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are organelles that play an important role in both energetic and synthetic metabolism of eukaryotic cells. The flow of metabolites between the cytosol and mitochondrial matrix is controlled by a set of highly selective carrier proteins localised in the inner mitochondrial membrane. As defects in the transport of these molecules may affect cell metabolism, mutations in genes encoding for mitochondrial carriers are involved in numerous human diseases. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our understanding of many fundamental processes in eukaryotic cells. As such, the yeast is also exceptionally well suited for investigation of mitochondrial carriers. This article reviews the advantages of using yeast to study mitochondrial carriers with the focus on addressing the involvement of these carriers in human diseases.
Collapse
|
13
|
Molecular mechanism of thiamine pyrophosphate import into mitochondria: a molecular simulation study. J Comput Aided Mol Des 2021; 35:987-1007. [PMID: 34406552 DOI: 10.1007/s10822-021-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The import of thiamine pyrophosphate (TPP) through both mitochondrial membranes was studied using a total of 3-µs molecular dynamics simulations. Regarding the translocation through the mitochondrial outer membrane, our simulations support the conjecture that TPP uses the voltage-dependent anion channel, the major pore of this membrane, for its passage to the intermembrane space, as its transport presents significant analogies with that used by other metabolites previously studied, in particular with ATP. As far as passing through the mitochondrial inner membrane is concerned, our simulations show that the specific carrier of TPP has a single binding site that becomes accessible, through an alternating access mechanism. The preference of this transporter for TPP can be rationalized mainly by three residues located in the binding site that differ from those identified in the ATP/ADP carrier, the most studied member of the mitochondrial carrier family. The simulated transport mechanism of TPP highlights the essential role, at the energetic level, of the contributions coming from the formation and breakage of two networks of salt bridges, one on the side of the matrix and the other on the side of the intermembrane space, as well as the interactions, mainly of an ionic nature, formed by TPP upon its binding. The energy contribution provided by the cytosolic network establishes a lower barrier than that of the matrix network, which can be explained by the lower interaction energy of TPP on the matrix side or possibly a uniport activity.
Collapse
|
14
|
A Walk in the Memory, from the First Functional Approach up to Its Regulatory Role of Mitochondrial Bioenergetic Flow in Health and Disease: Focus on the Adenine Nucleotide Translocator. Int J Mol Sci 2021; 22:ijms22084164. [PMID: 33920595 PMCID: PMC8073645 DOI: 10.3390/ijms22084164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial adenine nucleotide translocator (ANT) plays the fundamental role of gatekeeper of cellular energy flow, carrying out the reversible exchange of ADP for ATP across the inner mitochondrial membrane. ADP enters the mitochondria where, through the oxidative phosphorylation process, it is the substrate of Fo-F1 ATP synthase, producing ATP that is dispatched from the mitochondrion to the cytoplasm of the host cell, where it can be used as energy currency for the metabolic needs of the cell that require energy. Long ago, we performed a method that allowed us to monitor the activity of ANT by continuously detecting the ATP gradually produced inside the mitochondria and exported in the extramitochondrial phase in exchange with externally added ADP, under conditions quite close to a physiological state, i.e., when oxidative phosphorylation takes place. More than 30 years after the development of the method, here we aim to put the spotlight on it and to emphasize its versatile applicability in the most varied pathophysiological conditions, reviewing all the studies, in which we were able to observe what really happened in the cell thanks to the use of the "ATP detecting system" allowing the functional activity of the ANT-mediated ADP/ATP exchange to be measured.
Collapse
|
15
|
Advances into Understanding the Vital Role of the Mitochondrial Citrate Carrier (CIC) in Metabolic Diseases. Pharmacol Res 2020; 161:105132. [DOI: 10.1016/j.phrs.2020.105132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
|
16
|
Kreimendahl S, Schwichtenberg J, Günnewig K, Brandherm L, Rassow J. The selectivity filter of the mitochondrial protein import machinery. BMC Biol 2020; 18:156. [PMID: 33121519 PMCID: PMC7596997 DOI: 10.1186/s12915-020-00888-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background The uptake of newly synthesized nuclear-encoded mitochondrial proteins from the cytosol is mediated by a complex of mitochondrial outer membrane proteins comprising a central pore-forming component and associated receptor proteins. Distinct fractions of proteins initially bind to the receptor proteins and are subsequently transferred to the pore-forming component for import. The aim of this study was the identification of the decisive elements of this machinery that determine the specific selection of the proteins that should be imported. Results We identified the essential internal targeting signal of the members of the mitochondrial metabolite carrier proteins, the largest protein family of the mitochondria, and we investigated the specific recognition of this signal by the protein import machinery at the mitochondrial outer surface. We found that the outer membrane import receptors facilitated the uptake of these proteins, and we identified the corresponding binding site, marked by cysteine C141 in the receptor protein Tom70. However, in tests both in vivo and in vitro, the import receptors were neither necessary nor sufficient for specific recognition of the targeting signals. Although these signals are unrelated to the amino-terminal presequences that mediate the targeting of other mitochondrial preproteins, they were found to resemble presequences in their strict dependence on a content of positively charged residues as a prerequisite of interactions with the import pore. Conclusions The general import pore of the mitochondrial outer membrane appears to represent not only the central channel of protein translocation but also to form the decisive general selectivity filter in the uptake of the newly synthesized mitochondrial proteins.
Collapse
Affiliation(s)
- Sebastian Kreimendahl
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Jan Schwichtenberg
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Kathrin Günnewig
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Lukas Brandherm
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
17
|
Kulikova VA, Nikiforov AA. Role of NUDIX Hydrolases in NAD and ADP-Ribose Metabolism in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:883-894. [PMID: 33045949 DOI: 10.1134/s0006297920080040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Proteins of the NUDIX hydrolase (NUDT) superfamily that cleave organic pyrophosphates are found in all classes of organisms, from archaea and bacteria to higher eukaryotes. In mammals, NUDTs exhibit a wide range of functions and are characterized by different substrate specificity and intracellular localization. They control the concentration of various metabolites in the cell, including key regulatory molecules such as nicotinamide adenine dinucleotide (NAD), ADP-ribose, and their derivatives. In this review, we discuss the role of NUDT proteins in the metabolism of NAD and ADP-ribose in human and animal cells.
Collapse
Affiliation(s)
- V A Kulikova
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia.
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | - A A Nikiforov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| |
Collapse
|
18
|
Škulj S, Brkljača Z, Vazdar M. Molecular Dynamics Simulations of the Elusive Matrix‐Open State of Mitochondrial ADP/ATP Carrier. Isr J Chem 2020. [DOI: 10.1002/ijch.202000011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sanja Škulj
- Division of Organic Chemistry and BiochemistryRuđer Bošković Institute Bijenička 54 HR-10000 Zagreb Croatia
| | - Zlatko Brkljača
- Division of Organic Chemistry and BiochemistryRuđer Bošković Institute Bijenička 54 HR-10000 Zagreb Croatia
| | - Mario Vazdar
- Division of Organic Chemistry and BiochemistryRuđer Bošković Institute Bijenička 54 HR-10000 Zagreb Croatia
| |
Collapse
|
19
|
Tang YY, Liu QN, Wang C, Yang TT, Tang BP, Zhou CL, Dai LS. Proteomic analysis of differentially expressed proteins in the lipopolysaccharide-stimulated hepatopancreas of the freshwater crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2020; 98:318-323. [PMID: 31972292 DOI: 10.1016/j.fsi.2020.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/05/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Procambarus clarkii is one of the most important aquatic invertebrates in China and has high commercial value. However, aquaculture has suffered great economic loss due to outbreaks of infectious diseases in P. clarkii. To identify red swamp crayfish related proteins involved in the response to bacterial infection, we analysed immune-related proteins following lipopolysaccharide (LPS) stimulation by quantitative proteomics. The proteome of the hepatopancreas of P. clarkii challenged with LPS and phosphate-buffered saline was analysed to evaluate the immune response. Based on liquid chromatography coupled with tandem mass spectrometry, 16 upregulated and 29 downregulated proteins were identified. A Gene Ontology analysis demonstrated 5 biological process, 11 cellular component, and 6 molecular function subcategories. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the identified proteins were mainly involved in metabolism, phagosome, and ribosome. Real-time quantitative reverse transcription-PCR revealed that eight immune-related genes were upregulated after LPS stimulation compared to the control. Taken together, the data enhance our understanding of the immune response of crayfish to LPS.
Collapse
Affiliation(s)
- Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Cheng Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
20
|
Toleco MR, Naake T, Zhang Y, Heazlewood JL, R. Fernie A. Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. PLANTS 2020; 9:plants9010117. [PMID: 31963509 PMCID: PMC7020223 DOI: 10.3390/plants9010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
The evolution of membrane-bound organelles among eukaryotes led to a highly compartmentalized metabolism. As a compartment of the central carbon metabolism, mitochondria must be connected to the cytosol by molecular gates that facilitate a myriad of cellular processes. Members of the mitochondrial carrier family function to mediate the transport of metabolites across the impermeable inner mitochondrial membrane and, thus, are potentially crucial for metabolic control and regulation. Here, we focus on members of this family that might impact intracellular central plant carbon metabolism. We summarize and review what is currently known about these transporters from in vitro transport assays and in planta physiological functions, whenever available. From the biochemical and molecular data, we hypothesize how these relevant transporters might play a role in the shuttling of organic acids in the various flux modes of the TCA cycle. Furthermore, we also review relevant mitochondrial carriers that may be vital in mitochondrial oxidative phosphorylation. Lastly, we survey novel experimental approaches that could possibly extend and/or complement the widely accepted proteoliposome reconstitution approach.
Collapse
Affiliation(s)
- M. Rey Toleco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- School of BioSciences, the University of Melbourne, Victoria 3010, Australia;
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
21
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. Cells 2019; 8:cells8070728. [PMID: 31315173 PMCID: PMC6678812 DOI: 10.3390/cells8070728] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells, mitochondria are involved in a large array of metabolic and bioenergetic processes that are vital for cell survival. Phospholipids are the main building blocks of mitochondrial membranes. Cardiolipin (CL) is a unique phospholipid which is localized and synthesized in the inner mitochondrial membrane (IMM). It is now widely accepted that CL plays a central role in many reactions and processes involved in mitochondrial function and dynamics. Cardiolipin interacts with and is required for optimal activity of several IMM proteins, including the enzyme complexes of the electron transport chain (ETC) and ATP production and for their organization into supercomplexes. Moreover, CL plays an important role in mitochondrial membrane morphology, stability and dynamics, in mitochondrial biogenesis and protein import, in mitophagy, and in different mitochondrial steps of the apoptotic process. It is conceivable that abnormalities in CL content, composition and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of pathophysiological situations and diseases. In this review, we focus on the role played by CL in mitochondrial function and dynamics in health and diseases and on the potential of pharmacological modulation of CL through several agents in attenuating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy.
| | | | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy.
| |
Collapse
|
22
|
Yi Q, Li Q, Yao S, Chen Y, Guan MX, Cang X. Molecular dynamics simulations on apo ADP/ATP carrier shed new lights on the featured motif of the mitochondrial carriers. Mitochondrion 2019; 47:94-102. [PMID: 31129042 DOI: 10.1016/j.mito.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 02/04/2023]
Abstract
The ADP/ATP carrier (AAC) is a transporter responsible for the equal molar exchange of cytosolic ADP and ATP synthesized within mitochondrial matrix across the mitochondrial membrane. Its primary structure consists of three homologous repeats, and each repeat contains a conserved motif that is shared by all members of the mitochondrial carrier family (MCF). Although these MCF motif residues cluster together in the crystal structure of AAC, detailed analyses on the interactions among the motif residues are still limited. In the present study, all-atom molecular dynamics (MD) simulations of up to 10 μs have been carried out on AAC, and interactions and structural dynamics of the MCF motif residues have been specifically investigated. Our simulations have revealed: i) a very asymmetrical electrostatic network at the bottom of the pocket of apo AAC, ii) the asymmetrical interactions between the Pro kink region and the [YWF][KR] G motif in three repeats, iii) the role of the conserved Arg residues in stabilizing the C-ends of the odd-numbered helices, iv) the structural change of the [YWF][KR] G motif and its potential involvement in substrate translocation process. Our results highlight the asymmetry of the MCF residues in the three repeats, which might contribute to the ability of the carriers to transport the asymmetrical substrates. Our observations provide microscopic basis for further research on the translocation mechanism of mitochondrial carriers.
Collapse
Affiliation(s)
- Qiuzi Yi
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiang Li
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Chen
- School of Information and Electric Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
23
|
Konjar Š, Frising UC, Ferreira C, Hinterleitner R, Mayassi T, Zhang Q, Blankenhaus B, Haberman N, Loo Y, Guedes J, Baptista M, Innocentin S, Stange J, Strathdee D, Jabri B, Veldhoen M. Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci Immunol 2019; 3:3/24/eaan2543. [PMID: 29934344 DOI: 10.1126/sciimmunol.aan2543] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/19/2017] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Epithelial-resident T lymphocytes, such as intraepithelial lymphocytes (IELs) located at the intestinal barrier, can offer swift protection against invading pathogens. Lymphocyte activation is strictly regulated because of its potential harmful nature and metabolic cost, and most lymphocytes are maintained in a quiescent state. However, IELs are kept in a heightened state of activation resembling effector T cells but without cytokine production or clonal proliferation. We show that this controlled activation state correlates with alterations in the IEL mitochondrial membrane, especially the cardiolipin composition. Upon inflammation, the cardiolipin composition is altered to support IEL proliferation and effector function. Furthermore, we show that cardiolipin makeup can particularly restrict swift IEL proliferation and effector functions, reducing microbial containment capability. These findings uncover an alternative mechanism to control cellular activity, special to epithelial-resident T cells, and a novel role for mitochondria, maintaining cells in a metabolically poised state while enabling rapid progression to full functionality.
Collapse
Affiliation(s)
- Špela Konjar
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal.,Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ulrika C Frising
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Cristina Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal.,Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Reinhard Hinterleitner
- Department of Medicine, University of Chicago, 900 East 57th Street, MB#9, Chicago, IL 60637, USA.,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Toufic Mayassi
- Department of Medicine, University of Chicago, 900 East 57th Street, MB#9, Chicago, IL 60637, USA.,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Qifeng Zhang
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Birte Blankenhaus
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Nejc Haberman
- Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Yunhua Loo
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Joana Guedes
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Marta Baptista
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Silvia Innocentin
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Joerg Stange
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Douglas Strathdee
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Bana Jabri
- Department of Medicine, University of Chicago, 900 East 57th Street, MB#9, Chicago, IL 60637, USA.,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Marc Veldhoen
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal. .,Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
24
|
Mendez-Romero O, Uribe-Carvajal S, Chiquete-Felix N, Muhlia-Almazan A. Mitochondrial uncoupling proteins UCP4 and UCP5 from the Pacific white shrimp Litopenaeus vannamei. J Bioenerg Biomembr 2019; 51:103-119. [PMID: 30796582 DOI: 10.1007/s10863-019-09789-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/10/2019] [Indexed: 01/21/2023]
Abstract
Mitochondrial uncoupling proteins (UCP) transport protons from the intermembrane space to the mitochondrial matrix uncoupling oxidative phosphorylation. In mammals, these proteins have been implicated in several cellular functions ranging from thermoregulation to antioxidant defense. In contrast, their invertebrate homologs have been much less studied despite the great diversity of species. In this study, two transcripts encoding mitochondrial uncoupling proteins were, for the first time, characterized in crustaceans. The white shrimp Litopenaeus vannamei transcript LvUCP4 is expressed in all tested shrimp tissues/organs, and its cDNA includes a coding region of 954 bp long which encodes a deduced protein 318 residues long and a predicted molecular weight of 35.3 kDa. The coding region of LvUCP5 transcript is 906 bp long, encodes a protein of 302 residues with a calculated molecular weight of 33.17 kDa. Both proteins share homology with insect UCPs, their predicted structures show the conserved motifs of the mitochondrial carrier proteins and were confirmed to be located in the mitochondria through a Western blot analysis. The genic expression of LvUCP4 and LvUCP5 was evaluated in shrimp at oxidative stress conditions and results were compared to some antioxidant enzymes to infer about their antioxidant role. LvUCP4 and LvUCP5 genes expression did not change during hypoxia/re-oxygenation, and no coordinated responses were detected with antioxidant enzymes at the transcriptional level. Results confirmed UCPs as the first uncoupling mechanism reported in this species, but their role in the oxidative stress response remains to be confirmed.
Collapse
Affiliation(s)
- Ofelia Mendez-Romero
- Bioenergetics and Molecular Genetics Lab, Centro de Investigacion en Alimentacion y Desarrollo, A. C. Carretera a Ejido La Victoria Km 0.6, PO Box 1735, 83000, Hermosillo, Sonora, Mexico
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, PO Box 70-242, Mexico City, Mexico
| | - Natalia Chiquete-Felix
- Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, PO Box 70-242, Mexico City, Mexico
| | - Adriana Muhlia-Almazan
- Bioenergetics and Molecular Genetics Lab, Centro de Investigacion en Alimentacion y Desarrollo, A. C. Carretera a Ejido La Victoria Km 0.6, PO Box 1735, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
25
|
Zara V, Ferramosca A, Günnewig K, Kreimendahl S, Schwichtenberg J, Sträter D, Çakar M, Emmrich K, Guidato P, Palmieri F, Rassow J. Mimivirus-Encoded Nucleotide Translocator VMC1 Targets the Mitochondrial Inner Membrane. J Mol Biol 2018; 430:5233-5245. [PMID: 30261167 DOI: 10.1016/j.jmb.2018.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
Mimivirus (Acanthamoeba polyphaga mimivirus) was the first giant DNA virus identified in an amoeba species. Its genome contains at least 979 genes. One of these, L276, encodes a nucleotide translocator with similarities to mitochondrial metabolite carriers, provisionally named viral mitochondrial carrier 1 (VMC1). In this study, we investigated the intracellular distribution of VMC1 upon expression in HeLa cells and in the yeast Saccharomyces cerevisiae. We found that VMC1 is specifically targeted to mitochondria and to the inner mitochondrial membrane. Newly synthesized VMC1 binds to the mitochondrial outer-membrane protein Tom70 and translocates through the import channel formed by the β-barrel protein Tom40. Derivatization of the four cysteine residues inside Tom40 by N-ethylmaleimide caused a delay in translocation but not a complete occlusion. Cell viability was not reduced by VMC1. Neither the mitochondrial membrane potential nor the intracellular production of reactive oxygen species was affected. Similar to endogenous metabolite carriers, mimivirus-encoded VMC1 appears to act as a specific translocator in the mitochondrial inner membrane. Due to its permeability for deoxyribonucleotides, VMC1 confers to the mitochondria an opportunity to contribute nucleotides for the replication of the large DNA genome of the virus.
Collapse
Affiliation(s)
- Vincenzo Zara
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Alessandra Ferramosca
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Kathrin Günnewig
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Sebastian Kreimendahl
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Jan Schwichtenberg
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Dina Sträter
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Mahmut Çakar
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Kerstin Emmrich
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Patrick Guidato
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Joachim Rassow
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
26
|
Abstract
Isoforms of creatine kinase (CK) generate and use phosphocreatine, a concentrated and highly diffusible cellular "high energy" intermediate, for the main purpose of energy buffering and transfer in order to maintain cellular energy homeostasis. The mitochondrial CK isoform (mtCK) localizes to the mitochondrial intermembrane and cristae space, where it assembles into peripherally membrane-bound, large cuboidal homooctamers. These are part of proteolipid complexes wherein mtCK directly interacts with cardiolipin and other anionic phospholipids, as well as with the VDAC channel in the outer membrane. This leads to a stabilization and cross-linking of inner and outer mitochondrial membrane, forming so-called contact sites. Also the adenine nucleotide translocator of the inner membrane can be recruited into these proteolipid complexes, probably mediated by cardiolipin. The complexes have functions mainly in energy transfer to the cytosol and stimulation of oxidative phosphorylation, but also in restraining formation of reactive oxygen species and apoptosis. In vitro evidence indicates a putative role of mtCK in mitochondrial phospholipid distribution, and most recently a role in thermogenesis has been proposed. This review summarizes the essential structural and functional data of these mtCK complexes and describes in more detail the more recent advances in phospholipid interaction, thermogenesis, cancer and evolution of mtCK.
Collapse
|
27
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
28
|
Colasante C, Zheng F, Kemp C, Voncken F. A plant-like mitochondrial carrier family protein facilitates mitochondrial transport of di- and tricarboxylates in Trypanosoma brucei. Mol Biochem Parasitol 2018; 221:36-51. [PMID: 29581011 DOI: 10.1016/j.molbiopara.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022]
Abstract
The procyclic form of the human parasite Trypanosoma brucei harbors one single, large mitochondrion containing all tricarboxylic acid (TCA) cycle enzymes and respiratory chain complexes present also in higher eukaryotes. Metabolite exchange among subcellular compartments such as the cytoplasm, the mitochondrion, and the peroxisomes is crucial for redox homeostasis and for metabolic pathways whose enzymes are dispersed among different organelles. In higher eukaryotes, mitochondrial carrier family (MCF) proteins transport TCA-cycle intermediates across the inner mitochondrial membrane. Previously, we identified several MCF members that are essential for T. brucei survival. Among these, only one MCF protein, TbMCP12, potentially could transport dicarboxylates and tricarboxylates. Here, we conducted phylogenetic and sequence analyses and functionally characterised TbMCP12 in vivo. Our results suggested that similarly to its homologues in plants, TbMCP12 transports both dicarboxylates and tricarboxylates across the mitochondrial inner membrane. Deleting this carrier in T. brucei was not lethal, while its overexpression was deleterious. Our results suggest that the intracellular abundance of TbMCP12 is an important regulatory element for the NADPH balance and mitochondrial ATP-production.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Aulweg 123, University of Giessen, 35392, Giessen, Germany.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, Fu Zhou, Fujian, PR China
| | - Cordula Kemp
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Frank Voncken
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| |
Collapse
|
29
|
Magnesium Extravaganza: A Critical Compendium of Current Research into Cellular Mg 2+ Transporters Other than TRPM6/7. Rev Physiol Biochem Pharmacol 2018; 176:65-105. [PMID: 30406297 DOI: 10.1007/112_2018_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnesium research has boomed within the last 20 years. The real breakthrough came at the start of the new millennium with the discovery of a plethora of possible Mg homeostatic factors that, in particular, included putative Mg2+ transporters. Until that point, Mg research was limited to biochemical and physiological work, as no target molecular entities were known that could be used to explore the molecular biology of Mg homeostasis at the level of the cell, tissue, organ, or organism and to translate such knowledge into the field of clinical medicine and pharmacology. Because of the aforementioned, Mg2+ and Mg homeostasis, both of which had been heavily marginalized within the biomedical field in the twentieth century, have become overnight a focal point of many studies ranging from primary biomedical research to translational medicine.The amount of literature concerning cellular Mg2+ transport and cellular Mg homeostasis is increasing, together with a certain amount of confusion, especially about the function(s) of the newly discovered and, in the majority of instances, still only putative Mg2+ transporters/Mg2+ homeostatic factors. Newcomers to the field of Mg research will thus find it particularly difficult to orient themselves.Here, we briefly but critically summarize the status quo of the current understanding of the molecular entities behind cellular Mg2+ homeostasis in mammalian/human cells other than TRPM6/7 chanzymes, which have been universally accepted as being unspecific cation channel kinases allowing the flux of Mg2+ while constituting the major gateway for Mg2+ to enter the cell.
Collapse
|
30
|
Woznicka-Misaila A, Juillan-Binard C, Baud D, Pebay-Peyroula E, Ravaud S. Cell-free production, purification and characterization of human mitochondrial ADP/ATP carriers. Protein Expr Purif 2017; 144:46-54. [PMID: 29217202 DOI: 10.1016/j.pep.2017.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022]
Abstract
Mitochondrial Carriers (MCs) are responsible for fluent traffic of a variety of compounds that need to be shuttled via mitochondrial inner membranes to maintain cell metabolism. The ADP/ATP Carriers (AACs) are responsible for the import of ADP inside the mitochondria and the export of newly synthesized ATP. In human, four different AACs isoforms are described which are expressed in tissue-specific manner. They are involved in different genetic diseases and play a role in cancerogenesis. Up to now only the structures of the bovine (isoform 1) and yeast (isoforms 2 and 3) AAC have been determined in one particular conformation, obtained in complex with the CATR inhibitor. Herein, we report that full-length human ADP/ATP Carriers isoform 1 and 3 were successfully expressed in cell-free system and purified in milligram amounts in detergent-solubilized state. The proteins exhibited the expected secondary structure content. Thermostability profiles showing stabilization by the CATR inhibitor suggest that the carriers are well folded.
Collapse
Affiliation(s)
| | - Céline Juillan-Binard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Delphine Baud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Eva Pebay-Peyroula
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Stéphanie Ravaud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| |
Collapse
|
31
|
Gradowski M, Pawłowski K. The Legionella pneumophila effector Lpg1137 is a homologue of mitochondrial SLC25 carrier proteins, not of known serine proteases. PeerJ 2017; 5:e3849. [PMID: 28966893 PMCID: PMC5621508 DOI: 10.7717/peerj.3849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Many bacterial effector proteins that are delivered to host cells during infection are enzymes targeting host cell signalling. Recently, Legionella pneumophila effector Lpg1137 was experimentally characterised as a serine protease that cleaves human syntaxin 17. We present strong bioinformatic evidence that Lpg1137 is a homologue of mitochondrial carrier proteins and is not related to known serine proteases. We also discuss how this finding can be reconciled with the apparently contradictory experimental results.
Collapse
Affiliation(s)
- Marcin Gradowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Department of Translational Medicine, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Abstract
This review focuses on the biochemical work of UCP1 starting from the early observation by Ricquier and Kader in 1976. We entered this field in 1980 with the isolation of native UCP1 and then reported the amino acid sequence structure discovering a strong homology to the ADP/ATP carrier. With the isolated native UCP1 we studied structural and functional features, in particular the complex characteristics of nucleotide binding. A strong pH dependence of binding and herein the differences between diphopho- and triphopho-nucleotides were observed, resulting in the identification of residues which control binding site access by their H+ dissociation. Newly synthesized fluorescent nucleotide derivatives provided tools to determine a two state nucleotide binding in line with loose and tight UCP1 conformations and H+ transport inhibition. The slow transition between these states were a notable feature. The reconstitution of isolated UCP1 in vesicles demonstrated that UCP1 protein is in fact the uncoupling factor and not only a nucleotide controlled regulator. The H+ transport was shown to be electrophoretic with a linear relation to the membrane potential. The dependence of H+ transport on fatty acids (FA) was characterized and is elaborated here with a view of the experimental conditions of other research groups which had different views of the role of FA in H+ transport. Furthermore, to explain the contrast of the FA - nucleotide competition between mitochondria and reconstituted system, indirect paths for FA to relieve the inhibition in mitochondria are here proposed, such as a FA induced upward pH shift and a FA induced increase of cardiolipin level around UCP1 since cardiolipin has been found by us to relieve nucleotide binding on isolated UCP1. Recently reported patch clamp results on mitoplasts led to a reformulation of the H+ transport mechanism of FA in UCP1 in which bound FA shuttles with the carboxyl group between the two membrane sides along the translocation channel outward as FA- and inward as FA-H+. We propose here a modified version, where FA forms an immobile prosthetic group surrounded by the inner and outer gate of the H+ translocation channel. By alternating opening of the gates FA takes up H+ from the cytosol side and releases H+ to the matrix.
Collapse
|
33
|
Del Arco A, Contreras L, Pardo B, Satrustegui J. Calcium regulation of mitochondrial carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2413-21. [PMID: 27033520 DOI: 10.1016/j.bbamcr.2016.03.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
Mitochondrial function is regulated by calcium. In addition to the long known effects of matrix Ca(2+), regulation of metabolite transport by extramitochondrial Ca(2+) represents an alternative Ca(2+)-dependent mechanism to regulate mitochondrial function. The Ca(2+) regulated mitochondrial transporters (CaMCs) are well suited for that role, as they contain long N-terminal extensions harboring EF-hand Ca(2+) binding domains facing the intermembrane space. They fall in two groups, the aspartate/glutamate exchangers, AGCs, major components of the NADH malate aspartate shuttle (MAS) and urea cycle, and the ATP-Mg(2+)/Pi exchangers or short CaMCs (APCs or SCaMCs). The AGCs are activated by relatively low Ca(2+) levels only slightly higher than resting Ca(2+), whereas all SCaMCs studied so far require strong Ca(2+) signals, above micromolar, for activation. In addition, AGCs are not strictly Ca(2+) dependent, being active even in Ca(2+)-free conditions. Thus, AGCs are well suited to respond to small Ca(2+) signals and that do not reach mitochondria. In contrast, ATP-Mg(2+)/Pi carriers are inactive in Ca(2+) free conditions and activation requires Ca(2+) signals that will also activate the calcium uniporter (MCU). By changing the net content of adenine nucleotides of the matrix upon activation, SCaMCs regulate the activity of the permeability transition pore, and the Ca(2+) retention capacity of mitochondria (CRC), two functions synergizing with those of the MCU. The different Ca(2+) activation properties of the two CaMCs are discussed in relation to their newly obtained structures. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Araceli Del Arco
- Facultad de Ciencias Ambientales y Bioquímica, Centro RegionaI de Investigaciones Biomédicas, Universidad de Castilla la Mancha, Toledo 45071, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Beatriz Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jorgina Satrustegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| |
Collapse
|
34
|
Pietropaolo A, Pierri CL, Palmieri F, Klingenberg M. The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:772-81. [PMID: 26874054 DOI: 10.1016/j.bbabio.2016.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
The ADP/ATP carrier (AAC) of mitochondria has been an early example for elucidating the transport mechanism alternating between the external (c-) and internal (m-) states (M. Klingenberg, Biochim. Biophys. Acta 1778 (2008) 1978-2021). An atomic resolution crystal structure of AAC is available only for the c-state featuring a three repeat transmembrane domain structure. Modeling of transport mechanism remained hypothetical for want of an atomic structure of the m-state. Previous molecular dynamics studies simulated the binding of ADP or ATP to the AAC remaining in the c-state. Here, a full description of the AAC switching from the c- to the m-state is reported using well-tempered metadynamics simulations. Free-energy landscapes of the entire translocation from the c- to the m-state, based on the gyration radii of the c- and m-gates and of the center of mass, were generated. The simulations revealed three free-energy basins attributed to the c-, intermediate- and m-states separated by activation barriers. These simulations were performed with the empty and with the ADP- and ATP-loaded AAC as well as with the poorly transported AMP and guanine nucleotides, showing in the free energy landscapes that ADP and ATP lowered the activation free-energy barriers more than the other substrates. Upon binding AMP and guanine nucleotides a deeper free-energy level stabilized the intermediate-state of the AAC2 hampering the transition to the m-state. The structures of the substrate binding sites in the different states are described producing a full picture of the translocation events in the AAC.
Collapse
Affiliation(s)
- Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy.
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Martin Klingenberg
- Institut für Physiologische Chemie, Schillerstr.44, 80336 München, Germany.
| |
Collapse
|
35
|
Vatansever R, Ozyigit II, Filiz E. Genome-Wide Identification and Comparative Analysis of Copper Transporter Genes in Plants. Interdiscip Sci 2016; 9:278-291. [DOI: 10.1007/s12539-016-0150-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/29/2015] [Accepted: 01/28/2016] [Indexed: 01/18/2023]
|
36
|
Liu QN, Chai XY, Tu J, Xin ZZ, Li CF, Jiang SH, Zhou CL, Tang BP. An adenine nucleotide translocase (ANT) gene from Apostichopus japonicus; molecular cloning and expression analysis in response to lipopolysaccharide (LPS) challenge and thermal stress. FISH & SHELLFISH IMMUNOLOGY 2016; 49:16-23. [PMID: 26706223 DOI: 10.1016/j.fsi.2015.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
The adenine nucleotide translocases (ANTs) play a vital role in energy metabolism via ADP/ATP exchange in eukaryotic cells. Apostichopus japonicus (Echinodermata: Holothuroidea) is an important economic species in China. Here, a cDNA representing an ANT gene of A. japonicus was isolated and characterized from respiratory tree and named AjANT. The full-length AjANT cDNA is 1924 bp, including a 5'-untranslated region (UTR) of 38 bp, 3'-UTR of 980 bp and an open reading frame (ORF) of 906 bp encoding a polypeptide of 301 amino acids. The protein contains three homologous repeat Mito_carr domains (Pfam00153). The deduced AjANT protein sequence has 49-81% in comparison to ANT proteins from other individuals. The predicted tertiary structure of AjANT protein is highly similar to animal ANT proteins. Phylogenetic analysis showed that the AjANT is closely related to Holothuroidea ANT genes. Real-time quantitative reverse transcription-PCR (qPCR) analysis showed that AjANT expression is higher in the respiratory tree than in other examined tissues. After thermal stress or LPS challenge, expression of AjANT was significantly fluctuant compared to the control. These results suggested that changes in the expression of ANT gene might be involved in immune defense and in protecting A. japonicus against thermal stress.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Hot Temperature
- Immunity, Innate/drug effects
- Lipopolysaccharides/pharmacology
- Mitochondrial ADP, ATP Translocases/chemistry
- Mitochondrial ADP, ATP Translocases/genetics
- Mitochondrial ADP, ATP Translocases/metabolism
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Stichopus/genetics
- Stichopus/immunology
- Stichopus/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Jie Tu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| |
Collapse
|
37
|
Run C, Yang Q, Liu Z, OuYang B, Chou JJ. Molecular Basis of MgATP Selectivity of the Mitochondrial SCaMC Carrier. Structure 2015; 23:1394-1403. [PMID: 26165595 DOI: 10.1016/j.str.2015.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 01/21/2023]
Abstract
The mitochondrial matrix is the supplier of cellular ATP. The short Ca(2+)-binding mitochondrial carrier (SCaMC) is one of the two mitochondrial carriers responsible for transporting ATP across the mitochondrial inner membrane. While the ADP/ATP carrier (AAC) accounts for the bulk ADP/ATP recycling in the matrix, the function of SCaMC is important for mitochondrial activities that depend on adenine nucleotides, such as gluconeogenesis and mitochondrial biogenesis. A key difference between SCaMC and AAC is that SCaMC selectively transports MgATP whereas AAC only transports free nucleotides. Here, we use a combination of nuclear magnetic resonance experiments and functional mutagenesis to investigate the structural basis of the MgATP selectivity in SCaMC. Our data revealed an MgATP binding site inside the transporter cavity, while identifying an aspartic acid residue that plays an important role in the higher selectivity for MgATP over free ATP.
Collapse
Affiliation(s)
- Changqing Run
- National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Yang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhijun Liu
- National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo OuYang
- National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - James J Chou
- National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Yamamoto A, Hasui K, Matsuo H, Okuda K, Abe M, Matsumoto K, Harada K, Yoshimura Y, Yamamoto T, Ohkura K, Shindo M, Shinohara Y. Bongkrekic acid analogue, lacking one of the carboxylic groups of its parent compound, shows moderate but pH-insensitive inhibitory effects on the mitochondrial ADP/ATP carrier. Chem Biol Drug Des 2015; 86:1304-22. [PMID: 26032198 DOI: 10.1111/cbdd.12594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 11/29/2022]
Abstract
Bongkrekic acid, isolated from Burkholderia cocovenenans, is known to specifically inhibit the mitochondrial ADP/ATP carrier. However, the manner of its interaction with the carrier remains elusive. In this study, we tested the inhibitory effects of 17 bongkrekic acid analogues, derived from the intermediates obtained during its total synthesis, on the mitochondrial ATP/ATP carrier. Rough screening of these chemicals, performed by measuring their inhibitory effects on the mitochondrial ATP synthesis, revealed that 4 of them, KH-1, KH-7, KH-16, and KH-17, had moderate inhibitory effects. Further characterization of the actions of these 4 analogues on mitochondrial function showed that KH-16 had moderate; KH-1 and KH-17, weak; and KH-7, negligible side effects of both permeabilization of the mitochondrial inner membrane and inhibition of the electron transport, indicating that only KH-7 had a specific inhibitory effect on the mitochondrial ADP/ATP carrier. Although the parental bongkrekic acid showed a strong pH dependency of its action, the inhibitory effect of KH-7 was almost insensitive to the pH of the reaction medium, indicating the importance of the 3 carboxyl groups of bongkrekic acid for its pH-dependent action. A direct inhibitory effect of KH-7 on the mitochondrial ADP/ATP carrier was also clearly demonstrated.
Collapse
Affiliation(s)
- Atsushi Yamamoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minamitamagakicho-3500, Suzuka, Mie, 513-8670, Japan
| | - Keisuke Hasui
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Hiroshi Matsuo
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Katsuhiro Okuda
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasugakoen-6, Kasuga, Fukuoka, 816-8580, Japan
| | - Masato Abe
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasugakoen-6, Kasuga, Fukuoka, 816-8580, Japan
| | - Kenji Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasugakoen-6, Kasuga, Fukuoka, 816-8580, Japan
| | - Kazuki Harada
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima, 770-8503, Japan.,Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima, 770-8505, Japan
| | - Yuya Yoshimura
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima, 770-8503, Japan.,Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima, 770-8505, Japan
| | - Takenori Yamamoto
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima, 770-8503, Japan.,Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima, 770-8505, Japan
| | - Kazuto Ohkura
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minamitamagakicho-3500, Suzuka, Mie, 513-8670, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasugakoen-6, Kasuga, Fukuoka, 816-8580, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima, 770-8503, Japan.,Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima, 770-8505, Japan
| |
Collapse
|
39
|
Hoang T, Kuljanin M, Smith MD, Jelokhani-Niaraki M. A biophysical study on molecular physiology of the uncoupling proteins of the central nervous system. Biosci Rep 2015; 35:e00226. [PMID: 26182433 PMCID: PMC4613710 DOI: 10.1042/bsr20150130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/04/2015] [Indexed: 01/16/2023] Open
Abstract
Mitochondrial inner membrane uncoupling proteins (UCPs) facilitate transmembrane (TM) proton flux and consequently reduce the membrane potential and ATP production. It has been proposed that the three neuronal human UCPs (UCP2, UCP4 and UCP5) in the central nervous system (CNS) play significant roles in reducing cellular oxidative stress. However, the structure and ion transport mechanism of these proteins remain relatively unexplored. Recently, we reported a novel expression system for obtaining functionally folded UCP1 in bacterial membranes and applied this system to obtain highly pure neuronal UCPs in high yields. In the present study, we report on the structure and function of the three neuronal UCP homologues. Reconstituted neuronal UCPs were dominantly helical in lipid membranes and transported protons in the presence of physiologically-relevant fatty acid (FA) activators. Under similar conditions, all neuronal UCPs also exhibited chloride transport activities that were partially inhibited by FAs. CD, fluorescence and MS measurements and semi-native gel electrophoresis collectively suggest that the reconstituted proteins self-associate in the lipid membranes. Based on SDS titration experiments and other evidence, a general molecular model for the monomeric, dimeric and tetrameric functional forms of UCPs in lipid membranes is proposed. In addition to their shared structural and ion transport features, neuronal UCPs differ in their conformations and proton transport activities (and possibly mechanism) in the presence of different FA activators. The differences in FA-activated UCP-mediated proton transport could serve as an essential factor in understanding and differentiating the physiological roles of UCP homologues in the CNS.
Collapse
Affiliation(s)
- Tuan Hoang
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada, N2L 3C5 Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Miljan Kuljanin
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada, N2L 3C5
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada, N2L 3C5 Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Masoud Jelokhani-Niaraki
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada, N2L 3C5 Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
40
|
Mehnert CS, Rampelt H, Gebert M, Oeljeklaus S, Schrempp SG, Kochbeck L, Guiard B, Warscheid B, van der Laan M. The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J Biol Chem 2014; 289:27352-27362. [PMID: 25124039 DOI: 10.1074/jbc.m114.556498] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.
Collapse
Affiliation(s)
- Carola S Mehnert
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Heike Rampelt
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Michael Gebert
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Silke Oeljeklaus
- Institut für Biologie II, Fakultät für Biologie, Funktionelle Proteomik, and Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Universität Freiburg, 79104 Freiburg, Germany and
| | - Sandra G Schrempp
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Lioba Kochbeck
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Bettina Warscheid
- Institut für Biologie II, Fakultät für Biologie, Funktionelle Proteomik, and Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Universität Freiburg, 79104 Freiburg, Germany and
| | - Martin van der Laan
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Universität Freiburg, 79104 Freiburg, Germany and.
| |
Collapse
|
41
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
42
|
Trono D, Laus MN, Soccio M, Pastore D. Transport pathways--proton motive force interrelationship in durum wheat mitochondria. Int J Mol Sci 2014; 15:8186-215. [PMID: 24821541 PMCID: PMC4057727 DOI: 10.3390/ijms15058186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 12/25/2022] Open
Abstract
In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoK(ATP)) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoK(ATP) neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoK(ATP) to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoK(ATP) and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa.
Collapse
Affiliation(s)
- Daniela Trono
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 71122 Foggia, Italy.
| | - Maura N Laus
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Mario Soccio
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Donato Pastore
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
43
|
Ferramosca A, Zara V. Dietary fat and hepatic lipogenesis: mitochondrial citrate carrier as a sensor of metabolic changes. Adv Nutr 2014; 5:217-25. [PMID: 24829468 PMCID: PMC4013174 DOI: 10.3945/an.113.004762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Citrate carrier (CIC) is an integral protein of the inner mitochondrial membrane that has a fundamental role in hepatic intermediary metabolism. Its primary function is to catalyze the transport of citrate from mitochondria, where this molecule is formed, to cytosol, where this molecule is used for fatty acid (FA) and cholesterol synthesis. Therefore, mitochondrial CIC acts upstream of cytosolic lipogenic reactions, and its regulation is particularly important in view of the modulation of hepatic lipogenesis. Although a great deal of data are currently available on the dietary modulation of cytosolic lipogenic enzymes, little is known about the nutritional regulation of CIC transport activity. In this review, we describe the differential effects of distinct FAs present in the diet on the activity of mitochondrial CIC. In particular, polyunsaturated FAs were powerful modulators of the activity of mitochondrial CIC by influencing its expression through transcriptional and posttranscriptional mechanisms. On the contrary, saturated and monounsaturated FAs did not influence mitochondrial CIC activity. Moreover, variations in CIC activity were connected to similar alterations in the metabolic pathways to which the transported citrate is channeled. Therefore, CIC may be considered as a sensor for changes occurring inside the hepatocyte and may represent an important target for the regulation of hepatic lipogenesis. The crucial role of this protein is reinforced by the recent discovery of its involvement in other cellular processes, such as glucose-stimulated insulin secretion, inflammation, tumorigenesis, genome stability, and sperm metabolism.
Collapse
Affiliation(s)
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
44
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Cardiolipin and mitochondrial function in health and disease. Antioxid Redox Signal 2014; 20:1925-53. [PMID: 24094094 DOI: 10.1089/ars.2013.5280] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiolipin (CL) is a unique phospholipid that is almost exclusively localized at the level of the inner mitochondrial membrane (IMM), where it is biosynthesized. This phospholipid is associated with membranes which are designed to generate an electrochemical gradient that is used to produce ATP. Such membranes include the bacterial plasma membrane and IMM. This ubiquitous and intimate association between CL and energy-transducing membranes suggests an important role for CL in mitochondrial bioenergetic processes. CL has been shown to interact with a number of IMM proteins, including the respiratory chain complexes and substrate carriers. Moreover, CL is involved in different stages of the mitochondrial apoptosis process as well as in mitochondrial membrane stability and dynamics. Alterations in CL structure, content, and acyl chain composition have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions and aging. In this review, we provide an overview of the roles of CL in mitochondrial function and bioenergetics in health and disease.
Collapse
Affiliation(s)
- Giuseppe Paradies
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | | | | | | |
Collapse
|
45
|
Raja V, Greenberg ML. The functions of cardiolipin in cellular metabolism-potential modifiers of the Barth syndrome phenotype. Chem Phys Lipids 2014; 179:49-56. [PMID: 24445246 DOI: 10.1016/j.chemphyslip.2013.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 12/30/2022]
Abstract
The phospholipid cardiolipin (CL) plays a role in many cellular functions and signaling pathways both inside and outside of mitochondria. This review focuses on the role of CL in energy metabolism. Many reactions of electron transport and oxidative phosphorylation, the transport of metabolites required for these processes, and the stabilization of electron transport chain supercomplexes require CL. Recent studies indicate that CL is required for the synthesis of iron-sulfur (Fe-S) co-factors, which are essential for numerous metabolic pathways. Activation of carnitine shuttle enzymes that are required for fatty acid metabolism is CL dependent. The presence of substantial amounts of CL in the peroxisomal membrane suggests that CL may be required for peroxisomal functions. Understanding the role of CL in energy metabolism may identify physiological modifiers that exacerbate the loss of CL and underlie the variation in symptoms observed in Barth syndrome, a genetic disorder of CL metabolism.
Collapse
Affiliation(s)
- Vaishnavi Raja
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, United States.
| |
Collapse
|
46
|
Abstract
The mitochondrion relies on compartmentalization of certain enzymes, ions and metabolites for the sake of efficient metabolism. In order to fulfil its activities, a myriad of carriers are properly expressed, targeted and folded in the inner mitochondrial membrane. Among these carriers, the six-transmembrane-helix mitochondrial SLC25 (solute carrier family 25) proteins facilitate transport of solutes with disparate chemical identities across the inner mitochondrial membrane. Although their proper function replenishes building blocks needed for metabolic reactions, dysfunctional SLC25 proteins are involved in pathological states. It is the purpose of the present review to cover the current knowledge on the role of SLC25 transporters in health and disease.
Collapse
|
47
|
Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:408-17. [PMID: 24183692 DOI: 10.1016/j.bbabio.2013.10.006] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022]
Abstract
Cardiolipin is a unique phospholipid which is almost exclusively located in the inner mitochondrial membrane where it is biosynthesized. Considerable progress has recently been made in understanding the role of cardiolipin in mitochondrial function and bioenergetics. This phospholipid is associated with membranes designed to generate an electrochemical gradient that is used to produce ATP, such as bacterial plasma membranes and inner mitochondrial membrane. This ubiquitous and intimate association between cardiolipin and energy transducing membranes indicates an important role for cardiolipin in mitochondrial bioenergetic processes. Cardiolipin has been shown to interact with a number of proteins, including the respiratory chain complexes and substrate carrier proteins. Over the past decade, the significance of cardiolipin in the organization of components of the electron transport chain into higher order assemblies, termed respiratory supercomplexes, has been established. Moreover, cardiolipin is involved in different stages of the mitochondrial apoptotic process, as well as in mitochondrial membrane stability and dynamics. This review discusses the current understanding of the functional role that cardiolipin plays in several reactions and processes involved in mitochondrial bioenergetics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| | - Valeria Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Valentina De Benedictis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| |
Collapse
|
48
|
Zoonens M, Comer J, Masscheleyn S, Pebay-Peyroula E, Chipot C, Miroux B, Dehez F. Dangerous liaisons between detergents and membrane proteins. The case of mitochondrial uncoupling protein 2. J Am Chem Soc 2013; 135:15174-82. [PMID: 24021091 DOI: 10.1021/ja407424v] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The extraction of membrane proteins from their native environment by detergents is central to their biophysical characterization. Recent studies have emphasized that detergents may perturb the structure locally and modify the dynamics of membrane proteins. However, it remains challenging to determine whether these perturbations are negligible or could be responsible for misfolded conformations, altering the protein's function. In this work, we propose an original strategy combining functional studies and molecular simulations to address the physiological relevance of membrane protein structures obtained in the presence of detergents. We apply our strategy to a structure of isoform 2 of an uncoupling protein (UCP2) binding an inhibitor recently obtained in dodecylphosphocholine detergent micelles. Although this structure shares common traits with the ADP/ATP carrier, a member of the same protein family, its functional and biological significance remains to be addressed. In the present investigation, we demonstrate how dodecylphosphocholine severely alters the structure as well as the function of UCPs. The proposed original strategy opens new vistas for probing the physiological relevance of three-dimensional structures of membrane proteins obtained in non-native environments.
Collapse
Affiliation(s)
- Manuela Zoonens
- CNRS UMR 7099, Institut de Biologie Physico Chimique (IBPC), 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Clémençon B, Babot M, Trézéguet V. The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. Mol Aspects Med 2013; 34:485-93. [PMID: 23506884 DOI: 10.1016/j.mam.2012.05.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/10/2012] [Indexed: 02/04/2023]
Abstract
In aerobic eukaryotic cells, the high energy metabolite ATP is generated mainly within the mitochondria following the process of oxidative phosphorylation. The mitochondrial ATP is exported to the cytoplasm using a specialized transport protein, the ADP/ATP carrier, to provide energy to the cell. Any deficiency or dysfunction of this membrane protein leads to serious consequences on cell metabolism and can cause various diseases such as muscular dystrophy. Described as a decisive player in the programmed cell death, it was recently shown to play a role in cancer. The objective of this review is to summarize the current knowledge of the involvement of the ADP/ATP carrier, encoded by the SLC25A4, SLC25A5, SLC25A6 and SLC25A31 genes, in human diseases and of the efforts made at designing different model systems to study this carrier and the associated pathologies through biochemical, genetic, and structural approaches.
Collapse
Affiliation(s)
- Benjamin Clémençon
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
50
|
Identification of adenine nucleotide translocase 4 inhibitors by molecular docking. J Mol Graph Model 2013; 45:173-9. [PMID: 24056384 DOI: 10.1016/j.jmgm.2013.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/21/2022]
Abstract
The protein adenine nucleotide translocase (ANT) is localized in the mitochondrial inner membrane and plays an essential role in transporting ADP into the mitochondrial matrix and ATP out from the matrix for cell utilization. In mammals there are four paralogous ANT genes, of which ANT4 is exclusively expressed in meiotic germ cells. Since ANT4 has been shown essential for spermatogenesis and male fertility in mice, inhibition of ANT4 appears to be a reasonable target for male contraceptive development. Further, in contrast to ANT1, ANT2 and ANT3 that are highly homologous to each other, ANT4 has a distinguishable amino acid sequence, which serves as a basis to develop a selective ANT4 inhibitor. In this study, we aimed to identify candidate compounds that can selectively inhibit ANT4 activity over the other ANTs. We used a structure-based method in which ANT4 was modeled then utilized as the basis for selection of compounds that interact with sites unique to ANT4. A large chemical library (>100,000 small molecules) was screened by molecular docking and effects of these compounds on ADP/ATP exchange through ANT4 were examined using yeast mitochondria expressing human ANT4. Through this, we identified one particular candidate compound, [2,2'-methanediylbis(4-nitrophenol)], which inhibits ANT4 activity with a lower IC50 than the other ANTs (5.8 μM, 4.1 μM, 5.1 μM and 1.4 μM for ANT1, 2, 3 and 4, respectively). This newly identified active lead compound and its chemical structure are expected to provide new opportunities to optimize selective ANT4 inhibitors for contraceptive purposes.
Collapse
|