1
|
Báez Bolívar EG, McLuckey SA. Mass Spectrometry of Proteins and Protein Complexes Electrosprayed in the Presence of Common Biological Buffers Using Theta Emitters. Anal Chem 2025; 97:6678-6685. [PMID: 40100095 DOI: 10.1021/acs.analchem.4c06701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Salt-protein interactions are essential in biology. However, the presence of nonvolatile salts at physiologically relevant concentrations (e.g., 150 mM NaCl) is detrimental to mass analysis by electrospray ionization mass spectrometry (ESI-MS). Nonvolatile salts tend to compromise ionization yields and, when analyte ions are observed, lead to peak broadening and shifts to higher mass. Ultimately, these phenomena yield lower signal-to-noise (S/N) ratios and, in the worst-case scenario, totally suppress the formation of the analyte ions of interest. For these reasons, the sample is generally desalted before mass analysis. Direct sample introduction into the mass spectrometer is widely used in "native" ESI-MS, where the preservation of protein interactions is a priority. Unfortunately, native ESI-MS is highly susceptible to nonvolatile salts in solution, and desalting steps might bring undesired consequences: sample loss, protein destabilization in solution, and the disruption or weakening of protein interactions. Here, we show how native ESI-MS implemented with theta emitters, glass emitters with a septum that divides the capillary into two channels, with inner diameters of ∼1.4 μm, allows for the identification of proteins and protein complexes in solutions containing nonvolatile salts at physiologically relevant concentrations. We posit that the differences arise from a statistical effect of incomplete mixing in a single Taylor cone; the small fraction of droplets that are relatively depleted in nonvolatile salts gives rise to the resolved analyte charge states. As a result, mass measurements of lysozyme (14 kDa), avidin (64 kDa), and beta-galactosidase (466 kDa) were enabled at physiologically relevant concentrations of nonvolatile salts.
Collapse
Affiliation(s)
- Erick G Báez Bolívar
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
2
|
Kermani AA. Applications of fluorescent protein tagging in structural studies of membrane proteins. FEBS J 2024; 291:2719-2732. [PMID: 37470714 DOI: 10.1111/febs.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Generating active, pure, and monodisperse protein remains a major bottleneck for structural studies using X-ray crystallography and cryo-electron microscopy (cryo-EM). The current methodology heavily relies on overexpressing the recombinant protein fused with a histidine tag in conventional expression systems and evaluating the quality and stability of purified protein using size exclusion chromatography (SEC). This requires a large amount of protein and can be highly laborious and time consuming. Therefore, this approach is not suitable for high-throughput screening and low-expressing macromolecules, particularly eukaryotic membrane proteins. Using fluorescent proteins fused to the target protein (applicable to both soluble and membrane proteins) enables rapid and efficient screening of expression level and monodispersity of tens of unpurified constructs using fluorescence-based size exclusion chromatography (FSEC). Moreover, FSEC proves valuable for screening multiple detergents to identify the most stabilizing agent in the case of membrane proteins. Additionally, FSEC can facilitate nanodisc reconstitution by determining the optimal ratio of membrane scaffold protein (MSP), lipids, and target protein. The distinct advantages offered by FSEC indicate that fluorescent proteins can serve as a viable alternative to commonly used affinity tags for both characterization and purification purposes. In this review, I will summarize the advantages of this technique using examples from my own work. It should be noted that this article is not intended to provide an exhaustive review of all available literature, but rather to offer representative examples of FSEC applications.
Collapse
Affiliation(s)
- Ali A Kermani
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
3
|
Yin V, Deslignière E, Mokiem N, Gazi I, Lood R, de Haas CJC, Rooijakkers SHM, Heck AJR. Not All Arms of IgM Are Equal: Following Hinge-Directed Cleavage by Online Native SEC-Orbitrap-Based CDMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1320-1329. [PMID: 38767111 PMCID: PMC11157650 DOI: 10.1021/jasms.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Immunoglobulins M (IgM) are key natural antibodies produced initially in humoral immune response. Due to their large molecular weights and extensive glycosylation loads, IgMs represent a challenging target for conventional mass analysis. Charge detection mass spectrometry (CDMS) may provide a unique approach to tackle heterogeneous IgM assemblies, although this technique can be quite laborious and technically challenging. Here, we describe the use of online size exclusion chromatography (SEC) to automate buffer exchange and sample introduction, and demonstrate its adaptability with Orbitrap-based CDMS. We discuss optimal experimental parameters for online SEC-CDMS experiments, including ion activation, choice of column, and resolution. Using this approach, CDMS histograms containing hundreds of individual ion signals can be obtained in as little as 5 min from single injections of <1 μg of sample. To demonstrate the unique utility of online SEC-CDMS, we performed real-time kinetic monitoring of pentameric IgM digestion by the protease IgMBRAZOR, which cleaves specifically in the hinge region of IgM. Several digestion intermediates corresponding to processive losses of F(ab')2 subunits could be mass-resolved and identified by SEC-CDMS. Interestingly, we find that for the J-chain linked IgM pentamer, cleavage of one of the F(ab')2 subunits is much slower than the other four F(ab')2 subunits, which we attribute to the symmetry-breaking interactions of the J-chain within the pentameric IgM structure. The online SEC-CDMS methodologies described here open new avenues into the higher throughput automated analysis of heterogeneous, high-mass protein assemblies by CDMS.
Collapse
Affiliation(s)
- Victor Yin
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Evolène Deslignière
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Nadia Mokiem
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Inge Gazi
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Rolf Lood
- Genovis
AB, Scheelevägen
2, 223 63 Lund, Sweden
| | - Carla J. C. de Haas
- Department
of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Suzan H. M. Rooijakkers
- Department
of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Jackson C, Beveridge R. Native mass spectrometry of complexes formed by molecular glues reveals stoichiometric rearrangement of E3 ligases. Analyst 2024; 149:3178-3185. [PMID: 38639441 DOI: 10.1039/d4an00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this application of native mass spectrometry (nMS) to investigate complexes formed by molecular glues (MGs), we have demonstrated its efficiency in delineating stoichiometric rearrangements of E3 ligases that occur during targeted protein degradation (TPD). MGs stabilise interactions between an E3 ligase and a protein of interest (POI) targeted for degradation, and these ternary interactions are challenging to characterise. We have shown that nMS can unambiguously identify complexes formed between the CRBN : DDB1 E3 ligase and the POI GSPT1 upon the addition of lenalidomide, pomalidomide or thalidomide. Ternary complex formation was also identified involving the DCAF15 : DDA1 : DDB1 E3 ligase in the presence of MG (E7820 or indisulam) and POI RBM39. Moreover, we uncovered that the DCAF15 : DDA1 : DDB1 E3 ligase self-associates into dimers and trimers when analysed alone at low salt concentrations (100 mM ammonium acetate) which dissociate into single copies of the complex at higher salt concentrations (500 mM ammonium acetate), or upon the addition of MG and POI, forming a 1 : 1 : 1 ternary complex. This work demonstrates the strength of nMS in TPD research, reveals novel binding mechanisms of the DCAF15 E3 ligase, and its self-association into dimers and trimers at reduced salt concentration during structural analysis.
Collapse
Affiliation(s)
- Cara Jackson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| | - Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
5
|
Lawrence SS, Kirschbaum C, Bennett JL, Lutomski CA, El-Baba TJ, Robinson CV. Phospholipids Differentially Regulate Ca 2+ Binding to Synaptotagmin-1. ACS Chem Biol 2024; 19:953-961. [PMID: 38566504 PMCID: PMC11040605 DOI: 10.1021/acschembio.3c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Synaptotagmin-1 (Syt-1) is a calcium sensing protein that is resident in synaptic vesicles. It is well established that Syt-1 is essential for fast and synchronous neurotransmitter release. However, the role of Ca2+ and phospholipid binding in the function of Syt-1, and ultimately in neurotransmitter release, is unclear. Here, we investigate the binding of Ca2+ to Syt-1, first in the absence of lipids, using native mass spectrometry to evaluate individual binding affinities. Syt-1 binds to one Ca2+ with a KD ∼ 45 μM. Each subsequent binding affinity (n ≥ 2) is successively unfavorable. Given that Syt-1 has been reported to bind anionic phospholipids to modulate the Ca2+ binding affinity, we explored the extent that Ca2+ binding was mediated by selected anionic phospholipid binding. We found that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and dioleoylphosphatidylserine (DOPS) positively modulated Ca2+ binding. However, the extent of Syt-1 binding to phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) was reduced with increasing [Ca2+]. Overall, we find that specific lipids differentially modulate Ca2+ binding. Given that these lipids are enriched in different subcellular compartments and therefore may interact with Syt-1 at different stages of the synaptic vesicle cycle, we propose a regulatory mechanism involving Syt-1, Ca2+, and anionic phospholipids that may also control some aspects of vesicular exocytosis.
Collapse
Affiliation(s)
- Sophie
A. S. Lawrence
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carla Kirschbaum
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Jack L. Bennett
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Corinne A. Lutomski
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Tarick J. El-Baba
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carol. V. Robinson
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
6
|
Koy C, Glocker UM, Danquah BD, Glocker MO. Native and compactly folded in-solution conformers of pepsin are revealed and distinguished by mass spectrometric ITEM-TWO analyses of gas-phase pepstatin A - pepsin complex binding strength differences. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:303-312. [PMID: 37259551 DOI: 10.1177/14690667231178999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pepsin, because of its optimal activity at low acidic pH, has gained importance in mass spectrometric proteome research as a readily available and easy-to-handle protease. Pepsin has also been study object of protein higher-order structure analyses, but questions about how to best investigate pepsin in-solution conformers still remain. We first determined dependencies of pepsin ion charge structures on solvent pH which indicated the in-solution existence of (a) natively folded pepsin (N) which by nanoESI-MS analysis gave rise to a narrow charge state distribution with an 11-fold protonated most intense ion signal, (b) unfolded pepsin (U) with a rather broad ion charge state distribution whose highest ion signal carried 25 protons, and (c) a compactly folded pepsin conformer (C) with a narrow charge structure and a 12-fold protonated ion signal in the center of its charge state envelope. Because pepsin is a protease, unfolded pepsin became its own substrate in solution at pH 6.6 since at this pH some portion of pepsin maintained a compact/native fold which displayed enzymatic activity. Subsequent mass spectrometric ITEM-TWO analyses of pepstatin A - pepsin complex dissociation reactions in the gas phase confirmed a very strong binding of pepstatin A by natively folded pepsin (N). ITEM-TWO further revealed the existence of two compactly folded in-solution pepsin conformers (Ca and Cb) which also were able to bind pepstatin A. Binding strengths of the respective compactly folded pepsin conformer-containing complexes could be determined and apparent gas phase complex dissociation constants and reaction enthalpies differentiated these from each other and from the pepstatin A - pepsin complex which had been formed from natively folded pepsin. Thus, ITEM-TWO turned out to be well suited to pinpoint in-solution pepsin conformers by interrogating quantitative traits of pepstatin A - pepsin complexes in the gas phase.
Collapse
Affiliation(s)
- Cornelia Koy
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Ursula M Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Bright D Danquah
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Rolland AD, Takata T, Donor MT, Lampi KJ, Prell JS. Eye lens β-crystallins are predicted by native ion mobility-mass spectrometry and computations to form compact higher-ordered heterooligomers. Structure 2023; 31:1052-1064.e3. [PMID: 37453416 PMCID: PMC10528727 DOI: 10.1016/j.str.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Eye lens α- and β-/γ-crystallin proteins are not replaced after fiber cell denucleation and maintain lens transparency and refractive properties. The exceptionally high (∼400-500 mg/mL) concentration of crystallins in mature lens tissue and multiple other factors impede precise characterization of β-crystallin interactions, oligomer composition, size, and topology. Native ion mobility-mass spectrometry is used here to probe β-crystallin association and provide insight into homo- and heterooligomerization kinetics for these proteins. These experiments include separation and characterization of higher-order β-crystallin oligomers and illustrate the unique advantages of native IM-MS. Recombinantly expressed βB1, βB2, and βA3 isoforms are found to have different homodimerization propensities, and only βA3 forms larger homooligomers. Heterodimerization of βB2 with βA3 occurs ∼3 times as fast as that of βB1 with βA3, and βB1 and βB2 heterodimerize less readily. Ion mobility experiments, molecular dynamics simulations, and PISA analysis together reveal that observed oligomers are consistent with predominantly compact, ring-like topologies.
Collapse
Affiliation(s)
- Amber D Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA
| | - Takumi Takata
- Kyoto University, Research Reactor Institute 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Micah T Donor
- Department of Biological & Molecular Sciences, George Fox University, 414 N Meridian St, Newberg, OR 97132, USA
| | - Kirsten J Lampi
- Integrative Biosciences, School of Dentistry, 3181 SW Sam Jackson Park Road, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | - James S Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA; Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403-1252, USA.
| |
Collapse
|
8
|
Larson EJ, Pergande MR, Moss ME, Rossler KJ, Wenger RK, Krichel B, Josyer H, Melby JA, Roberts DS, Pike K, Shi Z, Chan HJ, Knight B, Rogers HT, Brown KA, Ong IM, Jeong K, Marty MT, McIlwain SJ, Ge Y. MASH Native: a unified solution for native top-down proteomics data processing. Bioinformatics 2023; 39:btad359. [PMID: 37294807 PMCID: PMC10283151 DOI: 10.1093/bioinformatics/btad359] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/13/2023] [Accepted: 06/07/2023] [Indexed: 06/11/2023] Open
Abstract
MOTIVATION Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. RESULTS We have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a "one-stop shop" for characterizing both native protein complexes and proteoforms. AVAILABILITY AND IMPLEMENTATION The MASH Native app, video tutorials, written tutorials, and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHSoftware.php. All data files shown in user tutorials are included with the MASH Native software in the download .zip file.
Collapse
Affiliation(s)
- Eli J Larson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Melissa R Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Michelle E Moss
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Kalina J Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - R Kent Wenger
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Boris Krichel
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Harini Josyer
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Jake A Melby
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Kyndalanne Pike
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Zhuoxin Shi
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Bridget Knight
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Holden T Rogers
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53705, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Kyowon Jeong
- Department of Applied Bioinformatics, University of Tübingen, Tübingen 72704, Germany
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85719, United States
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53705, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, United States
| |
Collapse
|
9
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
10
|
Larson EJ, Pergande MR, Moss ME, Rossler KJ, Wenger RK, Krichel B, Josyer H, Melby JA, Roberts DS, Pike K, Shi Z, Chan HJ, Knight B, Rogers HT, Brown KA, Ong IM, Jeong K, Marty M, McIlwain SJ, Ge Y. MASH Native: A Unified Solution for Native Top-Down Proteomics Data Processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522513. [PMID: 36711733 PMCID: PMC9881860 DOI: 10.1101/2023.01.02.522513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. Herein, we have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a one-stop shop for characterizing both native protein complexes and proteoforms. The MASH Native app, video tutorials, written tutorials and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHNativeSoftware.php . All data files shown in user tutorials are included with the MASH Native software in the download .zip file.
Collapse
|
11
|
Bian X, Zhuang X, Xing J, Liu S, Liu Z, Song F. Native Mass Spectrometry Coupled to Spectroscopic Methods to Investigate the Effect of Soybean Isoflavones on Structural Stability and Aggregation of Zinc Deficient and Metal-Free Superoxide Dismutase. Molecules 2022; 27:7303. [PMID: 36364128 PMCID: PMC9654870 DOI: 10.3390/molecules27217303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 12/26/2023] Open
Abstract
The deficiency or wrong combination of metal ions in Cu, Zn-superoxide dismutase (SOD1), is regarded as one of the main factors causing the aggregation of SOD1 and then inducing amyotrophic lateral sclerosis (ALS). A ligands-targets screening process based on native electrospray ionization ion mobility mass spectrometry (ESI-IMS-MS) was established in this study. Four glycosides including daidzin, sophoricoside, glycitin, and genistin were screened out from seven soybean isoflavone compounds and were found to interact with zinc-deficient or metal-free SOD1. The structure and conformation stability of metal-free and zinc-deficient SOD1 and their complexes with the four glycosides was investigated by collision-induced dissociation (CID) and collision-induced unfolding (CIU). The four glycosides could strongly bind to the metal-free and copper recombined SOD1 and enhance the folding stability of these proteins. Additionally, the ThT fluorescence assay showed that these glycosides could inhibit the toxic aggregation of the zinc-deficient or metal-free SOD1. The competitive interaction experiments together with molecular docking indicate that glycitin, which showed the best stabilizing effects, binds with SOD1 between β-sheet 6 and loop IV. In short, this study provides good insight into the relationship between inhibitors and different SOD1s.
Collapse
Affiliation(s)
- Xinyu Bian
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junpeng Xing
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
12
|
Prabhu GRD, Yang TH, Shiu RT, Witek HA, Urban PL. Scanning pH-metry for Observing Reversibility in Protein Folding. Biochemistry 2022; 61:2377-2389. [PMID: 36251331 DOI: 10.1021/acs.biochem.2c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the main factors affecting protein structure in solution is pH. Traditionally, to study pH-dependent conformational changes in proteins, the concentration of the H+ ions is adjusted manually, complicating real-time analyses, hampering dynamic pH regulation, and consequently leading to a limited number of tested pH levels. Here, we present a programmable device, a scanning pH-meter, that can automatically generate different types of pH ramps and waveforms in a solution. A feedback loop algorithm calculates the required flow rates of the acid/base titrants, allowing one, for example, to generate periodic pH sine waveforms to study the reversibility of protein folding by fluorescence spectroscopy. Interestingly, for some proteins, the fluorescence intensity profiles recorded in such a periodically oscillating pH environment display hysteretic behavior indicating an asymmetry in the sequence of the protein unfolding/refolding events, which can most likely be attributed to their distinct kinetics. Another useful application of the scanning pH-meter concerns coupling it with an electrospray ionization mass spectrometer to observe pH-induced structural changes in proteins as revealed by their varying charge-state distributions. We anticipate a broad range of applications of the scanning pH-meter developed here, including protein folding studies, determination of the optimum pH for achieving maximum fluorescence intensity, and characterization of fluorescent dyes and other synthetic materials.
Collapse
Affiliation(s)
- Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu300093, Taiwan
| | - Tzu-Hsin Yang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| | - Ruei-Tzung Shiu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| | - Henryk A Witek
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu300093, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| |
Collapse
|
13
|
Bui D, Li Z, Kitov PI, Han L, Kitova EN, Fortier M, Fuselier C, Granger Joly de Boissel P, Chatenet D, Doucet N, Tompkins SM, St-Pierre Y, Mahal LK, Klassen JS. Quantifying Biomolecular Interactions Using Slow Mixing Mode (SLOMO) Nanoflow ESI-MS. ACS CENTRAL SCIENCE 2022; 8:963-974. [PMID: 35912341 PMCID: PMC9335916 DOI: 10.1021/acscentsci.2c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a powerful label-free assay for detecting noncovalent biomolecular complexes in vitro and is increasingly used to quantify binding thermochemistry. A common assumption made in ESI-MS affinity measurements is that the relative ion signals of free and bound species quantitatively reflect their relative concentrations in solution. However, this is valid only when the interacting species and their complexes have similar ESI-MS response factors (RFs). For many biomolecular complexes, such as protein-protein interactions, this condition is not satisfied. Existing strategies to correct for nonuniform RFs are generally incompatible with static nanoflow ESI (nanoESI) sources, which are typically used for biomolecular interaction studies, thereby significantly limiting the utility of ESI-MS. Here, we introduce slow mixing mode (SLOMO) nanoESI-MS, a direct technique that allows both the RF and affinity (K d) for a biomolecular interaction to be determined from a single measurement using static nanoESI. The approach relies on the continuous monitoring of interacting species and their complexes under nonhomogeneous solution conditions. Changes in ion signals of free and bound species as the system approaches or moves away from a steady-state condition allow the relative RFs of the free and bound species to be determined. Combining the relative RF and the relative abundances measured under equilibrium conditions enables the K d to be calculated. The reliability of SLOMO and its ease of use is demonstrated through affinity measurements performed on peptide-antibiotic, protease-protein inhibitor, and protein oligomerization systems. Finally, affinities measured for the binding of human and bacterial lectins to a nanobody, a viral glycoprotein, and glycolipids displayed within a model membrane highlight the tremendous power and versatility of SLOMO for accurately quantifying a wide range of biomolecular interactions important to human health and disease.
Collapse
Affiliation(s)
- Duong
T. Bui
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zhixiong Li
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pavel I. Kitov
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ling Han
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marlène Fortier
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Camille Fuselier
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Philippine Granger Joly de Boissel
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - David Chatenet
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Nicolas Doucet
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Stephen M. Tompkins
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30605, United States
- Emory-UGA
Centers of Excellence for Influenza Research and Surveillance (CEIRS), Emory University School of Medicine, Athens, Georgia 30322, United States
| | - Yves St-Pierre
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- . Telephone: (780) 492-3501. Fax: (780) 492-8231
| |
Collapse
|
14
|
Bian X, Zhuang X, Xing J, Liu S, Liu Z, Song F. Ion-mobility tandem mass spectrometry combined with molecular docking to research the interaction between flavonoside isomers and metal-free superoxide dismutase. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9267. [PMID: 35147262 DOI: 10.1002/rcm.9267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Xinyu Bian
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junpeng Xing
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- University of Science and Technology of China, Hefei, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- University of Science and Technology of China, Hefei, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
16
|
Sanders HM, Jovcevski B, Marty MT, Pukala TL. Structural and mechanistic insights into amyloid-β and α-synuclein fibril formation and polyphenol inhibitor efficacy in phospholipid bilayers. FEBS J 2022; 289:215-230. [PMID: 34268903 PMCID: PMC8727495 DOI: 10.1111/febs.16122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023]
Abstract
Under certain cellular conditions, functional proteins undergo misfolding, leading to a transition into oligomers which precede the formation of amyloid fibrils. Misfolding proteins are associated with neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. While the importance of lipid membranes in misfolding and disease aetiology is broadly accepted, the influence of lipid membranes during therapeutic design has been largely overlooked. This study utilized a biophysical approach to provide mechanistic insights into the effects of two lipid membrane systems (anionic and zwitterionic) on the inhibition of amyloid-β 40 and α-synuclein amyloid formation at the monomer, oligomer and fibril level. Large unilamellar vesicles (LUVs) were shown to increase fibrillization and largely decrease the effectiveness of two well-known polyphenol fibril inhibitors, (-)-epigallocatechin gallate (EGCG) and resveratrol; however, use of immunoblotting and ion mobility mass spectrometry revealed this occurs through varying mechanisms. Oligomeric populations in particular were differentially affected by LUVs in the presence of resveratrol, an elongation phase inhibitor, compared to EGCG, a nucleation targeted inhibitor. Ion mobility mass spectrometry showed EGCG interacts with or induces more compact forms of monomeric protein typical of off-pathway structures; however, binding is reduced in the presence of LUVs, likely due to partitioning in the membrane environment. Competing effects of the lipids and inhibitor, along with reduced inhibitor binding in the presence of LUVs, provide a mechanistic understanding of decreased inhibitor efficacy in a lipid environment. Together, this study highlights that amyloid inhibitor design may be misguided if effects of lipid membrane composition and architecture are not considered during development.
Collapse
Affiliation(s)
- Henry M. Sanders
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia,Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Blagojce Jovcevski
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Tara L. Pukala
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia,Correspondence: Tara L. Pukala: School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; ; Tel. +61 8 8313 5497
| |
Collapse
|
17
|
Peter-Katalinic J. Life sciences and mass spectrometry: some personal reflections. Biol Chem 2021; 402:1603-1607. [PMID: 34606707 DOI: 10.1515/hsz-2021-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022]
Abstract
Molecular analysis of biological systems by mass spectrometry was in focus of technological developments in the second half of the 20th century, in which the issues of chemical identification of high molecular diversity by biophysical instrumental methods appeared as a mission impossible. By developing dialogs between researchers dealing with life sciences and medicine on one side and technology developers on the other, new horizons toward deciphering, identifying and quantifying of complex systems became a reality. Contributions toward this goal can be today considered as pioneering efforts delivered by a number of researchers, including generations of motivated students and associates.
Collapse
Affiliation(s)
- Jasna Peter-Katalinic
- Institute for Medical Physics and Biophysics (IMPB), University of Münster, Robert-Koch-Str. 31, D-48149 Münster, Germany
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
18
|
Koy C, Opuni KFM, Danquah BD, Neamtu A, Glocker MO. Mass Spectrometric and Bio-Computational Binding Strength Analysis of Multiply Charged RNAse S Gas-Phase Complexes Obtained by Electrospray Ionization from Varying In-Solution Equilibrium Conditions. Int J Mol Sci 2021; 22:ijms221910183. [PMID: 34638522 PMCID: PMC8508491 DOI: 10.3390/ijms221910183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Abstract
We investigated the influence of a solvent’s composition on the stability of desorbed and multiply charged RNAse S ions by analyzing the non-covalent complex’s gas-phase dissociation processes. RNAse S was dissolved in electrospray ionization-compatible buffers with either increasing organic co-solvent content or different pHs. The direct transition of all the ions and the evaporation of the solvent from all the in-solution components of RNAse S under the respective in-solution conditions by electrospray ionization was followed by a collision-induced dissociation of the surviving non-covalent RNAse S complex ions. Both types of changes of solvent conditions yielded in mass spectrometrically observable differences of the in-solution complexation equilibria. Through quantitative analysis of the dissociation products, i.e., from normalized ion abundances of RNAse S, S-protein, and S-peptide, the apparent kinetic and apparent thermodynamic gas-phase complex properties were deduced. From the experimental data, it is concluded that the stability of RNAse S in the gas phase is independent of its in-solution equilibrium but is sensitive to the complexes’ gas-phase charge states. Bio-computational in-silico studies showed that after desolvation and ionization by electrospray, the remaining binding forces kept the S-peptide and S-protein together in the gas phase predominantly by polar interactions, which indirectly stabilized the in-bulk solution predominating non-polar intermolecular interactions. As polar interactions are sensitive to in-solution protonation, bio-computational results provide an explanation of quantitative experimental data with single amino acid residue resolution.
Collapse
Affiliation(s)
- Cornelia Koy
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany; (C.K.); (K.F.M.O.); (B.D.D.)
| | - Kwabena F. M. Opuni
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany; (C.K.); (K.F.M.O.); (B.D.D.)
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Science, University of Ghana, P.O. Box LG43, Legon, Ghana
| | - Bright D. Danquah
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany; (C.K.); (K.F.M.O.); (B.D.D.)
| | - Andrei Neamtu
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Str. Universitatii nr. 16, 700051 Iasi, Romania;
| | - Michael O. Glocker
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany; (C.K.); (K.F.M.O.); (B.D.D.)
- Correspondence: ; Tel.: +49-381-494-4930; Fax: +49-381-494-4932
| |
Collapse
|
19
|
Su P, Chen X, Smith AJ, Espenship MF, Samayoa Oviedo HY, Wilson SM, Gholipour-Ranjbar H, Larriba-Andaluz C, Laskin J. Multiplexing of Electrospray Ionization Sources Using Orthogonal Injection into an Electrodynamic Ion Funnel. Anal Chem 2021; 93:11576-11584. [PMID: 34378383 DOI: 10.1021/acs.analchem.1c02092] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this contribution, we report an efficient approach to multiplex electrospray ionization (ESI) sources for applications in analytical and preparative mass spectrometry. This is achieved using up to four orthogonal injection inlets implemented on the opposite sides of an electrodynamic ion funnel interface. We demonstrate that both the total ion current transmitted through the mass spectrometer and the signal-to-noise ratio increase by 3.8-fold using four inlets compared to one inlet. The performance of the new multiplexing approach was examined using different classes of analytes covering a broad range of mass and ionic charge. A deposition rate of >10 μg of mass-selected ions per day may be achieved by using the multiplexed sources coupled to preparative mass spectrometry. The almost proportional increase in the ion current with the number of ESI inlets observed experimentally is confirmed using gas flow and ion trajectory simulations. The simulations demonstrate a pronounced effect of gas dynamics on the ion trajectories in the ion funnel, indicating that the efficiency of multiplexing strongly depends on gas velocity field. The study presented herein opens up exciting opportunities for the development of bright ion sources, which will advance both analytical and preparative mass spectrometry applications.
Collapse
Affiliation(s)
- Pei Su
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Xi Chen
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Andrew J Smith
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Michael F Espenship
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hugo Y Samayoa Oviedo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Solita M Wilson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Habib Gholipour-Ranjbar
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Carlos Larriba-Andaluz
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Haberger M, Heidenreich AK, Hook M, Fichtl J, Lang R, Cymer F, Adibzadeh M, Kuhne F, Wegele H, Reusch D, Bonnington L, Bulau P. Multiattribute Monitoring of Antibody Charge Variants by Cation-Exchange Chromatography Coupled to Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2062-2071. [PMID: 33687195 DOI: 10.1021/jasms.0c00446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this study was to characterize the product variants of a therapeutic T-cell bispecific humanized monoclonal antibody (TCB Mab, ∼200 kDa, asymmetric) and to develop an online cation-exchange chromatography native electrospray mass spectrometry method (CEC-UV-MS) for direct TCB Mab charge variant monitoring during bioprocess and formulation development. For the identification and functional evaluation of the diverse and complex TCB Mab charge variants, offline fractionation combined with comprehensive analytical testing was applied. The offline fractionation of abundant product variant peaks enabled identification of coeluting acid charge variants such as asparagine deamidation, primary and secondary Fab glycosylation (with and without sialic acid), and the presence of O-glycosylation in the G4S-linker region. Consequently, a new nonconsensus N-glycosylation motif (N-338-FG) in the heavy chain CDR region was discovered. Functional evaluation by cell-based potency testing demonstrated a clear and negative impact of both asparagine deamidations, whereas the O-glycosylation did not affect the TCB Mab biological activity. We established an online native CEC-UV-MS method, with an ammonium acetate buffer and pH gradient, to directly monitor the TCB Mab charge variants. All abundant chemical degradations and post-translational amino acid modifications already identified by offline fraction experiments and liquid chromatography mass spectrometry peptide mapping could also be monitored by the online CEC-UV-MS method. The herein reported online native CEC-UV-MS methodology represents a complementary or even alternative approach for multiattribute monitoring of biologics, offering multiple benefits, including increased throughput and reduced sample handling and intact protein information in the near-native state.
Collapse
Affiliation(s)
- Markus Haberger
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | | | - Michaela Hook
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Jürgen Fichtl
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Rainer Lang
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Florian Cymer
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., c, 4070 Basel, Switzerland
| | - Mahdi Adibzadeh
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., c, 4070 Basel, Switzerland
| | - Felix Kuhne
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Harald Wegele
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Lea Bonnington
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Patrick Bulau
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| |
Collapse
|
21
|
Zhou L, Wang D, Iftikhar M, Lu Y, Zhou M. Conformational changes and binding property of the periplasmic binding protein BtuF during vitamin B 12 transport revealed by collision-induced unfolding, hydrogen-deuterium exchange mass spectrometry and molecular dynamic simulation. Int J Biol Macromol 2021; 187:350-360. [PMID: 34303738 DOI: 10.1016/j.ijbiomac.2021.07.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
The periplasmic binding protein (PBP) BtuF plays a key role in transporting vitamin B12 from periplasm to the ATP-binding cassette (ABC) transporter BtuCD. Conformational changes of BtuF during transport can hardly be captured by traditional biophysical methods and the exact mechanism regarding B12 and BtuF recognition is still under debate. In the present work, conformational changes of BtuF upon B12 binding and release were investigated using hybrid approaches including collision-induced unfolding (CIU), hydrogen deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulation. It was found that B12 binding increased the stability of BtuF. In addition, fast exchange regions of BtuF were localized. Most importantly, midpoint of hinge helix in BtuF was found highly flexible, and binding of B12 proceed in a manner similar to the Venus flytrap mechanism. Our study therefore delineates a clear view of BtuF delivering B12, and demonstrated a hybrid approach encompassing MS and computer based methods that holds great potential to the probing of conformational dynamics of proteins in action.
Collapse
Affiliation(s)
- Lijun Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Defu Wang
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mehwish Iftikhar
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yinghong Lu
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
22
|
Santos IC, Brodbelt JS. Structural Characterization of Carbonic Anhydrase-Arylsulfonamide Complexes Using Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1370-1379. [PMID: 33683877 PMCID: PMC8377746 DOI: 10.1021/jasms.1c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Numerous mass spectrometry-based strategies ranging from hydrogen-deuterium exchange to ion mobility to native mass spectrometry have been developed to advance biophysical and structural characterization of protein conformations and determination of protein-ligand interactions. In this study, we focus on the use of ultraviolet photodissociation (UVPD) to examine the structure of human carbonic anhydrase II (hCAII) and its interactions with arylsulfonamide inhibitors. Carbonic anhydrase, which catalyzes the conversion of carbon dioxide to bicarbonate, has been the target of countless thermodynamic and kinetic studies owing to its well-characterized active site, binding cavity, and mechanism of inhibition by hundreds of ligands. Here, we showcase the application of UVPD for evaluating structural changes of hCAII upon ligand binding on the basis of variations in fragmentation of hCAII versus hCAII-arylsulfonamide complexes, particularly focusing on the hydrophobic pocket. To extend the coverage in the midregion of the protein sequence, a supercharging agent was added to the solutions to increase the charge states of the complexes. The three arylsulfonamides examined in this study largely shift the fragmentation patterns in similar ways, despite their differences in binding affinities.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Beveridge R, Calabrese AN. Structural Proteomics Methods to Interrogate the Conformations and Dynamics of Intrinsically Disordered Proteins. Front Chem 2021; 9:603639. [PMID: 33791275 PMCID: PMC8006314 DOI: 10.3389/fchem.2021.603639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and regions of intrinsic disorder (IDRs) are abundant in proteomes and are essential for many biological processes. Thus, they are often implicated in disease mechanisms, including neurodegeneration and cancer. The flexible nature of IDPs and IDRs provides many advantages, including (but not limited to) overcoming steric restrictions in binding, facilitating posttranslational modifications, and achieving high binding specificity with low affinity. IDPs adopt a heterogeneous structural ensemble, in contrast to typical folded proteins, making it challenging to interrogate their structure using conventional tools. Structural mass spectrometry (MS) methods are playing an increasingly important role in characterizing the structure and function of IDPs and IDRs, enabled by advances in the design of instrumentation and the development of new workflows, including in native MS, ion mobility MS, top-down MS, hydrogen-deuterium exchange MS, crosslinking MS, and covalent labeling. Here, we describe the advantages of these methods that make them ideal to study IDPs and highlight recent applications where these tools have underpinned new insights into IDP structure and function that would be difficult to elucidate using other methods.
Collapse
Affiliation(s)
- Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
24
|
Kalathiya U, Padariya M, Faktor J, Coyaud E, Alfaro JA, Fahraeus R, Hupp TR, Goodlett DR. Interfaces with Structure Dynamics of the Workhorses from Cells Revealed through Cross-Linking Mass Spectrometry (CLMS). Biomolecules 2021; 11:382. [PMID: 33806612 PMCID: PMC8001575 DOI: 10.3390/biom11030382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
The fundamentals of how protein-protein/RNA/DNA interactions influence the structures and functions of the workhorses from the cells have been well documented in the 20th century. A diverse set of methods exist to determine such interactions between different components, particularly, the mass spectrometry (MS) methods, with its advanced instrumentation, has become a significant approach to analyze a diverse range of biomolecules, as well as bring insights to their biomolecular processes. This review highlights the principal role of chemistry in MS-based structural proteomics approaches, with a particular focus on the chemical cross-linking of protein-protein/DNA/RNA complexes. In addition, we discuss different methods to prepare the cross-linked samples for MS analysis and tools to identify cross-linked peptides. Cross-linking mass spectrometry (CLMS) holds promise to identify interaction sites in larger and more complex biological systems. The typical CLMS workflow allows for the measurement of the proximity in three-dimensional space of amino acids, identifying proteins in direct contact with DNA or RNA, and it provides information on the folds of proteins as well as their topology in the complexes. Principal CLMS applications, its notable successes, as well as common pipelines that bridge proteomics, molecular biology, structural systems biology, and interactomics are outlined.
Collapse
Affiliation(s)
- Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Etienne Coyaud
- Protéomique Réponse Inflammatoire Spectrométrie de Mass—PRISM, Inserm U1192, University Lille, CHU Lille, F-59000 Lille, France;
| | - Javier A. Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| | - David R. Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Genome BC Proteome Centre, University of Victoria, Victoria, BC V8Z 5N3, Canada
| |
Collapse
|
25
|
Hammerschmid D, van Dyck JF, Sobott F, Calabrese AN. Interrogating Membrane Protein Structure and Lipid Interactions by Native Mass Spectrometry. Methods Mol Biol 2021; 2168:233-261. [PMID: 33582995 DOI: 10.1007/978-1-0716-0724-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Native mass spectrometry and native ion mobility mass spectrometry are now established techniques in structural biology, with recent work developing these methods for the study of integral membrane proteins reconstituted in both lipid bilayer and detergent environments. Here we show how native mass spectrometry can be used to interrogate integral membrane proteins, providing insights into conformation, oligomerization, subunit composition/stoichiometry, and interactions with detergents/lipids/drugs. Furthermore, we discuss the sample requirements and experimental considerations unique to integral membrane protein native mass spectrometry research.
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.,Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Jeroen F van Dyck
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium.,Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Antonio N Calabrese
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
26
|
Fouque KJD, Garabedian A, Leng F, Tse-Dinh YC, Ridgeway ME, Park MA, Fernandez-Lima F. Trapped Ion Mobility Spectrometry of Native Macromolecular Assemblies. Anal Chem 2021; 93:2933-2941. [PMID: 33492949 PMCID: PMC8327357 DOI: 10.1021/acs.analchem.0c04556] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structural elucidation of native macromolecular assemblies has been a subject of considerable interest in native mass spectrometry (MS), and more recently in tandem with ion mobility spectrometry (IMS-MS), for a better understanding of their biochemical and biophysical functions. In the present work, we describe a new generation trapped ion mobility spectrometer (TIMS), with extended mobility range (K0 = 0.185-1.84 cm2·V-1·s-1), capable of trapping high-molecular-weight (MW) macromolecular assemblies. This compact 4 cm long TIMS analyzer utilizes a convex electrode, quadrupolar geometry with increased pseudopotential penetration in the radial dimension, extending the mobility trapping to high-MW species under native state (i.e., lower charge states). The TIMS capabilities to perform variable scan rate (Sr) mobility measurements over short time (100-500 ms), high-mobility resolution, and ion-neutral collision cross-section (CCSN2) measurements are presented. The trapping capabilities of the convex electrode TIMS geometry and ease of operation over a wide gas flow, rf range, and electric field trapping range are illustrated for the first time using a comprehensive list of standards varying from CsI clusters (n = 6-73), Tuning Mix oligomers (n = 1-5), common proteins (e.g., ubiquitin, cytochrome C, lysozyme, concanavalin (n = 1-4), carbonic anhydrase, β clamp (n = 1-4), topoisomerase IB, bovine serum albumin (n = 1-3), topoisomerase IA, alcohol dehydrogenase), IgG antibody (e.g., avastin), protein-DNA complexes, and macromolecular assemblies (e.g., GroEL and RNA polymerase (n = 1-2)) covering a wide mass (up to m/z 19 000) and CCS range (up to 22 000 Å2 with <0.6% relative standard deviation (RSD)).
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | | | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, MA 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
27
|
Mathew A, Buijs R, Eijkel GB, Giskes F, Dyachenko A, van der Horst J, Byelov D, Spaanderman DJ, Heck AJR, Porta Siegel T, Ellis SR, Heeren RMA. Ion Imaging of Native Protein Complexes Using Orthogonal Time-of-Flight Mass Spectrometry and a Timepix Detector. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:569-580. [PMID: 33439014 PMCID: PMC7863068 DOI: 10.1021/jasms.0c00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Native mass spectrometry (native MS) has emerged as a powerful technique to study the structure and stoichiometry of large protein complexes. Traditionally, native MS has been performed on modified time-of-flight (TOF) systems combined with detectors that do not provide information on the arrival coordinates of each ion at the detector. In this study, we describe the implementation of a Timepix (TPX) pixelated detector on a modified orthogonal TOF (O-TOF) mass spectrometer for the analysis and imaging of native protein complexes. In this unique experimental setup, we have used the impact positions of the ions at the detector to visualize the effects of various ion optical parameters on the flight path of ions. We also demonstrate the ability to unambiguously detect and image individual ion events, providing the first report of single-ion imaging of protein complexes in native MS. Furthermore, the simultaneous space- and time-sensitive nature of the TPX detector was critical in the identification of the origin of an unexpected TOF signal. A signal that could easily be mistaken as a fragment of the protein complex was explicitly identified as a secondary electron signal arising from ion-surface collisions inside the TOF housing. This work significantly extends the mass range previously detected with the TPX and exemplifies the value of simultaneous space- and time-resolved detection in the study of ion optical processes and ion trajectories in TOF mass spectrometers.
Collapse
Affiliation(s)
- Anjusha Mathew
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ronald Buijs
- NWO
Institute AMOLF Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Gert B. Eijkel
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Frans Giskes
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Andrey Dyachenko
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | | | - Dimitry Byelov
- Amsterdam
Scientific Instruments (ASI), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | | | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tiffany Porta Siegel
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Shane R. Ellis
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
28
|
Harvey SR, VanAernum ZL, Kostelic MM, Marty MT, Wysocki VH. Probing the structure of nanodiscs using surface-induced dissociation mass spectrometry. Chem Commun (Camb) 2020; 56:15651-15654. [PMID: 33355562 PMCID: PMC7943047 DOI: 10.1039/d0cc05531j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the study of membrane proteins and antimicrobial peptides, nanodiscs have emerged as a valuable membrane mimetic to solubilze these molecules in a lipid bilayer. We present the structural characterization of nanodiscs using native mass spectrometry and surface-induced dissociation, which are powerful tools in structural biology.
Collapse
Affiliation(s)
- Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
29
|
Hale OJ, Cooper HJ. Native Mass Spectrometry Imaging and In Situ Top-Down Identification of Intact Proteins Directly from Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2531-2537. [PMID: 32822168 DOI: 10.1021/jasms.0c00226] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry imaging (MSI) provides information on the spatial distribution of molecules within a biological substrate without the requirement for labeling. Its broad specificity, i.e., the capability to spatially profile any analyte ion detected, constitutes a major advantage over other imaging techniques. A separate branch of mass spectrometry, native mass spectrometry, provides information relating to protein structure through retention of solution-phase interactions in the gas phase. Integration of MSI and native mass spectrometry ("native MSI") affords opportunities for simultaneous acquisition of spatial and structural information on proteins directly from their physiological environment. Here, we demonstrate significant improvements in native MSI and associated protein identification of intact proteins and protein assemblies in thin sections of rat kidney by use of liquid extraction surface analysis on a state-of-the-art Orbitrap mass spectrometer optimized for intact protein analysis. Proteins of up to 47 kDa, including a trimeric protein complex, were imaged and identified.
Collapse
Affiliation(s)
- Oliver J Hale
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K
| |
Collapse
|
30
|
Wang G, Chaihu L, Tian M, Shao X, Dai R, de Jong RN, Ugurlar D, Gros P, Heck AJR. Releasing Nonperipheral Subunits from Protein Complexes in the Gas Phase. Anal Chem 2020; 92:15799-15805. [DOI: 10.1021/acs.analchem.0c02845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Lingxiao Chaihu
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, 518132 Shenzhen, China
| | - Meng Tian
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xinyang Shao
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Rongrong Dai
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | | | - Deniz Ugurlar
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
31
|
Bohl J, Sicard C, Rezaei H, Van der Rest G, Halgand F. Evidence of conformational landscape alteration and macromolecular complex formation in the early stages of in vitro human prion protein oxidation. Arch Biochem Biophys 2020; 690:108432. [PMID: 32663474 DOI: 10.1016/j.abb.2020.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022]
Abstract
Oxidative stress is proposed to be one of the major causes of neurodegenerative diseases. Cellular prion protein (PrP) oxidation has been widely studied using chemical reagents such as hydrogen peroxide. However, the experimental conditions used do not faithfully reflect the physiological environment of the cell. With the goal to explore the conformational landscape of PrP under oxidative stress, we conducted a set of experiments combining the careful control of the nature and the amount of ROS produced by a60Co γ-irradiation source. Characterization of the resulting protein species was achieved using a set of analytical techniques. Under our experimental condition hydroxyl radical are the main reactive species produced. The most important findings are i) the formation of molecular assemblies under oxidative stress, ii) the detection of a majority of unmodified monomer mixed with oxidized monomers in these molecular assemblies at low hydroxyl radical concentration, iii) the absence of significant oxidation on the monomer fraction after irradiation. Molecular assemblies are produced in small amounts and were shown to be an octamer. These results suggest either i) an active recruitment of intact monomers by molecular assemblies' oxidized monomers then inducing a structural change of their intact counterparts or ii) an intrinsic capability of intact monomer conformers to spontaneously associate to form stable molecular assemblies when oxidized monomers are present. Finally, abundances of the intact monomer conformers after irradiation were modified. This suggests that monomers of the molecular assemblies exchange structural information with intact irradiated monomer. All these results shed a new light on structural exchange information between PrP monomers under oxidative stress.
Collapse
Affiliation(s)
- Jan Bohl
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France
| | - Cécile Sicard
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France
| | - Human Rezaei
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Guillaume Van der Rest
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France
| | - Frédéric Halgand
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France.
| |
Collapse
|
32
|
Ziemianowicz DS, Sarpe V, Crowder D, Pells TJ, Raval S, Hepburn M, Rafiei A, Schriemer DC. Harmonizing structural mass spectrometry analyses in the mass spec studio. J Proteomics 2020; 225:103844. [DOI: 10.1016/j.jprot.2020.103844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 01/06/2023]
|
33
|
The molecular chaperone β-casein prevents amorphous and fibrillar aggregation of α-lactalbumin by stabilisation of dynamic disorder. Biochem J 2020; 477:629-643. [PMID: 31939601 PMCID: PMC7015860 DOI: 10.1042/bcj20190638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Deficits in protein homeostasis (proteostasis) are typified by the partial unfolding or misfolding of native proteins leading to amorphous or fibrillar aggregation, events that have been closely associated with diseases including Alzheimer's and Parkinson's diseases. Molecular chaperones are intimately involved in maintaining proteostasis, and their mechanisms of action are in part dependent on the morphology of aggregation-prone proteins. This study utilised native ion mobility–mass spectrometry to provide molecular insights into the conformational properties and dynamics of a model protein, α-lactalbumin (α-LA), which aggregates in an amorphous or amyloid fibrillar manner controlled by appropriate selection of experimental conditions. The molecular chaperone β-casein (β-CN) is effective at inhibiting amorphous and fibrillar aggregation of α-LA at sub-stoichiometric ratios, with greater efficiency against fibril formation. Analytical size-exclusion chromatography demonstrates the interaction between β-CN and amorphously aggregating α-LA is stable, forming a soluble high molecular weight complex, whilst with fibril-forming α-LA the interaction is transient. Moreover, ion mobility–mass spectrometry (IM-MS) coupled with collision-induced unfolding (CIU) revealed that α-LA monomers undergo distinct conformational transitions during the initial stages of amorphous (order to disorder) and fibrillar (disorder to order) aggregation. The structural heterogeneity of monomeric α-LA during fibrillation is reduced in the presence of β-CN along with an enhancement in stability, which provides a potential means for preventing fibril formation. Together, this study demonstrates how IM-MS and CIU can investigate the unfolding of proteins as well as examine transient and dynamic protein–chaperone interactions, and thereby provides detailed insight into the mechanism of chaperone action and proteostasis mechanisms.
Collapse
|
34
|
Allison TM, Barran P, Benesch JLP, Cianferani S, Degiacomi MT, Gabelica V, Grandori R, Marklund EG, Menneteau T, Migas LG, Politis A, Sharon M, Sobott F, Thalassinos K. Software Requirements for the Analysis and Interpretation of Native Ion Mobility Mass Spectrometry Data. Anal Chem 2020; 92:10881-10890. [PMID: 32649184 DOI: 10.1021/acs.analchem.9b05792] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The past few years have seen a dramatic increase in applications of native mass and ion mobility spectrometry, especially for the study of proteins and protein complexes. This increase has been catalyzed by the availability of commercial instrumentation capable of carrying out such analyses. As in most fields, however, the software to process the data generated from new instrumentation lags behind. Recently, a number of research groups have started addressing this by developing software, but further improvements are still required in order to realize the full potential of the data sets generated. In this perspective, we describe practical aspects as well as challenges in processing native mass spectrometry (MS) and ion mobility-MS data sets and provide a brief overview of currently available tools. We then set out our vision of future developments that would bring the community together and lead to the development of a common platform to expedite future computational developments, provide standardized processing approaches, and serve as a location for the deposition of data for this emerging field. This perspective has been written by members of the European Cooperation in Science and Technology Action on Native MS and Related Methods for Structural Biology (EU COST Action BM1403) as an introduction to the software tools available in this area. It is intended to serve as an overview for newcomers and to stimulate discussions in the community on further developments in this field, rather than being an in-depth review. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05791) focuses on computational approaches used in this field.
Collapse
Affiliation(s)
- Timothy M Allison
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Matteo T Degiacomi
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom.,Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Valerie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site, 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Thomas Menneteau
- Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, Gower Street, London WC1E 6BT, United Kingdom
| | - Lukasz G Migas
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Konstantinos Thalassinos
- Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, Gower Street, London WC1E 6BT, United Kingdom.,Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
35
|
Beveridge R, Kessler D, Rumpel K, Ettmayer P, Meinhart A, Clausen T. Native Mass Spectrometry Can Effectively Predict PROTAC Efficacy. ACS CENTRAL SCIENCE 2020; 6:1223-1230. [PMID: 32724856 PMCID: PMC7379389 DOI: 10.1021/acscentsci.0c00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 05/16/2023]
Abstract
Protein degraders, also known as proteolysis targeting chimeras (PROTACs), are bifunctional small molecules that promote cellular degradation of a protein of interest (POI). PROTACs act as molecular mediators, bringing an E3 ligase and a POI into proximity, thus promoting ubiquitination and degradation of the targeted POI. Despite their great promise as next-generation pharmaceutical drugs, the development of new PROTACs is challenged by the complexity of the system, which involves binary and ternary interactions between components. Here, we demonstrate the strength of native mass spectrometry (nMS), a label-free technique, to provide novel insight into PROTAC-mediated protein interactions. We show that nMS can monitor the formation of ternary E3-PROTAC-POI complexes and detect various intermediate species in a single experiment. A unique benefit of the method is its ability to reveal preferentially formed E3-PROTAC-POI combinations in competition experiments with multiple substrate proteins, thereby positioning it as an ideal high-throughput screening strategy during the development of new PROTACs.
Collapse
Affiliation(s)
- Rebecca Beveridge
- Research
Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Dirk Kessler
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Klaus Rumpel
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Peter Ettmayer
- Discovery
Research, Boehringer Ingelheim Regional
Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Anton Meinhart
- Research
Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Tim Clausen
- Research
Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
36
|
Soltwisch J, Heijs B, Koch A, Vens-Cappell S, Höhndorf J, Dreisewerd K. MALDI-2 on a Trapped Ion Mobility Quadrupole Time-of-Flight Instrument for Rapid Mass Spectrometry Imaging and Ion Mobility Separation of Complex Lipid Profiles. Anal Chem 2020; 92:8697-8703. [DOI: 10.1021/acs.analchem.0c01747] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Bram Heijs
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Annika Koch
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | | | - Jens Höhndorf
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
37
|
Zhao B, Zhuang J, Xu M, Liu T, Limpikirati P, Thayumanavan S, Vachet RW. Covalent Labeling with an α,β-Unsaturated Carbonyl Scaffold for Studying Protein Structure and Interactions by Mass Spectrometry. Anal Chem 2020; 92:6637-6644. [PMID: 32250591 PMCID: PMC7207043 DOI: 10.1021/acs.analchem.0c00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new covalent labeling (CL) reagent based on an α,β-unsaturated carbonyl scaffold has been developed for studying protein structure and protein-protein interactions when coupled with mass spectrometry. We show that this new reagent scaffold can react with up to 13 different types of residues on protein surfaces, thereby providing excellent structural resolution. To illustrate the value of this reagent scaffold, it is used to identify the residues involved in the protein-protein interface that is formed upon Zn(II) binding to the protein β-2-microglobulin. The modular design of the α,β-unsaturated carbonyl scaffold allows facile variation of the functional groups, enabling labeling kinetics and selectivity to be tuned. Moreover, by introducing isotopically enriched functional groups into the reagent structure, labeling sites can be more easily identified by MS and MS/MS. Overall, this reagent scaffold should be a valuable CL reagent for protein higher order structure characterization by MS.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jiaming Zhuang
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Miaowei Xu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery – Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery – Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
38
|
Evaluation of NHS-Acetate and DEPC labelling for determination of solvent accessible amino acid residues in protein complexes. J Proteomics 2020; 222:103793. [PMID: 32348883 DOI: 10.1016/j.jprot.2020.103793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/27/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
Abstract
The activity of most proteins and protein complexes relies on the formation of defined three-dimensional structures. The analysis of these arrangements is therefore key for understanding their function and regulation in the cell. Besides the traditional structural techniques, structural mass spectrometry delivers insights into the various aspects of protein structure, including stoichiometry, protein-ligand interactions and solvent accessibility. The latter is usually obtained from labelling experiments. In this study, we evaluate two chemical labelling strategies using N-hydroxysuccinimidyl acetate and diethylpyrocarbonate as labelling reagents. We characterised the mass spectra of modified peptides and assessed labelling reactivity of individual amino acid residues in intact proteins. Importantly, we uncovered neutral losses from diethylpyrocarbonate modified amino acids improving the assignments of the peptide fragment spectra. We further established a quantitative labelling workflow to determine labelling percentage and unambiguously distinguish solvent accessible amino acid residues from stochastically labelled residues. Finally, we used ion mobility MS to explore whether labelled proteins maintain their structures and remain stable. We conclude that labelling using N-hydroxysuccinimidyl acetate and diethylpyrocarbonate delivers comparable results, however, N-hydroxysuccinimidyl acetate labelling is compatible with standard proteomic workflows while diethylpyrocarbonate labelling requires specialised experimental conditions and data analysis. SIGNIFICANCE: Covalent labelling is widely used to identify solvent accessible amino acid residues of proteins or protein complexes. However, with increasing sensitivity of available MS instrumentation, a high number of modified residues is usually observed making an unambiguous assignment of solvent accessible residues necessary. In this study, we establish a quantitative labelling workflow for two different labelling strategies to identify accessible amino acid residues. In addition, we characterise observed mass spectra of modified peptides and identified neutral loss of DEPC modified amino acid residues during HCD fragmentation improving their assignments.
Collapse
|
39
|
Shirzadeh M, Poltash ML, Laganowsky A, Russell DH. Structural Analysis of the Effect of a Dual-FLAG Tag on Transthyretin. Biochemistry 2020; 59:1013-1022. [PMID: 32101399 PMCID: PMC7171973 DOI: 10.1021/acs.biochem.0c00105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recombinant proteins have increased our knowledge regarding the physiological role of proteins; however, affinity purification tags are often not cleaved prior to analysis, and their effects on protein structure, stability and assembly are often overlooked. In this study, the stabilizing effects of an N-terminus dual-FLAG (FT2) tag fusion to transthyretin (TTR), a construct used in previous studies, are investigated using native ion mobility-mass spectrometry (IM-MS). A combination of collision-induced unfolding and variable-temperature electrospray ionization is used to compare gas- and solution-phase stabilities of FT2-TTR to wild-type and C-terminal tagged TTR. Despite an increased stability of both gas- and solution-phase FT2-TTR, thermal degradation of FT2-TTR was observed at elevated temperatures, viz., backbone cleavage occurring between Lys9 and Cys10. This cleavage reaction is consistent with previously reported metalloprotease activity of TTR [Liz et al. 2009] and is suppressed by either metal chelation or excess zinc. This study brings to the fore the effect of affinity tag stabilization of TTR and emphasizes unprecedented detail afforded by native IM-MS to assess structural discrepancies of recombinant proteins from their wild-type counterparts.
Collapse
Affiliation(s)
- Mehdi Shirzadeh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael L Poltash
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
40
|
Kafader JO, Melani RD, Schachner LF, Ives AN, Patrie SM, Kelleher NL, Compton PD. Native vs Denatured: An in Depth Investigation of Charge State and Isotope Distributions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:574-581. [PMID: 31971796 PMCID: PMC7539638 DOI: 10.1021/jasms.9b00040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
New tools and techniques have dramatically accelerated the field of structural biology over the past several decades. One potent and relatively new technique that is now being utilized by an increasing number of laboratories is the combination of so-called "native" electrospray ionization (ESI) with mass spectrometry (MS) for the characterization of proteins and their noncovalent complexes. However, native ESI-MS produces species at increasingly higher m/z with increasing molecular weight, leading to substantial differences when compared to traditional mass spectrometric approaches using denaturing ESI solutions. Herein, these differences are explored both theoretically and experimentally to understand the role that charge state and isotopic distributions have on signal-to-noise (S/N) as a function of complex molecular weight and how the reduced collisional cross sections of proteins electrosprayed under native solution conditions can lead to improved data quality in image current mass analyzers, such as Orbitrap and FT-ICR. Quantifying ion signal differences under native and denatured conditions revealed enhanced S/N and a more gradual decay in S/N with increasing mass under native conditions. Charge state and isotopic S/N models, supported by experimental results, indicate that analysis of proteins under native conditions at 100 kDa will be 17 times more sensitive than analysis under denatured conditions at the same mass. Higher masses produce even larger sensitivity gains. Furthermore, reduced cross sections under native conditions lead to lower levels of ion decay within an Orbitrap scan event over long transient acquisition times, enabling isotopic resolution of species with molecular weights well in excess of those typically resolved under denatured conditions.
Collapse
Affiliation(s)
- Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Ashley N Ives
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
41
|
Zhuang X, Li X, Zhao B, Liu Z, Song F, Lu J. Native Mass Spectrometry Based Method for Studying the Interactions between Superoxide Dismutase 1 and Stilbenoids. ACS Chem Neurosci 2020; 11:184-190. [PMID: 31820923 DOI: 10.1021/acschemneuro.9b00574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To inhibit the abnormal aggregation of Cu, Zn-superoxide dismutase (SOD1) is regarded as a potential therapeutic strategy of SOD1-linked amyotrophic lateral sclerosis (ALS). Herein the interactions between SOD1 and four stilbene-based polyphenols, namely, resveratrol, oxyresveratrol, polydatin, and 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glycoside (THSG), were investigated using electrospray ionization mass spectrometry (ESI-MS) combined with ion mobility (IM) spectrometry. The addition of tandem MS to the study of SOD1-ligand complexes provides further insight into their gas-phase stability. Monitoring the unfolding of SOD1-ligand complexes using IM-MS allows observation of subtle changes in the protein stability upon ligand binding. From the MS/MS and IM-MS measurements, polydatin and THSG were highlighted as the strongest bound compounds in the gas phase, and both of them appear to provide a stabilizing effect on the SOD1 dimer conformation. In addition, the data of fluorescence assays clearly show the ability of the ligands to inhibit apoSOD1 from aggregation, and polydatin was found to have the strongest inhibitory effect. Overall, the method described here can be an effective approach to investigate the interactions between SOD1 and other drug-like molecules.
Collapse
Affiliation(s)
- Xiaoyu Zhuang
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiuxiu Li
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bing Zhao
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianzhong Lu
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
42
|
Foreman DJ, McLuckey SA. Recent Developments in Gas-Phase Ion/Ion Reactions for Analytical Mass Spectrometry. Anal Chem 2020; 92:252-266. [PMID: 31693342 PMCID: PMC6949396 DOI: 10.1021/acs.analchem.9b05014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- David J Foreman
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| | - Scott A McLuckey
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| |
Collapse
|
43
|
Thangaraj SK, James S, Rouvinen J, Jänis J. Thermokinetic Analysis of Protein Subunit Exchange by Variable-Temperature Native Mass Spectrometry. Biochemistry 2019; 58:5025-5029. [PMID: 31790206 DOI: 10.1021/acs.biochem.9b00911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many protein complexes are assembled from a varying number of subunits, which are continuously exchanging with diverse time scales. This structural dynamics is considered to be important for many regulatory and sensory adaptation processes that occur in vivo. We have developed an accurate method for monitoring protein subunit exchange by using native electrospray ionization mass spectrometry (ESI-MS), exemplified here for an extremely stable Rad50 zinc hook (Hk) dimer assembly, Zn(Hk)2. The method has two steps: appropriate protein/peptide mutation and native ESI-MS analysis using a variable-temperature sample inlet. In this work, two Hk mutants were produced, mixed with wild-type Hk, and measured at three different temperatures. A thermokinetic analysis of heterodimer formation allowed us to determine the enthalpy, entropy, and Gibbs free energy of activation for subunit exchange, showing that the reaction is slow and associated with a high enthalpic barrier, consistent with the exceptionally high stability of the Zn(Hk)2 assembly.
Collapse
Affiliation(s)
- Senthil K Thangaraj
- Department of Chemistry , University of Eastern Finland , P.O. Box 111, FI-801101 Joensuu , Finland
| | - Salman James
- Department of Chemistry , University of Eastern Finland , P.O. Box 111, FI-801101 Joensuu , Finland
| | - Juha Rouvinen
- Department of Chemistry , University of Eastern Finland , P.O. Box 111, FI-801101 Joensuu , Finland
| | - Janne Jänis
- Department of Chemistry , University of Eastern Finland , P.O. Box 111, FI-801101 Joensuu , Finland
| |
Collapse
|
44
|
Hanozin E, Morsa D, De Pauw E. Two-Parameter Power Formalism for Structural Screening of Ion Mobility Trends: Applied Study on Artificial Molecular Switches. J Phys Chem A 2019; 123:8043-8052. [PMID: 31449411 DOI: 10.1021/acs.jpca.9b06121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent literature provides increasing samples of structural studies relying on ion mobility coupled to mass spectrometry in view of characterizing gas-phase conformation and energetics properties of biomolecular ions. A typical framework consists in experimentally monitoring the collisional cross sections for various experimental conditions and using them as references to select appropriate candidate structures issued from theoretical modeling. Although it has proved successful for structural assignment, this process is resource costly and lengthy, namely due to intricacies in the selection of appropriate input geometries. In the present work, we propose simplified methodologies dedicated to the systematic screening of ion mobility data acquired on systems built from repetitive subunits and detail their application to challenging artificial molecular switch systems. Capitalizing on coarse-grained design, we first demonstrate how the assimilation of subunits into adequately assembled building-blocks can be used for fast assignments of a system topology. Further focusing on topology-specific differential ion mobility trends, we show that the building-block assemblies can be fused into single fully convex solid figure models, i.e., sphere and cylinder, whose projected areas follow a two-parameter power formalism A × nB. We show that the fitting parameters A and B were assigned as structural descriptors respectively associated with the dimensions of each constitutive subunit, i.e., size parameter, and with their assembled tridimensional arrangement, i.e., shape parameter. The present work provides a ready-to-use method for the screening of IM-MS data sets that is expected to facilitate the eventual design of input structures whenever advanced modeling calculations are required.
Collapse
Affiliation(s)
- Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit , University of Liège , 4000 Liège , Belgium
| | - Denis Morsa
- Mass Spectrometry Laboratory, MolSys Research Unit , University of Liège , 4000 Liège , Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit , University of Liège , 4000 Liège , Belgium
| |
Collapse
|
45
|
Wojcik R, Nagy G, Attah IK, Webb IK, Garimella SVB, Weitz KK, Hollerbach A, Monroe ME, Ligare MR, Nielson FF, Norheim RV, Renslow RS, Metz TO, Ibrahim YM, Smith RD. SLIM Ultrahigh Resolution Ion Mobility Spectrometry Separations of Isotopologues and Isotopomers Reveal Mobility Shifts due to Mass Distribution Changes. Anal Chem 2019; 91:11952-11962. [PMID: 31450886 PMCID: PMC7188075 DOI: 10.1021/acs.analchem.9b02808] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report on separations of ion isotopologues and isotopomers using ultrahigh-resolution traveling wave-based Structures for Lossless Ion Manipulations with serpentine ultralong path and extended routing ion mobility spectrometry coupled to mass spectrometry (SLIM SUPER IMS-MS). Mobility separations of ions from the naturally occurring ion isotopic envelopes (e.g., [M], [M+1], [M+2], ... ions) showed the first and second isotopic peaks (i.e., [M+1] and [M+2]) for various tetraalkylammonium ions could be resolved from their respective monoisotopic ion peak ([M]) after SLIM SUPER IMS with resolving powers of ∼400-600. Similar separations were obtained for other compounds (e.g., tetrapeptide ions). Greater separation was obtained using argon versus helium drift gas, as expected from the greater reduced mass contribution to ion mobility described by the Mason-Schamp relationship. To more directly explore the role of isotopic substitutions, we studied a mixture of specific isotopically substituted (15N, 13C, and 2H) protonated arginine isotopologues. While the separations in nitrogen were primarily due to their reduced mass differences, similar to the naturally occurring isotopologues, their separations in helium, where higher resolving powers could also be achieved, revealed distinct additional relative mobility shifts. These shifts appeared correlated, after correction for the reduced mass contribution, with changes in the ion center of mass due to the different locations of heavy atom substitutions. The origin of these apparent mass distribution-induced mobility shifts was then further explored using a mixture of Iodoacetyl Tandem Mass Tag (iodoTMT) isotopomers (i.e., each having the same exact mass, but with different isotopic substitution sites). Again, the observed mobility shifts appeared correlated with changes in the ion center of mass leading to multiple monoisotopic mobilities being observed for some isotopomers (up to a ∼0.04% difference in mobility). These mobility shifts thus appear to reflect details of the ion structure, derived from the changes due to ion rotation impacting collision frequency or momentum transfer, and highlight the potential for new approaches for ion structural characterization.
Collapse
Affiliation(s)
- Roza Wojcik
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Isaac. K. Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ian K. Webb
- Department of Chemistry, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Adam Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Marshall R. Ligare
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Felicity F. Nielson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Randolph V. Norheim
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ryan S. Renslow
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
46
|
Seffernick J, Harvey SR, Wysocki VH, Lindert S. Predicting Protein Complex Structure from Surface-Induced Dissociation Mass Spectrometry Data. ACS CENTRAL SCIENCE 2019; 5:1330-1341. [PMID: 31482115 PMCID: PMC6716128 DOI: 10.1021/acscentsci.8b00912] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Indexed: 05/23/2023]
Abstract
Recently, mass spectrometry (MS) has become a viable method for elucidation of protein structure. Surface-induced dissociation (SID), colliding multiply charged protein complexes or other ions with a surface, has been paired with native MS to provide useful structural information such as connectivity and topology for many different protein complexes. We recently showed that SID gives information not only on connectivity and topology but also on relative interface strengths. However, SID has not yet been coupled with computational structure prediction methods that could use the sparse information from SID to improve the prediction of quaternary structures, i.e., how protein subunits interact with each other to form complexes. Protein-protein docking, a computational method to predict the quaternary structure of protein complexes, can be used in combination with subunit structures from X-ray crystallography and NMR in situations where it is difficult to obtain an experimental structure of an entire complex. While de novo structure prediction can be successful, many studies have shown that inclusion of experimental data can greatly increase prediction accuracy. In this study, we show that the appearance energy (AE, defined as 10% fragmentation) extracted from SID can be used in combination with Rosetta to successfully evaluate protein-protein docking poses. We developed an improved model to predict measured SID AEs and incorporated this model into a scoring function that combines the RosettaDock scoring function with a novel SID scoring term, which quantifies agreement between experiments and structures generated from RosettaDock. As a proof of principle, we tested the effectiveness of these restraints on 57 systems using ideal SID AE data (AE determined from crystal structures using the predictive model). When theoretical AEs were used, the RMSD of the selected structure improved or stayed the same in 95% of cases. When experimental SID data were incorporated on a different set of systems, the method predicted near-native structures (less than 2 Å root-mean-square deviation, RMSD, from native) for 6/9 tested cases, while unrestrained RosettaDock (without SID data) only predicted 3/9 such cases. Score versus RMSD funnel profiles were also improved when SID data were included. Additionally, we developed a confidence measure to evaluate predicted model quality in the absence of a crystal structure.
Collapse
|
47
|
Syntychaki A, Rima L, Schmidli C, Stohler T, Bieri A, Sütterlin R, Stahlberg H, Castaño-Díez D, Braun T. "Differential Visual Proteomics": Enabling the Proteome-Wide Comparison of Protein Structures of Single-Cells. J Proteome Res 2019; 18:3521-3531. [PMID: 31355640 DOI: 10.1021/acs.jproteome.9b00447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are involved in all tasks of life, and their characterization is essential to understand the underlying mechanisms of biological processes. We present a method called "differential visual proteomics" geared to study proteome-wide structural changes of proteins and protein-complexes between a disturbed and an undisturbed cell or between two cell populations. To implement this method, the cells are lysed and the lysate is prepared in a lossless manner for single-particle electron microscopy (EM). The samples are subsequently imaged in the EM. Individual particles are computationally extracted from the images and pooled together, while keeping track of which particle originated from which specimen. The extracted particles are then aligned and classified. A final quantitative analysis of the particle classes found identifies the particle structures that differ between positive and negative control samples. The algorithm and a graphical user interface developed to perform the analysis and to visualize the results were tested with simulated and experimental data. The results are presented, and the potential and limitations of the current implementation are discussed. We envisage the method as a tool for the untargeted profiling of the structural changes in the proteome of single-cells as a response to a disturbing force.
Collapse
Affiliation(s)
- Anastasia Syntychaki
- Center for Cellular Imaging and NanoAnalytics, Biozentrum , University of Basel , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Luca Rima
- Center for Cellular Imaging and NanoAnalytics, Biozentrum , University of Basel , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Claudio Schmidli
- Center for Cellular Imaging and NanoAnalytics, Biozentrum , University of Basel , Mattenstrasse 26 , 4058 Basel , Switzerland.,Swiss Nanoscience Institute , University of Basel , 4056 Basel , Switzerland
| | - Thomas Stohler
- Center for Cellular Imaging and NanoAnalytics, Biozentrum , University of Basel , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Andrej Bieri
- Center for Cellular Imaging and NanoAnalytics, Biozentrum , University of Basel , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Rosmarie Sütterlin
- Center for Cellular Imaging and NanoAnalytics, Biozentrum , University of Basel , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum , University of Basel , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Daniel Castaño-Díez
- Center for Cellular Imaging and NanoAnalytics, Biozentrum , University of Basel , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Thomas Braun
- Center for Cellular Imaging and NanoAnalytics, Biozentrum , University of Basel , Mattenstrasse 26 , 4058 Basel , Switzerland
| |
Collapse
|
48
|
Leney AC. Subunit pI Can Influence Protein Complex Dissociation Characteristics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1389-1395. [PMID: 31077092 PMCID: PMC6669198 DOI: 10.1007/s13361-019-02198-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
Mass spectrometry is frequently used to determine protein complex topology. By combining in-solution and gas-phase dissociation measurements, information can be indirectly inferred about the original composition of the protein complex. Although the mechanisms behind gas-phase complex dissociation are becoming more established, protein complex dissociation is not always predictable. Here, we looked into the effect of the protein subunits pI on complex dissociation. We chose two structurally similar, hexameric protein complexes that consist of a ring of alternating alpha and beta subunits. For one complex, allophycocyanin, the alpha and beta subunits are structurally similar, almost identical in mass, but have distinct pIs. In contrast, the other complex, phycoerythrin, is structural similar to allophycocyanin, yet the subunits have identical pIs. As predicted based on the structural arrangement, dissociation of phycoerythrin resulted in the observation of both the alpha and beta monomeric subunits in the mass spectrometer. However, for allophycocyanin, the results differed dramatically, with only the alpha monomeric subunit being detected upon gas-phase dissociation. Together, the results highlighted the importance of considering the isoelectric points of individual subunits within a protein complex when using tandem mass spectrometry data to elucidate protein complex topology.
Collapse
Affiliation(s)
- Aneika C Leney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
49
|
Schachner LF, Ives AN, McGee JP, Melani RD, Kafader JO, Compton PD, Patrie SM, Kelleher NL. Standard Proteoforms and Their Complexes for Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1190-1198. [PMID: 30963455 PMCID: PMC6592724 DOI: 10.1007/s13361-019-02191-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 05/09/2023]
Abstract
Native mass spectrometry (nMS) is a technique growing at the interface of analytical chemistry, structural biology, and proteomics that enables the detection and partial characterization of non-covalent protein assemblies. Currently, the standardization and dissemination of nMS is hampered by technical challenges associated with instrument operation, benchmarking, and optimization over time. Here, we provide a standard operating procedure for acquiring high-quality native mass spectra of 30-300 kDa proteins using an Orbitrap mass spectrometer. By describing reproducible sample preparation, loading, ionization, and nMS analysis, we forward two proteoforms and three complexes as possible standards to advance training and longitudinal assessment of instrument performance. Spectral data for five standards can guide assessment of instrument parameters, data production, and data analysis. By introducing this set of standards and protocols, we aim to help normalize native mass spectrometry practices across labs and provide benchmarks for reproducibility and high-quality data production in the years ahead. Graphical abstract.
Collapse
Affiliation(s)
- Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Ashley N Ives
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - John P McGee
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Steven M Patrie
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA.
| |
Collapse
|
50
|
Greisch JF, Tamara S, Scheltema RA, Maxwell HWR, Fagerlund RD, Fineran PC, Tetter S, Hilvert D, Heck AJR. Expanding the mass range for UVPD-based native top-down mass spectrometry. Chem Sci 2019; 10:7163-7171. [PMID: 31588283 PMCID: PMC6764275 DOI: 10.1039/c9sc01857c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Native top-down proteomics using UVPD extended to mega Dalton protein assemblies.
Native top-down mass spectrometry is emerging as a methodology that can be used to structurally investigate protein assemblies. To extend the possibilities of native top-down mass spectrometry to larger and more heterogeneous biomolecular assemblies, advances in both the mass analyzer and applied fragmentation techniques are still essential. Here, we explore ultraviolet photodissociation (UVPD) of protein assemblies on an Orbitrap with extended mass range, expanding its usage to large and heterogeneous macromolecular complexes, reaching masses above 1 million Da. We demonstrate that UVPD can lead not only to the ejection of intact subunits directly from such large intact complexes, but also to backbone fragmentation of these subunits, providing enough sequence information for subunit identification. The Orbitrap mass analyzer enables simultaneous monitoring of the precursor, the subunits, and the subunit fragments formed upon UVPD activation. While only partial sequence coverage of the subunits is observed, the UVPD data yields information about the localization of chromophores covalently attached to the subunits of the light harvesting complex B-phycoerythrin, extensive backbone fragmentation in a subunit of a CRISPR-Cas Csy (type I–F Cascade) complex, and sequence modifications in a virus-like proteinaceous nano-container. Through these multiple applications we demonstrate for the first time that UVPD based native top-down mass spectrometry is feasible for large and heterogeneous particles, including ribonucleoprotein complexes and MDa virus-like particles.
Collapse
Affiliation(s)
- Jean-François Greisch
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 Utrecht , The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 Utrecht , The Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 Utrecht , The Netherlands
| | - Howard W R Maxwell
- Department of Microbiology and Immunology , University of Otago , PO Box 56 , 9054 Dunedin , New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology , University of Otago , PO Box 56 , 9054 Dunedin , New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology , University of Otago , PO Box 56 , 9054 Dunedin , New Zealand
| | - Stephan Tetter
- Laboratory of Organic Chemistry , Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry , Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 Utrecht , The Netherlands
| |
Collapse
|