1
|
Fremlén H, Burmann BM. Maintaining the Integral Membrane Proteome: Revisiting the Functional Repertoire of Integral Membrane Proteases. Chembiochem 2025; 26:e202500048. [PMID: 40056010 PMCID: PMC12067869 DOI: 10.1002/cbic.202500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Cells in all kingdoms of life employ dedicated protein quality control machineries for both their cytosolic and membrane proteome ensuring cellular functionality. These crucial systems consist besides a large variety of molecular chaperones, ensuring a proper fold and consequently function of the client's proteome, of several proteases to clean out damaged, unfunctional and potentially toxic proteins. One of the key features underlying the functional cycle of these quality control systems is the inherent flexibility of their bound clients which for a long time impaired detailed structural characterization, with advanced high-resolution NMR spectroscopy in the last decade playing a key role contributing to the present understanding of their functional properties. Although these studies laid the foundation of the present knowledge of the mechanistic details of the maintenance of cytosolic proteins, the understanding of related systems employed for membrane associated as well as integral membrane proteins remains rather sparse to date. Herein, we review the crucial contributions of structural and dynamical biology approaches, possessing the power to resolve both structure and dynamics of such systems as well as enabling the elucidation of the functional repertoire of multimeric proteases involved in maintaining a functional membrane proteome.
Collapse
Affiliation(s)
- Hannah Fremlén
- Department of Chemistry and Molecular BiologyWallenberg Centre for Molecular and Translational MedicineUniversity of Gothenburg405 30GöteborgSweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular BiologyWallenberg Centre for Molecular and Translational MedicineScience for Life LaboratorySwedish NMR CentreUniversity of Gothenburg405 30GöteborgSweden
| |
Collapse
|
2
|
da Fonseca FG, Serufo ÂV, Leão TL, Lourenço KL. Viral Infections and Their Ability to Modulate Endoplasmic Reticulum Stress Response Pathways. Viruses 2024; 16:1555. [PMID: 39459886 PMCID: PMC11512299 DOI: 10.3390/v16101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum is particularly important in post-translational modification of proteins before they are released extracellularly or sent to another endomembrane system. The correct three-dimensional folding of most proteins occurs in the ER lumen, which has an oxidative environment that is essential for the formation of disulfide bridges, which are important in maintaining protein structure. The ER is a versatile organelle that ensures the correct structure of proteins and is essential in the synthesis of lipids and sterols, in addition to offering support in the maintenance of intracellular calcium. Consequently, the cells needed to respond to demands caused by physiological conditions and pathological disturbances in the organelle homeostasis, leading to proper functioning of the cell or even programmed cell death. Disturbances to the ER function trigger a response to the accumulation of unfolded or misfolded proteins, known as the unfolded protein response. Such disturbances include abiotic stress, pharmacological agents, and intracellular pathogens, such as viruses. When misfolded proteins accumulate in the ER, they can undergo ubiquitination and proteasomal degradation through components of the ER-associated degradation system. Once a prolonged activity of the UPR pathway occurs, indicating that homeostasis cannot be reestablished, components of this pathway induce cell death by apoptosis. Here, we discuss how viruses have evolved ways to counteract UPR responses to maximize replication. This evolutionary viral ability is important to understand cell pathology and should be taken into account when designing therapeutic interventions and vaccines.
Collapse
Affiliation(s)
- Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.G.d.F.); (T.L.L.)
| | - Ângela Vieira Serufo
- CT Terapias Avançacadas e Inovadoras, CTERAPIAS, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Thiago Lima Leão
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.G.d.F.); (T.L.L.)
| | - Karine Lima Lourenço
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.G.d.F.); (T.L.L.)
| |
Collapse
|
3
|
Gao J, Zhang YW. The Pathway of a Transmembrane Helix Insertion into the Membrane Assisted by Sec61α Channel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16454-16462. [PMID: 39046853 DOI: 10.1021/acs.langmuir.4c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The significant inconsistency between the experimental and simulation results of the free energy for the translocon-assisted insertion of the transmembrane helix (TMH) has not been reasonably explained. Understanding the mechanism of TMH insertion through the translocon is the key to solving this problem. In this study, we performed a series of coarse-grained molecular dynamics simulations and calculated the potential mean forces (PMFs) for three insertion processes of a hydrophobic TMH. The simulations reveal the pathway of the TMH insertion assisted by a translocon. The results indicate that the TMH contacts the top of the lateral gate first and then inserts down the lateral gate, which agrees with the sliding model. The TMH begins to transfer laterally to the bilayer when it is blocked by the plug and reaches the exit of the lateral gate, where there is a free energy minimum point. We also found that the connecting section between TM2 and TM3 of Sec61α prevented TMH from leaving the lateral gate and directly transitioning to the surface-bound state. These findings provide insight into the mechanism of the insertion of TMH through the translocon.
Collapse
Affiliation(s)
- Jian Gao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
4
|
Chamness LM, Kuntz CP, McKee AG, Penn WD, Hemmerich CM, Rusch DB, Woods H, Dyotima, Meiler J, Schlebach JP. Divergent folding-mediated epistasis among unstable membrane protein variants. eLife 2024; 12:RP92406. [PMID: 39078397 PMCID: PMC11288631 DOI: 10.7554/elife.92406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency. Though protein stability is known to shape evolution, it is unclear how cotranslational folding constraints modulate the synergistic, epistatic interactions between mutations. We therefore compared the pairwise interactions formed by mutations that disrupt the membrane topology (V276T) or tertiary structure (W107A) of GnRHR. Using deep mutational scanning, we evaluated how the plasma membrane expression of these variants is modified by hundreds of secondary mutations. An analysis of 251 mutants in three genetic backgrounds reveals that V276T and W107A form distinct epistatic interactions that depend on both the severity and the mechanism of destabilization. V276T forms predominantly negative epistatic interactions with destabilizing mutations in soluble loops. In contrast, W107A forms positive interactions with mutations in both loops and transmembrane domains that reflect the diminishing impacts of the destabilizing mutations in variants that are already unstable. These findings reveal how epistasis is remodeled by conformational defects in membrane proteins and in unstable proteins more generally.
Collapse
Affiliation(s)
- Laura M Chamness
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | - Charles P Kuntz
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue UniversityWest LafayetteUnited States
| | - Andrew G McKee
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | - Wesley D Penn
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | | | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana UniversityBloomingtonUnited States
| | - Hope Woods
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
- Chemical and Physical Biology Program, Vanderbilt UniversityNashvilleUnited States
| | - Dyotima
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
- Institute for Drug Discovery, Leipzig UniversityLeipzigGermany
| | - Jonathan P Schlebach
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue UniversityWest LafayetteUnited States
| |
Collapse
|
5
|
Esposito S, Zollo I, Villella VR, Scialò F, Giordano S, Esposito MV, Salemme N, Di Domenico C, Cernera G, Zarrilli F, Castaldo G, Amato F. Identification of an ultra-rare Alu insertion in the CFTR gene: Pitfalls and challenges in genetic test interpretation. Clin Chim Acta 2024; 558:118317. [PMID: 38580140 DOI: 10.1016/j.cca.2024.118317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Cystic fibrosis (CF) is a life-limiting genetic disorder characterized by defective chloride ion transport due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Early detection through newborn screening programs significantly improves outcomes for individuals with CF by enabling timely intervention. Here, we report the identification of an Alu element insertion within the exon 15 of CFTR gene, initially overlooked in standard next-generation sequencing analyses. However, using traditional molecular techniques, based on polymerase chain reaction and Sanger sequencing, allowed the identification of the Alu element and the reporting of a correct diagnosis. Our analysis, based on bioinformatics tools and molecular techniques, revealed that the Alu element insertion severely affects the gene expression, splicing patterns, and structure of CFTR protein. In conclusion, this study emphasizes the importance of how the integration of human expertise and modern technologies represents a pivotal step forward in genomic medicine, ensuring the delivery of precision healthcare to individuals affected by genetic diseases.
Collapse
Affiliation(s)
- Speranza Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Immacolata Zollo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Valeria Rachela Villella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Filippo Scialò
- CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy; Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sonia Giordano
- AORN Ospedali dei Colli-Monaldi-Cotugno-CTO, Naples, Italy
| | | | - Nunzia Salemme
- San Giuseppe and Melorio Hospital, Santa Maria Capua Vetere, Caserta, Italy
| | | | - Gustavo Cernera
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Federica Zarrilli
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy.
| |
Collapse
|
6
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. Mol Cell 2024; 84:1101-1119.e9. [PMID: 38428433 DOI: 10.1016/j.molcel.2024.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA.
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
7
|
Chamness LM, Kuntz CP, McKee AG, Penn WD, Hemmerich CM, Rusch DB, Woods H, Dyotima, Meiler J, Schlebach JP. Divergent Folding-Mediated Epistasis Among Unstable Membrane Protein Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.25.554866. [PMID: 37662415 PMCID: PMC10473758 DOI: 10.1101/2023.08.25.554866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency. Though protein stability is known to shape evolution, it is unclear how cotranslational folding constraints modulate the synergistic, epistatic interactions between mutations. We therefore compared the pairwise interactions formed by mutations that disrupt the membrane topology (V276T) or tertiary structure (W107A) of GnRHR. Using deep mutational scanning, we evaluated how the plasma membrane expression of these variants is modified by hundreds of secondary mutations. An analysis of 251 mutants in three genetic backgrounds reveals that V276T and W107A form distinct epistatic interactions that depend on both the severity and the mechanism of destabilization. V276T forms predominantly negative epistatic interactions with destabilizing mutations in soluble loops. In contrast, W107A forms positive interactions with mutations in both loops and transmembrane domains that reflect the diminishing impacts of the destabilizing mutations in variants that are already unstable. These findings reveal how epistasis is remodeled by conformational defects in membrane proteins and in unstable proteins more generally.
Collapse
Affiliation(s)
- Laura M. Chamness
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Charles P. Kuntz
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Andrew G. McKee
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Wesley D. Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | | | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Hope Woods
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Dyotima
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Institute for Drug Discovery, Leipzig University, Leipzig, SAC, Germany
| | - Jonathan P. Schlebach
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
8
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553624. [PMID: 37645817 PMCID: PMC10462106 DOI: 10.1101/2023.08.16.553624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mitochondrial outer membrane α-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse substrates remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse α-helical substrates reveals that these components are organized into distinct targeting pathways which act on substrates based on their topology. NAC is required for efficient targeting of polytopic proteins whereas signal-anchored proteins require TTC1, a novel cytosolic chaperone which physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taylor A. Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J. Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K. Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Reuben A. Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rebecca M. Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge 02142, MA
| |
Collapse
|
10
|
Guna A, Hazu M, Pinton Tomaleri G, Voorhees RM. A TAle of Two Pathways: Tail-Anchored Protein Insertion at the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:a041252. [PMID: 36041783 PMCID: PMC9979854 DOI: 10.1101/cshperspect.a041252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tail-anchored (TA) proteins are an essential class of integral membrane proteins required for many aspects of cellular physiology. TA proteins contain a single carboxy-terminal transmembrane domain that must be post-translationally recognized, guided to, and ultimately inserted into the correct cellular compartment. The majority of TA proteins begin their biogenesis in the endoplasmic reticulum (ER) and utilize two parallel strategies for targeting and insertion: the guided-entry of tail-anchored proteins (GET) and ER-membrane protein complex (EMC) pathways. Here we focus on how these two sets of machinery target, transfer, and insert TAs into the lipid bilayer in close collaboration with quality control machinery. Additionally, we highlight the unifying features of the insertion process as revealed by recent structures of the GET and EMC membrane protein complexes.
Collapse
Affiliation(s)
- Alina Guna
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
11
|
Sun S, Li X, Mariappan M. Signal sequences encode information for protein folding in the endoplasmic reticulum. J Cell Biol 2023; 222:213733. [PMID: 36459117 PMCID: PMC9723807 DOI: 10.1083/jcb.202203070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
One-third of newly synthesized proteins in mammals are translocated into the endoplasmic reticulum (ER) through the Sec61 translocon. How protein translocation coordinates with chaperone availability in the ER to promote protein folding remains unclear. We find that marginally hydrophobic signal sequences and transmembrane domains cause transient retention at the Sec61 translocon and require the luminal BiP chaperone for efficient protein translocation. Using a substrate-trapping proteomic approach, we identify that nascent proteins bearing marginally hydrophobic signal sequences accumulate on the cytosolic side of the Sec61 translocon. Sec63 is co-translationally recruited to the translocation site and mediates BiP binding to incoming polypeptides. BiP binding not only releases translocationally paused nascent chains but also ensures protein folding in the ER. Increasing hydrophobicity of signal sequences bypasses Sec63/BiP-dependent translocation, but translocated proteins are prone to misfold and aggregate in the ER under limited BiP availability. Thus, the signal sequence-guided protein folding may explain why signal sequences are diverse and use multiple protein translocation pathways.
Collapse
Affiliation(s)
- Sha Sun
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| | - Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| |
Collapse
|
12
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Thoma J, Burmann BM. Architects of their own environment: How membrane proteins shape the Gram-negative cell envelope. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:1-34. [PMID: 35034716 DOI: 10.1016/bs.apcsb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gram-negative bacteria are surrounded by a complex multilayered cell envelope, consisting of an inner and an outer membrane, and separated by the aqueous periplasm, which contains a thin peptidoglycan cell wall. These bacteria employ an arsenal of highly specialized membrane protein machineries to ensure the correct assembly and maintenance of the membranes forming the cell envelope. Here, we review the diverse protein systems, which perform these functions in Escherichia coli, such as the folding and insertion of membrane proteins, the transport of lipoproteins and lipopolysaccharide within the cell envelope, the targeting of phospholipids, and the regulation of mistargeted envelope components. Some of these protein machineries have been known for a long time, yet still hold surprises. Others have only recently been described and some are still missing pieces or yet remain to be discovered.
Collapse
Affiliation(s)
- Johannes Thoma
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
14
|
Pal S, Chattopadhyay A. Hydration Dynamics in Biological Membranes: Emerging Applications of Terahertz Spectroscopy. J Phys Chem Lett 2021; 12:9697-9709. [PMID: 34590862 DOI: 10.1021/acs.jpclett.1c02576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water drives the spontaneous self-assembly of lipids and proteins into quasi two-dimensional biological membranes that act as catalytic scaffolds for numerous processes central to life. However, the functional relevance of hydration in membrane biology is only beginning to be addressed, predominantly because of challenges associated with direct measurements of hydration microstructure and dynamics in a biological milieu. Our recent work on the novel interplay of membrane electrostatics and crowding in shaping membrane hydration dynamics utilizing terahertz (THz) spectroscopy represents an important step in this context. In this Perspective, we provide a glimpse into the ever-broadening functional landscape of hydration dynamics in biological membranes in the backdrop of the unique physical chemistry of water molecules. We further highlight the immense (and largely untapped) potential of the THz toolbox in addressing contemporary problems in membrane biology, while emphasizing the adaptability of the analytical framework reported recently by us to such studies.
Collapse
Affiliation(s)
- Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
15
|
Principles and Methods in Computational Membrane Protein Design. J Mol Biol 2021; 433:167154. [PMID: 34271008 DOI: 10.1016/j.jmb.2021.167154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/13/2023]
Abstract
After decades of progress in computational protein design, the design of proteins folding and functioning in lipid membranes appears today as the next frontier. Some notable successes in the de novo design of simplified model membrane protein systems have helped articulate fundamental principles of protein folding, architecture and interaction in the hydrophobic lipid environment. These principles are reviewed here, together with the computational methods and approaches that were used to identify them. We provide an overview of the methodological innovations in the generation of new protein structures and functions and in the development of membrane-specific energy functions. We highlight the opportunities offered by new machine learning approaches applied to protein design, and by new experimental characterization techniques applied to membrane proteins. Although membrane protein design is in its infancy, it appears more reachable than previously thought.
Collapse
|
16
|
Isothermal Titration Calorimetry of Membrane Proteins. Methods Mol Biol 2021. [PMID: 33877623 DOI: 10.1007/978-1-0716-1394-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The ability to quantify protein-protein interactions without adding labels to protein has made isothermal titration calorimetry (ITC) a preferred technique to study proteins in aqueous solution. Here, we describe the application of ITC to the study of protein-protein interactions in membrane mimics using the association of integrin αIIb and β3 transmembrane domains in phospholipid bicelles as an example. A higher conceptual and experimental effort compared to water-soluble proteins is required for membrane proteins and rewarded with rare thermodynamic insight into this central class of proteins.
Collapse
|
17
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Letter to the Editor: Distanced Inspiration from the Career of Stephen H. White. J Membr Biol 2020; 254:1-3. [PMID: 33097980 DOI: 10.1007/s00232-020-00146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
|
19
|
Domański J, Sansom MSP, Stansfeld PJ, Best RB. Atomistic mechanism of transmembrane helix association. PLoS Comput Biol 2020; 16:e1007919. [PMID: 32497094 PMCID: PMC7272003 DOI: 10.1371/journal.pcbi.1007919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 01/21/2023] Open
Abstract
Transmembrane helix association is a fundamental step in the folding of helical membrane proteins. The prototypical example of this association is formation of the glycophorin dimer. While its structure and stability have been well-characterized experimentally, the detailed assembly mechanism is harder to obtain. Here, we use all-atom simulations within phospholipid membrane to study glycophorin association. We find that initial association results in the formation of a non-native intermediate, separated by a significant free energy barrier from the dimer with a native binding interface. We have used transition-path sampling to determine the association mechanism. We find that the mechanism of the initial bimolecular association to form the intermediate state can be mediated by many possible contacts, but seems to be particularly favoured by formation of non-native contacts between the C-termini of the two helices. On the other hand, the contacts which are key to determining progression from the intermediate to the native state are those which define the native binding interface, reminiscent of the role played by native contacts in determining folding of globular proteins. As a check on the simulations, we have computed association and dissociation rates from the transition-path sampling. We obtain results in reasonable accord with available experimental data, after correcting for differences in native state stability. Our results yield an atomistic description of the mechanism for a simple prototype of helical membrane protein folding. Many important cellular functions are performed by membrane proteins, and in particular by association of proteins via transmembrane helices. However, the mechanism of how the helices associate has been challenging to study, by either experiment or simulation. Here, we use advanced molecular simulation methods to overcome the slow time scales involved in helix association and dissociation and obtain a view of the association mechanism in atomic detail. We show that association occurs via an initially non-native dimer, before proceeding to the native state, and we validate our results by comparison to available experimental kinetic data. Our methods will also aid in the study of the assembly mechanism of larger transmembrane proteins via molecular simulation.
Collapse
Affiliation(s)
- Jan Domański
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Choi HK, Min D, Kang H, Shon MJ, Rah SH, Kim HC, Jeong H, Choi HJ, Bowie JU, Yoon TY. Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway. Science 2020; 366:1150-1156. [PMID: 31780561 DOI: 10.1126/science.aaw8208] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/30/2019] [Accepted: 11/05/2019] [Indexed: 02/03/2023]
Abstract
To understand membrane protein biogenesis, we need to explore folding within a bilayer context. Here, we describe a single-molecule force microscopy technique that monitors the folding of helical membrane proteins in vesicle and bicelle environments. After completely unfolding the protein at high force, we lower the force to initiate folding while transmembrane helices are aligned in a zigzag manner within the bilayer, thereby imposing minimal constraints on folding. We used the approach to characterize the folding pathways of the Escherichia coli rhomboid protease GlpG and the human β2-adrenergic receptor. Despite their evolutionary distance, both proteins fold in a strict N-to-C-terminal fashion, accruing structures in units of helical hairpins. These common features suggest that integral helical membrane proteins have evolved to maximize their fitness with cotranslational folding.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Duyoung Min
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Hyunook Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Min Ju Shon
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Sang-Hyun Rah
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Hak Chan Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hawoong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hee-Jung Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| | - James U Bowie
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Tae-Young Yoon
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea. .,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
21
|
Niesen MJM, Zimmer MH, Miller TF. Dynamics of Co-translational Membrane Protein Integration and Translocation via the Sec Translocon. J Am Chem Soc 2020; 142:5449-5460. [PMID: 32130863 PMCID: PMC7338273 DOI: 10.1021/jacs.9b07820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An important aspect of cellular function is the correct targeting and delivery of newly synthesized proteins. Central to this task is the machinery of the Sec translocon, a transmembrane channel that is involved in both the translocation of nascent proteins across cell membranes and the integration of proteins into the membrane. Considerable experimental and computational effort has focused on the Sec translocon and its role in nascent protein biosynthesis, including the correct folding and expression of integral membrane proteins. However, the use of molecular simulation methods to explore Sec-facilitated protein biosynthesis is hindered by the large system sizes and long (i.e., minute) time scales involved. In this work, we describe the development and application of a coarse-grained simulation approach that addresses these challenges and allows for direct comparison with both in vivo and in vitro experiments. The method reproduces a wide range of experimental observations, providing new insights into the underlying molecular mechanisms, predictions for new experiments, and a strategy for the rational enhancement of membrane protein expression levels.
Collapse
Affiliation(s)
- Michiel J M Niesen
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Matthew H Zimmer
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F Miller
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
22
|
Penn WD, McKee AG, Kuntz CP, Woods H, Nash V, Gruenhagen TC, Roushar FJ, Chandak M, Hemmerich C, Rusch DB, Meiler J, Schlebach JP. Probing biophysical sequence constraints within the transmembrane domains of rhodopsin by deep mutational scanning. SCIENCE ADVANCES 2020; 6:eaay7505. [PMID: 32181350 PMCID: PMC7056298 DOI: 10.1126/sciadv.aay7505] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/11/2019] [Indexed: 05/15/2023]
Abstract
Membrane proteins must balance the sequence constraints associated with folding and function against the hydrophobicity required for solvation within the bilayer. We recently found the expression and maturation of rhodopsin are limited by the hydrophobicity of its seventh transmembrane domain (TM7), which contains polar residues that are essential for function. On the basis of these observations, we hypothesized that rhodopsin's expression should be less tolerant of mutations in TM7 relative to those within hydrophobic TM domains. To test this hypothesis, we used deep mutational scanning to compare the effects of 808 missense mutations on the plasma membrane expression of rhodopsin in HEK293T cells. Our results confirm that a higher proportion of mutations within TM7 (37%) decrease rhodopsin's plasma membrane expression relative to those within a hydrophobic TM domain (TM2, 25%). These results in conjunction with an evolutionary analysis suggest solvation energetics likely restricts the evolutionary sequence space of polar TM domains.
Collapse
Affiliation(s)
- Wesley D. Penn
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Andrew G. McKee
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Charles P. Kuntz
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Hope Woods
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Veronica Nash
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Mahesh Chandak
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Chris Hemmerich
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jonathan P. Schlebach
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
- Corresponding author.
| |
Collapse
|
23
|
Abstract
Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties. An initial set of milestones in de novo protein design focused on the construction of sequences that folded in water and membranes to adopt folded conformations. The first proteins were designed from first-principles using very simple physical models. As computers became more powerful, the use of the rotamer approximation allowed one to discover amino acid sequences that stabilize the desired fold. As the crystallographic database of protein structures expanded in subsequent years, it became possible to construct proteins by assembling short backbone fragments that frequently recur in Nature. The second set of milestones in de novo design involves the discovery of complex functions. Proteins have been designed to bind a variety of metals, porphyrins, and other cofactors. The design of proteins that catalyze hydrolysis and oxygen-dependent reactions has progressed significantly. However, de novo design of catalysts for energetically demanding reactions, or even proteins that bind with high affinity and specificity to highly functionalized complex polar molecules remains an importnant challenge that is now being achieved. Finally, the protein design contributed significantly to our understanding of membrane protein folding and transport of ions across membranes. The area of membrane protein design, or more generally of biomimetic polymers that function in mixed or non-aqueous environments, is now becoming increasingly possible.
Collapse
|
24
|
Situ AJ, Ulmer TS. Universal principles of membrane protein assembly, composition and evolution. PLoS One 2019; 14:e0221372. [PMID: 31415673 PMCID: PMC6695178 DOI: 10.1371/journal.pone.0221372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022] Open
Abstract
Structural diversity in α-helical membrane proteins (MP) arises from variations in helix-helix crossings and contacts that may bias amino acid usage. Here, we reveal systematic changes in transmembrane amino acid frequencies (f) as a function of the number of helices (n). For eukarya, breaks in f(n) trends of packing (Ala, Gly and Pro), polar, and hydrophobic residues identify different MP assembly principles for 2≤n≤7, 8≤n≤12 and n≥13. In bacteria, the first f break already occurs after n = 6 in correlation to an earlier n peak in MP size distribution and dominance of packing over polar interactions. In contrast to the later n brackets, the integration levels of helix bundles continuously increased in the first, most populous brackets indicating the formation of single structural units (domains). The larger first bracket of eukarya relates to a balance of polar and packing interactions that enlarges helix-helix combinatorial possibilities (MP diversity). Between the evolutionary old, packing and new, polar residues f anti-correlations extend over all biological taxa, broadly ordering them according to evolutionary history and allowing f estimates for the earliest forms of life. Next to evolutionary history, the amino acid composition of MP is determined by size (n), proteome diversity, and effective amino acid cost.
Collapse
Affiliation(s)
- Alan J. Situ
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Tobias S. Ulmer
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
25
|
Bodensohn US, Simm S, Fischer K, Jäschke M, Groß LE, Kramer K, Ehmann C, Rensing SA, Ladig R, Schleiff E. The intracellular distribution of the components of the GET system in vascular plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1650-1662. [PMID: 31233800 DOI: 10.1016/j.bbamcr.2019.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
The guided entry of tail-anchored proteins (GET) pathway facilitates targeting and insertion of tail-anchored proteins into membranes. In plants, such a protein insertion machinery for the endoplasmic reticulum as well as constituents within mitochondrial and chloroplasts were discovered. Previous phylogenetic analysis revealed that Get3 sequences of Embryophyta form two clades representing cytosolic ("a") and organellar ("bc") GET3 homologs, respectively. Cellular fractionation of Arabidopsis thaliana seedlings and usage of the self-assembly GFP system in protoplasts verified the cytosolic (ATGet3a), plastidic (ATGet3b) and mitochondrial (ATGet3c) localization of the different homologs. The identified plant homologs of Get1 and Get4 in A. thaliana are localized in ER and cytosol, respectively, implicating a degree of conservation of the GET pathway in A. thaliana. Transient expression of Get3 homologs of Solanum lycopersicum, Medicago × varia or Physcomitrella patens with the self-assembly GFP technique in homologous and heterologous systems verified that multiple Get3 homologs with differing subcellular localizations are common in plants. Chloroplast localized Get3 homologs were detected in all tested plant systems. In contrast, mitochondrial localized Get3 homologs were not identified in S. lycopersicum, or P. patens, while we confirmed on the example of A. thaliana proteins that mitochondrial localized Get3 proteins are properly targeted in S. lycopersicum as well.
Collapse
Affiliation(s)
- Uwe S Bodensohn
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Frankfurt Institute of Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany
| | - Ken Fischer
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Michelle Jäschke
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Lucia E Groß
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Katharina Kramer
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Christian Ehmann
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Stefan A Rensing
- Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Roman Ladig
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 15, D-60438 Frankfurt, Germany; Frankfurt Institute of Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany.
| |
Collapse
|
26
|
Coelho JPL, Stahl M, Bloemeke N, Meighen-Berger K, Alvira CP, Zhang ZR, Sieber SA, Feige MJ. A network of chaperones prevents and detects failures in membrane protein lipid bilayer integration. Nat Commun 2019; 10:672. [PMID: 30737405 PMCID: PMC6368539 DOI: 10.1038/s41467-019-08632-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
A fundamental step in membrane protein biogenesis is their integration into the lipid bilayer with a defined orientation of each transmembrane segment. Despite this, it remains unclear how cells detect and handle failures in this process. Here we show that single point mutations in the membrane protein connexin 32 (Cx32), which cause Charcot-Marie-Tooth disease, can cause failures in membrane integration. This leads to Cx32 transport defects and rapid degradation. Our data show that multiple chaperones detect and remedy this aberrant behavior: the ER-membrane complex (EMC) aids in membrane integration of low-hydrophobicity transmembrane segments. If they fail to integrate, these are recognized by the ER-lumenal chaperone BiP. Ultimately, the E3 ligase gp78 ubiquitinates Cx32 proteins, targeting them for degradation. Thus, cells use a coordinated system of chaperones for the complex task of membrane protein biogenesis, which can be compromised by single point mutations, causing human disease.
Collapse
Affiliation(s)
- João P L Coelho
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Matthias Stahl
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Nicolas Bloemeke
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Kevin Meighen-Berger
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Carlos Piedrafita Alvira
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Stephan A Sieber
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Matthias J Feige
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstr. 2a, 85748, Garching, Germany.
| |
Collapse
|
27
|
Lang S, Nguyen D, Pfeffer S, Förster F, Helms V, Zimmermann R. Functions and Mechanisms of the Human Ribosome-Translocon Complex. Subcell Biochem 2019; 93:83-141. [PMID: 31939150 DOI: 10.1007/978-3-030-28151-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane of the endoplasmic reticulum (ER) in human cells harbors the protein translocon, which facilitates membrane insertion and translocation of almost every newly synthesized polypeptide targeted to organelles of the secretory pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins, which are associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, Sec61 channel opening and closing, and modification of precursor polypeptides in transit through the Sec61 complex. Recently, cryoelectron tomography of translocons in native ER membranes has given unprecedented insights into the architecture and dynamics of the native, ribosome-associated translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion or translocation of newly synthesized polypeptides as well as the possible roles of the Sec61 channel as a passive ER calcium leak channel and regulator of ATP/ADP exchange between cytosol and ER.
Collapse
Affiliation(s)
- Sven Lang
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany.
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- ZMBH, 69120, Heidelberg, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany
| |
Collapse
|
28
|
Bañó-Polo M, Baeza-Delgado C, Tamborero S, Hazel A, Grau B, Nilsson I, Whitley P, Gumbart JC, von Heijne G, Mingarro I. Transmembrane but not soluble helices fold inside the ribosome tunnel. Nat Commun 2018; 9:5246. [PMID: 30531789 PMCID: PMC6286305 DOI: 10.1038/s41467-018-07554-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Integral membrane proteins are assembled into the ER membrane via a continuous ribosome-translocon channel. The hydrophobicity and thickness of the core of the membrane bilayer leads to the expectation that transmembrane (TM) segments minimize the cost of harbouring polar polypeptide backbones by adopting a regular pattern of hydrogen bonds to form α-helices before integration. Co-translational folding of nascent chains into an α-helical conformation in the ribosomal tunnel has been demonstrated previously, but the features governing this folding are not well understood. In particular, little is known about what features influence the propensity to acquire α-helical structure in the ribosome. Using in vitro translation of truncated nascent chains trapped within the ribosome tunnel and molecular dynamics simulations, we show that folding in the ribosome is attained for TM helices but not for soluble helices, presumably facilitating SRP (signal recognition particle) recognition and/or a favourable conformation for membrane integration upon translocon entry.
Collapse
Affiliation(s)
- Manuel Bañó-Polo
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100, Burjassot, Spain
| | - Carlos Baeza-Delgado
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100, Burjassot, Spain
| | - Silvia Tamborero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100, Burjassot, Spain
| | - Anthony Hazel
- School of Physics, School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brayan Grau
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100, Burjassot, Spain
| | - IngMarie Nilsson
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Paul Whitley
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath, BA2 7AY, UK
| | - James C Gumbart
- School of Physics, School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ismael Mingarro
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100, Burjassot, Spain.
| |
Collapse
|
29
|
Ulmschneider JP, Smith JC, White SH, Ulmschneider MB. The importance of the membrane interface as the reference state for membrane protein stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2539-2548. [PMID: 30293965 DOI: 10.1016/j.bbamem.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 11/26/2022]
Abstract
The insertion of nascent polypeptide chains into lipid bilayer membranes and the stability of membrane proteins crucially depend on the equilibrium partitioning of polypeptides. For this, the transfer of full sequences of amino-acid residues into the bilayer, rather than individual amino acids, must be understood. Earlier studies have revealed that the most likely reference state for partitioning very hydrophobic sequences is the membrane interface. We have used μs-scale simulations to calculate the interface-to-transmembrane partitioning free energies ΔGS→TM for two hydrophobic carrier sequences in order to estimate the insertion free energy for all 20 amino acid residues when bonded to the center of a partitioning hydrophobic peptide. Our results show that prior single-residue scales likely overestimate the partitioning free energies of polypeptides. The correlation of ΔGS→TM with experimental full-peptide translocon insertion data is high, suggesting an important role for the membrane interface in translocon-based insertion. The choice of carrier sequence greatly modulates the contribution of each single-residue mutation to the overall partitioning free energy. Our results demonstrate the importance of quantifying the observed full-peptide partitioning equilibrium, which is between membrane interface and transmembrane inserted, rather than combining individual water-to-membrane amino acid transfer free energies.
Collapse
Affiliation(s)
- Jakob P Ulmschneider
- School of Physics and Astronomy and the Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
| | - Jeremy C Smith
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Biochemistry & Cellular Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Stephen H White
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA, USA
| | | |
Collapse
|
30
|
Valach M, Léveillé-Kunst A, Gray MW, Burger G. Respiratory chain Complex I of unparalleled divergence in diplonemids. J Biol Chem 2018; 293:16043-16056. [PMID: 30166340 DOI: 10.1074/jbc.ra118.005326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial genes of Euglenozoa (Kinetoplastida, Diplonemea, and Euglenida) are notorious for being barely recognizable, raising the question of whether such divergent genes actually code for functional proteins. Here we demonstrate the translation and identify the function of five previously unassigned y genes encoded by mitochondrial DNA (mtDNA) of diplonemids. As is the rule in diplonemid mitochondria, y genes are fragmented, with gene pieces transcribed separately and then trans-spliced to form contiguous mRNAs. Further, y transcripts undergo massive RNA editing, including uridine insertions that generate up to 16-residue-long phenylalanine tracts, a feature otherwise absent from conserved mitochondrial proteins. By protein sequence analyses, MS, and enzymatic assays in Diplonema papillatum, we show that these y genes encode the subunits Nad2, -3, -4L, -6, and -9 of the respiratory chain Complex I (CI; NADH:ubiquinone oxidoreductase). The few conserved residues of these proteins are essentially those involved in proton pumping across the inner mitochondrial membrane and in coupling ubiquinone reduction to proton pumping (Nad2, -3, -4L, and -6) and in interactions with subunits containing electron-transporting Fe-S clusters (Nad9). Thus, in diplonemids, 10 CI subunits are mtDNA-encoded. Further, MS of D. papillatum CI allowed identification of 26 conventional and 15 putative diplonemid-specific nucleus-encoded components. Most conventional accessory subunits are well-conserved but unusually long, possibly compensating for the streamlined mtDNA-encoded components and for missing, otherwise widely distributed, conventional subunits. Finally, D. papillatum CI predominantly exists as a supercomplex I:III:IV that is exceptionally stable, making this protist an organism of choice for structural studies.
Collapse
Affiliation(s)
- Matus Valach
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| | - Alexandra Léveillé-Kunst
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| | - Michael W Gray
- the Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gertraud Burger
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| |
Collapse
|
31
|
Shirley DJ, Chrom CL, Richards EA, Carone BR, Caputo GA. Antimicrobial activity of a porphyrin binding peptide. Pept Sci (Hoboken) 2018; 110. [PMID: 30637367 DOI: 10.1002/pep2.24074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphiphilic alpha-helices are common motifs used in numerous biological systems including membrane channels/pores and antimicrobial peptides (AMPs), and binding proteins, and a variety of synthetic biomaterials. Previously, an amphiphilic peptide with lysine-containing motifs was shown to reversibly bind the anionic porphyrin meso-Tetra(4-sulfonatophenyl)porphyrin (TPPS4 2-) and promote the formation of excitonically coupled conductive J-aggregates. The work presented here focuses on the use of this amphiphilic peptide and derivatives as a potential antimicrobial agent. AMPs are naturally occurring components of the innate immune system, which selectively target and kill bacteria. Sequence derivatives were synthesized in which the position of the Trp, used as a fluorescence reporter, was changed. Additional variants were synthesized where the hydrophobic amino acids were replaced with Ala to reduce net hydrophobicity or where the cationic Lys residues were replaced with diaminopropionic acid (Dap). All peptide sequences retained the ability to bind TPPS4 2- and promote the formation of J-aggregates. The peptides all exhibited a preference for binding anionic lipid vesicles compared to zwitterionic bilayers. The Trp position did not impact antimicrobial activity, but the substituted peptides exhibited markedly lower efficacy. The Dap-containing peptide was only active against E. coli and P. aeruginosa, while the Ala-substituted peptide was inactive at the concentrations tested. This trend was also evident in bacterial membrane permeabilization. The results indicate that the amphiphilic porphyrin binding peptides can also be used as antimicrobial peptides. The cationic nature is a driver in binding to lipid bilayers, but the overall hydrophobicity is important for antimicrobial activity and membrane disruption.
Collapse
Affiliation(s)
- David J Shirley
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road Glassboro, NJ 08028
| | - Christina L Chrom
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road Glassboro, NJ 08028
| | - Elizabeth A Richards
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road Glassboro, NJ 08028.,Bantivoglio Honors College, Rowan University, 201 Mullica Hill Road Glassboro, NJ 08028
| | - Benjamin R Carone
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Road Glassboro, NJ 08028
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road Glassboro, NJ 08028.,Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Road Glassboro, NJ 08028
| |
Collapse
|
32
|
Ulmschneider JP, Ulmschneider MB. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes. Acc Chem Res 2018; 51:1106-1116. [PMID: 29667836 DOI: 10.1021/acs.accounts.7b00613] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ever since the first molecular mechanics computer simulations of biological molecules became possible, there has been the dream to study all complex biological phenomena in silico, simply bypassing the enormous experimental challenges and their associated costs. For this, two inherent requirements need to be met: First, the time scales achievable in simulations must reach up to the millisecond range and even longer. Second, the computational model must accurately reproduce what is measured experimentally. Despite some recent successes, the general consensus in the field to date has been that neither of these conditions have yet been met and that the dream will be realized, if at all, only in the distant future. In this Account, we show that this view is wrong; instead, we are actually in the middle of the in silico molecular dynamics (MD) revolution, which is reshaping how we think about protein function. The example explored in this Account is a recent advance in the field of membrane-active peptides (MAPs). MD simulations have succeeded in accurately capturing the process of peptide binding, folding, and partitioning into lipid bilayers as well as revealing how channels form spontaneously from polypeptide fragments and conduct ionic and other cargo across membranes, all at atomic resolution. These game-changing advances have been made possible by a combination of steadily advancing computational power, more efficient algorithms and techniques, clever accelerated sampling schemes, and thorough experimental verifications. The great advantage of MD is the spatial and temporal resolution, directly providing a molecular movie of a protein undergoing folding and cycling through a functional process. This is especially important for proteins with transitory functional states, such as pore-forming MAPs. Recent successes are demonstrated here for the large class of antimicrobial peptides (AMPs). These short peptides are an essential part of the nonadaptive immune system for many organisms, ubiquitous in nature, and of particular interest to the pharmaceutical industry in the age of rising bacterial resistance to conventional antibiotic treatments. Unlike integral membrane proteins, AMPs are sufficiently small to allow converged sampling with the unbiased high-temperature sampling methodology outlined here and are relatively easy to handle experimentally. At the same time, AMPs exhibit a wealth of complex and poorly understood interactions with lipid bilayers, which allow not only tuning and validation of the simulation methodology but also advancement of our knowledge of protein-lipid interactions at a fundamental level. Space constraints limit our discussion to AMPs, but the MD methodologies outlined here can be applied to all phenomena involving peptides in membranes, including cell-penetrating peptides, signaling peptides, viral channel forming peptides, and fusion peptides, as well as ab initio membrane protein folding and assembly. For these systems, the promise of MD simulations to predict the structure of channels and to provide complete-atomic-detail trajectories of the mechanistic processes underlying their biological functions appears to rapidly become a reality. The current challenge is to design joint experimental and computational benchmarks to verify and tune MD force fields. With this, MD will finally fulfill its promise to become an inexpensive, powerful, and easy-to-use tool providing atomic-detail insights to researchers as part of their investigations into membrane biophysics and beyond.
Collapse
Affiliation(s)
- Jakob P. Ulmschneider
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | |
Collapse
|
33
|
Marino J, Walser R, Poms M, Zerbe O. Understanding GPCR Recognition and Folding from NMR Studies of Fragments. RSC Adv 2018; 8:9858-9870. [PMID: 29732143 PMCID: PMC5935241 DOI: 10.1039/c8ra01520a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cotranslational protein folding is a vectorial process, and for membrane proteins, N-terminal helical segments are the first that become available for membrane insertion. While structures of many G-protein coupled receptors (GPCRs) in various states have been determined, the details of their folding pathways are largely unknown. The seven transmembrane (TM) helices of GPCRs often contain polar residues within the hydrophobic core, and some of the helices in isolation are predicted to be only marginally stable in a membrane environment. Here we review our efforts to describe how marginally hydrophobic TM helices of GPCRs integrate into the membrane in the absence of all compensating interhelical contacts, ideally capturing early biogenesis events. To this end, we use truncated GPCRs, here referred to as fragments. We present data from the human Y4 and the yeast Ste2p receptors in detergent micelles derived from solution NMR techniques. We find that the secondary structure in the fragments is similar to corresponding parts of the entire receptors. However, uncompensated polar or charged residues destabilize the helices, and prevent proper integration into the lipid bilayer, in agreement with the biophysical scales from Wimley and White for the partitioning of amino acids into the membrane-interior. We observe that the stability and integration of single TM helices is improved by adding neighboring helices. We describe a topology study, in which all possible forms of the Y4 receptor were made so that the entire receptor is truncated from the N-terminus by one TM helix at a time. We discover that proteins with an increasing number of helices assume a more defined topology. In a parallel study, we focused on the role of extracellular loops in ligand recognition. We demonstrate that transferring all loops of the human Y1 receptor onto the E. coli outer membrane protein OmpA in a suitable topology results in a chimeric receptor that displays, albeit reduced, affinity and specificity for the cognate ligand. Our data indicate that not all TM helices will spontaneously insert into the helix, and we suggest that at least for some GPCRs, N-terminal segments might remain associated with the translocon until their interacting partners are biosynthesized. Cotranslational protein folding is a vectorial process, and for membrane proteins, N-terminal helical segments are the first that become available for membrane insertion. Here fragments corresponding to these segments are investigated by NMR.![]()
Collapse
Affiliation(s)
- Jacopo Marino
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Reto Walser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Martin Poms
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
34
|
Radanović T, Reinhard J, Ballweg S, Pesek K, Ernst R. An Emerging Group of Membrane Property Sensors Controls the Physical State of Organellar Membranes to Maintain Their Identity. Bioessays 2018; 40:e1700250. [PMID: 29574931 DOI: 10.1002/bies.201700250] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/06/2018] [Indexed: 11/06/2022]
Abstract
The biological membranes of eukaryotic cells harbor sensitive surveillance systems to establish, sense, and maintain characteristic physicochemical properties that ultimately define organelle identity. They are fundamentally important for membrane homeostasis and play active roles in cellular signaling, protein sorting, and the formation of vesicular carriers. Here, we compare the molecular mechanisms of Mga2 and Ire1, two sensors involved in the regulation of fatty acid desaturation and the response to unfolded proteins and lipid bilayer stress in order to identify their commonalities and specializations. We will speculate on the cellular significance of membrane property sensors in other organelles and discuss their putative mechanisms. Based on these findings, we propose membrane property sensors as an emerging class of proteins with wide implications for organelle communication and function.
Collapse
Affiliation(s)
- Toni Radanović
- Medical Faculty, Department of Medical Biochemistry and Molecular Bioloy, Saarland University, 66421 Homburg, Germany
| | - John Reinhard
- Medical Faculty, Department of Medical Biochemistry and Molecular Bioloy, Saarland University, 66421 Homburg, Germany
| | - Stephanie Ballweg
- Medical Faculty, Department of Medical Biochemistry and Molecular Bioloy, Saarland University, 66421 Homburg, Germany
| | - Kristina Pesek
- Medical Faculty, Department of Medical Biochemistry and Molecular Bioloy, Saarland University, 66421 Homburg, Germany
| | - Robert Ernst
- Medical Faculty, Department of Medical Biochemistry and Molecular Bioloy, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
35
|
Grau B, Javanainen M, García-Murria MJ, Kulig W, Vattulainen I, Mingarro I, Martínez-Gil L. The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress 2017; 1:90-106. [PMID: 31225439 PMCID: PMC6551820 DOI: 10.15698/cst2017.11.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Folding and packing of membrane proteins are highly influenced by the lipidic component of the membrane. Here, we explore how the hydrophobic mismatch (the difference between the hydrophobic span of a transmembrane protein region and the hydrophobic thickness of the lipid membrane around the protein) influences transmembrane helix packing in a cellular environment. Using a ToxRED assay in Escherichia coli and a Bimolecular Fluorescent Complementation approach in human-derived cells complemented by atomistic molecular dynamics simulations we analyzed the dimerization of Glycophorin A derived transmembrane segments. We concluded that, biological membranes can accommodate transmembrane homo-dimers with a wide range of hydrophobic lengths. Hydrophobic mismatch and its effects on dimerization are found to be considerably weaker than those previously observed in model membranes, or under in vitro conditions, indicating that biological membranes (particularly eukaryotic membranes) can adapt to structural deformations through compensatory mechanisms that emerge from their complex structure and composition to alleviate membrane stress. Results based on atomistic simulations support this view, as they revealed that Glycophorin A dimers remain stable, despite of poor hydrophobic match, using mechanisms based on dimer tilting or local membrane thickness perturbations. Furthermore, hetero-dimers with large length disparity between their monomers are also tolerated in cells, and the conclusions that one can draw are essentially similar to those found with homo-dimers. However, large differences between transmembrane helices length hinder the monomer/dimer equilibrium, confirming that, the hydrophobic mismatch has, nonetheless, biologically relevant effects on helix packing in vivo.
Collapse
Affiliation(s)
- Brayan Grau
- Departamento de Bioquímica y Biología Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Matti Javanainen
- Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.,Department of Physics, University of Helsinki, POB 64, FI-00014 Helsinki, Finland
| | - Maria Jesús García-Murria
- Departamento de Bioquímica y Biología Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Waldemar Kulig
- Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.,Department of Physics, University of Helsinki, POB 64, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.,Department of Physics, University of Helsinki, POB 64, FI-00014 Helsinki, Finland.,MEMPHYS - Centre for Biomembrane Physics
| | - Ismael Mingarro
- Departamento de Bioquímica y Biología Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Luis Martínez-Gil
- Departamento de Bioquímica y Biología Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
36
|
Peterson JH, Plummer AM, Fleming KG, Bernstein HD. Selective pressure for rapid membrane integration constrains the sequence of bacterial outer membrane proteins. Mol Microbiol 2017; 106:777-792. [PMID: 28941249 DOI: 10.1111/mmi.13845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Almost all bacterial outer membrane proteins (OMPs) contain a β barrel domain that serves as a membrane anchor, but the assembly and quality control of these proteins are poorly understood. Here, we show that the introduction of a single lipid-facing arginine residue near the middle of the β barrel of the Escherichia coli OMPs OmpLA and EspP creates an energy barrier that impedes membrane insertion. Although several unintegrated OmpLA mutants remained insertion-competent, they were slowly degraded by the periplasmic protease DegP. Two EspP mutants were also gradually degraded by DegP but were toxic because they first bound to the Bam complex, an essential heteroligomer that catalyzes the membrane insertion of OMPs. Interestingly, another EspP mutant likewise formed a prolonged, deleterious interaction with the Bam complex but was protected from degradation and eventually inserted into the membrane in a native conformation. The different types of interactions between the EspP mutants and the Bam complex that we observed may correspond to distinct stages in OMP assembly. Our results show that sequences that significantly delay assembly are disfavored not only because unintegrated OMPs are subjected to degradation, but also because OMPs that assemble slowly can form dominant-negative interactions with the Bam complex.
Collapse
Affiliation(s)
- Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores. Biophys J 2017; 113:73-81. [PMID: 28700927 DOI: 10.1016/j.bpj.2017.04.056] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
How can highly charged, cationic antimicrobial peptides (AMPs) translocate across hydrophobic lipid bilayers despite the prohibitive energetic penalty to do so? A common explanation has been the formation of peptide-lined channels. However, for most AMPs, no structures of membrane pores have been found despite clear evidence of membrane leakage and antimicrobial activity. The study here suggests an alternative and simple reason: for the AMP PGLa from Xenopus laevis (charge +5), such pores are not needed to explain both leakage and peptide translocation. Elevated-temperature multimicrosecond equilibrium simulations at all-atomistic level reveal that peptides spontaneously translocate across the membrane individually on a timescale of tens of microseconds, without forming pores. Both surface-bound peptides and lipids assist in the one-by-one translocation of the charged side chains. Single peptides can remain in a transmembrane orientation for many microseconds, snorkeling some charged residues to one interface and some to the opposite, but without inducing a water channel. Instead of stable pores, short-lived water bridges occur when two or three peptides connect at their termini, allowing both ion translocation and lipid flip-flop via a brushlike mechanism usually involving the C terminus of one peptide. The results here suggest that for some specific antimicrobial and other membrane active peptides, pore formation may not have to be invoked at all to explain peptide translocation and membrane permeabilization, which may explain why no channel structures for them have been determined experimentally.
Collapse
|
38
|
Baker JA, Wong WC, Eisenhaber B, Warwicker J, Eisenhaber F. Charged residues next to transmembrane regions revisited: "Positive-inside rule" is complemented by the "negative inside depletion/outside enrichment rule". BMC Biol 2017; 15:66. [PMID: 28738801 PMCID: PMC5525207 DOI: 10.1186/s12915-017-0404-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 11/25/2022] Open
Abstract
Background Transmembrane helices (TMHs) frequently occur amongst protein architectures as means for proteins to attach to or embed into biological membranes. Physical constraints such as the membrane’s hydrophobicity and electrostatic potential apply uniform requirements to TMHs and their flanking regions; consequently, they are mirrored in their sequence patterns (in addition to TMHs being a span of generally hydrophobic residues) on top of variations enforced by the specific protein’s biological functions. Results With statistics derived from a large body of protein sequences, we demonstrate that, in addition to the positive charge preference at the cytoplasmic inside (positive-inside rule), negatively charged residues preferentially occur or are even enriched at the non-cytoplasmic flank or, at least, they are suppressed at the cytoplasmic flank (negative-not-inside/negative-outside (NNI/NO) rule). As negative residues are generally rare within or near TMHs, the statistical significance is sensitive with regard to details of TMH alignment and residue frequency normalisation and also to dataset size; therefore, this trend was obscured in previous work. We observe variations amongst taxa as well as for organelles along the secretory pathway. The effect is most pronounced for TMHs from single-pass transmembrane (bitopic) proteins compared to those with multiple TMHs (polytopic proteins) and especially for the class of simple TMHs that evolved for the sole role as membrane anchors. Conclusions The charged-residue flank bias is only one of the TMH sequence features with a role in the anchorage mechanisms, others apparently being the leucine intra-helix propensity skew towards the cytoplasmic side, tryptophan flanking as well as the cysteine and tyrosine inside preference. These observations will stimulate new prediction methods for TMHs and protein topology from a sequence as well as new engineering designs for artificial membrane proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0404-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Alexander Baker
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Singapore.,School of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Wing-Cheong Wong
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Singapore
| | - Jim Warwicker
- School of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Singapore. .,School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore.
| |
Collapse
|
39
|
Guerriero CJ, Reutter KR, Augustine AA, Preston GM, Weiberth KF, Mackie TD, Cleveland-Rubeor HC, Bethel NP, Callenberg KM, Nakatsukasa K, Grabe M, Brodsky JL. Transmembrane helix hydrophobicity is an energetic barrier during the retrotranslocation of integral membrane ERAD substrates. Mol Biol Cell 2017; 28:2076-2090. [PMID: 28539401 PMCID: PMC5509421 DOI: 10.1091/mbc.e17-03-0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022] Open
Abstract
Integral membrane proteins fold inefficiently and are susceptible to turnover via the endoplasmic reticulum-associated degradation (ERAD) pathway. During ERAD, misfolded proteins are recognized by molecular chaperones, polyubiquitinated, and retrotranslocated to the cytoplasm for proteasomal degradation. Although many aspects of this pathway are defined, how transmembrane helices (TMHs) are removed from the membrane and into the cytoplasm before degradation is poorly understood. In this study, we asked whether the hydrophobic character of a TMH acts as an energetic barrier to retrotranslocation. To this end, we designed a dual-pass model ERAD substrate, Chimera A*, which contains the cytoplasmic misfolded domain from a characterized ERAD substrate, Sterile 6* (Ste6p*). We found that the degradation requirements for Chimera A* and Ste6p* are similar, but Chimera A* was retrotranslocated more efficiently than Ste6p* in an in vitro assay in which retrotranslocation can be quantified. We then constructed a series of Chimera A* variants containing synthetic TMHs with a range of ΔG values for membrane insertion. TMH hydrophobicity correlated inversely with retrotranslocation efficiency, and in all cases, retrotranslocation remained Cdc48p dependent. These findings provide insight into the energetic restrictions on the retrotranslocation reaction, as well as a new computational approach to predict retrotranslocation efficiency.
Collapse
Affiliation(s)
| | - Karl-Richard Reutter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Andrew A Augustine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Kurt F Weiberth
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Neville P Bethel
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Keith M Callenberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Kunio Nakatsukasa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260.,Division of Biological Science, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
40
|
Jefferson RE, Min D, Corin K, Wang JY, Bowie JU. Applications of Single-Molecule Methods to Membrane Protein Folding Studies. J Mol Biol 2017; 430:424-437. [PMID: 28549924 DOI: 10.1016/j.jmb.2017.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Protein folding is a fundamental life process with many implications throughout biology and medicine. Consequently, there have been enormous efforts to understand how proteins fold. Almost all of this effort has focused on water-soluble proteins, however, leaving membrane proteins largely wandering in the wilderness. The neglect has occurred not because membrane proteins are unimportant but rather because they present many theoretical and technical complications. Indeed, quantitative membrane protein folding studies are generally restricted to a handful of well-behaved proteins. Single-molecule methods may greatly alter this picture, however, because the ability to work at or near infinite dilution removes aggregation problems, one of the main technical challenges of membrane protein folding studies.
Collapse
Affiliation(s)
- Robert E Jefferson
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Duyoung Min
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Karolina Corin
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Jing Yang Wang
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA.
| |
Collapse
|
41
|
Tooke FJ, Babot M, Chandra G, Buchanan G, Palmer T. A unifying mechanism for the biogenesis of membrane proteins co-operatively integrated by the Sec and Tat pathways. eLife 2017; 6. [PMID: 28513434 PMCID: PMC5449189 DOI: 10.7554/elife.26577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
The majority of multi-spanning membrane proteins are co-translationally inserted into the bilayer by the Sec pathway. An important subset of membrane proteins have globular, cofactor-containing extracytoplasmic domains requiring the dual action of the co-translational Sec and post-translational Tat pathways for integration. Here, we identify further unexplored families of membrane proteins that are dual Sec-Tat-targeted. We establish that a predicted heme-molybdenum cofactor-containing protein, and a complex polyferredoxin, each require the concerted action of two translocases for their assembly. We determine that the mechanism of handover from Sec to Tat pathway requires the relatively low hydrophobicity of the Tat-dependent transmembrane domain. This, coupled with the presence of C-terminal positive charges, results in abortive insertion of this transmembrane domain by the Sec pathway and its subsequent release at the cytoplasmic side of the membrane. Together, our data points to a simple unifying mechanism governing the assembly of dual targeted membrane proteins.
Collapse
Affiliation(s)
- Fiona J Tooke
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marion Babot
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Grant Buchanan
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
42
|
Niesen MJM, Wang CY, Van Lehn RC, Miller TF. Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration. PLoS Comput Biol 2017; 13:e1005427. [PMID: 28328943 PMCID: PMC5381951 DOI: 10.1371/journal.pcbi.1005427] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/05/2017] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
We present a coarse-grained simulation model that is capable of simulating the minute-timescale dynamics of protein translocation and membrane integration via the Sec translocon, while retaining sufficient chemical and structural detail to capture many of the sequence-specific interactions that drive these processes. The model includes accurate geometric representations of the ribosome and Sec translocon, obtained directly from experimental structures, and interactions parameterized from nearly 200 μs of residue-based coarse-grained molecular dynamics simulations. A protocol for mapping amino-acid sequences to coarse-grained beads enables the direct simulation of trajectories for the co-translational insertion of arbitrary polypeptide sequences into the Sec translocon. The model reproduces experimentally observed features of membrane protein integration, including the efficiency with which polypeptide domains integrate into the membrane, the variation in integration efficiency upon single amino-acid mutations, and the orientation of transmembrane domains. The central advantage of the model is that it connects sequence-level protein features to biological observables and timescales, enabling direct simulation for the mechanistic analysis of co-translational integration and for the engineering of membrane proteins with enhanced membrane integration efficiency.
Collapse
Affiliation(s)
- Michiel J. M. Niesen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Connie Y. Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Reid C. Van Lehn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
43
|
|
44
|
Poms M, Ansorge P, Martinez-Gil L, Jurt S, Gottstein D, Fracchiolla KE, Cohen LS, Güntert P, Mingarro I, Naider F, Zerbe O. NMR Investigation of Structures of G-protein Coupled Receptor Folding Intermediates. J Biol Chem 2016; 291:27170-27186. [PMID: 27864365 DOI: 10.1074/jbc.m116.740985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/03/2016] [Indexed: 11/06/2022] Open
Abstract
Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot, J. L., and Engelman, D. M. (1990) Biochemistry 29, 4031-4037) is postulated to proceed in 2 steps: partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two, and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin, A., Cohen, L. S., Arshava, B., Tantry, S., Becker, J. M., Zerbe, O., and Naider, F. (2009) Biophys. J. 96, 3187-3196), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123, and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior.
Collapse
Affiliation(s)
- Martin Poms
- From the Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Philipp Ansorge
- From the Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luis Martinez-Gil
- the Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, E-46100 Burjassot, Spain
| | - Simon Jurt
- From the Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Gottstein
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Katrina E Fracchiolla
- the Department of Chemistry, The College of Staten Island, City University of New York (CUNY), Staten Island, New York 10314, the Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Leah S Cohen
- the Department of Chemistry, The College of Staten Island, City University of New York (CUNY), Staten Island, New York 10314, the Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Peter Güntert
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany.,the Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Ismael Mingarro
- the Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, E-46100 Burjassot, Spain
| | - Fred Naider
- the Department of Chemistry, The College of Staten Island, City University of New York (CUNY), Staten Island, New York 10314, the Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Oliver Zerbe
- From the Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland,
| |
Collapse
|
45
|
Dahal UR, Dormidontova EE. Spontaneous Insertion, Helix Formation, and Hydration of Polyethylene Oxide in Carbon Nanotubes. PHYSICAL REVIEW LETTERS 2016; 117:027801. [PMID: 27447525 DOI: 10.1103/physrevlett.117.027801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 06/06/2023]
Abstract
Hydration strongly affects macromolecular conformation in solution and under nanoconfinement as encountered in nature and nanomaterials. Using atomistic molecular dynamics simulations we demonstrate that polyethylene oxide spontaneously enters single wall carbon nanotubes (CNTs) from aqueous solutions and forms rodlike, helix, and wrapped chain conformations depending on the CNT diameter. We show that water organization and the stability of the polyethylene oxide hydration shell under confinement is responsible for the helix formation, which can have significant implications for nanomaterial design.
Collapse
Affiliation(s)
- Udaya R Dahal
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Elena E Dormidontova
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
46
|
Trovato F, O'Brien EP. Insights into Cotranslational Nascent Protein Behavior from Computer Simulations. Annu Rev Biophys 2016; 45:345-69. [PMID: 27297399 DOI: 10.1146/annurev-biophys-070915-094153] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of protein stability and function in vivo begins during protein synthesis, when the ribosome translates a messenger RNA into a nascent polypeptide. Cotranslational processes involving a nascent protein include folding, binding to other macromolecules, enzymatic modification, and secretion through membranes. Experiments have shown that the rate at which the ribosome adds amino acids to the elongating nascent chain influences the efficiency of these processes, with alterations to these rates possibly contributing to diseases, including some types of cancer. In this review, we discuss recent insights into cotranslational processes gained from molecular simulations, how different computational approaches have been combined to understand cotranslational processes at multiple scales, and the new scenarios illuminated by these simulations. We conclude by suggesting interesting questions that computational approaches in this research area can address over the next few years.
Collapse
Affiliation(s)
- Fabio Trovato
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
47
|
Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 2016; 23:192-6. [PMID: 26900875 DOI: 10.1038/nsmb.3181] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 11/09/2022]
Abstract
In Gram-negative bacteria, the assembly of β-barrel outer-membrane proteins (OMPs) requires the β-barrel-assembly machinery (BAM) complex. We determined the crystal structure of the 200-kDa BAM complex from Escherichia coli at 3.55-Å resolution. The structure revealed that the BAM complex assembles into a hat-like shape, in which the BamA β-barrel domain forms the hat's crown embedded in the outer membrane, and its five polypeptide transport-associated (POTRA) domains interact with the four lipoproteins BamB, BamC, BamD and BamE, thus forming the hat's brim in the periplasm. The assembly of the BAM complex creates a ring-like apparatus beneath the BamA β-barrel in the periplasm and a potential substrate-exit pore located at the outer membrane-periplasm interface. The complex structure suggests that the chaperone-bound OMP substrates may feed into the chamber of the ring-like apparatus and insert into the outer membrane via the potential substrate-exit pore in an energy-independent manner.
Collapse
Affiliation(s)
- Long Han
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiangge Zheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xu Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanqing Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanqi Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baohua Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haizhen Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongchun Ni
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongfang Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yihua Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Gumbart JC, Chipot C. Decrypting protein insertion through the translocon with free-energy calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1663-71. [PMID: 26896694 DOI: 10.1016/j.bbamem.2016.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022]
Abstract
Protein insertion into a membrane is a complex process involving numerous players. The most prominent of these players is the Sec translocon complex, a conserved protein-conducting channel present in the cytoplasmic membrane of bacteria and the membrane of the endoplasmic reticulum in eukaryotes. The last decade has seen tremendous leaps forward in our understanding of how insertion is managed by the translocon and its partners, coming from atomic-detailed structures, innovative experiments, and well-designed simulations. In this review, we discuss how experiments and simulations, hand-in-hand, teased out the secrets of the translocon-facilitated membrane insertion process. In particular, we focus on the role of free-energy calculations in elucidating membrane insertion. Amazingly, despite all its apparent complexity, protein insertion into membranes is primarily driven by simple thermodynamic and kinetic principles. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique and University of Illinois at Urbana-Champaign, UMR n° 7565, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy, France; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
49
|
Abstract
Which properties of the membrane environment are essential for the folding and oligomerization of transmembrane proteins? Because the lipids that surround membrane proteins in situ spontaneously organize into bilayers, it may seem intuitive that interactions with the bilayer provide both hydrophobic and topological constraints that help the protein to achieve a stable and functional three-dimensional structure. However, one may wonder whether folding is actually driven by the membrane environment or whether the folded state just reflects an adaptation of integral proteins to the medium in which they function. Also, apart from the overall transmembrane orientation, might the asymmetry inherent in biosynthesis processes cause proteins to fold to out-of-equilibrium, metastable topologies? Which of the features of a bilayer are essential for membrane protein folding, and which are not? To which extent do translocons dictate transmembrane topologies? Recent data show that many membrane proteins fold and oligomerize very efficiently in media that bear little similarity to a membrane, casting doubt on the essentiality of many bilayer constraints. In the following discussion, we argue that some of the features of bilayers may contribute to protein folding, stability and regulation, but they are not required for the basic three-dimensional structure to be achieved. This idea, if correct, would imply that evolution has steered membrane proteins toward an accommodation to biosynthetic pathways and a good fit into their environment, but that their folding is not driven by the latter or dictated by insertion apparatuses. In other words, the three-dimensional structure of membrane proteins is essentially determined by intramolecular interactions and not by bilayer constraints and insertion pathways. Implications are discussed.
Collapse
Affiliation(s)
- Jean-Luc Popot
- Centre National de la Recherche Scientifique/Université Paris-7 UMR 7099 , Institut de Biologie Physico-Chimique (FRC 550), 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University , Box 208114, New Haven, Connecticut 06520-8114, United States
| |
Collapse
|
50
|
Min D, Jefferson RE, Bowie JU, Yoon TY. Mapping the energy landscape for second-stage folding of a single membrane protein. Nat Chem Biol 2015; 11:981-7. [PMID: 26479439 DOI: 10.1038/nchembio.1939] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022]
Abstract
Membrane proteins are designed to fold and function in a lipid membrane, yet folding experiments within a native membrane environment are challenging to design. Here we show that single-molecule forced unfolding experiments can be adapted to study helical membrane protein folding under native-like bicelle conditions. Applying force using magnetic tweezers, we find that a transmembrane helix protein, Escherichia coli rhomboid protease GlpG, unfolds in a highly cooperative manner, largely unraveling as one physical unit in response to mechanical tension above 25 pN. Considerable hysteresis is observed, with refolding occurring only at forces below 5 pN. Characterizing the energy landscape reveals only modest thermodynamic stability (ΔG = 6.5 kBT) but a large unfolding barrier (21.3 kBT) that can maintain the protein in a folded state for long periods of time (t1/2 ∼3.5 h). The observed energy landscape may have evolved to limit the existence of troublesome partially unfolded states and impart rigidity to the structure.
Collapse
Affiliation(s)
- Duyoung Min
- National Creative Research Initiative Center for Single-Molecule Systems Biology, KAIST, Daejeon, South Korea.,Department of Physics, KAIST, Daejeon, South Korea
| | - Robert E Jefferson
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Tae-Young Yoon
- National Creative Research Initiative Center for Single-Molecule Systems Biology, KAIST, Daejeon, South Korea.,Department of Physics, KAIST, Daejeon, South Korea
| |
Collapse
|