1
|
Molano-Fernández M, Hickson ID, Herranz H. Replication stress promotes cellular transformation in Drosophila epithelium. Cell Death Discov 2025; 11:96. [PMID: 40075075 PMCID: PMC11904189 DOI: 10.1038/s41420-025-02383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The accurate control of DNA replication is crucial for the maintenance of genomic stability and cell viability. In this study, we explore the consequences of depleting the replicative DNA Polymerase α (POLA) in the wing disc of Drosophila melanogaster. Our findings reveal that reduced POLA activity induces DNA replication stress and activates the replication checkpoint in vivo. Consistent with this, we demonstrate that dATR, a key component in DNA replication checkpoint signaling, is essential for the maintenance of tissue integrity under conditions of compromised POLA activity. We show that cells within the wing disc exhibiting reduced POLA activity arrest in the G2 phase and undergo p53-dependent apoptosis. We also reveal a critical role for DNA Ligase 4 in sustaining cell viability when POLA function is impaired. Most notably, we report the appearance of oncogenic traits in wing disc cells with diminished POLA activity when apoptosis is suppressed. In this context, the overexpression of the oncogene cdc25/string enhances the oncogenic phenotype. These results indicate that a combination of oncogenic activation, replication stress, and suppression of apoptosis is sufficient to promote the emergence of hallmarks of tumorigenesis, highlighting major implications for cancer development in humans.
Collapse
Affiliation(s)
- Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ian D Hickson
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Das P, Murthy S, Abbas E, White K, Arya R. The Hox Gene, abdominal A controls timely mitotic entry of neural stem cell and their growth during CNS development in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611161. [PMID: 39282366 PMCID: PMC11398374 DOI: 10.1101/2024.09.04.611161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The size of a cell is important for its function and physiology. Interestingly, size variation can be easily observed in clonally derived embryonic and hematopoietic stem cells. Here, we investigated the regulation of stem cell growth and its association with cell fate. We observed heterogeneous sizes of neuroblasts or neural stem cells (NSCs) in the Drosophila ventral nerve cord (VNC). Specifically, thoracic NSCs were larger than those in the abdominal region of the VNC. Our research uncovered a significant role of the Hox gene abdominal A (abdA) in the regulation of abdominal NSC growth. Developmental expression of AbdA retards their growth and delays mitotic entry compared to thoracic NSCs. The targeted loss of abdA enhanced their growth and caused an earlier entry into mitosis with a faster cycling rate. Furthermore, ectopic expression of abdA reduced the size of thoracic NSCs and delayed their entry into mitosis. We suggest that abdA plays an instructive role in regulating NSC size and exit from quiescence. This study demonstrates for the first time the involvement of abdA in NSC fate determination by regulating their growth, entry into mitosis and proliferation rate, and thus their potential to make appropriate number of progeny for CNS patterning.
Collapse
Affiliation(s)
- Papri Das
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005
| | | | - Eshan Abbas
- ADP Road, Christianpatty, Nagaon, Assam- 782003, India
| | - Kristin White
- MGH/Harvard Medical School,CBRC, Bldg 149, 13th St, Charlestown, MA 02129
| | - Richa Arya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005
| |
Collapse
|
3
|
Rosales-Vega M, Reséndez-Pérez D, Vázquez M. Antennapedia: The complexity of a master developmental transcription factor. Genesis 2024; 62:e23561. [PMID: 37830148 DOI: 10.1002/dvg.23561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Hox genes encode transcription factors that play an important role in establishing the basic body plan of animals. In Drosophila, Antennapedia is one of the five genes that make up the Antennapedia complex (ANT-C). Antennapedia determines the identity of the second thoracic segment, known as the mesothorax. Misexpression of Antennapedia at different developmental stages changes the identity of the mesothorax, including the muscles, nervous system, and cuticle. In Drosophila, Antennapedia has two distinct promoters highly regulated throughout development by several transcription factors. Antennapedia proteins are found with other transcription factors in different ANTENNAPEDIA transcriptional complexes to regulate multiple subsets of target genes. In this review, we describe the different mechanisms that regulate the expression and function of Antennapedia and the role of this Hox gene in the development of Drosophila.
Collapse
Affiliation(s)
- Marco Rosales-Vega
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Diana Reséndez-Pérez
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Martha Vázquez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Wanninger A. Hox, homology, and parsimony: An organismal perspective. Semin Cell Dev Biol 2024; 152-153:16-23. [PMID: 36670036 DOI: 10.1016/j.semcdb.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/21/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Hox genes are important regulators in animal development. They often show a mosaic of conserved (e.g., longitudinal axis patterning) and lineage-specific novel functions (e.g., development of skeletal, sensory, or locomotory systems). Despite extensive research over the past decades, it remains controversial at which node in the animal tree of life the Hox cluster evolved. Its presence already in the last common metazoan ancestor has been proposed, although the genomes of both putative earliest extant metazoan offshoots, the ctenophores and the poriferans, are devoid of Hox sequences. The lack of Hox genes in the supposedly "simple"-built poriferans and their low number in cnidarians and the basally branching bilaterians, the xenacoelomorphs, seems to support the classical notion that the number of Hox genes is correlated with the degree of animal complexity. However, the 4-fold increase of the Hox cluster in xiphosurans, a basally branching chelicerate clade, as well as the situation in some teleost fishes that show a multitude of Hox genes compared to, e.g., human, demonstrates, that there is no per se direct correlation between organismal complexity and Hox number. Traditional approaches have tried to base homology on the morphological level on shared expression profiles of individual genes, but recent data have shown that, in particular with respect to Hox and other regulatory genes, complex gene-gene interactions rather than expression signatures of individual genes alone are responsible for shaping morphological traits during ontogeny. Accordingly, for sound homology assessments and reconstructions of character evolution on organ system level, additional independent datasets (e.g., morphological, developmental) need to be included in any such analyses. If supported by solid data, proposed structural homology should be regarded as valid and not be rejected solely on the grounds of non-parsimonious distribution of the character over a given phylogenetic topology.
Collapse
Affiliation(s)
- Andreas Wanninger
- University of Vienna, Department of Evolutionary Biology, Unit for Integrative Zoology, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
5
|
Yadav RSP, Ansari F, Bera N, Kent C, Agrawal P. Lessons from lonely flies: Molecular and neuronal mechanisms underlying social isolation. Neurosci Biobehav Rev 2024; 156:105504. [PMID: 38061597 DOI: 10.1016/j.neubiorev.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Animals respond to changes in the environment which affect their internal state by adapting their behaviors. Social isolation is a form of passive environmental stressor that alters behaviors across animal kingdom, including humans, rodents, and fruit flies. Social isolation is known to increase violence, disrupt sleep and increase depression leading to poor mental and physical health. Recent evidences from several model organisms suggest that social isolation leads to remodeling of the transcriptional and epigenetic landscape which alters behavioral outcomes. In this review, we explore how manipulating social experience of fruit fly Drosophila melanogaster can shed light on molecular and neuronal mechanisms underlying isolation driven behaviors. We discuss the recent advances made using the powerful genetic toolkit and behavioral assays in Drosophila to uncover role of neuromodulators, sensory modalities, pheromones, neuronal circuits and molecular mechanisms in mediating social isolation. The insights gained from these studies could be crucial for developing effective therapeutic interventions in future.
Collapse
Affiliation(s)
- R Sai Prathap Yadav
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Faizah Ansari
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Neha Bera
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Clement Kent
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Pavan Agrawal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India.
| |
Collapse
|
6
|
Phillips LA, Atienza ML, Ryu JR, Svendsen PC, Kelemen LK, Brook WJ. midline represses Dpp signaling and target gene expression in Drosophila ventral leg development. Biol Open 2022; 11:275500. [PMID: 35608103 PMCID: PMC9167623 DOI: 10.1242/bio.059206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Ventral leg patterning in Drosophila is controlled by the expression of the redundant T-box Transcription factors midline (mid) and H15. Here, we show that mid represses the Dpp-activated gene Daughters against decapentaplegic (Dad) through a consensus T-box binding element (TBE) site in the minimal enhancer, Dad13. Mutating the Dad13 DNA sequence results in an increased and broadening of Dad expression. We also demonstrate that the engrailed-homology-1 domain of Mid is critical for regulating the levels of phospho-Mad, a transducer of Dpp-signaling. However, we find that mid does not affect all Dpp-target genes as we demonstrate that brinker (brk) expression is unresponsive to mid. This study further illuminates the interplay between mechanisms involved in determination of cellular fate and the varied roles of mid. Summary: Ventral patterning is controlled in part by the T-box Transcription factor midline blocking Dpp signaling and Dpp-activated genes, though midline does not affect the Dpp-repressed gene brk.
Collapse
Affiliation(s)
- Lindsay A Phillips
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Markle L Atienza
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Pia C Svendsen
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Lynn K Kelemen
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - William J Brook
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
7
|
Azpiazu N, Morata G. Chromatin remodelling and retrotransposons activities during regeneration in Drosophila. Dev Biol 2021; 482:7-16. [PMID: 34822846 DOI: 10.1016/j.ydbio.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/03/2022]
Abstract
Regeneration is a response mechanism aiming to reconstruct lost or damaged structures. To achieve this, the cells repopulating the lost tissue often have to change their original identity, a process that involves chromatin remodelling.We have analysed the issue of chromatin remodelling during regeneration in the wing disc of Drosophila . In this disc the ablation of the central region (the pouch) induces the regenerative response of the cells from the lateral region (the hinge), which reconstitute the wing pouch. We have examined euchromatin and heterochromatin histone marks during the process and find that heterochromatin marks disappear but are recovered when regeneration is complete. Euchromatin marks are not modified. We also describe the transcription of two retrotransposons, Roo and F-element in the regenerating cells. We have established a temporal correlation between the alterations of heterochromatin marks and the levels of transcription of two retrotransposons, Roo and F-element, both during embryonic development and in the regeneration process.
Collapse
Affiliation(s)
| | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM, Madrid, Spain
| |
Collapse
|
8
|
Kribelbauer JF, Loker RE, Feng S, Rastogi C, Abe N, Rube HT, Bussemaker HJ, Mann RS. Context-Dependent Gene Regulation by Homeodomain Transcription Factor Complexes Revealed by Shape-Readout Deficient Proteins. Mol Cell 2020; 78:152-167.e11. [PMID: 32053778 DOI: 10.1016/j.molcel.2020.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/01/2019] [Accepted: 01/27/2020] [Indexed: 01/09/2023]
Abstract
Eukaryotic transcription factors (TFs) form complexes with various partner proteins to recognize their genomic target sites. Yet, how the DNA sequence determines which TF complex forms at any given site is poorly understood. Here, we demonstrate that high-throughput in vitro DNA binding assays coupled with unbiased computational analysis provide unprecedented insight into how different DNA sequences select distinct compositions and configurations of homeodomain TF complexes. Using inferred knowledge about minor groove width readout, we design targeted protein mutations that destabilize homeodomain binding both in vitro and in vivo in a complex-specific manner. By performing parallel systematic evolution of ligands by exponential enrichment sequencing (SELEX-seq), chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and Hi-C assays, we not only classify the majority of in vivo binding events in terms of complex composition but also infer complex-specific functions by perturbing the gene regulatory network controlled by a single complex.
Collapse
Affiliation(s)
- Judith F Kribelbauer
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ryan E Loker
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Siqian Feng
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Namiko Abe
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - H Tomas Rube
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Richard S Mann
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
9
|
Yorkie and JNK Control Tumorigenesis in Drosophila Cells with Cytokinesis Failure. Cell Rep 2019; 23:1491-1503. [PMID: 29719260 DOI: 10.1016/j.celrep.2018.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 03/14/2018] [Accepted: 03/30/2018] [Indexed: 01/23/2023] Open
Abstract
Cytokinesis failure may result in the formation of polyploid cells, and subsequent mitosis can lead to aneuploidy and tumor formation. Tumor suppressor mechanisms limiting the oncogenic potential of these cells have been described. However, the universal applicability of these tumor-suppressive barriers remains controversial. Here, we use Drosophila epithelial cells to investigate the consequences of cytokinesis failure in vivo. We report that cleavage defects trigger the activation of the JNK pathway, leading to downregulation of the inhibitor of apoptosis DIAP1 and programmed cell death. Yorkie overcomes the tumor-suppressive role of JNK and induces neoplasia. Yorkie regulates the cell cycle phosphatase Cdc25/string, which drives tumorigenesis in a context of cytokinesis failure. These results highlight the functional significance of the JNK pathway in epithelial cells with defective cytokinesis and elucidate a mechanism used by emerging tumor cells to bypass this tumor-suppressive barrier and develop into tumors.
Collapse
|
10
|
Altamirano-Torres C, Salinas-Hernández JE, Cárdenas-Chávez DL, Rodríguez-Padilla C, Reséndez-Pérez D. Transcription factor TFIIEβ interacts with two exposed positions in helix 2 of the Antennapedia homeodomain to control homeotic function in Drosophila. PLoS One 2018; 13:e0205905. [PMID: 30321227 PMCID: PMC6188894 DOI: 10.1371/journal.pone.0205905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 01/02/2023] Open
Abstract
Homeoproteins contain the conserved homeodomain (HD) and have an important role determining embryo body plan during development. HDs increase their DNA-binding specificity by interacting with additional cofactors outlining a Hox interactome with a multiplicity of protein-protein interactions. In Drosophila, the first link of functional contact with a general transcription factor (GTF) was found between Antennapedia (Antp) and BIP2 (TFIID complex). Hox proteins also interact with other components of Pol II machinery such as the subunit Med19 from Mediator (MED) complex, TFIIEβ and transcription-pausing factor M1BP. All these interactions clearly demonstrate Hox-driven transcriptional regulation, but the precise molecular mechanism remains unclear. In this paper, we focused on the Antp-TFIIEβ protein-protein interface to establish the specific contacts as well as its functional role. Using Bimolecular Fluorescence Complementation (BiFC) in cell culture and in vivo we found that TFIIEβ interacts with Antp through the HD independently of the YPWM motif and the direct physical interaction is at helix 2, specifically aminoacidic positions I32 and H36 of Antp. We also found, through ectopic assays, that these two positions in helix 2 are crucial for Antp homeotic function in head involution, and thoracic and antenna-to tarsus transformations. Interestingly, overexpression of Antp and TFIIEβ in the antennal disc showed that this interaction is required for the antenna-to-tarsus transformation. In conclusion, interaction of Antp with TFIIEβ is important for the functional specificity of Antennapedia, and amino acids 32 and 36 in Antp HD helix 2 are key for this interaction. Our results open the possibility to more broadly analyze Antp-TFIIEβ interaction on the transcriptional control for the activation and/or repression of target genes in the Hox interactome during Drosophila development.
Collapse
Affiliation(s)
- Claudia Altamirano-Torres
- Department of Immunology and Virology, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Jannet E. Salinas-Hernández
- Department of Immunology and Virology, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Diana L. Cárdenas-Chávez
- Department of Immunology and Virology, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Cristina Rodríguez-Padilla
- Department of Immunology and Virology, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Diana Reséndez-Pérez
- Department of Immunology and Virology, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- * E-mail:
| |
Collapse
|
11
|
Glaser-Schmitt A, Parsch J. Functional characterization of adaptive variation within a cis-regulatory element influencing Drosophila melanogaster growth. PLoS Biol 2018; 16:e2004538. [PMID: 29324742 PMCID: PMC5783415 DOI: 10.1371/journal.pbio.2004538] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/24/2018] [Accepted: 12/18/2017] [Indexed: 11/18/2022] Open
Abstract
Gene expression variation is a major contributor to phenotypic diversity within species and is thought to play an important role in adaptation. However, examples of adaptive regulatory polymorphism are rare, especially those that have been characterized at both the molecular genetic level and the organismal level. In this study, we perform a functional analysis of the Drosophila melanogaster CG9509 enhancer, a cis-regulatory element that shows evidence of adaptive evolution in populations outside the species’ ancestral range in sub-Saharan Africa. Using site-directed mutagenesis and transgenic reporter gene assays, we determined that 3 single nucleotide polymorphisms are responsible for the difference in CG9509 expression that is observed between sub-Saharan African and cosmopolitan populations. Interestingly, while 2 of these variants appear to have been the targets of a selective sweep outside of sub-Saharan Africa, the variant with the largest effect on expression remains polymorphic in cosmopolitan populations, suggesting it may be subject to a different mode of selection. To elucidate the function of CG9509, we performed a series of functional and tolerance assays on flies in which CG9509 expression was disrupted. We found that CG9509 plays a role in larval growth and influences adult body and wing size, as well as wing loading. Furthermore, variation in several of these traits was associated with variation within the CG9509 enhancer. The effect on growth appears to result from a modulation of active ecdysone levels and expression of growth factors. Taken together, our findings suggest that selection acted on 3 sites within the CG9509 enhancer to increase CG9509 expression and, as a result, reduce wing loading as D. melanogaster expanded out of sub-Saharan Africa. Much of the phenotypic variation that is observed within species is thought to be caused by variation in gene expression. Variants within cis-regulatory elements, which affect the expression of nearby genes within the same DNA strand, are thought to be an abundant resource upon which natural selection can act. Understanding the functional consequences of adaptive cis-regulatory changes is important, as it can help elucidate the mechanisms underlying phenotypic evolution in general and provide insight into the development and maintenance of biodiversity. However, functional analyses of these types of changes remain rare. Here we present a functional analysis of an adaptively evolving enhancer element of a D. melanogaster gene called CG9509, of previously unknown function. We show that 3 single nucleotide polymorphisms located within the enhancer of this gene are responsible for an increase in CG9509 expression in cosmopolitan populations (outside of south and central Africa) relative to sub-Saharan populations, which include ancestral populations. We further show that CG9509 is involved in the regulation of growth rate and body size determination and propose that the CG9509 enhancer underwent positive selection to reduce wing loading as the species expanded out of sub-Saharan Africa.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (AGS); (JP)
| | - John Parsch
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (AGS); (JP)
| |
Collapse
|
12
|
Sander M, Eichenlaub T, Herranz H. Oncogenic cooperation between Yorkie and the conserved microRNA miR-8 in the wing disc of Drosophila. Development 2018; 145:dev.153817. [DOI: 10.1242/dev.153817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/05/2018] [Indexed: 12/22/2022]
Abstract
Tissue growth has to be carefully controlled to generate well-functioning organs. microRNAs are small noncoding RNAs that modulate the activity of target genes and play a pivotal role in animal development. Understanding the functions of microRNAs in development requires the identification of their target genes. Here, we find that the conserved microRNA miR-8/miR-200 controls tissue growth and homeostasis in the Drosophila wing imaginal disc. Upregulation of miR-8 causes the repression of Yorkie, the effector of the Hippo pathway in Drosophila, and reduces tissue size. Remarkably, coexpression of Yorkie and miR-8 causes the formation of neoplastic tumors. We show that upregulation of miR-8 represses the growth inhibitor brinker, and depletion of brinker cooperates with Yorkie in the formation of neoplastic tumors. Hence, miR-8 modulates a positive growth regulator, Yorkie, and a negative growth regulator, brinker. Deregulation of this network can result in the loss of tissue homeostasis and the formation of tumors.
Collapse
Affiliation(s)
- Moritz Sander
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Teresa Eichenlaub
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Reichert H. How the humble insect brain became a powerful experimental model system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:879-889. [PMID: 28831545 DOI: 10.1007/s00359-017-1206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
In the 21st century, neurobiological studies focused on the insect brain are revealing unprecedented insight into the molecular, cellular, developmental, and circuit aspects of brain organization and function, notably in the genetic model system of Drosophila melanogaster. Underlying this accelerating progress in understanding the insect brain is a century-long history of ground breaking experimental investigation, methodological advance, and conceptual insight catalyzed by the integration of two emerging research fields, neuroscience and genetics. This review traces some of the key early steps in this remarkable historical scientific adventure of exploring the brain of "these apparently humble representatives of life".
Collapse
|
14
|
Coleman RT, Struhl G. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 2017; 356:eaai8236. [PMID: 28302795 PMCID: PMC5595140 DOI: 10.1126/science.aai8236] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
Abstract
Many eukaryotic cells can respond to transient environmental or developmental stimuli with heritable changes in gene expression that are associated with nucleosome modifications. However, it remains uncertain whether modified nucleosomes play a causal role in transmitting such epigenetic memories, as opposed to controlling or merely reflecting transcriptional states inherited by other means. Here, we provide in vivo evidence that H3K27 trimethylated nucleosomes, once established at a repressed Drosophila HOX gene, remain heritably associated with that gene and can carry the memory of the silenced state through multiple rounds of replication, even when the capacity to copy the H3K27me3 mark to newly incorporated nucleosomes is diminished or abolished. Hence, in this context, the inheritance of H3K27 trimethylation conveys epigenetic memory.
Collapse
Affiliation(s)
- Rory T Coleman
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | - Gary Struhl
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
15
|
Davis TL, Rebay I. Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks. Dev Biol 2016; 421:93-107. [PMID: 27979656 DOI: 10.1016/j.ydbio.2016.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023]
Abstract
Among the mechanisms that steer cells to their correct fate during development, master regulatory networks are unique in their sufficiency to trigger a developmental program outside of its normal context. In this review we discuss the key features that underlie master regulatory potency during normal and ectopic development, focusing on two examples, the retinal determination gene network (RDGN) that directs eye development in the fruit fly and the pluripotency gene network (PGN) that maintains cell fate competency in the early mammalian embryo. In addition to the hierarchical transcriptional activation, extensive positive transcriptional feedback, and cooperative protein-protein interactions that enable master regulators to override competing cellular programs, recent evidence suggests that network topology must also be dynamic, with extensive rewiring of the interactions and feedback loops required to navigate the correct sequence of developmental transitions to reach a final fate. By synthesizing the in vivo evidence provided by the RDGN with the extensive mechanistic insight gleaned from the PGN, we highlight the unique regulatory capabilities that continual reorganization into new hierarchies confers on master control networks. We suggest that deeper understanding of such dynamics should be a priority, as accurate spatiotemporal remodeling of network topology will undoubtedly be essential for successful stem cell based therapeutic efforts.
Collapse
Affiliation(s)
- Trevor L Davis
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Alvarez-Rivero J, Moris-Sanz M, Estacio-Gómez A, Montoliu-Nerin M, Díaz-Benjumea FJ, Herrero P. Variability in the number of abdominal leucokinergic neurons in adult Drosophila melanogaster. J Comp Neurol 2016; 525:639-660. [PMID: 27506156 DOI: 10.1002/cne.24093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
Developmental plasticity allows individuals with the same genotype to show different phenotypes in response to environmental changes. An example of this is how neuronal diversity is protected at the expense of neuronal number under sustained undernourishment during the development of the Drosophila optic lobe. In the development of the Drosophila central nervous system, neuroblasts go through two phases of neurogenesis separated by a period of mitotic quiescence. Although during embryonic development much evidence indicates that both cell number and the cell fates generated by each neuroblast are very precisely controlled in a cell autonomous manner, after quiescence extrinsic factors control the reactivation of neuroblast proliferation in a fashion that has not yet been elucidated. Moreover, there is very little information about whether environmental changes affect lineage progression during postembryonic neurogenesis. Using as a model system the pattern of abdominal leucokinergic neurons (ABLKs), we have analyzed how changes in a set of environmental factors affect the number of ABLKs generated during postembryonic neurogenesis. We describe the variability in ABLK number between individuals and between hemiganglia of the same individual and, by genetic analysis, we identify the bithorax-complex genes and the ecdysone hormone as critical factors in these differences. We also explore the possible adaptive roles involved in this process. J. Comp. Neurol. 525:639-660, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Marta Moris-Sanz
- Severo Ochoa Center for Molecular Biology (CBMSO), 28049, Madrid, Spain
| | | | | | | | - Pilar Herrero
- Severo Ochoa Center for Molecular Biology (CBMSO), 28049, Madrid, Spain.,Department of Biology, Faculty of Sciences, Autonoma University of Madrid, 28049, Madrid, Spain
| |
Collapse
|
17
|
Takiya S, Tsubota T, Kimoto M. Regulation of Silk Genes by Hox and Homeodomain Proteins in the Terminal Differentiated Silk Gland of the Silkworm Bombyx mori. J Dev Biol 2016; 4:E19. [PMID: 29615585 PMCID: PMC5831788 DOI: 10.3390/jdb4020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/08/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP) axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing "colinearity". The central Hox class protein Antennapedia (Antp) directly regulates the expression of several middle silk gland-specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM)-homeodomain transcriptional factor Arrowhead (Awh) regulates the expression of posterior silk gland-specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins.
Collapse
Affiliation(s)
- Shigeharu Takiya
- Shigeharu Takiya, Division of Biological Sciences and Center for Genome Dynamics, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
- Graduate School of Life Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan.
| | - Takuya Tsubota
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | - Mai Kimoto
- Graduate School of Life Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
18
|
Abstract
The study of Drosophila imaginal discs has contributed to a number of discoveries in developmental and cellular biology. In addition to the elucidation of the role of tissue compartments and organ-specific master regulator genes during development, imaginal discs have also become well established as models for studying cellular interactions and complex genetic pathways. Here, we review key discoveries resulting from investigations of these epithelial precursor organs, ranging from cell fate determination and transdetermination to tissue patterning. Furthermore, the design of increasingly sophisticated genetic tools over the last decades has added value to the use of imaginal discs as model systems. As a result of tissue-specific genetic screens, several components of developmentally regulated signaling pathways were identified and epistasis revealed the levels at which they function. Discs have been widely used to assess cellular interactions in their natural tissue context, contributing to a better understanding of growth regulation, tissue regeneration, and cancer. With the continuous implementation of novel tools, imaginal discs retain significant potential as model systems to address emerging questions in biology and medicine.
Collapse
|
19
|
Sadasivam DA, Huang DH. Maintenance of Tissue Pluripotency by Epigenetic Factors Acting at Multiple Levels. PLoS Genet 2016; 12:e1005897. [PMID: 26926299 PMCID: PMC4771708 DOI: 10.1371/journal.pgen.1005897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/04/2016] [Indexed: 01/24/2023] Open
Abstract
Pluripotent stem cells often adopt a unique developmental program while retaining certain flexibility. The molecular basis of such properties remains unclear. Using differentiation of pluripotent Drosophila imaginal tissues as assays, we examined the contribution of epigenetic factors in ectopic activation of Hox genes. We found that over-expression of Trithorax H3K4 methyltransferase can induce ectopic adult appendages by selectively activating the Hox genes Ultrabithorax and Sex comb reduced in wing and leg discs, respectively. This tissue-specific inducibility correlates with the presence of paused RNA polymerase II in the promoter-proximal region of these genes. Although the Antennapedia promoter is paused in eye-antenna discs, it cannot be induced by Trx without a reduction in histone variants or their chaperones, suggesting additional control by the nucleosomal architecture. Lineage tracing and pulse-chase experiments revealed that the active state of Hox genes is maintained substantially longer in mutants deficient for HIRA, a chaperone for the H3.3 variant. In addition, both HIRA and H3.3 appeared to act cooperatively with the Polycomb group of epigenetic repressors. These results support the involvement of H3.3-mediated nucleosome turnover in restoring the repressed state. We propose a regulatory framework integrating transcriptional pausing, histone modification, nucleosome architecture and turnover for cell lineage maintenance. During animal development, the primordia of different body parts undergo a series of transitions in which their developmental potency becomes more restricted. Hox genes encode a family of evolutionarily conserved transcriptional factors that are crucial for choosing different paths during transitions. Thus, the transcriptional status of Hox genes is directly linked to the maintenance and developmental direction of pluripotent tissues. As post-translational methylation of histone H3 is pivotal for transcriptional control, we could activate Hox genes and alter the subsequent development of some pluripotent Drosophila imaginal tissues by increasing the level of Trithorax that catalyzes activation-related methylation. However, other imaginal tissues remain refractory unless histone variants or their chaperones that directly affect nucleosome dynamics are simultaneously depleted. By monitoring the duration of Hox expression under these conditions, we found that the active state of Hox genes is substantially prolonged, resulting from effective conversion of promoter-associated paused RNA polymerase II into active transcription. Further analyses indicate that these factors are functionally linked to the Polycomb group of epigenetic factors that bestow long-term repression. Our studies demonstrate that developmental constraints are modulated by factors acting at multiple levels, offering a useful approach to tissue re-programming in regeneration medicine and stem cell research.
Collapse
Affiliation(s)
- Devendran A. Sadasivam
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Der-Hwa Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Xu P, Zhang X, Ni W, Fan H, Xu J, Chen Y, Zhu J, Gu X, Yang L, Ni R, Chen B, Shi W. Upregulated HOXC8 Expression Is Associated with Poor Prognosis and Oxaliplatin Resistance in Hepatocellular Carcinoma. Dig Dis Sci 2015; 60:3351-63. [PMID: 26123838 DOI: 10.1007/s10620-015-3774-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. It is indispensable to understanding molecular mechanisms of HCC progression and to developing clinically useful biomarkers for this disease. AIM In this article, we examined whether HOXC8 was associated with the poor prognosis of hepatocellular carcinoma and explored the possible underlying mechanism. METHODS The HOXC8 and Ki67 expression levels in 86 patients with hepatocellular carcinoma were examined using immunohistochemistry. HOXC8 levels in HCC cells were downregulated by siRNA transfection. The cycle progression and cell proliferation status of HCC cells and the oxaliplatin effectiveness were evaluated by flow cytometry and CCK-8 assay. HOXC8, CyclinD1, PCNA, Nkd2, and cleaved caspase-3 levels were detected by western blot. RESULTS HOXC8 was upregulated in HCC tissues, compared with adjacent non-tumor ones. HOXC8 expression levels in 86 patients with hepatocellular carcinoma were positively correlated with histological grade. Univariate and multivariate survival analysis revealed that HOXC8 was a significant predictor for overall survival of HCC patients. HOXC8 siRNA knockdown delayed the G1-S phase transition, inhibited cell proliferation, and attenuated resistance to oxaliplatin. CONCLUSIONS HOXC8 promoted HCC proliferation and predicted poor prognosis. Furthermore, upregulated HOXC8 expression was associated with oxaliplatin resistance in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pan Xu
- Department of Radiotherapy, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiubing Zhang
- Department of Medical Oncology, the Second Peoples Hospital of Nan Tong, 43 Tangzha Xinglong Road, Nantong, 226002, Jiangsu Province, People's Republic of China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Hui Fan
- Department of Medical Oncology, the Second Peoples Hospital of Nan Tong, 43 Tangzha Xinglong Road, Nantong, 226002, Jiangsu Province, People's Republic of China
| | - Jian Xu
- Department of Medical Oncology, the Second Peoples Hospital of Nan Tong, 43 Tangzha Xinglong Road, Nantong, 226002, Jiangsu Province, People's Republic of China
| | - Yongmei Chen
- Department of Medical Oncology, the Second Peoples Hospital of Nan Tong, 43 Tangzha Xinglong Road, Nantong, 226002, Jiangsu Province, People's Republic of China
| | - Jia Zhu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory for Information and Molecular Drug Target, Nantong University, 9 Qiangyuan Road, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Xiaoling Gu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory for Information and Molecular Drug Target, Nantong University, 9 Qiangyuan Road, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Linlin Yang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory for Information and Molecular Drug Target, Nantong University, 9 Qiangyuan Road, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Buyou Chen
- Department of Radiotherapy, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Weidong Shi
- Department of Medical Oncology, the Second Peoples Hospital of Nan Tong, 43 Tangzha Xinglong Road, Nantong, 226002, Jiangsu Province, People's Republic of China.
| |
Collapse
|
21
|
Geyer A, Koltsaki I, Hessinger C, Renner S, Rogulja-Ortmann A. Impact of Ultrabithorax alternative splicing on Drosophila embryonic nervous system development. Mech Dev 2015; 138 Pt 2:177-189. [PMID: 26299253 DOI: 10.1016/j.mod.2015.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 11/17/2022]
Abstract
Hox genes control divergent segment identities along the anteroposterior body axis of bilateral animals by regulating a large number of processes in a cell context-specific manner. How Hox proteins achieve this functional diversity is a long-standing question in developmental biology. In this study we investigate the role of alternative splicing in functional specificity of the Drosophila Hox gene Ultrabithorax (Ubx). We focus specifically on the embryonic central nervous system (CNS) and provide a description of temporal expression patterns of three major Ubx isoforms during development of this tissue. These analyses imply distinct functions for individual isoforms in different stages of neural development. We also examine the set of Ubx isoforms expressed in two isoform-specific Ubx mutant strains and analyze for the first time the effects of splicing defects on regional neural stem cell (neuroblast) identity. Our findings support the notion of specific isoforms having different effects in providing individual neuroblasts with positional identity along the anteroposterior body axis, as well as being involved in regulation of progeny cell fate.
Collapse
Affiliation(s)
- Aenne Geyer
- Institute of Genetics, University of Mainz, Mainz, Germany
| | | | | | - Simone Renner
- Institute of Genetics, University of Mainz, Mainz, Germany
| | | |
Collapse
|
22
|
Moris-Sanz M, Estacio-Gómez A, Sánchez-Herrero E, Díaz-Benjumea FJ. The study of the Bithorax-complex genes in patterning CCAP neurons reveals a temporal control of neuronal differentiation by Abd-B. Biol Open 2015; 4:1132-42. [PMID: 26276099 PMCID: PMC4582124 DOI: 10.1242/bio.012872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During development, HOX genes play critical roles in the establishment of segmental differences. In the Drosophila central nervous system, these differences are manifested in the number and type of neurons generated by each neuroblast in each segment. HOX genes can act either in neuroblasts or in postmitotic cells, and either early or late in a lineage. Additionally, they can be continuously required during development or just at a specific stage. Moreover, these features are generally segment-specific. Lately, it has been shown that contrary to what happens in other tissues, where HOX genes define domains of expression, these genes are expressed in individual cells as part of the combinatorial codes involved in cell type specification. In this report we analyse the role of the Bithorax-complex genes - Ultrabithorax, abdominal-A and Abdominal-B - in sculpting the pattern of crustacean cardioactive peptide (CCAP)-expressing neurons. These neurons are widespread in invertebrates, express CCAP, Bursicon and MIP neuropeptides and play major roles in controlling ecdysis. There are two types of CCAP neuron: interneurons and efferent neurons. Our results indicate that Ultrabithorax and Abdominal-A are not necessary for specification of the CCAP-interneurons, but are absolutely required to prevent the death by apoptosis of the CCAP-efferent neurons. Furthermore, Abdominal-B controls by repression the temporal onset of neuropeptide expression in a subset of CCAP-efferent neurons, and a peak of ecdysone hormone at the end of larval life counteracts this repression. Thus, Bithorax complex genes control the developmental appearance of these neuropeptides both temporally and spatially.
Collapse
Affiliation(s)
- M Moris-Sanz
- Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c./Nicolás Cabrera 1, Universidad Autónoma, Madrid 28049, Spain
| | - A Estacio-Gómez
- Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c./Nicolás Cabrera 1, Universidad Autónoma, Madrid 28049, Spain
| | - E Sánchez-Herrero
- Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c./Nicolás Cabrera 1, Universidad Autónoma, Madrid 28049, Spain
| | - F J Díaz-Benjumea
- Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c./Nicolás Cabrera 1, Universidad Autónoma, Madrid 28049, Spain
| |
Collapse
|
23
|
Won JH, Tsogtbartarr O, Son W, Singh A, Choi KW, Cho KO. Cell type-specific responses to wingless, hedgehog and decapentaplegic are essential for patterning early eye-antenna disc in Drosophila. PLoS One 2015; 10:e0121999. [PMID: 25849899 PMCID: PMC4388393 DOI: 10.1371/journal.pone.0121999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/25/2015] [Indexed: 01/15/2023] Open
Abstract
The Drosophila eye-antenna imaginal disc (ead) is a flattened sac of two-layered epithelia, from which most head structures are derived. Secreted morphogens like Wingless (Wg), Hedgehog (Hh), and Decapentaplegic (Dpp) are important for early patterning of ead, but the underlying mechanisms are still largely unknown. To understand how these morphogens function in the ead of early larval stages, we used wg-LacZ and dpp-Gal4 markers for the examination of wild-type and mutant eads. We found that the ead immediately after hatching was crescent-shaped with the Bolwig's nerve at the ventral edge, suggesting that it consists of dorsal domain. In a subsequent step, transcriptional induction of dpp in the cells along the Bolwig's nerve was followed by rapid growth of the ventral domain. Both Wg and Hh were required for the formation of the ventral domain. Wg was crucial for the growth of the entire ead, but Hh was essential for cell division only in the dorsal domain. In the ventral domain, Hh regulated dpp transcription. Based on these data, we propose that signaling among distinct groups of cells expressing Wg, Dpp, or Hh in the ead of the first-instar larvae are critical for coordinated growth and patterning of ead.
Collapse
Affiliation(s)
- Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Orkhon Tsogtbartarr
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Wonseok Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Amit Singh
- Department of Biology, Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, Ohio 45469-2320, United States of America
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
- * E-mail:
| |
Collapse
|
24
|
Slattery M, Ma L, Spokony RF, Arthur RK, Kheradpour P, Kundaje A, Nègre N, Crofts A, Ptashkin R, Zieba J, Ostapenko A, Suchy S, Victorsen A, Jameel N, Grundstad AJ, Gao W, Moran JR, Rehm EJ, Grossman RL, Kellis M, White KP. Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster. Genome Res 2015; 24:1224-35. [PMID: 24985916 PMCID: PMC4079976 DOI: 10.1101/gr.168807.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Annotation of regulatory elements and identification of the transcription-related factors (TRFs) targeting these elements are key steps in understanding how cells interpret their genetic blueprint and their environment during development, and how that process goes awry in the case of disease. One goal of the modENCODE (model organism ENCyclopedia of DNA Elements) Project is to survey a diverse sampling of TRFs, both DNA-binding and non-DNA-binding factors, to provide a framework for the subsequent study of the mechanisms by which transcriptional regulators target the genome. Here we provide an updated map of the Drosophila melanogaster regulatory genome based on the location of 84 TRFs at various stages of development. This regulatory map reveals a variety of genomic targeting patterns, including factors with strong preferences toward proximal promoter binding, factors that target intergenic and intronic DNA, and factors with distinct chromatin state preferences. The data also highlight the stringency of the Polycomb regulatory network, and show association of the Trithorax-like (Trl) protein with hotspots of DNA binding throughout development. Furthermore, the data identify more than 5800 instances in which TRFs target DNA regions with demonstrated enhancer activity. Regions of high TRF co-occupancy are more likely to be associated with open enhancers used across cell types, while lower TRF occupancy regions are associated with complex enhancers that are also regulated at the epigenetic level. Together these data serve as a resource for the research community in the continued effort to dissect transcriptional regulatory mechanisms directing Drosophila development.
Collapse
Affiliation(s)
- Matthew Slattery
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Lijia Ma
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rebecca F Spokony
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert K Arthur
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Pouya Kheradpour
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Anshul Kundaje
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Nicolas Nègre
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA; Université de Montpellier II and INRA, UMR1333 DGIMI, F-34095 Montpellier, France
| | - Alex Crofts
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Ryan Ptashkin
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jennifer Zieba
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander Ostapenko
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah Suchy
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alec Victorsen
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Nader Jameel
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - A Jason Grundstad
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Wenxuan Gao
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jennifer R Moran
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - E Jay Rehm
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert L Grossman
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kevin P White
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
25
|
Matsuda R, Hosono C, Saigo K, Samakovlis C. The intersection of the extrinsic hedgehog and WNT/wingless signals with the intrinsic Hox code underpins branching pattern and tube shape diversity in the drosophila airways. PLoS Genet 2015; 11:e1004929. [PMID: 25615601 PMCID: PMC4304712 DOI: 10.1371/journal.pgen.1004929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/28/2014] [Indexed: 01/04/2023] Open
Abstract
The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. Tubes are common structural elements of many internal organs,
facilitating fluid flow and material exchange. To meet the local needs of diverse tissues, the branching patterns and tube shapes vary regionally. Diametric tapering and specialized branch targeting to the brain represent two common examples of variations with organismal benefits in the Drosophila airways and our vascular system. Several extrinsic signals instruct tube diversifications but the impact of intrinsic factors remains underexplored. Here, we show that the local, tube-intrinsic Hox code instructs the pattern and shape of the dorsal trunk (DT), the main Drosophila airway. In the cephalic part (DT1), where Bithorax Complex (BX-C) Hox genes are not expressed, the extrinsic Hedgehog signal is epistatic to WNT/Wingless signals. Hedgehog instructs anterior DT1 cells to take a long and narrow tube fate targeting the brain. In more posterior metameres, BX-C genes make the extrinsic WNT/Wingless signals epistatic over Hedgehog. There, WNT/Wingless instruct all DT cells to take the thick and short tube fate. Moreover, BX-C genes modulate the outputs of WNT/wingless signaling, making the DT tubes thicker in more posterior metameres. We provide a model for how intrinsic factors modify extrinsic signaling to control regional tube morphologies in a network.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- ECCPS, University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
26
|
Kim KH, Yoo S. Sequence-specific interaction between ABD-B homeodomain and castor gene in Drosophila. BMB Rep 2014; 47:92-7. [PMID: 24219869 PMCID: PMC4163903 DOI: 10.5483/bmbrep.2014.47.2.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 12/26/2022] Open
Abstract
We have examined the effect of bithorax complex genes on the expression of castor gene. During the embryonic stages 12-15, both Ultrabithorax and abdominal-A regulated the castor gene expression negatively, whereas Abdominal-B showed a positive correlation with the castor gene expression according to real-time PCR. To investigate whether ABD-B protein directly interacts with the castor gene, electrophoretic mobility shift assays were performed using the recombinant ABD-B homeodomain and oligonucleotides, which are located within the region 10 kb upstream of the castor gene. The results show that ABD-B protein directly binds to the castor gene specifically. ABD-B binds more strongly to oligonucleotides containing two 5'-TTAT-3' canonical core motifs than the probe containing the 5'-TTAC-3' motif. In addition, the sequences flanking the core motif are also involved in the protein-DNA interaction. The results demonstrate the importance of HD for direct binding to target sequences to regulate the expression level of the target genes. [BMB Reports 2014; 47(2): 92-97]
Collapse
Affiliation(s)
- Keon-Hee Kim
- Department of Life Sciences, College of Sciences, Yeungnam University, Gyeongsan 712-749, Korea
| | - Siuk Yoo
- Department of Life Sciences, College of Sciences, Yeungnam University, Gyeongsan 712-749, Korea
| |
Collapse
|
27
|
Gold KS, Brand AH. Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev 2014; 9:18. [PMID: 25074684 PMCID: PMC4127074 DOI: 10.1186/1749-8104-9-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/25/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND During early brain development, the organisation of neural progenitors into a neuroepithelial sheet maintains tissue integrity during growth. Neuroepithelial cohesion and patterning is essential for orderly proliferation and neural fate specification. Neuroepithelia are regionalised by the expression of transcription factors and signalling molecules, resulting in the formation of distinct developmental, and ultimately functional, domains. RESULTS We have discovered that the Six3/6 family orthologue Optix is an essential regulator of neuroepithelial maintenance and patterning in the Drosophila brain. Six3 and Six6 are required for mammalian eye and forebrain development, and mutations in humans are associated with severe eye and brain malformation. In Drosophila, Optix is expressed in a sharply defined region of the larval optic lobe, and its expression is reciprocal to that of the transcription factor Vsx1. Optix gain- and loss-of-function affects neuroepithelial adhesion, integrity and polarity. We find restricted cell lineage boundaries that correspond to transcription factor expression domains. CONCLUSION We propose that the optic lobe is compartmentalised by expression of Optix and Vsx1. Our findings provide insight into the spatial patterning of a complex region of the brain, and suggest an evolutionarily conserved principle of visual system development.
Collapse
Affiliation(s)
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development & Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
28
|
Zhang YS, Sevilla A, Wan LQ, Lemischka IR, Vunjak-Novakovic G. Patterning pluripotency in embryonic stem cells. Stem Cells 2014; 31:1806-15. [PMID: 23843329 DOI: 10.1002/stem.1468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/27/2013] [Accepted: 05/14/2013] [Indexed: 12/22/2022]
Abstract
Developmental gradients of morphogens and the formation of boundaries guide the choices between self-renewal and differentiation in stem cells. Still, surprisingly little is known about gene expression signatures of differentiating stem cells at the boundaries between regions. We thus combined inducible gene expression with a microfluidic technology to pattern gene expression in murine embryonic stem cells. Regional depletion of the Nanog transcriptional regulator was achieved through the exposure of cells to microfluidic gradients of morphogens. In this way, we established pluripotency-differentiation boundaries between Nanog expressing cells (pluripotency zone) and Nanog suppressed cells (early differentiation zone) within the same cell population, with a gradient of Nanog expression across the individual cell colonies, to serve as a mimic of the developmental process. Using this system, we identified strong interactions between Nanog and its target genes by constructing a network with Nanog as the root and the measured levels of gene expression in each region. Gene expression patterns at the pluripotency-differentiation boundaries recreated in vitro were similar to those in the developing blastocyst. This approach to the study of cellular commitment at the boundaries between gene expression domains, a phenomenon critical for understanding of early development, has potential to benefit fundamental research of stem cells and their application in regenerative medicine.
Collapse
Affiliation(s)
- Yue Shelby Zhang
- Department for Biomedical Engineering, Columbia University, New York, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
30
|
Costa M, Calleja M, Alonso CR, Simpson P. The bristle patterning genes hairy and extramacrochaetae regulate the development of structures required for flight in Diptera. Dev Biol 2013; 388:205-15. [PMID: 24384389 PMCID: PMC3988846 DOI: 10.1016/j.ydbio.2013.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 11/11/2022]
Abstract
The distribution of sensory bristles on the thorax of Diptera (true flies) provides a useful model for the study of the evolution of spatial patterns. Large bristles called macrochaetes are arranged into species-specific stereotypical patterns determined via spatially discrete expression of the proneural genes achaete–scute (ac–sc). In Drosophila ac-sc expression is regulated by transcriptional activation at sites where bristle precursors develop and by repression outside of these sites. Three genes, extramacrochaetae (emc), hairy (h) and stripe (sr), involved in repression have been documented. Here we demonstrate that in Drosophila, the repressor genes emc and h, like sr, play an essential role in the development of structures forming part of the flight apparatus. In addition we find that, in Calliphora vicina a species diverged from D. melanogaster by about 100 Myr, spatial expression of emc, h and sr is conserved at the location of development of those structures. Based on these findings we argue, first, that the role emc, h and sr in development of the flight apparatus preceded their activities for macrochaete patterning; second, that species-specific variation in activation and repression of ac-sc expression is evolving in parallel to establish a unique distribution of macrochaetes in each species. The distribution of sensory bristles is a useful model to study spatial patterns. In Drosophila melanogaster the genes emc, h and sr repress bristle formation. In D. melanogaster emc and h are essential for flight apparatus development. Notably, in Calliphora vicina emc, h and sr are expressed in the flight apparatus. We argue that emc, h and sr had an early role in flight apparatus development.
Collapse
Affiliation(s)
- Marta Costa
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3 EJ, UK
| | - Manuel Calleja
- Centro de Biología Molecular Severo Ochoa, C/ Nicolás Cabrera, 1, Universidad Autónoma, 28049 Madrid, Spain
| | - Claudio R Alonso
- John Maynard Smith Building, School of Life Sciences University of Sussex, Brighton BN1 9QG, UK.
| | - Pat Simpson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3 EJ, UK.
| |
Collapse
|
31
|
Kimoto M, Tsubota T, Uchino K, Sezutsu H, Takiya S. Hox transcription factor Antp regulates sericin-1 gene expression in the terminal differentiated silk gland of Bombyx mori. Dev Biol 2013; 386:64-71. [PMID: 24333180 DOI: 10.1016/j.ydbio.2013.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/07/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022]
Abstract
Hox genes are well-known master regulators in developmental morphogenesis along the anteroposterior axis of animals. However, the molecular mechanisms by which Hox proteins regulate their target genes and determine cell fates are not fully understood. The silk gland of Bombyx mori is a tubular tissue divided into several subparts along the anteroposterior axis, and the silk genes are expressed with specific patterns. The sericin-1 gene (ser1) is expressed in the middle silk gland (MSG) with sublocal specificity. Here we show that the Hox protein Antp is a component of the middle silk gland-specific complex, MIC (MSG-intermolt-specific complex), binds to the essential promoter element of ser1, and activates its expression. Ectopic expression of Antp in transgenic silkworms induced the expression of ser1 in the posterior silk gland (PSG), but not in the anterior part of MSG (MSG-A). Correspondingly, a MIC-like complex was formed by the addition of recombinant Antp in extracts from PSG with its cofactors Exd and Hth, but not in extracts from MSG-A. Splicing patterns of ser1 mRNA induced by the ectopic expression of Antp in PSG were almost the same as those in MSG at the fifth instar and altered depending on the induction timing of Antp. Other Hox genes were expressed with sublocal specificity in the silk gland. The Bombyx silk gland might provide a useful system for understanding how Hox proteins select and regulate their target genes.
Collapse
Affiliation(s)
- Mai Kimoto
- Graduate School of Life Science, Hokkaido University, Japan
| | - Takuya Tsubota
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Shigeharu Takiya
- Graduate School of Life Science, Hokkaido University, Japan; Division of Biological Sciences and Center for Genome Dynamics, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| |
Collapse
|
32
|
Baek M, Enriquez J, Mann RS. Dual role for Hox genes and Hox co-factors in conferring leg motoneuron survival and identity in Drosophila. Development 2013; 140:2027-38. [PMID: 23536569 DOI: 10.1242/dev.090902] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adult Drosophila walk using six multi-jointed legs, each controlled by ∼50 leg motoneurons (MNs). Although MNs have stereotyped morphologies, little is known about how they are specified. Here, we describe the function of Hox genes and homothorax (hth), which encodes a Hox co-factor, in Drosophila leg MN development. Removing either Hox or Hth function from a single neuroblast (NB) lineage results in MN apoptosis. A single Hox gene, Antennapedia (Antp), is primarily responsible for MN survival in all three thoracic segments. When cell death is blocked, partially penetrant axon branching errors are observed in Hox mutant MNs. When single MNs are mutant, errors in both dendritic and axon arborizations are observed. Our data also suggest that Antp levels in post-mitotic MNs are important for specifying their identities. Thus, in addition to being essential for survival, Hox and hth are required to specify accurate MN morphologies in a level-dependent manner.
Collapse
Affiliation(s)
- Myungin Baek
- Department of Biological Sciences, Columbia University, 701 W. 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
33
|
Hatini V, Kula-Eversole E, Nusinow D, Del Signore SJ. Essential roles for stat92E in expanding and patterning the proximodistal axis of the Drosophila wing imaginal disc. Dev Biol 2013; 378:38-50. [PMID: 23499656 DOI: 10.1016/j.ydbio.2013.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/17/2013] [Accepted: 02/20/2013] [Indexed: 12/26/2022]
Abstract
The Drosophila wing imaginal disc is subdivided along the proximodistal axis into the distal pouch, the hinge, the surrounding pleura, and the notum. While the genetic pathways that specify the identity of each of these domains have been well studied, the mechanisms that coordinate the relative expansion of these domains are not well understood. Here we investigated the role of the stat92E signal transducer and activator of transcription in wing proximodistal development. We find that stat92E is active ubiquitously in early wing imaginal discs, where it acts to inhibit the induction of ectopic wing fields. Subsequently, stat92E activity is down regulated in the notum and distal pouch. These dynamics coincide with and contribute to the proportional subdivision and expansion of these primordia. As development proceeds, stat92E activity becomes restricted to the hinge, where it promotes normal expansion of the hinge, and restricts expansion of the notum. We also find that stat92E is required autonomously to specify dorsal pleura identity and inhibit notum identity to properly subdivide the body wall. Our data suggest that stat92E activity is regulated along the proximodistal axis to pattern this axis and control the relative expansion of the pouch, hinge, and notum.
Collapse
Affiliation(s)
- Victor Hatini
- Tufts University School of Medicine, Department of Anatomy & Cellular Biology, Program in Cell, Molecular and Developmental Biology, 150 Harrison Avenue, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
34
|
Slattery M, Nègre N, White KP. Interpreting the regulatory genome: the genomics of transcription factor function in Drosophila melanogaster. Brief Funct Genomics 2013; 11:336-46. [PMID: 23023663 DOI: 10.1093/bfgp/els034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Researchers have now had access to the fully sequenced Drosophila melanogaster genome for over a decade, and the sequenced genomes of 11 additional Drosophila species have been available for almost 5 years, with more species' genomes becoming available every year [Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster. Science 2000;287:2185-95; Clark AG, Eisen MB, Smith DR, et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007;450:203-18]. Although the best studied of the D. melanogaster transcription factors (TFs) were cloned before sequencing of the genome, the availability of sequence data promised to transform our understanding of TFs and gene regulatory networks. Sequenced genomes have allowed researchers to generate tools for high-throughput characterization of gene expression levels, genome-wide TF localization and analyses of evolutionary constraints on DNA elements across multiple species. With an estimated 700 DNA-binding proteins in the Drosophila genome, it will be many years before each potential sequence-specific TF is studied in detail, yet the last decade of functional genomics research has already impacted our view of gene regulatory networks and TF DNA recognition.
Collapse
Affiliation(s)
- Matthew Slattery
- Institute for Genomics & Systems Biology, Chicago, IL 60637, USA
| | | | | |
Collapse
|
35
|
Merabet S, Hudry B. Hox transcriptional specificity despite a single class of cofactors: are flexible interaction modes the key? Plasticity in Hox/PBC interaction modes as a common molecular strategy for shaping Hox transcriptional activities. Bioessays 2012; 35:88-92. [PMID: 23255231 DOI: 10.1002/bies.201200146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Samir Merabet
- Institute of Functional Genomics of Lyon (IGFL), UMR 5242 CNRS/ENS Lyon, Lyon, France.
| | | |
Collapse
|
36
|
A survey of 6,300 genomic fragments for cis-regulatory activity in the imaginal discs of Drosophila melanogaster. Cell Rep 2012; 2:1014-24. [PMID: 23063361 DOI: 10.1016/j.celrep.2012.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 11/21/2022] Open
Abstract
Over 6,000 fragments from the genome of Drosophila melanogaster were analyzed for their ability to drive expression of GAL4 reporter genes in the third-instar larval imaginal discs. About 1,200 reporter genes drove expression in the eye, antenna, leg, wing, haltere, or genital imaginal discs. The patterns ranged from large regions to individual cells. About 75% of the active fragments drove expression in multiple discs; 20% were expressed in ventral, but not dorsal, discs (legs, genital, and antenna), whereas ∼23% were expressed in dorsal but not ventral discs (wing, haltere, and eye). Several patterns, for example, within the leg chordotonal organ, appeared a surprisingly large number of times. Unbiased searches for DNA sequence motifs suggest candidate transcription factors that may regulate enhancers with shared activities. Together, these expression patterns provide a valuable resource to the community and offer a broad overview of how transcriptional regulatory information is distributed in the Drosophila genome.
Collapse
|
37
|
Worley MI, Setiawan L, Hariharan IK. Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet 2012; 46:289-310. [PMID: 22934642 DOI: 10.1146/annurev-genet-110711-155637] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of regeneration in Drosophila imaginal discs provides an opportunity to use powerful genetic tools to address fundamental problems pertaining to tissue regeneration and cell plasticity. We present a historical overview of the field and describe how the application of modern methods has made the study of disc regeneration amenable to genetic analysis. Discs respond to tissue damage in several ways: (a) Removal of part of the disc elicits localized cell proliferation and regeneration of the missing tissue. (b) Damage at specific locations in the disc can cause cells to generate disc-inappropriate structures (e.g., wing instead of leg), a phenomenon known as transdetermination. (c) Diffuse damage to imaginal discs, results in compensatory proliferation of surviving cells. Candidate-gene approaches have implicated the JNK, Wingless, and Hippo pathways in regeneration. Recently developed systems will enable extensive genetic screens that could provide new insights into tissue regeneration, transdetermination and compensatory proliferation.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| | | | | |
Collapse
|
38
|
Yang M, Hatton-Ellis E, Simpson P. The kinase Sgg modulates temporal development of macrochaetes in Drosophila by phosphorylation of Scute and Pannier. Development 2011; 139:325-34. [PMID: 22159580 DOI: 10.1242/dev.074260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Evolution of novel structures is often made possible by changes in the timing or spatial expression of genes regulating development. Macrochaetes, large sensory bristles arranged into species-specific stereotypical patterns, are an evolutionary novelty of cyclorraphous flies and are associated with changes in both the temporal and spatial expression of the proneural genes achaete (ac) and scute (sc). Changes in spatial expression are associated with the evolution of cis-regulatory sequences, but it is not known how temporal regulation is achieved. One factor required for ac-sc expression, the expression of which coincides temporally with that of ac-sc in the notum, is Wingless (Wg; also known as Wnt). Wingless downregulates the activity of the serine/threonine kinase Shaggy (Sgg; also known as GSK-3). We demonstrate that Scute is phosphorylated by Sgg on a serine residue and that mutation of this residue results in a form of Sc with heightened proneural activity that can rescue the loss of bristles characteristic of wg mutants. We suggest that the phosphorylated form of Sc has reduced transcriptional activity such that sc is unable to autoregulate, an essential function for the segregation of bristle precursors. Sgg also phosphorylates Pannier, a transcriptional activator of ac-sc, the activity of which is similarly dampened when in the phosphorylated state. Furthermore, we show that Wg signalling does not act directly via a cis-regulatory element of the ac-sc genes. We suggest that temporal control of ac-sc activity in cyclorraphous flies is likely to be regulated by permissive factors and might therefore not be encoded at the level of ac-sc gene sequences.
Collapse
Affiliation(s)
- Mingyao Yang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | |
Collapse
|
39
|
Weisinger K, Kohl A, Kayam G, Monsonego-Ornan E, Sela-Donenfeld D. Expression of hindbrain boundary markers is regulated by FGF3. Biol Open 2011; 1:67-74. [PMID: 23213398 PMCID: PMC3507201 DOI: 10.1242/bio.2011032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Compartment boundaries act as organizing centers that segregate adjacent areas into domains of gene expression and regulation, and control their distinct fates via the secretion of signalling factors. During hindbrain development, a specialized cell-population forms boundaries between rhombomeres. These boundary cells demonstrate unique morphological properties and express multiple genes that differs them from intra-rhombomeric cells. Yet, little is known regarding the mechanisms that controls the expression or function of these boundary markers.Multiple components of the FGF signaling system, including ligands, receptors, downstream effectors as well as proteoglycans are shown to localize to boundary cells in the chick hindbrain. These patterns raise the possibility that FGF signaling plays a role in regulating boundary properties. We provide evidence to the role of FGF signaling, particularly the boundary-derived FGF3, in regulating the expression of multiple markers at hindbrain boundaries. These findings enable further characterization of the unique boundary-cell population, and expose a new function for FGFs as regulators of boundary-gene expression in the chick hindbrain.
Collapse
|
40
|
Ogasawara H, Kaimi R, Colasanti J, Kozaki A. Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT. PLANT MOLECULAR BIOLOGY 2011; 77:489-99. [PMID: 21935722 DOI: 10.1007/s11103-011-9826-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/08/2011] [Indexed: 05/08/2023]
Abstract
Two GRAS family transcription factors, SHORT-ROOT (SHR) and SCARECROW (SCR), are required for ground tissue and quiescent center formation in Arabidopsis roots. The action of SHR and SCR is regulated by two INDETERMINATE DOMAIN (IDD) family proteins, JACKDAW (JKD) and MAGPIE (MGP). Although the reciprocal interaction of these transcription factors is considered to be involved in the modulation of SHR and SCR action by JKD and MGP, the underlying mechanism remains unclear. In this study, we use a transient assay with Arabidopsis culture cells to show that the physical interaction of these transcription factors modulate their transcriptional activity. Transient expression of LUC reporter genes with the proximal sequences upstream from the ATG codon of SCR and MGP in protoplasts were activated by JKD. Moreover, promoter activities were enhanced further by the addition of SHR and SCR to JKD, but not by the combination of SHR and SCR in the absence of JKD. Yeast one-hybrid analysis showed that JKD binds to the SCR and MGP promoter sequences, indicating the existence of another binding sequences of JKD different from the previously determined IDD binding sequence. Our findings suggest that JKD directly regulates SCR and MGP expression in cooperation with SHR, SCR and MGP.
Collapse
Affiliation(s)
- Hiromi Ogasawara
- Department of Biology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, Japan
| | | | | | | |
Collapse
|
41
|
Delval S, Taminiau A, Lamy J, Lallemand C, Gilles C, Noël A, Rezsohazy R. The Pbx interaction motif of Hoxa1 is essential for its oncogenic activity. PLoS One 2011; 6:e25247. [PMID: 21957483 PMCID: PMC3177904 DOI: 10.1371/journal.pone.0025247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 08/30/2011] [Indexed: 01/21/2023] Open
Abstract
Hoxa1 belongs to the Hox family of homeodomain transcription factors involved in patterning embryonic territories and governing organogenetic processes. In addition to its developmental functions, Hoxa1 has been shown to be an oncogene and to be overexpressed in the mammary gland in response to a deregulation of the autocrine growth hormone. It has therefore been suggested that Hoxa1 plays a pivotal role in the process linking autocrine growth hormone misregulation and mammary carcinogenesis. Like most Hox proteins, Hoxa1 can interact with Pbx proteins. This interaction relies on a Hox hexapeptidic sequence centred on conserved Tryptophan and Methionine residues. To address the importance of the Hox-Pbx interaction for the oncogenic activity of Hoxa1, we characterized here the properties of a Hoxa1 variant with substituted residues in the hexapeptide and demonstrate that the Hoxa1 mutant lost its ability to stimulate cell proliferation, anchorage-independent cell growth, and loss of contact inhibition. Therefore, the hexapeptide motif of Hoxa1 is required to confer its oncogenic activity, supporting the view that this activity relies on the ability of Hoxa1 to interact with Pbx.
Collapse
Affiliation(s)
- Stéphanie Delval
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Juliette Lamy
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Cécile Lallemand
- Laboratory of Biology of Tumors and Development, GIGA-Cancer, University of Liège and Centre Hospitalier Universitaire, Liège, Belgium
| | - Christine Gilles
- Laboratory of Biology of Tumors and Development, GIGA-Cancer, University of Liège and Centre Hospitalier Universitaire, Liège, Belgium
| | - Agnès Noël
- Laboratory of Biology of Tumors and Development, GIGA-Cancer, University of Liège and Centre Hospitalier Universitaire, Liège, Belgium
| | - René Rezsohazy
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
42
|
Baker NE, Firth LC. Retinal determination genes function along with cell-cell signals to regulate Drosophila eye development: examples of multi-layered regulation by master regulators. Bioessays 2011; 33:538-46. [PMID: 21607995 DOI: 10.1002/bies.201000131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is thought that retinal determination (RD) gene products define the response made to cell-cell signals in the field of eye development by binding to enhancers of genes that are also regulated by cell-cell signaling pathways. In Drosophila, RD genes, including eyeless, teashirt, eyes absent, dachsous, and sine oculis, are required for normal eye development and can induce ectopic eyes when mis-expressed. Characterization of the enhancers responsible for eye expression of the hedgehog, shaven, and atonal genes, as well as the dynamics of RD gene expression themselves, now suggest a multilayered network whereby transcriptional regulation by either RD genes or cell-cell signaling pathways can sometimes be indirect and mediated by other transcription factor intermediates. In this updated view of the interaction between extracellular information and cell intrinsic programs during development, regulation of individual genes might sometimes be several steps removed from either the RD genes or the cell-cell signaling pathways that nevertheless govern their expression.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Opthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
43
|
Slattery M, Ma L, Négre N, White KP, Mann RS. Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila. PLoS One 2011; 6:e14686. [PMID: 21483663 PMCID: PMC3071676 DOI: 10.1371/journal.pone.0014686] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/21/2011] [Indexed: 11/18/2022] Open
Abstract
The Hox genes are responsible for generating morphological diversity along the
anterior-posterior axis during animal development. The
Drosophila Hox gene Ultrabithorax
(Ubx), for example, is required for specifying the identity
of the third thoracic (T3) segment of the adult, which includes the dorsal
haltere, an appendage required for flight, and the ventral T3 leg.
Ubx mutants show homeotic transformations of the T3 leg
towards the identity of the T2 leg and the haltere towards the wing. All Hox
genes, including Ubx, encode homeodomain containing
transcription factors, raising the question of what target genes
Ubx regulates to generate these adult structures. To
address this question, we carried out whole genome ChIP-chip studies to identify
all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are
the precursors to these adult structures. In addition, we used ChIP-chip to
identify the sites bound by the Hox cofactor, Homothorax (Hth). In contrast to
previous ChIP-chip studies carried out in Drosophila embryos,
these binding studies reveal that there is a remarkable amount of tissue- and
transcription factor-specific binding. Analyses of the putative target genes
bound and regulated by these factors suggest that Ubx regulates many downstream
transcription factors and developmental pathways in the haltere and T3 leg.
Finally, we discovered additional DNA sequence motifs that in some cases are
specific for individual data sets, arguing that Ubx and/or Hth work together
with many regionally expressed transcription factors to execute their functions.
Together, these data provide the first whole-genome analysis of the binding
sites and target genes regulated by Ubx to specify the morphologies of the adult
T3 segment of the fly.
Collapse
Affiliation(s)
- Matthew Slattery
- Department of Biochemistry and Molecular
Biophysics, Columbia University, New York, New York, United States of
America
| | - Lijia Ma
- Department of Human Genetics, Department of
Ecology and Evolution, Institute for Genomics and Systems Biology, University of
Chicago, Chicago, Illinois, United States of America
| | - Nicolas Négre
- Department of Human Genetics, Department of
Ecology and Evolution, Institute for Genomics and Systems Biology, University of
Chicago, Chicago, Illinois, United States of America
| | - Kevin P. White
- Department of Human Genetics, Department of
Ecology and Evolution, Institute for Genomics and Systems Biology, University of
Chicago, Chicago, Illinois, United States of America
| | - Richard S. Mann
- Department of Biochemistry and Molecular
Biophysics, Columbia University, New York, New York, United States of
America
- * E-mail:
| |
Collapse
|
44
|
|
45
|
Axlund SD, Lambert JR, Nordeen SK. HOXC8 inhibits androgen receptor signaling in human prostate cancer cells by inhibiting SRC-3 recruitment to direct androgen target genes. Mol Cancer Res 2010; 8:1643-55. [PMID: 21047772 DOI: 10.1158/1541-7786.mcr-10-0111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HOX (homeobox) genes encode homeodomain-containing transcription factors critical to development, differentiation, and homeostasis. Their dysregulation has been implicated in a variety of cancers. Previously, we showed that a subset of genes of the HOXC cluster is upregulated in primary prostate tumors, lymph node metastases, and malignant prostate cell lines. In the present study, we show that HOXC8 inhibits androgen receptor (AR)-mediated gene induction in LNCaP prostate cancer cells and HPr-1 AR, a nontumorigenic prostate epithelial cell line. Mechanistically, HOXC8 blocks the AR-dependent recruitment of the steroid receptor coactivators steroid receptor coactivator-3 (SRC-3), and CREB binding protein to the androgen-regulated prostate-specific antigen gene enhancer and inhibits histone acetylation of androgen-regulated genes. Inhibition of androgen induction by HOXC8 is reversed upon expression of SRC-3, a member of the SRC/p160 steroid receptor cofactor family. Coimmunoprecipitation studies show that HOXC8 expression inhibits the hormone-dependent interaction of AR and SRC-3. Finally, HOXC8 expression increases invasion in HPr-1 AR nontumorigenic cells. These data suggest a complex role for HOXC8 in prostate cancer, promoting invasiveness while inhibiting AR-mediated gene induction at androgen response element-regulated genes associated with differentiated function of the prostate. A greater understanding of HOXC8 actions in the prostate and its interactions with androgen signaling pathways may elucidate mechanisms driving the onset and progression of prostate cancer.
Collapse
Affiliation(s)
- Sunshine Daddario Axlund
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, 12801 E 17th Ave., Aurora, CO 80045, USA
| | | | | |
Collapse
|
46
|
Ismat A, Schaub C, Reim I, Kirchner K, Schultheis D, Frasch M. HLH54F is required for the specification and migration of longitudinal gut muscle founders from the caudal mesoderm of Drosophila. Development 2010; 137:3107-17. [PMID: 20736287 DOI: 10.1242/dev.046573] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HLH54F, the Drosophila ortholog of the vertebrate basic helix-loop-helix domain-encoding genes capsulin and musculin, is expressed in the founder cells and developing muscle fibers of the longitudinal midgut muscles. These cells descend from the posterior-most portion of the mesoderm, termed the caudal visceral mesoderm (CVM), and migrate onto the trunk visceral mesoderm prior to undergoing myoblast fusion and muscle fiber formation. We show that HLH54F expression in the CVM is regulated by a combination of terminal patterning genes and snail. We generated HLH54F mutations and show that this gene is crucial for the specification, migration and survival of the CVM cells and the longitudinal midgut muscle founders. HLH54F mutant embryos, larvae, and adults lack all longitudinal midgut muscles, which causes defects in gut morphology and integrity. The function of HLH54F as a direct activator of gene expression is exemplified by our analysis of a CVM-specific enhancer from the Dorsocross locus, which requires combined inputs from HLH54F and Biniou in a feed-forward fashion. We conclude that HLH54F is the earliest specific regulator of CVM development and that it plays a pivotal role in all major aspects of development and differentiation of this largely twist-independent population of mesodermal cells.
Collapse
Affiliation(s)
- Afshan Ismat
- Mount Sinai School of Medicine, Department of Molecular, Cell and Developmental Biology (currently Developmental and Regenerative Biology), Box 1020, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hoang CQ, Burnett ME, Curtiss J. Drosophila CtBP regulates proliferation and differentiation of eye precursors and complexes with Eyeless, Dachshund, Dan, and Danr during eye and antennal development. Dev Dyn 2010; 239:2367-85. [PMID: 20730908 PMCID: PMC2939150 DOI: 10.1002/dvdy.22380] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Specification factors regulate cell fate in part by interacting with transcriptional co-regulators like CtBP to regulate gene expression. Here, we demonstrate that CtBP forms a complex or complexes with the Drosophila melanogaster Pax6 homolog Eyeless (Ey), and with Distal antenna (Dan), Distal antenna related (Danr), and Dachshund to promote eye and antennal specification. Phenotypic analysis together with molecular data indicate that CtBP interacts with Ey to prevent overproliferation of eye precursors. In contrast, CtBP,dan,danr triple mutant adult eyes have significantly fewer ommatidia than CtBP single or dan,danr double mutants, suggesting that the CtBP/Dan/Danr complex functions to recruit ommatidia from the eye precursor pool. Furthermore, CtBP single and to a greater extent CtBP,dan,danr triple mutants affect the establishment and maintenance of the R8 precursor, which is the founding ommatidial cell. Thus, CtBP interacts with different eye specification factors to regulate gene expression appropriate for proliferative vs. differentiative stages of eye development.
Collapse
Affiliation(s)
| | | | - Jennifer Curtiss
- Department of Biology, New Mexico State University, Las Cruces, NM 88003
| |
Collapse
|
48
|
Joshi R, Sun L, Mann R. Dissecting the functional specificities of two Hox proteins. Genes Dev 2010; 24:1533-45. [PMID: 20634319 DOI: 10.1101/gad.1936910] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hox proteins frequently select and regulate their specific target genes with the help of cofactors like Extradenticle (Exd) and Homothorax (Hth). For the Drosophila Hox protein Sex combs reduced (Scr), Exd has been shown to position a normally unstructured portion of Scr so that two basic amino acid side chains can insert into the minor groove of an Scr-specific DNA-binding site. Here we provide evidence that another Drosophila Hox protein, Deformed (Dfd), uses a very similar mechanism to achieve specificity in vivo, thus generalizing this mechanism. Furthermore, we show that subtle differences in the way Dfd and Scr recognize their specific binding sites, in conjunction with non-DNA-binding domains, influence whether the target gene is transcriptionally activated or repressed. These results suggest that the interaction between these DNA-binding proteins and the DNA-binding site determines the architecture of the Hox-cofactor-DNA ternary complex, which in turn determines whether the complex recruits coactivators or corepressors.
Collapse
Affiliation(s)
- Rohit Joshi
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | |
Collapse
|
49
|
François P, Siggia ED. Predicting embryonic patterning using mutual entropy fitness and in silico evolution. Development 2010; 137:2385-95. [PMID: 20570938 DOI: 10.1242/dev.048033] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During vertebrate embryogenesis, the expression of Hox genes that define anterior-posterior identity follows general rules: temporal colinearity and posterior prevalence. A mathematical measure for the quality or fitness of the embryonic pattern produced by a gene regulatory network is derived. Using this measure and in silico evolution we derive gene interaction networks for anterior-posterior (AP) patterning under two developmental paradigms. For patterning during growth (paradigm I), which is appropriate for vertebrates and short germ-band insects, the algorithm creates gene expression patterns reminiscent of Hox gene expression. The networks operate through a timer gene, the level of which measures developmental progression (a candidate is the widely conserved posterior morphogen Caudal). The timer gene provides a simple mechanism to coordinate patterning with growth rate. The timer, when expressed as a static spatial gradient, functions as a classical morphogen (paradigm II), providing a natural way to derive the AP patterning, as seen in long germ-band insects that express their Hox genes simultaneously, from the ancestral short germ-band system. Although the biochemistry of Hox regulation in higher vertebrates is complex, the actual spatiotemporal expression phenotype is not, and simple activation and repression by Hill functions suffices in our model. In silico evolution provides a quantitative demonstration that continuous positive selection can generate complex phenotypes from simple components by incremental evolution, as Darwin proposed.
Collapse
Affiliation(s)
- Paul François
- Center for studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10065 New York, NY, USA
| | - Eric D. Siggia
- Center for studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10065 New York, NY, USA
| |
Collapse
|
50
|
Uhl JD, Cook TA, Gebelein B. Comparing anterior and posterior Hox complex formation reveals guidelines for predicting cis-regulatory elements. Dev Biol 2010; 343:154-66. [PMID: 20398649 PMCID: PMC2885469 DOI: 10.1016/j.ydbio.2010.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/26/2010] [Accepted: 04/07/2010] [Indexed: 11/18/2022]
Abstract
Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes.
Collapse
Affiliation(s)
- Juli D. Uhl
- Division of Developmental Biology, Cincinnati Children's Hospital, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Tiffany A. Cook
- Division of Developmental Biology, Cincinnati Children's Hospital, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229
- Department of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229
| |
Collapse
|