1
|
Xu R, Zhu Q, Zhao Y, Chen M, Yang L, Shen S, Yang G, Shi Z, Zhang X, Shi Q, Kou X, Zhao Y, Wang H, Jiang C, Li C, Gao S, Liu X. Unreprogrammed H3K9me3 prevents minor zygotic genome activation and lineage commitment in SCNT embryos. Nat Commun 2023; 14:4807. [PMID: 37558707 PMCID: PMC10412629 DOI: 10.1038/s41467-023-40496-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) can be used to reprogram differentiated somatic cells to a totipotent state but has poor efficiency in supporting full-term development. H3K9me3 is considered to be an epigenetic barrier to zygotic genomic activation in 2-cell SCNT embryos. However, the mechanism underlying the failure of H3K9me3 reprogramming during SCNT embryo development remains elusive. Here, we perform genome-wide profiling of H3K9me3 in cumulus cell-derived SCNT embryos. We find redundant H3K9me3 marks are closely related to defective minor zygotic genome activation. Moreover, SCNT blastocysts show severely indistinct lineage-specific H3K9me3 deposition. We identify MAX and MCRS1 as potential H3K9me3-related transcription factors and are essential for early embryogenesis. Overexpression of Max and Mcrs1 significantly benefits SCNT embryo development. Notably, MCRS1 partially rescues lineage-specific H3K9me3 allocation, and further improves the efficiency of full-term development. Importantly, our data confirm the conservation of deficient H3K9me3 differentiation in Sertoli cell-derived SCNT embryos, which may be regulated by alternative mechanisms.
Collapse
Affiliation(s)
- Ruimin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Qianshu Zhu
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Yuyan Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Mo Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, 400013, Chongqing, China
| | - Lingyue Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Shijun Shen
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Guang Yang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhifei Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Xiaolei Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Qi Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Cizhong Jiang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Chong Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Xiaoyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
2
|
Moura MT. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol Biol 2023; 2647:1-35. [PMID: 37041327 DOI: 10.1007/978-1-0716-3064-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes initiates nuclear reprogramming of lineage-committed cells to totipotency. Pioneer SCNT work culminated with cloned amphibians from tadpoles, while technical and biology-driven advances led to cloned mammals from adult animals. Cloning technology has been addressing fundamental questions in biology, propagating desired genomes, and contributing to the generation of transgenic animals or patient-specific stem cells. Nonetheless, SCNT remains technically complex and cloning efficiency relatively low. Genome-wide technologies revealed barriers to nuclear reprogramming, such as persistent epigenetic marks of somatic origin and reprogramming resistant regions of the genome. To decipher the rare reprogramming events that are compatible with full-term cloned development, it will likely require technical advances for large-scale production of SCNT embryos alongside extensive profiling by single-cell multi-omics. Altogether, cloning by SCNT remains a versatile technology, while further advances should continuously refresh the excitement of its applications.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Chemical Biology Graduate Program, Federal University of São Paulo - UNIFESP, Campus Diadema, Diadema - SP, Brazil
| |
Collapse
|
3
|
Brandt C. Development and Heredity in the Interwar Period: Hans Spemann and Fritz Baltzer on Organizers and Merogones. JOURNAL OF THE HISTORY OF BIOLOGY 2022; 55:253-283. [PMID: 35930095 PMCID: PMC9468045 DOI: 10.1007/s10739-022-09681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 05/08/2023]
Abstract
This article explores the collaborative research of the Nobel laureate Hans Spemann (1869-1941) and the Swiss zoologist Fritz Baltzer (1884-1974) on problems at the intersection of development and heredity and raises more general questions concerning science and politics in Germany in the interwar period. It argues that Spemann and Baltzer's collaborative work made a significant contribution to the then ongoing debates about the relation between developmental physiology and hereditary studies, although Spemann distanced himself from Drosophila genetics because of his anti-reductionist position. The article analyzes how Spemann framed the issues of heredity in terms of an epigenetic principle in the context of his work on the "organizer," and it explores the experimental dynamics of research on newt merogones carried out by Baltzer in a methodological development of Spemann's constriction experiments. Finally, these research attempts are discussed as part of a broader "prehistory" of the mid-twentieth century cell nuclear transplantation experiments, which provided the basis for later animal cloning.
Collapse
Affiliation(s)
- Christina Brandt
- Ernst-Haeckel-Haus, Institute for Zoology and Evolutionary Research, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
4
|
FULKA H, LOI P, PALAZZESE L, BENC M, FULKA, Jr. J. Nucleus reprogramming/remodeling through selective enucleation (SE) of immature oocytes and zygotes: a nucleolus point of view. J Reprod Dev 2022; 68:165-172. [PMID: 35431279 PMCID: PMC9184824 DOI: 10.1262/jrd.2022-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell
nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is
the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell
nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose
morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the
germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the
relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is
much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time,
it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on
the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.
Collapse
Affiliation(s)
- Helena FULKA
- Institute of Experimental Medicine, Prague, Czech Republic
| | - Pasqualino LOI
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca PALAZZESE
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Michal BENC
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
| | | |
Collapse
|
5
|
Falbo L, Costanzo V. Epigenetic regulation of replication origin assembly: A role for histone H1 and chromatin remodeling factors. Bioessays 2020; 43:e2000181. [PMID: 33165968 DOI: 10.1002/bies.202000181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
During early embryonic development in several metazoans, accurate DNA replication is ensured by high number of replication origins. This guarantees rapid genome duplication coordinated with fast cell divisions. In Xenopus laevis embryos this program switches to one with a lower number of origins at a developmental stage known as mid-blastula transition (MBT) when cell cycle length increases and gene transcription starts. Consistent with this regulation, somatic nuclei replicate poorly when transferred to eggs, suggesting the existence of an epigenetic memory suppressing replication assembly origins at all available sites. Recently, it was shown that histone H1 imposes a non-permissive chromatin configuration preventing replication origin assembly on somatic nuclei. This somatic state can be erased by SSRP1, a subunit of the FACT complex. Here, we further develop the hypothesis that this novel form of epigenetic memory might impact on different areas of vertebrate biology going from nuclear reprogramming to cancer development.
Collapse
Affiliation(s)
- Lucia Falbo
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy
| | - Vincenzo Costanzo
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy.,Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Lehmann M, Canatelli-Mallat M, Chiavellini P, Cónsole GM, Gallardo MD, Goya RG. Partial Reprogramming As An Emerging Strategy for Safe Induced Cell Generation and Rejuvenation. Curr Gene Ther 2020; 19:248-254. [PMID: 31475896 DOI: 10.2174/1566523219666190902154511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Conventional cell reprogramming involves converting a somatic cell line into induced pluripotent stem cells (iPSC), which subsequently can be re-differentiated to specific somatic cell types. Alternatively, partial cell reprogramming converts somatic cells into other somatic cell types by transient expression of pluripotency genes thus generating intermediates that retain their original cell identity, but are responsive to appropriate cocktails of specific differentiation factors. Additionally, biological rejuvenation by partial cell reprogramming is an emerging avenue of research. OBJECTIVE Here, we will briefly review the emerging information pointing to partial reprogramming as a suitable strategy to achieve cell reprogramming and rejuvenation, bypassing cell dedifferentiation. METHODS In this context, regulatable pluripotency gene expression systems are the most widely used at present to implement partial cell reprogramming. For instance, we have constructed a regulatable bidirectional adenovector expressing Green Fluorescent Protein and oct4, sox2, klf4 and c-myc genes (known as the Yamanaka genes or OSKM). RESULTS Partial cell reprogramming has been used to reprogram fibroblasts to cardiomyocytes, neural progenitors and neural stem cells. Rejuvenation by cyclic partial reprogramming has been achieved both in vivo and in cell culture using transgenic mice and cells expressing the OSKM genes, respectively, controlled by a regulatable promoter. CONCLUSION Partial reprogramming emerges as a powerful tool for the genesis of iPSC-free induced somatic cells of therapeutic value and for the implementation of in vitro and in vivo rejuvenation keeping cell type identity unchanged.
Collapse
Affiliation(s)
- Marianne Lehmann
- INIBIOLP-Pathology B, Faculty of Medicine, UNLP, CC 455 (zip 1900) La Plata, Argentina.,Department of Histology, Cytology and of Embryology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Martina Canatelli-Mallat
- INIBIOLP-Pathology B, Faculty of Medicine, UNLP, CC 455 (zip 1900) La Plata, Argentina.,Department of Histology, Cytology and of Embryology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Priscila Chiavellini
- INIBIOLP-Pathology B, Faculty of Medicine, UNLP, CC 455 (zip 1900) La Plata, Argentina.,Department of Histology, Cytology and of Embryology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Gloria M Cónsole
- Department of Histology, Cytology and of Embryology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Maria D Gallardo
- INIBIOLP-Pathology B, Faculty of Medicine, UNLP, CC 455 (zip 1900) La Plata, Argentina.,Department of Histology, Cytology and of Embryology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Rodolfo G Goya
- INIBIOLP-Pathology B, Faculty of Medicine, UNLP, CC 455 (zip 1900) La Plata, Argentina.,Department of Histology, Cytology and of Embryology B, School of Medicine, University of La Plata, La Plata, Argentina
| |
Collapse
|
7
|
Zhang K, Wu DY, Zheng H, Wang Y, Sun QR, Liu X, Wang LY, Xiong WJ, Wang Q, Rhodes JDP, Xu K, Li L, Lin Z, Yu G, Xia W, Huang B, Du Z, Yao Y, Nasmyth KA, Klose RJ, Miao YL, Xie W. Analysis of Genome Architecture during SCNT Reveals a Role of Cohesin in Impeding Minor ZGA. Mol Cell 2020; 79:234-250.e9. [PMID: 32579944 DOI: 10.1016/j.molcel.2020.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
Somatic cell nuclear transfer (SCNT) can reprogram a somatic nucleus to a totipotent state. However, the re-organization of 3D chromatin structure in this process remains poorly understood. Using low-input Hi-C, we revealed that, during SCNT, the transferred nucleus first enters a mitotic-like state (premature chromatin condensation). Unlike fertilized embryos, SCNT embryos show stronger topologically associating domains (TADs) at the 1-cell stage. TADs become weaker at the 2-cell stage, followed by gradual consolidation. Compartments A/B are markedly weak in 1-cell SCNT embryos and become increasingly strengthened afterward. By the 8-cell stage, somatic chromatin architecture is largely reset to embryonic patterns. Unexpectedly, we found cohesin represses minor zygotic genome activation (ZGA) genes (2-cell-specific genes) in pluripotent and differentiated cells, and pre-depleting cohesin in donor cells facilitates minor ZGA and SCNT. These data reveal multi-step reprogramming of 3D chromatin architecture during SCNT and support dual roles of cohesin in TAD formation and minor ZGA repression.
Collapse
Affiliation(s)
- Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Dan-Ya Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Hui Zheng
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Yao Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Qiao-Ran Sun
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Li-Yan Wang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Wen-Jing Xiong
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | | | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Guang Yu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Weikun Xia
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Bo Huang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Yao Yao
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Ruzittu S, Willnow D, Spagnoli FM. Direct Lineage Reprogramming: Harnessing Cell Plasticity between Liver and Pancreas. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035626. [PMID: 31767653 DOI: 10.1101/cshperspect.a035626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct lineage reprogramming of abundant and accessible cells into therapeutically useful cell types holds tremendous potential in regenerative medicine. To date, a number of different cell types have been generated by lineage reprogramming methods, including cells from the neural, cardiac, hepatic, and pancreatic lineages. The success of this strategy relies on developmental biology and the knowledge of cell-fate-defining transcriptional networks. Hepatocytes represent a prime target for β cell conversion for numerous reasons, including close developmental origin, accessibility, and regenerative potential. We present here an overview of pancreatic and hepatic development, with a particular focus on the mechanisms underlying the divergence between the two cell lineages. Additionally, we discuss to what extent this lineage relationship can be exploited in efforts to reprogram one cell type into the other and whether such an approach may provide a suitable strategy for regenerative therapies of diabetes.
Collapse
Affiliation(s)
- Silvia Ruzittu
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom.,Max Delbrück Center for Molecular Medicine (MDC), D-13125 Berlin, Germany
| | - David Willnow
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Francesca M Spagnoli
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
9
|
|
10
|
SSRP1-mediated histone H1 eviction promotes replication origin assembly and accelerated development. Nat Commun 2020; 11:1345. [PMID: 32165637 PMCID: PMC7067836 DOI: 10.1038/s41467-020-15180-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
In several metazoans, the number of active replication origins in embryonic nuclei is higher than in somatic ones, ensuring rapid genome duplication during synchronous embryonic cell divisions. High replication origin density can be restored by somatic nuclear reprogramming. However, mechanisms underlying high replication origin density formation coupled to rapid cell cycles are poorly understood. Here, using Xenopus laevis, we show that SSRP1 stimulates replication origin assembly on somatic chromatin by promoting eviction of histone H1 through its N-terminal domain. Histone H1 removal derepresses ORC and MCM chromatin binding, allowing efficient replication origin assembly. SSRP1 protein decays at mid-blastula transition (MBT) when asynchronous somatic cell cycles start. Increasing levels of SSRP1 delay MBT and, surprisingly, accelerate post-MBT cell cycle speed and embryo development. These findings identify a major epigenetic mechanism regulating DNA replication and directly linking replication origin assembly, cell cycle duration and embryo development in vertebrates. During embryonic development, it is vital to maintain rapid genome duplication. Here, the authors shed light on the mechanism by revealing that SSRP1 stimulates replication origin assembly on somatic nuclei in Xenopus laevis egg extract by promoting histone H1 eviction from somatic chromatin.
Collapse
|
11
|
Goligorsky MS. New Trends in Regenerative Medicine: Reprogramming and Reconditioning. J Am Soc Nephrol 2019; 30:2047-2051. [PMID: 31540964 DOI: 10.1681/asn.2019070722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Michael S Goligorsky
- Departments of Medicine, .,Pharmacology, and.,Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, New York
| |
Collapse
|
12
|
Bovine somatic cell nuclear transfer using mitomycin C-mediated chemical oocyte enucleation. ZYGOTE 2019; 27:137-142. [PMID: 31036094 DOI: 10.1017/s0967199419000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryChemical oocyte enucleation holds the potential to ease somatic cell nuclear transfer (SCNT), although high enucleation rates remain limited to micromanipulation-based approaches. Therefore, this study aimed to test mitomycin C (MMC) for use in bovine functional chemical oocyte enucleation. Incubation of denuded eggs in 10 µg ml-1 MMC for different periods did not affect most maturation rates (0.5 h: 85.78%A, 1.0 h: 72.77%B, 1.5 h: 83.87%A, and 2.0 h: 82.05%A) in comparison with non-treated controls (CTL; 85.77%A). Parthenogenetic development arrest by MMC was efficient at cleavage (CTL: 72.93%A, 0.5 h: 64.92%A,B, 1.0 h: 60.39%B,C, 1.5 h: 66.35%A,B, and 2.0 h: 53.84%C) and blastocyst stages (CTL: 33.94%A, 0.5 h: 7.58%B, 1.0 h: 2.47%C, 1.5 h: 0.46%C, and 2.0 h: 0.51%C). Blastocysts were obtained after nuclear transfer (NT) using MMC enucleation [NT(MMC): 4.54%B] but at lower rates than for the SCNT control [NT(CTL): 26.31%A]. The removal of the meiotic spindle after MMC incubation fully restored SCNT blastocyst development [NT(MMC+SR): 24.74%A]. Early pregnancies were obtained by the transfer of NT(MMC) and NT(MMC+SR) blastocysts to synchronized recipients. In conclusion, MMC leads to functional chemical oocyte enucleation during SCNT and further suggests its potential for application towards technical improvements.
Collapse
|
13
|
Shivashankar GV. Mechanical regulation of genome architecture and cell-fate decisions. Curr Opin Cell Biol 2018; 56:115-121. [PMID: 30554028 DOI: 10.1016/j.ceb.2018.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Landmark experiments in vitro showed that somatic cells can be reprogrammed to stem-cells by the constitutive expression of particular transcription factors. However, in vivo cells naturally exhibit de-differentiation and trans-differentiation programs, thereby suggesting that the signals from the local mechanical microenvironment may be sufficient to induce stem-cell state transitions. In this review, we discuss recent evidence for the biophysical regulation of genome architecture and nuclear programs. We start by discussing the coupling between cellular architecture, genome organization and gene expression. We then review the role of biophysical factors in regulating genome architecture and cell-state transitions. Finally, we discuss the molecular basis of cell-state transitions during nuclear reprogramming. Collectively, we highlight the importance of the mechanical regulation of genome organization on cell-fate decisions.
Collapse
Affiliation(s)
- G V Shivashankar
- Mechanobiology Institute, National University of Singapore, Singapore & FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.
| |
Collapse
|
14
|
Animal Development and Reprogramming. Development 2018. [DOI: 10.1017/9781108686099.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Abstract
Inheritance of genomic DNA underlies the vast majority of biological inheritance, yet it has been clear for decades that additional epigenetic information can be passed on to future generations. Here, we review major model systems for transgenerational epigenetic inheritance via the germline in multicellular organisms. In addition to surveying examples of epivariation that may arise stochastically or in response to unknown stimuli, we also discuss the induction of heritable epigenetic changes by genetic or environmental perturbations. Mechanistically, we discuss the increasingly well-understood molecular pathways responsible for epigenetic inheritance, with a focus on the unusual features of the germline epigenome.
Collapse
Affiliation(s)
- Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
16
|
Abstract
The pancreas is made from two distinct components: the exocrine pancreas, a reservoir of digestive enzymes, and the endocrine islets, the source of the vital metabolic hormone insulin. Human islets possess limited regenerative ability; loss of islet β-cells in diseases such as type 1 diabetes requires therapeutic intervention. The leading strategy for restoration of β-cell mass is through the generation and transplantation of new β-cells derived from human pluripotent stem cells. Other approaches include stimulating endogenous β-cell proliferation, reprogramming non-β-cells to β-like cells, and harvesting islets from genetically engineered animals. Together these approaches form a rich pipeline of therapeutic development for pancreatic regeneration.
Collapse
|
17
|
Xu J, Lian W, Li L, Huang Z. Generation of induced cardiac progenitor cells via somatic reprogramming. Oncotarget 2018; 8:29442-29457. [PMID: 28199972 PMCID: PMC5438743 DOI: 10.18632/oncotarget.15272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
It has been demonstrated that cardiac progenitor cells (CPCs) represent a more effective cell-based therapy for treatment of myocardial infarction. Unfortunately, their therapeutic application is limited by low yield of cell harvesting, declining quality and quantity during the ageing process, and the need for highly invasive heart biopsy. Therefore, there is an emerging interest in generating CPC-like stem cells from somatic cells via somatic reprogramming. This novel approach would provide an unlimited source of stem cells with cardiac differentiation potential. Here we would firstly discuss the different types of CPC and their importance in stem cell therapy for treatment of myocardial infarction; secondly, the necessity of generating induced CPC from somatic cells via somatic reprogramming; and finally the current progress of somatic reprogramming in cardiac cells, especially induced CPC generation.
Collapse
Affiliation(s)
- Jianyong Xu
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Wei Lian
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Lingyun Li
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Zhong Huang
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| |
Collapse
|
18
|
López-León M, Outeiro TF, Goya RG. Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Res Rev 2017; 40:168-181. [PMID: 28903069 DOI: 10.1016/j.arr.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/27/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD.
Collapse
Affiliation(s)
- Micaela López-León
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Rodolfo G Goya
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina.
| |
Collapse
|
19
|
Stem cell federalism. Stem Cell Res 2017. [DOI: 10.1201/9781315152943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
20
|
Bibliography. Stem Cell Res 2017. [DOI: 10.1201/9781315152943-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1013:219-240. [PMID: 29127683 DOI: 10.1007/978-1-4939-7299-9_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, breakthroughs in human pluripotent stem cell (hPSC) research, namely cellular reprogramming and the emergence of sophisticated genetic engineering technologies, have opened new frontiers for cell and gene therapy. The prospect of using hPSCs, either autologous or histocompatible, as targets of genetic modification and their differentiated progeny as cell products for transplantation, presents a new paradigm of regenerative medicine of potential tremendous value for the treatment of blood disorders, including beta-thalassemia (BT) and sickle cell disease (SCD). Despite advances at a remarkable pace and great promise, many roadblocks remain before clinical translation can be realistically considered. Here we discuss the theoretical advantages of cell therapies utilizing hPSC derivatives, recent proof-of-principle studies and the main challenges towards realizing the potential of hPSC therapies in the clinic.
Collapse
|
22
|
Mannucci S, Calderan L, Quaranta P, Antonini S, Mosca F, Longoni B, Marzola P, Boschi F. Quantum dots labelling allows detection of the homing of mesenchymal stem cells administered as immunomodulatory therapy in an experimental model of pancreatic islets transplantation. J Anat 2016; 230:381-388. [PMID: 27861845 DOI: 10.1111/joa.12563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2016] [Indexed: 12/28/2022] Open
Abstract
Cell transplantation is considered a promising therapeutic approach in several pathologies but still needs innovative and non-invasive imaging technologies to be validated. The use of mesenchymal stem cells (MSCs) attracts major interest in clinical transplantation thanks to their regenerative properties, low immunogenicity and ability to regulate immune responses. In several animal models, MSCs are used in co-transplantation with pancreatic islets (PIs) for the treatment of type I diabetes, supporting graft survival and prolonging normal glycaemia levels. In this study we investigated the homing of systemically administered MSCs in a rat model of pancreatic portal vein transplantation. MSCs labelled with quantum dots (Qdots) were systemically injected by tail vein and monitored by optical fluorescence imaging. The fluorescence signal of the liver in animals co-transplanted with MSCs and PIs was significantly higher than in control animals in which MSCs alone were transplanted. By using magnetic labelling of PIs, the homing of PIs into liver was independently confirmed. These results demonstrate that MSCs injected in peripheral blood vessels preferentially accumulate into liver when PIs are transplanted in the same organ. Moreover, we prove that bimodal MRI-fluorescence imaging allows specific monitoring of the fate of two types of cells.
Collapse
Affiliation(s)
- Silvia Mannucci
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Laura Calderan
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Paola Quaranta
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Sara Antonini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Franco Mosca
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Biancamaria Longoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 2016. [PMID: 27446239 DOI: 10.1186/s13072‐016‐0081‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Epigenetic inheritance plays a crucial role in many biological processes, such as gene expression in early embryo development, imprinting and the silencing of transposons. It has recently been established that epigenetic effects can be inherited from one generation to the next. Here, we review examples of epigenetic mechanisms governing animal phenotype and behaviour, and we discuss the importance of these findings in respect to animal studies, and livestock in general. Epigenetic parameters orchestrating transgenerational effects, as well as heritable disorders, and the often-overlooked areas of livestock immunity and stress, are also discussed. We highlight the importance of nutrition and how it is linked to epigenetic alteration. Finally, we describe how our understanding of epigenetics is underpinning the latest cancer research and how this can be translated into directed efforts to improve animal health and welfare.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Ioannis Ikonomopoulos
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Andrew J Bannister
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
24
|
Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 2016; 9:31. [PMID: 27446239 PMCID: PMC4955263 DOI: 10.1186/s13072-016-0081-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023] Open
Abstract
Epigenetic inheritance plays a crucial role in many biological processes, such as gene expression in early embryo development, imprinting and the silencing of transposons. It has recently been established that epigenetic effects can be inherited from one generation to the next. Here, we review examples of epigenetic mechanisms governing animal phenotype and behaviour, and we discuss the importance of these findings in respect to animal studies, and livestock in general. Epigenetic parameters orchestrating transgenerational effects, as well as heritable disorders, and the often-overlooked areas of livestock immunity and stress, are also discussed. We highlight the importance of nutrition and how it is linked to epigenetic alteration. Finally, we describe how our understanding of epigenetics is underpinning the latest cancer research and how this can be translated into directed efforts to improve animal health and welfare.
Collapse
Affiliation(s)
- Kostas A. Triantaphyllopoulos
- />Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Ioannis Ikonomopoulos
- />Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Andrew J. Bannister
- />Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
25
|
Abstract
Transcription factors fulfill a key role in the formation and maintenance of different cell-types during development. It is known that transcription factors largely dissociate from chromosomes during mitosis. We found, previously, that mitosis is also a time when somatic nuclei can be far more easily reprogrammed after nuclear transfer than the nuclei of interphase cells. We refer to this as a mitotic advantage. Here, the rate of exchange of a transcription factor on its designated DNA-binding site is discussed. It is proposed that the Xenopus oocyte could serve as an experimental system in which the duration of binding site occupancy could be usefully analyzed. In particular, the Xenopus oocyte has several characteristics which make it possible to determine accurately the concentration and duration of transcription factor binding. It is proposed that the concentration and time are the key variables which govern the action of transcription factors when they activate genes needed for cell lineage determination.
Collapse
Affiliation(s)
- John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
26
|
Oh SY, Kim JY, Park C. The ETS Factor, ETV2: a Master Regulator for Vascular Endothelial Cell Development. Mol Cells 2015; 38:1029-36. [PMID: 26694034 PMCID: PMC4696993 DOI: 10.14348/molcells.2015.0331] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/15/2023] Open
Abstract
Appropriate vessel development and its coordinated function is essential for proper embryogenesis and homeostasis in the adult. Defects in vessels cause birth defects and are an important etiology of diseases such as cardiovascular disease, tumor and diabetes retinopathy. The accumulative data indicate that ETV2, an ETS transcription factor, performs a potent and indispensable function in mediating vessel development. This review discusses the recent progress of the study of ETV2 with special focus on its regulatory mechanisms and cell fate determining role in developing mouse embryos as well as somatic cells.
Collapse
Affiliation(s)
- Se-Yeong Oh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
| | - Ju Young Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
- Biochemistry, Cell Biology and Developmental Biology Program, Emory University School of Medicine, Atlanta, GA,
USA
| |
Collapse
|
27
|
Abstract
Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research.
Collapse
|
28
|
Abstract
In vivo induction of non-neuronal cells into neurons by transcription factors offers potential therapeutic approaches for neural regeneration. Although generation of induced neuronal (iN) cells in vitro and in vivo has been reported, whether iN cells can be fully integrated into existing circuits remains unclear. Here we show that expression of achaete-scute complex homolog-like 1 (Ascl1) alone is sufficient to convert dorsal midbrain astrocytes of mice into functional iN cells in vitro and in vivo. Specific expression of Ascl1 in astrocytes by infection with GFAP-adeno-associated virus (AAV) vector converts astrocytes in dorsal midbrain, striatum, and somatosensory cortex of postnatal and adult mice into functional neurons in vivo. These iN cells mature progressively, exhibiting neuronal morphology and markers, action potentials, and synaptic inputs from and output to existing neurons. Thus, a single transcription factor, Ascl1, is sufficient to convert brain astrocytes into functional neurons, and GFAP-AAV is an efficient vector for generating iN cells from astrocytes in vivo.
Collapse
|
29
|
Abstract
This brief introduction is followed by a published version of my Nobel Laureate lecture, re-published herein with the kind permission of the Nobel Foundation. Much has happened since my original research, for which that prize was awarded. Hence, I am pleased to offer a few thoughts about the future of my research and its possible impact on humankind.Although the original work on nuclear transfer and reprogramming was done over half a century ago, advances continue to be made. In particular the Takahashi and Yamanaka induced pluripotent stem cells (iPS) procedure has opened up the field of cell replacement to a great extent. Now, more recently, further advances make this whole field come closer to actual usefulness for humans. Recently, in the UK, the government approved the use of mitochondrial replacement therapy to avoid the problems associated with genetically defective mitochondria in certain women. Although the House of Commons (members of Parliament) and the House of Lords had to debate and discuss whether to allow this kind of human therapy, I was very pleased to find that both bodies approved this procedure. This means that a patient can choose to make use of the procedure; it does not in any way force an individual to have a procedure that they are not comfortable with. In my view, this is a great advance in respect to giving patients a choice about the treatment they receive. I am told that the UK is the first country in the world to approve mitochondrial replacement therapy.Now that the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPr) technology is being widely used and works well, one can foresee that there will be those who wish to use this technology to make genetic changes to humans. For example, if a human has a gene that makes it susceptible to infection or any other disorder, the removal of that gene might give such a person immunity from that disease. If this gene deletion is done within the germ line, the genetic change will be inherited. However, one can imagine that various people will strongly object and say that this technology should not be allowed. I would very much hope that various regulatory bodies, governments, etc. will allow the choice to remain with the individual. I can see no argument for such bodies to make a law that removes any choice whatsoever by an individual.
Collapse
|
30
|
Chen Q, Gao S, He W, Kou X, Zhao Y, Wang H, Gao S. Xist repression shows time-dependent effects on the reprogramming of female somatic cells to induced pluripotent stem cells. Stem Cells 2015; 32:2642-56. [PMID: 24965076 DOI: 10.1002/stem.1775] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/17/2014] [Accepted: 05/23/2014] [Indexed: 11/10/2022]
Abstract
Although the reactivation of silenced X chromosomes has been observed as part of the process of reprogramming female somatic cells into induced pluripotent stem cells (iPSCs), it remains unknown whether repression of the X-inactive specific transcript (Xist) can greatly enhance female iPSC induction similar to that observed in somatic cell nuclear transfer studies. In this study, we discovered that the repression of Xist plays opposite roles in the early and late phases of female iPSCs induction. Our results demonstrate that the downregulation of Xist by an isopropyl β-d-1-thiogalactopyranoside (IPTG)-inducible short hairpin RNA (shRNA) system can greatly impair the mesenchymal-to-epithelial transition (MET) in the early phase of iPSC induction but can significantly promote the transition of pre-iPSCs to iPSCs in the late phase. Furthermore, we demonstrate that although the knockdown of Xist did not affect the H3K27me3 modification on the X chromosome, macroH2A was released from the inactivated X chromosome (Xi). This enables the X chromosome silencing to be a reversible event. Moreover, we demonstrate that the supplementation of vitamin C (Vc) can augment and stabilize the reversible X chromosome by preventing the relocalization of macroH2A to the Xi. Therefore, our study reveals an opposite role of Xist repression in the early and late stages of reprogramming female somatic cells to pluripotency and demonstrates that the release of macroH2A by Xist repression enables the transition from pre-iPSCs to iPSCs.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Mitra MK, Taylor PR, Hutchison CJ, McLeish TCB, Chakrabarti B. Delayed self-regulation and time-dependent chemical drive leads to novel states in epigenetic landscapes. J R Soc Interface 2015; 11:20140706. [PMID: 25165605 PMCID: PMC4191102 DOI: 10.1098/rsif.2014.0706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The epigenetic pathway of a cell as it differentiates from a stem cell state to a mature lineage-committed one has been historically understood in terms of Waddington's landscape, consisting of hills and valleys. The smooth top and valley-strewn bottom of the hill represent their undifferentiated and differentiated states, respectively. Although mathematical ideas rooted in nonlinear dynamics and bifurcation theory have been used to quantify this picture, the importance of time delays arising from multistep chemical reactions or cellular shape transformations have been ignored so far. We argue that this feature is crucial in understanding cell differentiation and explore the role of time delay in a model of a single-gene regulatory circuit. We show that the interplay of time-dependent drive and delay introduces a new regime where the system shows sustained oscillations between the two admissible steady states. We interpret these results in the light of recent perplexing experiments on inducing the pluripotent state in mouse somatic cells. We also comment on how such an oscillatory state can provide a framework for understanding more general feedback circuits in cell development.
Collapse
Affiliation(s)
- Mithun K Mitra
- Department of Physics, I.I.T. Bombay, Mumbai 400076, India
| | - Paul R Taylor
- Systems Biology Doctoral Training Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Chris J Hutchison
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - T C B McLeish
- Department of Physics and Astronomy, Durham University, Durham DH1 3LE, UK
| | - Buddhapriya Chakrabarti
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK The Isaac Newton Institute of Mathematical Sciences, University of Cambridge, Cambridge CB3 0EH, UK
| |
Collapse
|
32
|
Affiliation(s)
- Taketaro Sadahiro
- From the Department of Cardiology, Keio University School of Medicine, Japan Science and Technology CREST, Tokyo, Japan (T.S., M.I.); Japan Science and Technology CREST, Tokyo, Japan (M.I.); Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.Y.); and Gladstone Institute of Cardiovascular Disease, San Francisco, CA (S.Y.)
| | - Shinya Yamanaka
- From the Department of Cardiology, Keio University School of Medicine, Japan Science and Technology CREST, Tokyo, Japan (T.S., M.I.); Japan Science and Technology CREST, Tokyo, Japan (M.I.); Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.Y.); and Gladstone Institute of Cardiovascular Disease, San Francisco, CA (S.Y.)
| | - Masaki Ieda
- From the Department of Cardiology, Keio University School of Medicine, Japan Science and Technology CREST, Tokyo, Japan (T.S., M.I.); Japan Science and Technology CREST, Tokyo, Japan (M.I.); Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.Y.); and Gladstone Institute of Cardiovascular Disease, San Francisco, CA (S.Y.)
| |
Collapse
|
33
|
|
34
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
35
|
Papadimou E, Morigi M, Iatropoulos P, Xinaris C, Tomasoni S, Benedetti V, Longaretti L, Rota C, Todeschini M, Rizzo P, Introna M, Grazia de Simoni M, Remuzzi G, Goligorsky MS, Benigni A. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts. Stem Cell Reports 2015; 4:685-98. [PMID: 25754206 PMCID: PMC4400646 DOI: 10.1016/j.stemcr.2015.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/15/2022] Open
Abstract
The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. BMSCs cross lineage boundaries toward renal cells via cell-extract reprogramming Reprogrammed BMSCs acquire proximal tubular-like epithelial cell properties Reprogrammed BMSCs integrate into proximal tubuli and protect mice from AKI
Collapse
Affiliation(s)
- Evangelia Papadimou
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| | - Marina Morigi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Paraskevas Iatropoulos
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy
| | - Christodoulos Xinaris
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Susanna Tomasoni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Valentina Benedetti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Lorena Longaretti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Cinzia Rota
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Marta Todeschini
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy
| | - Paola Rizzo
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Martino Introna
- Laboratory of Cellular Therapy "G. Lanzani," USC Hematology, 24122 Bergamo, Italy
| | - Maria Grazia de Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," 20156 Milan, Italy
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy; Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy.
| | - Michael S Goligorsky
- Department of Medicine, Renal Research Institute, New York Medical College, 15 Dana Road, BSB C-06, Valhalla, NY 10595, USA
| | - Ariela Benigni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| |
Collapse
|
36
|
Abstract
The announcement that Sir John Gurdon had been awarded the 2012 Nobel Prize for Medicine or Physiology was received with great joy by developmental biologists. It was a very special occasion because of his total dedication to science and turning the Golden Rule of western civilization - love your neighbor as yourself - into a reality in our field. This essay attempts to explain how John became such a great scientific benefactor, and to review some of his discoveries that are less well known than the nuclear transplantation experiments. A few personal anecdotes are also included to illustrate the profound goodness of this unique man of science.
Collapse
|
37
|
Firas J, Liu X, Polo JM. Epigenetic memory in somatic cell nuclear transfer and induced pluripotency: Evidence and implications. Differentiation 2014; 88:29-32. [DOI: 10.1016/j.diff.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/18/2014] [Accepted: 09/06/2014] [Indexed: 12/31/2022]
|
38
|
Hsu YC, Chen SL, Wang YJ, Chen YH, Wang DY, Chen L, Chen CH, Chen HH, Chiu IM. Signaling adaptor protein SH2B1 enhances neurite outgrowth and accelerates the maturation of human induced neurons. Stem Cells Transl Med 2014; 3:713-22. [PMID: 24736401 DOI: 10.5966/sctm.2013-0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent advances in somatic cell reprogramming have highlighted the plasticity of the somatic epigenome, particularly through demonstrations of direct lineage reprogramming of adult mouse and human fibroblasts to induced pluripotent stem cells (iPSCs) and induced neurons (iNs) under defined conditions. However, human cells appear to be less plastic and have a higher epigenetic hurdle for reprogramming to both iPSCs and iNs. Here, we show that SH2B adaptor protein 1β (SH2B1) can enhance neurite outgrowth of iNs reprogrammed from human fibroblasts as early as day 14, when combined with miR124 and transcription factors BRN2 and MYT1L (IBM) under defined conditions. These SH2B1-enhanced iNs (S-IBM) showed canonical neuronal morphology, and expressed multiple neuronal markers, such as TuJ1, NeuN, and synapsin, and functional proteins for neurotransmitter release, such as GABA, vGluT2, and tyrosine hydroxylase. Importantly, SH2B1 accelerated mature process of functional neurons and exhibited action potentials as early as day 14; without SH2B1, the IBM iNs do not exhibit action potentials until day 21. Our data demonstrate that SH2B1 can enhance neurite outgrowth and accelerate the maturation of human iNs under defined conditions. This approach will facilitate the application of iNs in regenerative medicine and in vitro disease modeling.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, and Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, Institute of Molecular Medicine, and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China; Department of Pharmacology, Tzu Chi University, Hualien, Taiwan, Republic of China; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Su-Liang Chen
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, and Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, Institute of Molecular Medicine, and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China; Department of Pharmacology, Tzu Chi University, Hualien, Taiwan, Republic of China; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ya-Jean Wang
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, and Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, Institute of Molecular Medicine, and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China; Department of Pharmacology, Tzu Chi University, Hualien, Taiwan, Republic of China; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Yun-Hsiang Chen
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, and Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, Institute of Molecular Medicine, and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China; Department of Pharmacology, Tzu Chi University, Hualien, Taiwan, Republic of China; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Dan-Yen Wang
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, and Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, Institute of Molecular Medicine, and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China; Department of Pharmacology, Tzu Chi University, Hualien, Taiwan, Republic of China; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Linyi Chen
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, and Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, Institute of Molecular Medicine, and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China; Department of Pharmacology, Tzu Chi University, Hualien, Taiwan, Republic of China; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Chia-Hsiang Chen
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, and Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, Institute of Molecular Medicine, and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China; Department of Pharmacology, Tzu Chi University, Hualien, Taiwan, Republic of China; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Hwei-Hsien Chen
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, and Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, Institute of Molecular Medicine, and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China; Department of Pharmacology, Tzu Chi University, Hualien, Taiwan, Republic of China; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ing-Ming Chiu
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, and Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, Institute of Molecular Medicine, and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China; Department of Pharmacology, Tzu Chi University, Hualien, Taiwan, Republic of China; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
39
|
Imayoshi I, Kageyama R. bHLH Factors in Self-Renewal, Multipotency, and Fate Choice of Neural Progenitor Cells. Neuron 2014; 82:9-23. [DOI: 10.1016/j.neuron.2014.03.018] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 12/18/2022]
|
40
|
Amamoto R, Arlotta P. Development-inspired reprogramming of the mammalian central nervous system. Science 2014; 343:1239882. [PMID: 24482482 DOI: 10.1126/science.1239882] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell type into another not only turns fundamental principles of development on their heads but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may affect regeneration and modeling of a system historically considered immutable and hardwired.
Collapse
Affiliation(s)
- Ryoji Amamoto
- Department of Stem Cell and Regenerative Biology, Sherman Fairchild Building, 7 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
41
|
Gurdon JB. Ei und Kern: ein Kampf um die Vormacht (Nobel-Aufsatz). Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Gurdon JB. The egg and the nucleus: a battle for supremacy (Nobel Lecture). Angew Chem Int Ed Engl 2013; 52:13890-9. [PMID: 24311340 DOI: 10.1002/anie.201306722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/09/2022]
|
43
|
Sarić T, Halbach M, Khalil M, Er F. Induced pluripotent stem cells as cardiac arrhythmic in vitro models and the impact for drug discovery. Expert Opin Drug Discov 2013; 9:55-76. [PMID: 24294840 DOI: 10.1517/17460441.2014.863275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The development of new antiarrhythmic agents is challenging and is hampered by high attrition rate of novel drug candidates. One of the reasons for this is limited predictability of existing preclinical models for drug assessment. Cardiomyocytes (CMs) derived from disease-specific induced pluripotent stem cells (iPSC) represent a novel in vitro cellular model of cardiac arrhythmias with an unprecedented potential for generating new mechanistic insight into disease pathophysiology and improving the process of drug development. AREAS COVERED This review outlines recent studies demonstrating the suitability and limitations of iPSC-derived CMs (iPS-CMs) for in vitro modeling inherited arrhythmias and drug testing. The authors focus on channelopathies and outline the properties of iPS-CMs, highlighting their utility and limitations for investigating the mechanism of cardiac arrhythmias and drug discovery. EXPERT OPINION The iPS-CMs represent a valuable addition to the already existing armamentarium of cardiac arrhythmic models. However, the superiority of iPS-CMs over other arrhythmia models has not yet been rigorously established and the limitations of the model must be overcome before its full potential for antiarrhythmic drug discovery can be realized. Nevertheless, iPS cell-based platforms hold a great potential for increasing our knowledge about cellular arrhythmia mechanisms and improving the drug discovery process.
Collapse
Affiliation(s)
- Tomo Sarić
- University of Cologne, Institute for Neurophysiology, Center for Physiology and Pathophysiology, Medical Center , Robert Koch Str. 39, 50931 Cologne , Germany +49 221 478 86686 ; +49 221 478-3834 ;
| | | | | | | |
Collapse
|
44
|
Abstract
Heart disease affects millions worldwide and is a progressive condition involving loss of cardiomyocytes. The human heart has limited endogenous regenerative capacity and is thus an important target for novel regenerative medicine approaches. Although cell-based regenerative therapies hold promise, cellular reprogramming of endogenous cardiac fibroblasts, which represent more than half of the cells in the mammalian heart, may be an attractive alternative strategy for regenerating cardiac muscle. Recent advances leveraging years of developmental biology point to the feasibility of generating de novo cardiomyocyte-like cells from terminally differentiated nonmyocytes in the heart in situ after ischemic damage. Here, we review the progress in cardiac reprogramming methods and consider the opportunities and challenges that lie ahead in refining this technology for regenerative medicine.
Collapse
Affiliation(s)
- Li Qian
- From the McAllister Heart Institute, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill
| | | |
Collapse
|
45
|
Abstract
Sir John Gurdon and Professor Shinya Yamanaka were the recipients of the 2012 Nobel Prize for Physiology or Medicine. This Spotlight article is a commentary on the early nuclear transplant work in Xenopus, which was very important for the Nobel award in 2012, and the influence of this work on the reprogramming field.
Collapse
Affiliation(s)
- J B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
46
|
Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
47
|
Monti M, Redi C. The egg. The inside story of a cell. Mol Reprod Dev 2013; 80:691-7. [PMID: 23712716 DOI: 10.1002/mrd.22196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/18/2013] [Indexed: 11/08/2022]
Abstract
The egg, a fantastic little laboratory of molecular biology, has played a crucial role in redefining modern biology by moving it from the description of living things to the synthesis of living things (synthetic biology). Over the centuries, many hypotheses have been advanced concerning the egg's role in reproduction-from the preformation theory until von Baer's discovery to the present, with the 2012 Nobel Prize for Physiology or Medicine celebrating the egg as a totipotent stem cell able to reprogram fully differentiated somatic nuclei. The molecular dissection of its cytoplasmic components makes the egg an ideal bioreactor for several biotechnological applications, including pharmacological and food production sciences. In addition to its ubiquitous contribution to the worldwide diet, the egg, a powerful symbol, pervades philosophy, art, religion, and idiomatic expressions.
Collapse
Affiliation(s)
- Manuela Monti
- Research Center for Regenerative Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | | |
Collapse
|
48
|
Ghosal S, Das S, Chakrabarti J. Long noncoding RNAs: new players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells. Stem Cells Dev 2013; 22:2240-53. [PMID: 23528033 DOI: 10.1089/scd.2013.0014] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maintenance of the pluripotent state or differentiation of the pluripotent state into any germ layer depends on the factors that orchestrate expression of thousands of genes through epigenetic, transcriptional, and post-transcriptional regulation. Long noncoding RNAs (lncRNAs) are implicated in the complex molecular circuitry in the developmental processes. The ENCODE project has opened up new avenues for studying these lncRNA transcripts with the availability of new datasets for lncRNA annotation and regulation. Expression studies identified hundreds of long noncoding RNAs differentially expressed in the pluripotent state, and many of these lncRNAs are found to control the pluripotency and stemness in embryonic and induced pluripotent stem cells or, in the reverse way, promote differentiation of pluripotent cells. They are generally transcriptionally activated or repressed by pluripotency-associated transcription factors and function as molecular mediators of gene expression that determine the pluripotent state of the cell. They can act as molecular scaffolds or guides for the chromatin-modifying complexes to direct them to bind into specific genomic loci to impart a repressive or activating effect on gene expression, or they can transcriptionally or post-transcriptionally regulate gene expression by diverse molecular mechanisms. This review focuses on recent findings on the regulatory role of lncRNAs in two main aspects of pluripotency, namely, self renewal and differentiation into any lineage, and elucidates the underlying molecular mechanisms that are being uncovered lately.
Collapse
Affiliation(s)
- Suman Ghosal
- Indian Association for the Cultivation of Science, Kolkata, India
| | | | | |
Collapse
|
49
|
Abstract
The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].
Collapse
Affiliation(s)
- Seyed Hadi Anjamrooz
- Cellular and Molecular Research Center, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
50
|
Morris SA, Daley GQ. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res 2013; 23:33-48. [PMID: 23277278 DOI: 10.1038/cr.2013.1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human diseases such as heart failure, diabetes, neurodegenerative disorders, and many others result from the deficiency or dysfunction of critical cell types. Strategies for therapeutic tissue repair or regeneration require the in vitro manufacture of clinically relevant quantities of defined cell types. In addition to transplantation therapy, the generation of otherwise inaccessible cells also permits disease modeling, toxicology testing and drug discovery in vitro. In this review, we discuss current strategies to manipulate the identity of abundant and accessible cells by differentiation from an induced pluripotent state or direct conversion between differentiated states. We contrast these approaches with recent advances employing partial reprogramming to facilitate lineage switching, and discuss the mechanisms underlying the engineering of cell fate. Finally, we address the current limitations of the field and how the resulting cell types can be assessed to ensure the production of medically relevant populations.
Collapse
Affiliation(s)
- Samantha A Morris
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|