1
|
Rangel-Patiño CA, Mastachi-Loza CA, Carmen-Cristóbal JM, Ruiz-Gómez ML. Boldness and learning in an active foraging lizard. Behav Processes 2025; 226:105174. [PMID: 40049300 DOI: 10.1016/j.beproc.2025.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 03/18/2025]
Abstract
Foraging is a demanding activity for species that search intensively for food, and learning may help them minimise the costs associated with feeding. In different species, there is a relationship between personality (risk-taking) and learning, where bolder individuals learn fast and perform better in stable environments. On the other hand, shy individuals have slower learning rates because they spend more time paying attention to the environment, and their performance peaks under unstable environmental conditions. Therefore, we could expect that these differences will permeate other contexts, such as foraging mode. We evaluated learning and boldness in the active foraging lizard Aspidoscelis costatus costatus to establish if this association is present in reptiles. We found that males and females have similar learning abilities, with bolder individuals learning to find and consume food faster. Females were bolder than males in the presence of a novel object. We suggest that the results are related to the foraging ecology of the species, in which active foragers manifest risky behaviours (i.e. boldness, exploration, and higher activity) to search wide areas for prey, which may be enhanced by faster learning to reduce the costs associated with foraging.
Collapse
Affiliation(s)
- C A Rangel-Patiño
- Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Huixquilucan, División de Biología, Laboratorio de Ecología y Conducta en Reptiles, México; Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.
| | - C A Mastachi-Loza
- Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.
| | - J M Carmen-Cristóbal
- Ecology and Behavior Lab, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.
| | - M L Ruiz-Gómez
- Ecology and Behavior Lab, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.
| |
Collapse
|
2
|
Skočková L, Ďurajková B, Tuf IH. Predator responses to artificial aposematic and cryptic colouration in terrestrial isopods (Isopoda, Oniscidea). Zookeys 2025; 1225:141-153. [PMID: 39959445 PMCID: PMC11822362 DOI: 10.3897/zookeys.1225.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/19/2024] [Indexed: 02/18/2025] Open
Abstract
Aposematism is a distinctive or warning signal that provides the animal with protection against a potential predator. Aposematic colouration is easier for a predator to remember and to avoid a dangerous and/or unpalatable prey in the future. We investigated whether distinctive colouration has an aposematic function in terrestrial isopods. The common rough woodlice (Porcellioscaber) were used as a model species of terrestrial isopods and the Italian wall lizard (Podarcissiculus) as a predatory species. To imitate the distinctive colouration on isopods we marked their dorsal plates with yellow dots. The control group of the woodlice were marked with grey spots. Differences in behaviour (observation, manipulation and consummation) and the lizards' behaviour changes towards aposematically and cryptically coloured prey were analysed. Differences were found in prey observation both between sexes and between prey colours.
Collapse
Affiliation(s)
- Lenka Skočková
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Olomouc, Czech RepublicPalacký UniversityOlomoucCzech Republic
| | - Barbora Ďurajková
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Olomouc, Czech RepublicPalacký UniversityOlomoucCzech Republic
| | - Ivan Hadrián Tuf
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Olomouc, Czech RepublicPalacký UniversityOlomoucCzech Republic
| |
Collapse
|
3
|
Eyal R, Albeck N, Shein-Idelson M. PreyTouch: a touchscreen-based closed-loop system for studying predator-prey interactions. Commun Biol 2024; 7:1650. [PMID: 39702825 DOI: 10.1038/s42003-024-07345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
The ability to catch prey is crucial for survival and reproduction and is subject to strong natural selection across predators. Prey capture demands the orchestrated activation of multiple brain regions and the interplay between sensory processing, decision-making, and motor execution. These factors, together with the ubiquity of prey capture across species makes it appealing for comparative studies across neuroscience and ecology. However, despite recent technological advances, experimental approaches for studying natural behaviors such as prey catch are lagging behind. To bridge this gap, we created PreyTouch-a novel approach for performing prey capture experiments that incorporate flexible prey control, accurate monitoring of predator touchscreen strikes and automated rewarding. Further, its real-time processing enables coupling predator movement and prey dynamics for studying predator-prey interactions. Finally, PreyTouch is optimized for automated long-term experiments featuring a web UI for remote control and monitoring. We successfully validated PreyTouch by conducting long-term prey capture experiments on the lizard Pogona vitticeps. This revealed the existence of prey preferences, complex prey attack patterns, and fast learning of prey dynamics. PreyTouch's unique features and the importance of studying prey capture behavior make it a valuable platform for connecting natural behavior with cognitive studies across various species and disciplines.
Collapse
Affiliation(s)
- Regev Eyal
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Albeck
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mark Shein-Idelson
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Yin JH, Horzmann KA. The influence of sex and age differences in an adult zebrafish (Danio rerio) T-maze model of cognition. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39638551 DOI: 10.1111/jfb.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The zebrafish (Danio rerio) model is increasingly popular in neurobehavioral research, and behavioral outcomes are commonly evaluated in studies on neurodegeneration and neurotoxicity. Sex and age have been identified as important variables in cognition studies; however, these factors are often underreported in published studies that use the zebrafish model, leading to uncertainty about their impact in zebrafish T-maze experiments. In this study, we evaluated the role of sex and age in zebrafish cognitive function using a 5-day T-maze task. Our results demonstrated that female and younger zebrafish had increased learning and memory capacity. These findings highlighted the importance of considering and reporting sex and age in experimental design in zebrafish cognitive neurobehavioral studies.
Collapse
Affiliation(s)
- Ji-Hang Yin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Katharine A Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
5
|
Dumitru ML, Frugård Opdal AM. Beyond the mosaic model of brain evolution: Rearing environment defines local and global plasticity. Ann N Y Acad Sci 2024; 1542:58-66. [PMID: 39585764 DOI: 10.1111/nyas.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Comparative animal studies have identified a trend toward a more global structural organization as brains become larger, suggesting that brain regions grow in sync as predicted by the concerted model of brain evolution. At the same time, brain plasticity studies have identified a boost in local brain structure triggered by the environment, suggesting that brain regions grow independently, as predicted by the mosaic model. Nevertheless, it is unclear whether the environment can also trigger shifts toward a more global brain structure, that is, whether phenotypic plasticity proceeds in a concerted fashion. Here, we examined the impact of radically different rearing environments on brain organization in a teleost fish, the three-spined stickleback (Gasterosteus aculeatus). We computed novel indices of local and global brain structure across groups reared in the two environments and entered them as predictors of differences in brain and body sizes. Changes in local brain structure predicted differences in both body and brain sizes, whereas changes in global brain structure only predicted differences in brain size. Our findings highlight the emergence of brain plasticity in a population as local and global changes that are both compatible with the concerted model.
Collapse
Affiliation(s)
- Magda L Dumitru
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | |
Collapse
|
6
|
Just BB, Torres de Farias S. Living cognition and the nature of organisms. Biosystems 2024; 246:105356. [PMID: 39426661 DOI: 10.1016/j.biosystems.2024.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
There is no consensus about what cognition is. Different perspectives conceptualize it in different ways. In the same vein, there is no agreement about which systems are truly cognitive. This begs the question, what makes a process or a system cognitive? One of the most conspicuous features of cognition is that it is a set of processes. Cognition, in the end, is a collection of processes such as perception, memory, learning, decision-making, problem-solving, goal-directedness, attention, anticipation, communication, and maybe emotion. There is a debate about what they mean, and which systems possess these processes. One aspect of this problem concerns the level at which cognition and the single processes are conceptualized. To make this scenario clear, evolutionary and self-maintenance arguments are taken. Given the evolutive landscape, one sees processes shared by all organisms and their derivations in specific taxa. No matter which side of the complexity spectrum one favors, the similarities of the simple processes with the complex ones cannot be ignored, and the differences of some complex processes with their simple versions cannot be blurred. A final cognitive framework must make sense of both sides of the spectrum, their differences and similarities. Here, we discuss from an evolutionary perspective the basic elements shared by all living beings and whether these may be necessary and sufficient for understanding the cognitive process. Following these considerations, cognition can be expanded to every living being. Cognition is the set of informational and dynamic processes an organism must interact with and grasp aspects of its world. Understood at their most basic level, perception, memory, learning, problem-solving, decision-making, action, and other cognitive processes are basic features of biological functioning.
Collapse
Affiliation(s)
- Breno B Just
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Estudos Em Memória e Cognição (LEMCOG), Departamento de Psicologia, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK.
| |
Collapse
|
7
|
Lou Y, Zou Y, Fang Y, Sun Y. Exploratory behavior is associated with the cognitive speed in male chestnut thrushes. Curr Zool 2024; 70:707-713. [PMID: 39678824 PMCID: PMC11634674 DOI: 10.1093/cz/zoad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2023] [Indexed: 12/17/2024] Open
Abstract
Intra-individual variation in cognitive abilities has been widely reported in animals. Recent studies have found that individual cognitive performance varies with personality traits in a wide range of animal taxa, with a speed-accuracy trade-off between cognition and personality traits. Few studies investigated whether these relationships change depending on different contexts. Here we investigate whether the personality trait (as measured by exploratory behavior in a novel environment) is associated with cognition (novel skill learning and spatial memory) in wild male chestnut thrushes Turdus rubrocanus. Using an experimental novel skill-learning task set-up, we found that fast-exploring individuals explored the experimental device (a cardboard with 8 opaque cups) sooner than slow-exploring individuals. Exploratory behavior was not associated with individual spatial memory performances or an individual's capacity to learn the novel skill. Learning speed was positively associated with the difficulty of learning phases, and fast-exploring individuals used less trials to meet the learning criterion. In addition, fast-exploring individuals took less time to complete the 24-h spatial memory test, but the accuracy of the test was not significantly different between individuals who were more or less exploratory. We suggest that variation in personality traits associates with individual learning speed in cognitive tasks and that this relationship is context-dependent.
Collapse
Affiliation(s)
- Yingqiang Lou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yuqi Zou
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Yun Fang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yuehua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
8
|
Isaksson E, Morand-Ferron J, Chaine A. Environmental harshness does not affect the propensity for social learning in great tits, Parus major. Anim Cogn 2024; 27:25. [PMID: 38467946 PMCID: PMC10927812 DOI: 10.1007/s10071-024-01862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
According to the harsh environment hypothesis, natural selection should favour cognitive mechanisms to overcome environmental challenges. Tests of this hypothesis to date have largely focused on asocial learning and memory, thus failing to account for the spread of information via social means. Tests in specialized food-hoarding birds have shown strong support for the effects of environmental harshness on both asocial and social learning. Whether the hypothesis applies to non-specialist foraging species remains largely unexplored. We evaluated the relative importance of social learning across a known harshness gradient by testing generalist great tits, Parus major, from high (harsh)- and low (mild)-elevation populations in two social learning tasks. We showed that individuals use social learning to find food in both colour-associative and spatial foraging tasks and that individuals differed consistently in their use of social learning. However, we did not detect a difference in the use or speed of implementing socially observed information across the elevational gradient. Our results do not support predictions of the harsh environment hypothesis suggesting that context-dependent costs and benefits as well as plasticity in the use of social information may play an important role in the use of social learning across environments. Finally, this study adds to the accumulating evidence that the harsh environment hypothesis appears to have more pronounced effects on specialists compared to generalist species.
Collapse
Affiliation(s)
- Emil Isaksson
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, Canada.
| | | | - Alexis Chaine
- Station d'Ecologie Théorique et Expérimentale du CNRS UAR2029, 2 route du cnrs, 09200, Moulis, France
- Institute for Advanced Study in Toulouse, 21 alleé de Brienne, 31015, Toulouse, France
| |
Collapse
|
9
|
Speechley EM, Ashton BJ, Thornton A, Simmons LW, Ridley AR. Heritability of cognitive performance in wild Western Australian magpies. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231399. [PMID: 38481983 PMCID: PMC10933533 DOI: 10.1098/rsos.231399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 04/26/2024]
Abstract
Individual differences in cognitive performance can have genetic, social and environmental components. Most research on the heritability of cognitive traits comes from humans or captive non-human animals, while less attention has been given to wild populations. Western Australian magpies (Gymnorhina tibicen dorsalis, hereafter magpies) show phenotypic variation in cognitive performance, which affects reproductive success. Despite high levels of individual repeatability, we do not know whether cognitive performance is heritable in this species. Here, we quantify the broad-sense heritability of associative learning ability in a wild population of Western Australian magpies. Specifically, we explore whether offspring associative learning performance is predicted by maternal associative learning performance or by the social environment (group size) when tested at three time points during the first year of life. We found little evidence that offspring associative learning performance is heritable, with an estimated broad-sense heritability of just -0.046 ± 0.084 (confidence interval: -0.234/0.140). However, complementing previous findings, we find that at 300 days post-fledging, individuals raised in larger groups passed the test in fewer trials compared with individuals from small groups. Our results highlight the pivotal influence of the social environment on cognitive development.
Collapse
Affiliation(s)
- Elizabeth M. Speechley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
10
|
Lalrinawma TSK, Sangma JT, Renthlei Z, Trivedi AK. Restraint stress-induced effects on learning, memory, cognition, and expression of transcripts in different brain regions of mice. Mol Biol Rep 2024; 51:278. [PMID: 38319482 DOI: 10.1007/s11033-024-09224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Stress is one of the prevalent factors influencing cognition. Several studies examined the effect of mild or chronic stress on cognition. However, most of these studies are limited to a few behavioral tests or the expression of selected RNA/proteins markers in a selected brain region. METHODS This study examined the effect of restraint stress on learning, memory, cognition, and expression of transcripts in key learning centers. Male mice were divided into three groups (n = 6/group)-control group, stress group (adult stressed group; S), and F1 group (parental stressed group). Stress group mice were subjected to physical restraint stress for 2 h before light offset for 2 weeks. The F1 group comprised adult male mice born of stressed parents. All animals were subjected to different tests and were sacrificed at the end. Transcription levels of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (TrkB), Growth Associated Protein 43 (Gap-43), Neurogranin (Ng), cAMP Response Element-Binding Protein (Creb), Glycogen synthase kinase-3β (Gsk3β), Interleukine-1 (IL-1) and Tumour necrosis factor-α (Tnf-α) were studied. RESULTS Results show that both adult and parental stress negatively affect learning, memory and cognition, as reflected by taking longer time to achieve the task or showing reduced exploratory behavior. Expression of Bdnf, TrkB, Gsk3β and Ng was downregulated, while IL-1 and Tnf-α were upregulated in the brain's cortex, thalamus, and hippocampus region of stressed mice. These effects seem to be relatively less severe in the offspring of stressed parents. CONCLUSIONS The findings suggest that physical restraint stress can alter learning, memory, cognition, and expression of transcripts in key learning centers of brain.
Collapse
Affiliation(s)
| | - James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
11
|
Iribarne J, Brachetta V, Zenuto R, Kittlein M, Schleich C. Navigational experience affect cognition: Spatial learning capabilities in captive and wild-born tuco-tucos. Behav Processes 2024; 214:104981. [PMID: 38065425 DOI: 10.1016/j.beproc.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
There is a growing recognition of the influence of both genetic and ecological context in shaping different cognitive traits. The hippocampal region is identified as a critical area for memory and learning in mammals, susceptible to modification by environmental influences. Although previous studies have identified the effects of various factors on cognitive parameters during early development, comparatively few research was conducted on wild species to analyze the role of natural environmental stimuli in the formation of spatial learning and memory abilities. Thus, to assess the importance of exposure to a complex and challenging environment during early development, we compared spatial learning performance of captive-born tuco-tucos with previous data obtained in our laboratory from wild-born adult tuco-tucos. The results showed that wild-born individuals learned faster, requiring less time to complete a labyrinth and making fewer errors than those who had no experience in their natural environment. These findings underscore the importance of considering ecological factors in understanding the evolution of brains and cognitive abilities.
Collapse
Affiliation(s)
- J Iribarne
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina.
| | - V Brachetta
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| | - R Zenuto
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| | - M Kittlein
- Grupo de Ecologia y Genetica de poblaciones de Mamiferos, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| | - C Schleich
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| |
Collapse
|
12
|
Paganelli A, Felici M, Turini L, Baragli P, Carlucci L, Recchia FA, Sgorbini M. Detour test performance of cloned minipigs from three different clone populations. Vet Res Commun 2023; 47:2137-2144. [PMID: 37452229 DOI: 10.1007/s11259-023-10168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Genetics, the uterine environment, maternal behavior, and rearing conditions can all influence animal behavioral phenotypes. Some studies on cloned pigs have found no differences between the behavioral patterns of cloned and non-cloned animals. Other studies conducted on dogs have reported similarities in the behavior of cloned subjects. This study evaluated the performance of 12 cloned minipigs from three different clone populations (A, B, C) in a detour test around symmetric and asymmetric barriers. We measured the detour time and patterns, in order to investigate the pigs' cognitive abilities.The detour time and the detour entry/exit pattern were recorded. All the animals tended to keep a fixed entry/exit pattern instead of modifying it to accommodate changes in the working set. Significant differences in detour time were found among the populations, with animals belonging to population B being faster than the others, and also within each population.Our study is one of the few to assess the cognitive abilities of cloned minipigs. The results indicate that even animals belonging to the same cloned population may develop different cognitive, hence behavioral characteristics. Whether cloning can be utilized to obtain similar behavioral phenotypes therefore remains a matter of debate.
Collapse
Affiliation(s)
- Aurora Paganelli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, Pisa, 56127, Italy
| | - Martina Felici
- Department of Agricultural and Food Science, Viale Giuseppe Fanin, 40-50, Bologna, 40127, Italy
| | - Luca Turini
- Department of Agriculture, Food and Environment, Via del Borghetto 80, Pisa, 56124, Italy.
| | - Paolo Baragli
- Department of Veterinary Sciences, Viale delle Piagge 2, Pisa, 56122, Italy
| | - Lucia Carlucci
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, Pisa, 56127, Italy
| | - Fabio Anastasio Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, Pisa, 56127, Italy
- Institute of Clinical Physiology, National Research Council of Italy, Pisa, Italy
| | - Micaela Sgorbini
- Department of Veterinary Sciences, Viale delle Piagge 2, Pisa, 56122, Italy
| |
Collapse
|
13
|
Batabyal A. Predator-prey systems as models for integrative research in biology: the value of a non-consumptive effects framework. J Exp Biol 2023; 226:jeb245851. [PMID: 37772622 DOI: 10.1242/jeb.245851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Predator-prey interactions are a cornerstone of many ecological and evolutionary processes that influence various levels of biological organization, from individuals to ecosystems. Predators play a crucial role in shaping ecosystems through the consumption of prey species and non-consumptive effects. Non-consumptive effects (NCEs) can induce changes in prey behavior, including altered foraging strategies, habitat selection, life history and anti-predator responses. These defensive strategies have physiological consequences for prey, affecting their growth, reproduction and immune function to name a few. Numerous experimental studies have incorporated NCEs in investigating predator-prey dynamics in the past decade. Interestingly, predator-prey systems can also be used as experimental models to answer physiology, cognition and adaptability questions. In this Commentary, I highlight research that uses NCEs in predator-prey systems to provide novel insights into cognition, adaptation, epigenetic inheritance and aging. I discuss the evolution of instinct, anxiety and other cognitive disorders, the shaping of brain connectomes, stress-induced aging and the development of behavioral coping styles. I outline how studies can integrate the investigation of NCEs with advanced behavioral, genomic and neurological tools to provide novel insights into physiological and cognitive health.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| |
Collapse
|
14
|
Longman DP, Wells JCK, Stock JT. Human energetic stress associated with upregulation of spatial cognition. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:32-44. [PMID: 37494592 DOI: 10.1002/ajpa.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Evolutionary life history theory has a unique potential to shed light on human adaptive capabilities. Ultra-endurance challenges are a valuable experimental model allowing the direct testing of phenotypic plasticity via physiological trade-offs in resource allocation. This enhances our understanding of how the body prioritizes different functions when energetically stressed. However, despite the central role played by the brain in both hominin evolution and metabolic budgeting, cognitive plasticity during energetic deficit remains unstudied. MATERIALS We considered human cognitive plasticity under conditions of energetic deficit by evaluating variability in performance in three key cognitive domains. To achieve this, cognitive performance in a sample of 48 athletes (m = 29, f = 19) was assessed before and after competing in multiday ultramarathons. RESULTS We demonstrate that under conditions of energetic deficit, performance in tasks of spatial working memory (which assessed ability to store location information, promoting landscape navigation and facilitating resource location and calorie acquisition) increased. In contrast, psychomotor speed (reaction time) remained unchanged and episodic memory performance (ability to recall information about specific events) decreased. DISCUSSION We propose that prioritization of spatial working memory performance during conditions of negative energy balance represents an adaptive response due to its role in facilitating calorie acquisition. We discuss these results with reference to a human evolutionary trajectory centred around encephalisation. Encephalisation affords great plasticity, facilitating rapid responses tailored to specific environmental conditions, and allowing humans to increase their capabilities as a phenotypically plastic species.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, UK
- ISSUL, Institute of Sport Science, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, UK
| | - Jay T Stock
- Department of Anthropology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Silveira MM, Donelson JM, McCormick MI, Araujo-Silva H, Luchiari AC. Impact of ocean warming on a coral reef fish learning and memory. PeerJ 2023; 11:e15729. [PMID: 37576501 PMCID: PMC10416774 DOI: 10.7717/peerj.15729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/18/2023] [Indexed: 08/15/2023] Open
Abstract
Tropical ectotherms are highly sensitive to environmental warming, especially coral reef fishes, which are negatively impacted by an increase of a few degrees in ocean temperature. However, much of our understanding on the thermal sensitivity of reef fish is focused on a few traits (e.g., metabolism, reproduction) and we currently lack knowledge on warming effects on cognition, which may endanger decision-making and survival. Here, we investigated the effects of warming on learning and memory in a damselfish species, Acanthochromis polyacanthus. Fish were held at 28-28.5 °C (control group), 30-30.5 °C (moderate warming group) or 31.5-32 °C (high warming group) for 2 weeks, and then trained to associate a blue tag (cue) to the presence of a conspecific (reward). Following 20 training trials (5 days), fish were tested for associative learning (on the following day) and memory storage (after a 5-days interval). The control group A. polyacanthus showed learning of the task and memory retention after five days, but increasing water temperature impaired learning and memory. A thorough understanding of the effects of heat stress, cognition, and fitness is urgently required because cognition may be a key factor determining animals' performance in the predicted scenario of climate changes. Knowing how different species respond to warming can lead to better predictions of future community dynamics, and because it is species specific, it could pinpoint vulnerable/resilience species.
Collapse
Affiliation(s)
- Mayara M. Silveira
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University of North Queensland, Townville, Australia
| | | | - Heloysa Araujo-Silva
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Ana C. Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
16
|
van den Heuvel K, Quinn JL, Kotrschal A, van Oers K. Artificial selection for reversal learning reveals limited repeatability and no heritability of cognitive flexibility in great tits ( Parus major). Proc Biol Sci 2023; 290:20231067. [PMID: 37464752 PMCID: PMC10354490 DOI: 10.1098/rspb.2023.1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Cognitive flexibility controls how animals respond to changing environmental conditions. Individuals within species vary considerably in cognitive flexibility but the micro-evolutionary potential in animal populations remains enigmatic. One prerequisite for cognitive flexibility to be able to evolve is consistent and heritable among-individual variation. Here we determine the repeatability and heritability of cognitive flexibility among great tits (Parus major) by performing an artificial selection experiment on reversal learning performance using a spatial learning paradigm over three generations. We found low, yet significant, repeatability (R = 0.15) of reversal learning performance. Our artificial selection experiment showed no evidence for narrow-sense heritability of associative or reversal learning, while we confirmed the heritability of exploratory behaviour. We observed a phenotypic, but no genetic, correlation between associative and reversal learning, showing the importance of prior information on reversal learning. We found no correlation between cognitive and personality traits. Our findings emphasize that cognitive flexibility is a multi-faceted trait that is affected by memory and prior experience, making it challenging to retrieve reliable values of temporal consistency and assess the contribution of additive genetic variation. Future studies need to identify what cognitive components underlie variation in reversal learning and study their between-individual and additive genetic components.
Collapse
Affiliation(s)
- Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - John L. Quinn
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, T23 N73K4, Ireland
- Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Alexander Kotrschal
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|
17
|
Brunet V, Lafond T, Kleiber A, Lansade L, Calandreau L, Colson V. Environmental enrichment improves cognitive flexibility in rainbow trout in a visual discrimination task: first insights. Front Vet Sci 2023; 10:1184296. [PMID: 37396987 PMCID: PMC10313407 DOI: 10.3389/fvets.2023.1184296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Research on fish cognition provides strong evidence that fish are endowed with high level cognitive skills. However, most studies on cognitive flexibility and generalization abilities, two key adaptive traits for captive animals, focused on model species, and farmed fish received too little attention. Environmental enrichment was shown to improve learning abilities in various fish species, but its influence on cognitive flexibility and generalization abilities is still unknown. We studied farmed rainbow trout (Oncorhynchus mykiss) as an aquaculture model to study how environmental enrichment impacts their cognitive abilities. Using an operant conditioning device, allowing the expression of a motivated choice, we measured fish cognitive flexibility with serial reversal learning tests, after a successful acquisition phase based on two colors discrimination (2-alternative forced choice, 2-AFC), and their ability to generalize a rewarded color to any shape. Eight fish were divided into two groups: Condition E (fish reared from fry stages under enriched conditions with plants, rocks and pipes for ~9 months); Condition B (standard barren conditions). Only one fish (condition E) failed in the habituation phase of the device and one fish (condition B) failed in the 2-AFC task. We showed that after a successful acquisition phase in which the fish correctly discriminated two colors, they all succeeded in four reversal learnings, supporting evidence for cognitive flexibility in rainbow trout. They were all successful in the generalization task. Interestingly, fish reared in an enriched environment performed better in the acquisition phase and in the reversal learning (as evidenced by fewer trials needed to reach the learning criterion), but not in the generalization task. We assume that color-based generalization may be a simpler cognitive process than discriminative learning and cognitive flexibility, and does not seem to be influenced by environmental conditions. Given the small number of individuals tested, our results may be considered as first insights into cognitive flexibility in farmed fish using an operant conditioning device, but they pave the way for future studies. We conclude that farming conditions should take into account the cognitive abilities of fish, in particular their cognitive flexibility, by allowing them to live in an enriched environment.
Collapse
Affiliation(s)
- Valentin Brunet
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| | - Thomas Lafond
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| | - Aude Kleiber
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
- Comportement Animal et Systèmes d’Elevage, JUNIA, Lille, France
| | - Léa Lansade
- Physiologie de la Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, Nouzilly, France
| | - Ludovic Calandreau
- Physiologie de la Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, Nouzilly, France
| | - Violaine Colson
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| |
Collapse
|
18
|
Ibáñez de Aldecoa P, Auersperg AMI, Griffin AS, Tebbich S. Ratcheting up tool innovation in Goffin's cockatoos ( Cacatua goffiniana): The effect of contextually diverse prior experience. Ethology 2023; 129:133-145. [PMID: 37082334 PMCID: PMC10108129 DOI: 10.1111/eth.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The ability to gain information from one situation, acquire new skills and/or perfect existing ones, and subsequently apply them to a new situation is a key element in behavioural flexibility and a hallmark of innovation. A flexible agent is expected to store these skills and apply them to contexts different from that in which learning occurred. Goffin's cockatoos (Cacatua goffiniana) are highly innovative parrots renowned for their problem-solving and tool-using skills and are thus excellent candidates to study this phenomenon. We hypothesized that birds allowed to use a tool in a larger variety of contingencies would acquire a broader expertise in handling it, facilitating its transfer to new tasks. In our study, we compared the performance of two groups of captive Goffin's cockatoos (N = 13): A test group received more diverse learning and motor experiences on multiple applications of a hook-type tool, while a control group received intensive, total trial-matched, experience with a single application of the same tool. Then, both groups were tested on two novel tasks to determine whether experience with the tool in multiple contexts would facilitate performance during transfer. While both groups transferred to both novel tasks, group differences in performance were apparent, particularly in the second transfer task, where test birds achieved a higher success rate and reached criteria within fewer trials than control birds. These results provide support for the prediction that experiencing a diverse range of contingencies with a tool appears to allow birds to acquire generalizable knowledge and transferrable skills to tackle an untrained problem more efficiently. In contrast, intensive experience with the tool in a single context might have made control birds less flexible and more fixated on previously learned tool-dependent instances.
Collapse
Affiliation(s)
| | - Alice M. I. Auersperg
- Messerli Research Institute, University of Veterinary Medicine Vienna, University of Vienna, Medical University of ViennaViennaAustria
| | - Andrea S. Griffin
- School of Psychology, University of NewcastleCallaghanNew South WalesAustralia
| | - Sabine Tebbich
- Department of Behavioural and Cognitive BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
19
|
de Groot C, Wijnhorst RE, Ratz T, Murray M, Araya-Ajoy YG, Wright J, Dingemanse NJ. The importance of distinguishing individual differences in 'social impact' versus 'social responsiveness' when quantifying indirect genetic effects on the evolution of social plasticity. Neurosci Biobehav Rev 2023; 144:104996. [PMID: 36526032 DOI: 10.1016/j.neubiorev.2022.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Social evolution and the dynamics of social interactions have previously been studied under the frameworks of quantitative genetics and behavioural ecology. In quantitative genetics, indirect genetic effects of social partners on the socially plastic phenotypes of focal individuals typically lack crucial detail already included in treatments of social plasticity in behavioural ecology. Specifically, whilst focal individuals (e.g. receivers) may show variation in their 'responsiveness' to the social environment, individual social partners (e.g. signallers) may have a differential 'impact' on focal phenotypes. Here we propose an integrative framework, that highlights the distinction between responsiveness versus impact in indirect genetic effects for a range of behavioural traits. We describe impact and responsiveness using a reaction norm approach and provide statistical models for the assessment of these effects of focal and social partner identity in different types of social interactions. By providing such a framework, we hope to stimulate future quantitative research investigating the causes and consequences of social interactions on phenotypic evolution.
Collapse
Affiliation(s)
- Corné de Groot
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany.
| | - Rori E Wijnhorst
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Tom Ratz
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Myranda Murray
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Jonathan Wright
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| |
Collapse
|
20
|
Yin J, Yu G, Zhang J, Li J. Behavioral laterality is correlated with problem-solving performance in a songbird. Anim Cogn 2022; 26:837-848. [PMID: 36449141 DOI: 10.1007/s10071-022-01724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/15/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Cerebral lateralization, which is often reflected in an individual's behavioral laterality (e.g., handedness and footedness), may bring animals certain benefits such as enhanced cognitive performance. Although the lateralization-cognition relationship has been widely studied in humans and other animals, current evidence supporting their relationship is ambiguous and warrants additional insights from more studies. Moreover, the lateralization-cognition relationship in non-human animals has been mostly studied in human-reared populations, and investigations of wild populations are particularly scarce. Here, we test the footedness of wild-caught male yellow-bellied tits (Pardaliparus venustulus) and investigate its association with their performance in learning to solve a toothpick-pulling problem and a drawer-opening problem. The tested birds showed an overall trend to gradually spent less time solving the problems, implying that they learned to solve the problems. Left- and right-footed individuals showed no significant differences in the latency to explore the experimental apparatuses and in the proportions that completed and did not complete the tasks. However, the left-footed individuals learned faster than the right-footed individuals in the drawer-opening experiment, indicating a potential cognitive advantage associated with left-footedness. These results contribute to the understanding of the behavioral differences between differently footed individuals and, in particular, the relationship between lateralization and cognitive ability in wild animals.
Collapse
Affiliation(s)
- Jiangnan Yin
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Gaoyang Yu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jinggang Zhang
- Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jianqiang Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
| |
Collapse
|
21
|
De Meester G, Van Linden L, Torfs J, Pafilis P, Šunje E, Steenssens D, Zulčić T, Sassalos A, Van Damme R. Learning with lacertids: Studying the link between ecology and cognition within a comparative framework. Evolution 2022; 76:2531-2552. [PMID: 36111365 DOI: 10.1111/evo.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/22/2023]
Abstract
Cognition is an essential tool for animals to deal with environmental challenges. Nonetheless, the ecological forces driving the evolution of cognition throughout the animal kingdom remain enigmatic. Large-scale comparative studies on multiple species and cognitive traits have been advanced as the best way to facilitate our understanding of cognitive evolution, but such studies are rare. Here, we tested 13 species of lacertid lizards (Reptilia: Lacertidae) using a battery of cognitive tests measuring inhibitory control, problem-solving, and spatial and reversal learning. Next, we tested the relationship between species' performance and (a) resource availability (temperature and precipitation), habitat complexity (Normalized Difference Vegetation Index), and habitat variability (seasonality) in their natural habitat and (b) their life history (size at hatching and maturity, clutch size, and frequency). Although species differed markedly in their cognitive abilities, such variation was mostly unrelated to their ecology and life history. Yet, species living in more variable environments exhibited lower behavioral flexibility, likely due to energetic constrains in such habitats. Our standardized protocols provide opportunities for collaborative research, allowing increased sample sizes and replication, essential for moving forward in the field of comparative cognition. Follow-up studies could include more detailed measures of habitat structure and look at other potential selective drivers such as predation.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Lisa Van Linden
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jonas Torfs
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Emina Šunje
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Dries Steenssens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Tea Zulčić
- Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Athanasios Sassalos
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
22
|
Sergi C, Schlais A, Marshall M, Rodríguez RL. Western black widow spiders (
Latrodectus hesperus
) remember prey capture location and size, but only alter behavior for prey caught at particular sites. Ethology 2022. [DOI: 10.1111/eth.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clint Sergi
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| | - Audrey Schlais
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| | - Martie Marshall
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| | - Rafael L. Rodríguez
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| |
Collapse
|
23
|
De Meester G, Pafilis P, Vasilakis G, Van Damme R. Exploration and spatial cognition show long-term repeatability but no heritability in the Aegean wall lizard. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Neuron numbers link innovativeness with both absolute and relative brain size in birds. Nat Ecol Evol 2022; 6:1381-1389. [PMID: 35817825 DOI: 10.1038/s41559-022-01815-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 05/19/2022] [Indexed: 12/31/2022]
Abstract
A longstanding issue in biology is whether the intelligence of animals can be predicted by absolute or relative brain size. However, progress has been hampered by an insufficient understanding of how neuron numbers shape internal brain organization and cognitive performance. On the basis of estimations of neuron numbers for 111 bird species, we show here that the number of neurons in the pallial telencephalon is positively associated with a major expression of intelligence: innovation propensity. The number of pallial neurons, in turn, is greater in brains that are larger in both absolute and relative terms and positively covaries with longer post-hatching development periods. Thus, our analyses show that neuron numbers link cognitive performance to both absolute and relative brain size through developmental adjustments. These findings help unify neuro-anatomical measures at multiple levels, reconciling contradictory views over the biological significance of brain expansion. The results also highlight the value of a life history perspective to advance our understanding of the evolutionary bases of the connections between brain and cognition.
Collapse
|
25
|
Wright J, Haaland TR, Dingemanse NJ, Westneat DF. A reaction norm framework for the evolution of learning: how cumulative experience shapes phenotypic plasticity. Biol Rev Camb Philos Soc 2022; 97:1999-2021. [PMID: 35790067 PMCID: PMC9543233 DOI: 10.1111/brv.12879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Learning is a familiar process to most people, but it currently lacks a fully developed theoretical position within evolutionary biology. Learning (memory and forgetting) involves adjustments in behaviour in response to cumulative sequences of prior experiences or exposures to environmental cues. We therefore suggest that all forms of learning (and some similar biological phenomena in development, aging, acquired immunity and acclimation) can usefully be viewed as special cases of phenotypic plasticity, and formally modelled by expanding the concept of reaction norms to include additional environmental dimensions quantifying sequences of cumulative experience (learning) and the time delays between events (forgetting). Memory therefore represents just one of a number of different internal neurological, physiological, hormonal and anatomical ‘states’ that mediate the carry‐over effects of cumulative environmental experiences on phenotypes across different time periods. The mathematical and graphical conceptualisation of learning as plasticity within a reaction norm framework can easily accommodate a range of different ecological scenarios, closely linking statistical estimates with biological processes. Learning and non‐learning plasticity interact whenever cumulative prior experience causes a modification in the reaction norm (a) elevation [mean phenotype], (b) slope [responsiveness], (c) environmental estimate error [informational memory] and/or (d) phenotypic precision [skill acquisition]. Innovation and learning new contingencies in novel (laboratory) environments can also be accommodated within this approach. A common reaction norm approach should thus encourage productive cross‐fertilisation of ideas between traditional studies of learning and phenotypic plasticity. As an example, we model the evolution of plasticity with and without learning under different levels of environmental estimation error to show how learning works as a specific adaptation promoting phenotypic plasticity in temporally autocorrelated environments. Our reaction norm framework for learning and analogous biological processes provides a conceptual and mathematical structure aimed at usefully stimulating future theoretical and empirical investigations into the evolution of plasticity across a wider range of ecological contexts, while providing new interdisciplinary connections regarding learning mechanisms.
Collapse
Affiliation(s)
- Jonathan Wright
- Center for Biodiversity Dynamics (CBD), Department of Biology Norwegian University of Science and Technology (NTNU) N‐7491 Trondheim Norway
| | - Thomas R. Haaland
- Center for Biodiversity Dynamics (CBD), Department of Biology Norwegian University of Science and Technology (NTNU) N‐7491 Trondheim Norway
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Niels J. Dingemanse
- Behavioural Ecology, Department of Biology Ludwig‐Maximilians University of Munich (LMU) 82152 Planegg‐Martinsried Germany
| | - David F. Westneat
- Department of Biology University of Kentucky 101 Morgan Building Lexington KY 40506‐0225 USA
| |
Collapse
|
26
|
How alien species use cognition to discover, handle, taste, and adopt novel foods. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Šlipogor V, Graf C, Massen JJM, Bugnyar T. Personality and social environment predict cognitive performance in common marmosets (Callithrix jacchus). Sci Rep 2022; 12:6702. [PMID: 35513400 PMCID: PMC9072541 DOI: 10.1038/s41598-022-10296-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Consistent inter-individual variation in cognition has been increasingly explored in recent years in terms of its patterns, causes and consequences. One of its possible causes are consistent inter-individual differences in behaviour, also referred to as animal personalities, which are shaped by both the physical and the social environment. The latter is particularly relevant for group-living species like common marmosets (Callithrix jacchus), apt learners that display substantial variation in both their personality and cognitive performance, yet no study to date has interlinked these with marmosets' social environment. Here we investigated (i) consistency of learning speed, and (ii) whether the PCA-derived personality traits Exploration-Avoidance and Boldness-Shyness as well as the social environment (i.e., family group membership) are linked with marmosets' speed of learning. We tested 22 individuals in series of personality and learning-focused cognitive tests, including simple motor tasks and discrimination learning tasks. We found that these marmosets showed significant inter-individual consistency in learning across the different tasks, and that females learned faster than males. Further, bolder individuals, and particularly those belonging to certain family groups, learned faster. These findings indicate that both personality and social environment affect learning speed in marmosets and could be important factors driving individual variation in cognition.
Collapse
Affiliation(s)
- Vedrana Šlipogor
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria.
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic.
| | - Christina Graf
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Jorg J M Massen
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Animal Behaviour and Cognition Group, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Thomas Bugnyar
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Maggu K, Kapse S, Ahlawat N, Geeta Arun M, Prasad NG. Finding love: fruit fly males evolving under higher sexual selection are inherently better at finding receptive females. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
29
|
O'Connor VL, Thomas P, Chodorow M, Borrego N. Exploring innovative problem-solving in African lions (Panthera leo) and snow leopards (Panthera uncia). Behav Processes 2022; 199:104648. [PMID: 35491002 DOI: 10.1016/j.beproc.2022.104648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
Cognitive ability is likely linked to adaptive ability; animals use cognition to innovate and problem-solve in their physical and social environments. We investigated innovative problem-solving in two species of high conservation importance: African lions (Panthera leo; n = 6) and snow leopards (Panthera uncia; n = 9). We designed a custom multi-access puzzle box (MAB) to present a simple and effective behavioral test for the cats to explore. We measured Repeated Innovation, Persistence, Success, Contact Latency, and the Exploration Diversity of individuals interacting with the MAB. Of the six African lions, three (50%) solved one door to the box, one solved two doors (16.67%), and one solved three doors (16.67%). Of the nine snow leopards, one solved one door (11.11%), three solved two doors (33.33%), and none solved all three doors (0%). Persistence was a significant predictor of Success in African lions and snow leopards; more Persistent individuals were more likely to open a door. We also observed significant individual variation in Persistence for both species, but only snow leopards also exhibited differences in Contact Latency and Exploration Diversity. These results suggest individuals vary in their problem-solving approaches. Our findings support both species as successful, repeated innovators. Carnivores face ecological and social challenges and, presumably, benefit from cognitive abilities facilitating the successful navigation of these challenges in captivity and the wild.
Collapse
Affiliation(s)
- Victoria L O'Connor
- Animal Behavior and Conservation Program, Department of Psychology, Hunter College of the City University of New York, New York, NY, USA; Department of Psychology, Oakland University, Rochester Hills, MI, USA.
| | - Patrick Thomas
- Wildlife Conservation Society, Bronx Zoo, New York, NY, USA.
| | - Martin Chodorow
- Department of Psychology, Hunter College of the City University of New York, New York, NY, USA.
| | - Natalia Borrego
- Department of Biology, University of Konstanz and Department for the Ecology of Animal Societies, Max Planck Institute for Animal Behavior, Konstanz, Germany; Lion Research Center, Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
30
|
Herdegen-Radwan M. Can female guppies learn to like male colours? A test of the role of associative learning in originating sexual preferences. Proc Biol Sci 2022; 289:20220212. [PMID: 35382592 PMCID: PMC8984809 DOI: 10.1098/rspb.2022.0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
How do female sexual preferences for male ornamental traits arise? The developmental origins of female preferences are still an understudied area, with most explanations pointing to genetic mechanisms. One intriguing, little-explored, alternative focuses on the role of associative learning in driving this process. According to this hypothesis, a preference learned in an ecological context can be transferred into a sexual context, resulting in changes in mating preferences as a by-product. I tested this hypothesis by first training female guppies to associate either orange or black colour with food delivery; I then presented videos of males with computer-manipulated coloured spots and measured female preference towards them. I also allowed females from both treatments to mate with males differing in their ratio of orange-to-black spots and measured the males' reproductive success. After training, female sexual preferences significantly diverged among treatments in the expected direction. In addition, orange males sired a greater proportion of offspring with females food-conditioned on orange compared to those conditioned on black. These results show that mating preferences can arise as a by-product of associative learning, which, via translation into variation in male fitness, can become associated with indirect genetic benefits, potentially leading to further evolution.
Collapse
Affiliation(s)
- Magdalena Herdegen-Radwan
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
31
|
Gavriilidi I, De Meester G, Van Damme R, Baeckens S. How to behave when marooned: the behavioural component of the island syndrome remains underexplored. Biol Lett 2022; 18:20220030. [PMID: 35440235 PMCID: PMC9039784 DOI: 10.1098/rsbl.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Animals on islands typically depart from their mainland relatives in assorted aspects of their biology. Because they seem to occur in concert, and to some extent evolve convergently in disparate taxa, these changes are referred to as the 'island syndrome'. While morphological, physiological and life-history components of the island syndrome have received considerable attention, much less is known about how insularity affects behaviour. In this paper, we argue why changes in personality traits and cognitive abilities can be expected to form part of the island syndrome. We provide an overview of studies that have compared personality traits and cognitive abilities between island and mainland populations, or among islands. Overall, the pickings are remarkably slim. There is evidence that animals on islands tend to be bolder than on the mainland, but effects on other personality traits go either way. The evidence for effects of insularity on cognitive abilities or style is highly circumstantial and very mixed. Finally, we consider the ecological drivers that may induce such changes, and the mechanisms through which they might occur. We conclude that our knowledge of the behavioural and cognitive responses to island environments remains limited, and we encourage behavioural biologists to make more use of these 'natural laboratories for evolution'.
Collapse
Affiliation(s)
- Ioanna Gavriilidi
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Tibbetts EA, Pardo-Sanchez J, Weise C. The establishment and maintenance of dominance hierarchies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200450. [PMID: 35000449 PMCID: PMC8743888 DOI: 10.1098/rstb.2020.0450] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/17/2021] [Indexed: 12/19/2022] Open
Abstract
Animal groups are often organized hierarchically, with dominant individuals gaining priority access to resources and reproduction over subordinate individuals. Initial dominance hierarchy formation may be influenced by multiple interacting factors, including an animal's individual attributes, conventions and self-organizing social dynamics. After establishment, hierarchies are typically maintained over the long-term because individuals save time, energy and reduce the risk of injury by recognizing and abiding by established dominance relationships. A separate set of behaviours are used to maintain dominance relationships within groups, including behaviours that stabilize ranks (punishment, threats, behavioural asymmetry), as well as signals that provide information about dominance rank (individual identity signals, signals of dominance). In this review, we describe the behaviours used to establish and maintain dominance hierarchies across different taxa and types of societies. We also review opportunities for future research including: testing how self-organizing behavioural dynamics interact with other factors to mediate dominance hierarchy formation, measuring the long-term stability of social hierarchies and the factors that disrupt hierarchy stability, incorporating phenotypic plasticity into our understanding of the behavioural dynamics of hierarchies and considering how cognition coevolves with the behaviours used to establish and maintain hierarchies. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
| | | | - Chloe Weise
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Berger DJ, German DW, John C, Hart R, Stephenson TR, Avgar T. Seeing Is Be-Leaving: Perception Informs Migratory Decisions in Sierra Nevada Bighorn Sheep (Ovis canadensis sierrae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.742275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Seasonal migration is a behavioral response to predictable variation in environmental resources, risks, and conditions. In behaviorally plastic migrants, migration is a conditional strategy that depends, in part, on an individual’s informational state. The cognitive processes that underlie how facultative migrants understand and respond to their environment are not well understood. We compared perception of the present environment to memory and omniscience as competing cognitive mechanisms driving altitudinal migratory decisions in an endangered ungulate, the Sierra Nevada bighorn sheep (Ovis canadensis sierrae) using 1,298 animal years of data, encompassing 460 unique individuals. We built a suite of statistical models to partition variation in fall migratory status explained by cognitive predictors, while controlling for non-cognitive drivers. To approximate attribute memory, we included lagged attributes of the range an individual experienced in the previous year. We quantified perception by limiting an individual’s knowledge of migratory range to the area and attributes visible from its summer range, prior to migrating. Our results show that perception, in addition to the migratory propensity of an individual’s social group, and an individual’s migratory history are the best predictors of migration in our system. Our findings suggest that short-distance altitudinal migration is, in part, a response to an individual’s perception of conditions on alterative winter range. In long-distance partial migrants, exploration of migratory decision-making has been limited, but it is unlikely that migratory decisions would be based on sensory cues from a remote target range. Differing cognitive mechanisms underpinning short and long-distance migratory decisions will result in differing levels of behavioral plasticity in response to global climate change and anthropogenic disturbance, with important implications for management and conservation of migratory species.
Collapse
|
34
|
Convergent evolution of antlions and wormlions: similarities and differences in the behavioural ecology of unrelated trap-building predators. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-021-03106-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Lyu N, Hu Y, Zhang J, Lloyd H, Sun YH, Tao Y. Switching costs in stochastic environments drive the emergence of matching behaviour in animal decision-making through the promotion of reward learning strategies. Sci Rep 2021; 11:23593. [PMID: 34880339 PMCID: PMC8654859 DOI: 10.1038/s41598-021-02979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
A principle of choice in animal decision-making named probability matching (PM) has long been detected in animals, and can arise from different decision-making strategies. Little is known about how environmental stochasticity may influence the switching time of these different decision-making strategies. Here we address this problem using a combination of behavioral and theoretical approaches, and show, that although a simple Win-Stay-Loss-Shift (WSLS) strategy can generate PM in binary-choice tasks theoretically, budgerigars (Melopsittacus undulates) actually apply a range of sub-tactics more often when they are expected to make more accurate decisions. Surprisingly, budgerigars did not get more rewards than would be predicted when adopting a WSLS strategy, and their decisions also exhibited PM. Instead, budgerigars followed a learning strategy based on reward history, which potentially benefits individuals indirectly from paying lower switching costs. Furthermore, our data suggest that more stochastic environments may promote reward learning through significantly less switching. We suggest that switching costs driven by the stochasticity of an environmental niche can potentially represent an important selection pressure associated with decision-making that may play a key role in driving the evolution of complex cognition in animals.
Collapse
Affiliation(s)
- Nan Lyu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Yunbiao Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiahua Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huw Lloyd
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Yue-Hua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Yi Tao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
36
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition: Neuronal Prerequisites Supporting Cognitive Mate Choice. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across taxa, mate choice is a highly selective process involving both intra- and intersexual selection processes aiming to pass on one’s genes, making mate choice a pivotal tool of sexual selection. Individuals adapt mate choice behavior dynamically in response to environmental and social changes. These changes are perceived sensorily and integrated on a neuronal level, which ultimately leads to an adequate behavioral response. Along with perception and prior to an appropriate behavioral response, the choosing sex has (1) to recognize and discriminate between the prospective mates and (2) to be able to assess and compare their performance in order to make an informed decision. To do so, cognitive processes allow for the simultaneous processing of multiple information from the (in-) animate environment as well as from a variety of both sexual and social (but non-sexual) conspecific cues. Although many behavioral aspects of cognition on one side and of mate choice displays on the other are well understood, the interplay of neuronal mechanisms governing both determinants, i.e., governing cognitive mate choice have been described only vaguely. This review aimed to throw a spotlight on neuronal prerequisites, networks and processes supporting the interaction between mate choice, sex roles and sexual cognition, hence, supporting cognitive mate choice. How does neuronal activity differ between males and females regarding social cognition? Does sex or the respective sex role within the prevailing mating system mirror at a neuronal level? How does cognitive competence affect mate choice? Conversely, how does mate choice affect the cognitive abilities of both sexes? Benefitting from studies using different neuroanatomical techniques such as neuronal activity markers, differential coexpression or candidate gene analyses, modulatory effects of neurotransmitters and hormones, or imaging techniques such as fMRI, there is ample evidence pointing to a reflection of sex and the respective sex role at the neuronal level, at least in individual brain regions. Moreover, this review aims to summarize evidence for cognitive abilities influencing mate choice and vice versa. At the same time, new questions arise centering the complex relationship between neurobiology, cognition and mate choice, which we will perhaps be able to answer with new experimental techniques.
Collapse
|
37
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition in Vertebrates: Mate Choice Turns Cognition or Cognition Turns Mate Choice? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The idea of “smart is sexy,” meaning superior cognition provides competitive benefits in mate choice and, therefore, evolutionary advantages in terms of reproductive fitness, is both exciting and captivating. Cognitively flexible individuals perceive and adapt more dynamically to (unpredictable) environmental changes. The sex roles that females and males adopt within their populations can vary greatly in response to the prevalent mating system. Based on how cognition determines these grossly divergent sex roles, different selection pressures could possibly shape the (progressive) evolution of cognitive abilities, suggesting the potential to induce sexual dimorphisms in superior cognitive abilities. Associations between an individual’s mating success, sexual traits and its cognitive abilities have been found consistently across vertebrate species and taxa, providing evidence that sexual selection may well shape the supporting cognitive prerequisites. Yet, while superior cognitive abilities provide benefits such as higher feeding success, improved antipredator behavior, or more favorable mate choice, they also claim costs such as higher energy levels and metabolic rates, which in turn may reduce fecundity, growth, or immune response. There is compelling evidence in a variety of vertebrate taxa that females appear to prefer skilled problem-solver males, i.e., they prefer those that appear to have better cognitive abilities. Consequently, cognition is also likely to have substantial effects on sexual selection processes. How the choosing sex assesses the cognitive abilities of potential mates has not been explored conclusively yet. Do cognitive skills guide an individual’s mate choice and does learning change an individual’s mate choice decisions? How and to which extent do individuals use their own cognitive skills to assess those of their conspecifics when choosing a mate? How does an individual’s role within a mating system influence the choice of the choosing sex in this context? Drawing on several examples from the vertebrate world, this review aims to elucidate various aspects associated with cognitive sex differences, the different roles of males and females in social and sexual interactions, and the potential influence of cognition on mate choice decisions. Finally, future perspectives aim to identify ways to answer the central question of how the triad of sex, cognition, and mate choice interacts.
Collapse
|
38
|
Toure MW, Reader SM. Colour biases in learned foraging preferences in Trinidadian guppies. Ethology 2021. [DOI: 10.1111/eth.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Wyatt Toure
- Department of Biology McGill University Montreal QC Canada
| | | |
Collapse
|
39
|
Borstel KJ, Stevenson PA. Individual Scores for Associative Learning in a Differential Appetitive Olfactory Paradigm Using Binary Logistic Regression Analysis. Front Behav Neurosci 2021; 15:741439. [PMID: 34650412 PMCID: PMC8505765 DOI: 10.3389/fnbeh.2021.741439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Numerous invertebrates have contributed to our understanding of the biology of learning and memory. In most cases, learning performance is documented for groups of individuals, and nearly always based on a single, typically binary, behavioural metric for a conditioned response. This is unfortunate for several reasons. Foremost, it has become increasingly apparent that invertebrates exhibit inter-individual differences in many aspects of their behaviour, and also that the conditioned response probability for an animal group does not adequately represent the behaviour of individuals in classical conditioning. Furthermore, a binary response character cannot yield a graded score for each individual. We also hypothesise that due to the complexity of a conditioned response, a single metric need not reveal an individual's full learning potential. In this paper, we report individual learning scores for freely moving adult male crickets (Gryllus bimaculatus) based on a multi-factorial analysis of a conditioned response. First, in an absolute conditioning paradigm, we video-tracked the odour responses of animals that, in previous training, received either odour plus reward (sugar water), reward alone, or odour alone to identify behavioural predictors of a conditioned response. Measures of these predictors were then analysed using binary regression analysis to construct a variety of mathematical models that give a probability for each individual that it exhibited a conditioned response (Presp). Using standard procedures to compare model accuracy, we identified the strongest model which could reliably discriminate between the different odour responses. Finally, in a differential appetitive olfactory paradigm, we employed the model after training to calculate the Presp of animals to a conditioned, and to an unconditioned odour, and from the difference a learning index for each animal. Comparing the results from our multi-factor model with a single metric analysis (head bobbing in response to a conditioned odour), revealed advantageous aspects of the model. A broad distribution of model-learning scores, with modes at low and high values, support the notion of a high degree of variation in learning capacity, which we discuss.
Collapse
Affiliation(s)
- Kim J Borstel
- Department of Physiology of Animals and Behaviour, Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Paul A Stevenson
- Department of Physiology of Animals and Behaviour, Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
40
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
41
|
De Meester G, Baeckens S. Reinstating reptiles: from clueless creatures to esteemed models of cognitive biology. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-00003718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Non-avian reptiles have long been neglect in cognitive science due to their reputation as slow and inflexible learners, but fortunately, this archaic view on reptile cognition is changing rapidly. The last two decades have witnessed a renewed interest in the cognitive capacities of reptiles, and more ecologically relevant protocols have been designed to measure such abilities. Now, we appreciate that reptiles possess an impressive set of cognitive skills, including problem-solving abilities, fast and flexible learning, quantity discrimination, and even social learning. This special issue highlights current research on reptiles in cognitive biology and showcases the diversity of research questions that can be answered by using reptiles as study model. Here, we briefly address (the key results of) the contributing articles and their role in the endeavour for total inclusion of reptiles in cognitive biological research, which is instrumental for our understanding of the evolution of animal cognition. We also discuss and illustrate the promising potential of reptiles as model organisms in various areas of cognitive research.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Biology Department, University of Antwerp, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Biology Department, University of Antwerp, Belgium
| |
Collapse
|
42
|
de Bruijn JAC, Vet LEM, Smid HM, de Boer JG. Memory extinction and spontaneous recovery shaping parasitoid foraging behavior. Behav Ecol 2021; 32:952-960. [PMID: 34690548 PMCID: PMC8528537 DOI: 10.1093/beheco/arab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/19/2021] [Accepted: 05/22/2021] [Indexed: 11/12/2022] Open
Abstract
Animals can alter their foraging behavior through associative learning, where an encounter with an essential resource (e.g., food or a reproductive opportunity) is associated with nearby environmental cues (e.g., volatiles). This can subsequently improve the animal's foraging efficiency. However, when these associated cues are encountered again, the anticipated resource is not always present. Such an unrewarding experience, also called a memory-extinction experience, can change an animal's response to the associated cues. Although some studies are available on the mechanisms of this process, they rarely focus on cues and rewards that are relevant in an animal's natural habitat. In this study, we tested the effect of different types of ecologically relevant memory-extinction experiences on the conditioned plant volatile preferences of the parasitic wasp Cotesia glomerata that uses these cues to locate its caterpillar hosts. These extinction experiences consisted of contact with only host traces (frass and silk), contact with nonhost traces, or oviposition in a nonhost near host traces, on the conditioned plant species. Our results show that the lack of oviposition, after contacting host traces, led to the temporary alteration of the conditioned plant volatile preference in C. glomerata, but this effect was plant species-specific. These results provide novel insights into how ecologically relevant memory-extinction experiences can fine-tune an animal's foraging behavior. This fine-tuning of learned behavior can be beneficial when the lack of finding a resource accurately predicts current, but not future foraging opportunities. Such continuous reevaluation of obtained information helps animals to prevent maladaptive foraging behavior.
Collapse
Affiliation(s)
- Jessica A C de Bruijn
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Louise E M Vet
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jetske G de Boer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
43
|
Kahnau P, Guenther A, Boon MN, Terzenbach JD, Hanitzsch E, Lewejohann L, Brust V. Lifetime Observation of Cognition and Physiological Parameters in Male Mice. Front Behav Neurosci 2021; 15:709775. [PMID: 34539359 PMCID: PMC8442583 DOI: 10.3389/fnbeh.2021.709775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
Laboratory mice are predominantly used for one experiment only, i.e., new mice are ordered or bred for every new experiment. Moreover, most experiments use relatively young mice in the range of late adolescence to early adulthood. As a consequence, little is known about the day-to-day life of adult and aged laboratory mice. Here we present a long-term data set with three consecutive phases conducted with the same male mice over their lifetime in order to shed light on possible long-term effects of repeated cognitive stimulation. One third of the animals was trained by a variety of learning tasks conducted up to an age of 606 days. The mice were housed in four cages with 12 animals per cage; only four mice per cage had to repeatedly solve cognitive tasks for getting access to water using the IntelliCage system. In addition, these learner mice were tested in standard cognitive tests outside their home-cage. The other eight mice served as two control groups living in the same environment but without having to solve tasks for getting access to water. One control group was additionally placed on the test set-ups without having to learn the tasks. Next to the cognitive tasks, we took physiological measures (body mass, resting metabolic rate) and tested for dominance behavior, and attractivity in a female choice experiment. Overall, the mice were under surveillance until they died a natural death, providing a unique data set over the course of virtually their entire lives. Our data showed treatment differences during the first phase of our lifetime data set. Young learner mice showed a higher activity, less growth and resting metabolic rate, and were less attractive for female mice. These effects, however, were not preserved over the long-term. We also did not find differences in dominance or effects on longevity. However, we generated a unique and valuable set of long-term behavioral and physiological data from a single group of male mice and note that our long-term data contribute to a better understanding of the behavioral and physiological processes in male C57Bl/6J mice.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Anja Guenther
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Marcus Nicolaas Boon
- Department for Electrical Engineering and Computer Science, Modeling of Cognitive Processes, Technische Universität Berlin, Berlin, Germany
- Exzellenzcluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
| | | | - Eric Hanitzsch
- Behavioral Phenotyping Unit, University of Osnabrück, Osnabrück, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Animal Behavior and Laboratory Animal Science, Institute of Animal Welfare, Freie Universität Berlin, Berlin, Germany
| | - Vera Brust
- Behavioral Phenotyping Unit, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
44
|
Rowell MK, Rymer TL. Memory enhances problem solving in the fawn-footed mosaic-tailed rat Melomys cervinipes. Anim Cogn 2021; 25:347-358. [PMID: 34453668 DOI: 10.1007/s10071-021-01556-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Problem solving is important for survival, allowing animals to access novel food resources or escape from predators. It was originally thought to rely on an animal's intelligence; however, studies examining the relationship between individual cognitive ability and problem solving performance show mixed results, and studies are often restricted to only one cognitive and one problem solving task. We investigated the relationship between general cognitive ability and problem solving across multiple tasks in the fawn-footed mosaic-tailed rat Melomys cervinipes. We measured general cognitive ability across different domains (memory in an odour learning association task, recognition in a novel object recognition task, size discrimination using different sized pieces of food, and learning across multiple presentations of a food-baited activity board). We also measured problem solving across different contexts (food-baited puzzle boxes in home cage, obstruction task, and food-baited activity board in a novel arena). Mosaic-tailed rats showed a general cognitive ability, with average problem solving latency, memory ability, and learning in the tile task being correlated. As such, individuals that were able to remember an association and learned to solve the tile task solved the problems faster than individuals that could not remember or learn. Our results suggest that problem solving in mosaic-tailed rats likely relies on some forms of simple cognition, particularly memory, but could also depend on other traits, such as an individual's persistence.
Collapse
Affiliation(s)
- Misha K Rowell
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia. .,Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia.
| | - Tasmin L Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia.,Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
| |
Collapse
|
45
|
Exploring the Role of Cognition in the Annual Fall Migration of the Monarch Butterfly ( Danaus plexippus). INSECTS 2021; 12:insects12080760. [PMID: 34442326 PMCID: PMC8396984 DOI: 10.3390/insects12080760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Each year, millions of monarch butterflies in eastern North America undergo a spectacular fall migration to overwintering sites in central Mexico, where they remain until returning northward in the spring. In addition to the navigational challenges faced during the southward flight, migratory individuals are also challenged with the foraging task of locating high-quality nectar sources for overwinter survival in the face of unfamiliar floral landscapes that change in complex and unpredictable ways. In the research reported here, a proboscis extension paradigm is used to investigate learning and long-term memory abilities that might help fall migrants meet these unique foraging demands. Male and female migratory and captive-reared individuals were consecutively trained to perform color and odor cue discriminations and then tested for their ability to simultaneously retain reward information associated with each cue in memory without reinforcement over a period of 7 days. Results showed that male and female fall migrants can learn the reward properties of color and odor cues with over 75% accuracy after less than 40 s of exposure and can simultaneously retain visual and olfactory information predicting the availability of floral rewards in memory without reinforcement for at least 7 days. Captive-reared male butterflies also showed the ability to retain visual and olfactory information in long-term memory for 7 days; however, 80% of captive-reared females could not retain color cues in long-term memory for more than 24 h. These novel findings are consistent with the view that monarch butterflies have enhancements to long-term memory that enable them to minimize the amount of time and energy wasted searching for suitable nectar sources during their annual fall migration, thereby optimizing migratory performance and increasing the chance of overwinter survival. The possibility that female monarchs undergo a seasonal change in visual long-term memory warrants further empirical investigation. Abstract Each fall, monarch butterflies in eastern North America undergo an extraordinary long-distance migration to wintering areas in central Mexico, where they remain until returning northward in the spring. Migrants survive the overwintering period by metabolizing lipid reserves accumulated exclusively though floral nectar; however, there is little known about how individuals maximize foraging efficiency in the face of floral environments that constantly change in complex and unpredictable ways along their migratory route. Here, a proboscis extension paradigm is used to investigate the role of cognition during the foraging phase of monarch migration. Male and female migratory butterflies were consecutively trained to discriminate between two color and odor cues and then tested for their ability to simultaneously retain the information on the reward value of each cue in memory without reinforcement over a period of 7 days. To gain further insight into cognitive abilities of monarchs as a migratory species, a second set of captive-reared males and females were tested under harnessed conditions at the same time as wild-caught fall migrants. Results showed that male and female migrants can learn the reward properties of color and odor cues with over 75% accuracy after less than 40 s of exposure and can simultaneously retain visual and olfactory information predicting the availability of floral rewards in memory without reinforcement for at least 7 days. Captive-reared male butterflies also showed the ability to retain visual and olfactory information in long-term memory for 7 days; however, 80% of captive-reared females could not retain color cues in long-term memory for more than 24 h. These novel findings are consistent with the view that monarch butterflies, as a migratory species, have enhancements to long-term memory that enable them to minimize the amount of time and energy wasted searching for suitable nectar sources during their annual fall migration, thereby optimizing migratory performance and increasing the chance of overwinter survival. The possibility that female monarchs undergo a seasonal change in visual long-term memory warrants further empirical investigation.
Collapse
|
46
|
Lambert CT, Guillette LM. The impact of environmental and social factors on learning abilities: a meta-analysis. Biol Rev Camb Philos Soc 2021; 96:2871-2889. [PMID: 34342125 DOI: 10.1111/brv.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Since the 1950s, researchers have examined how differences in the social and asocial environment affect learning in rats, mice, and, more recently, a variety of other species. Despite this large body of research, little has been done to synthesize these findings and to examine if social and asocial environmental factors have consistent effects on cognitive abilities, and if so, what aspects of these factors have greater or lesser impact. Here, we conducted a systematic review and meta-analysis examining how different external environmental features, including the social environment, impact learning (both speed of acquisition and performance). Using 531 mean-differences from 176 published articles across 27 species (with studies on rats and mice being most prominent) we conducted phylogenetically corrected mixed-effects models that reveal: (i) an average absolute effect size |d| = 0.55 and directional effect size d = 0.34; (ii) interventions manipulating the asocial environment result in larger effects than social interventions alone; and (iii) the length of the intervention is a significant predictor of effect size, with longer interventions resulting in larger effects. Additionally, much of the variation in effect size remained unexplained, possibly suggesting that species differ widely in how they are affected by environmental interventions due to varying ecological and evolutionary histories. Overall our results suggest that social and asocial environmental factors do significantly affect learning, but these effects are highly variable and perhaps not always as predicted. Most notably, the type (social or asocial) and length of interventions are important in determining the strength of the effect.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
47
|
Pueta M, Ardanaz D, Tallone JC. Habituation in anuran tadpoles and the role of risk uncertainty. Anim Cogn 2021; 25:63-72. [PMID: 34302566 DOI: 10.1007/s10071-021-01534-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/23/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
The ability to learn in the context of predation allows prey to respond to threats by adjusting their behavior based on specific information acquired from their current environment. Habituation is a process that allows animals to adapt to environmental changes. Very little is known about habituation in wild animals in general and there are no studies on habituation in anuran tadpoles in particular. Here, we performed three experiments to investigate the behavioral response of predator naïve Pleurodema thaul tadpoles to repeated stimulation with two predation risk cues (injured conspecific and predator fed cues) which a priori provide different information regarding risk. Experiment 1 showed that P. thaul tadpoles habituate the antipredator response when undergo predation risk chemical cues from injured conspecific and that response is long term. Experiment 2 showed that P. thaul tadpoles did not habituate their antipredator response when exposed to cues derived from an event of nymph odonate preying on P. thaul tadpoles (predator fed cues). Experiment 3 specifically evaluated the risk imposed by each of the risk cues used in Experiment 1 and Experiment 2 and showed that the degree of perceived risk in tadpoles appear to be similar in a single experience with any risk stimuli. We suggest that the behavioral habituation of tadpoles in the context of predation could be modulated by the level of uncertainty associated with risk stimuli.
Collapse
Affiliation(s)
- Mariana Pueta
- Laboratorio de Ecología, Biología Evolutiva y Comportamiento de Herpetozoos, INIBIOMA (CONICET-UNComa), Instituto de Investigaciones en Biodiversidad y Medioambiente, Centro Regional Universitario Bariloche-Universidad Nacional del Comahue, San Carlos de Bariloche, Rio Negro, Argentina. .,Departamento de Biología General, (CRUB-UNComa), Centro Regional Universitario Bariloche-Universidad Nacional del Comahue, San Carlos de Bariloche, Rio Negro, Argentina.
| | - Dolores Ardanaz
- Departamento de Biología General, (CRUB-UNComa), Centro Regional Universitario Bariloche-Universidad Nacional del Comahue, San Carlos de Bariloche, Rio Negro, Argentina
| | - Juan Cruz Tallone
- Departamento de Biología General, (CRUB-UNComa), Centro Regional Universitario Bariloche-Universidad Nacional del Comahue, San Carlos de Bariloche, Rio Negro, Argentina
| |
Collapse
|
48
|
Sowersby W, Eckerström-Liedholm S, Kotrschal A, Näslund J, Rowiński P, Gonzalez-Voyer A, Rogell B. Fast life-histories are associated with larger brain size in killifishes. Evolution 2021; 75:2286-2298. [PMID: 34270088 DOI: 10.1111/evo.14310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
The high energetic demands associated with the vertebrate brain are proposed to result in a trade-off between the pace of life-history and relative brain size. However, because both life-history and brain size also have a strong relationship with body size, any associations between the pace of life-history and relative brain size may be confounded by coevolution with body size. Studies on systems where contrasts in the pace of life-history occur without concordant contrasts in body size could therefore add to our understanding of the potential coevolution between relative brain size and life-history. Using one such system - 21 species of killifish - we employed a common garden design across two ontogenetic stages to investigate the association between relative brain size and the pace of life-history. Contrary to predictions, we found that relative brain size was larger in adult fast-living killifishes, compared to slow-living species. Although we found no differences in relative brain size between juvenile killifishes. Our results suggest that fast- and slow-living killifishes do not exhibit the predicted trade-off between brain size and life-history. Instead, fast and slow-living killifishes could differ in the ontogenetic timing of somatic versus neural growth or inhabit environments that differ considerably in cognitive demands.
Collapse
Affiliation(s)
- Will Sowersby
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Biology, Osaka City University, Osaka, Japan
| | - Simon Eckerström-Liedholm
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Wild Animal Initiative, Farmington, Minnesota, USA
| | - Alexander Kotrschal
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Animal Sciences: Behavioural Ecology, Wageningen University, Wageningen, Netherlands
| | - Joacim Näslund
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Piotr Rowiński
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Alejandro Gonzalez-Voyer
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Instituto de Ecología, Universidad Nacional Autónoma de México, México, Mexico
| | - Björn Rogell
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
49
|
Vesterberg A, Rizkalla R, Fitzpatrick MJ. Environmental influences on for-mediated oviposition decisions in Drosophila melanogaster. J Neurogenet 2021; 35:262-273. [PMID: 34259125 DOI: 10.1080/01677063.2021.1950713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Deciding whether or not to lay an egg on a given substrate is an important task undertaken by females of many arthropods. It involves perceiving the environment (e.g. quality of the substrate, temperature, and humidity), formulating a decision, and then conducting the appropriate behaviours to oviposit. This oviposition site selection (OSS) provides a useful system for studying simple decision-making. OSS in fruit flies, Drosophila melanogaster, is influenced by both genetic and environmental variation. Naturally occurring allelic variation in the foraging gene (for) is known to affect OSS. Given a choice of high- and low-nutrient oviposition substrates, groups of rovers (forR) are known to lay significantly more of their eggs on low-nutrient sites than sitters (fors) and sitter mutants (fors2). Here we ask three questions: (1) Is the role of for in OSS affected by the availability of alternate oviposition sites? (2) Is the role of for in OSS sensitive to the density of ovipositing females? and (3) Does the gustatory sensation of yeast play a role in for-mediated variation in OSS? We find a role of choice and female density in rover/sitter differences in OSS, as well as a role of for in response to glycerol, an indicator of yeast. The role of for in OSS decision-making is complex and multi-faceted and should prove fertile ground for further research into the factors affecting decision-making behaviours.
Collapse
Affiliation(s)
- Anders Vesterberg
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Rudy Rizkalla
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Mark J Fitzpatrick
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Cell and Systems Biology, University of Toronto, Toronto, Canada.,Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
50
|
Collado MÁ, Montaner CM, Molina FP, Sol D, Bartomeus I. Brain size predicts learning abilities in bees. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201940. [PMID: 34017597 PMCID: PMC8131939 DOI: 10.1098/rsos.201940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
When it comes to the brain, bigger is generally considered better in terms of cognitive performance. While this notion is supported by studies of birds and primates showing that larger brains improve learning capacity, similar evidence is surprisingly lacking for invertebrates. Although the brain of invertebrates is smaller and simpler than that of vertebrates, recent work in insects has revealed enormous variation in size across species. Here, we ask whether bee species that have larger brains also have higher learning abilities. We conducted an experiment in which field-collected individuals had to associate an unconditioned stimulus (sucrose) with a conditioned stimulus (coloured strip). We found that most species can learn to associate a colour with a reward, yet some do so better than others. These differences in learning were related to brain size: species with larger brains-both absolute and relative to body size-exhibited enhanced performance to learn the reward-colour association. Our finding highlights the functional significance of brain size in insects, filling a major gap in our understanding of brain evolution and opening new opportunities for future research.
Collapse
Affiliation(s)
- Miguel Á. Collado
- Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio 26, 41092 Sevilla, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF-UAB), Campus de Bellaterra, Edifici C, 08193 Cerdanyola del Vallés, Spain
| | - Cristina M. Montaner
- Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio 26, 41092 Sevilla, Spain
| | - Francisco P. Molina
- Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio 26, 41092 Sevilla, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF-UAB), Campus de Bellaterra, Edifici C, 08193 Cerdanyola del Vallés, Spain
| | - Daniel Sol
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF-UAB), Campus de Bellaterra, Edifici C, 08193 Cerdanyola del Vallés, Spain
| | - Ignasi Bartomeus
- Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio 26, 41092 Sevilla, Spain
| |
Collapse
|