1
|
Perez A, Johnson BR. Centrality of Hygienic Honey Bee Workers in Colony Social Networks. INSECTS 2025; 16:58. [PMID: 39859639 PMCID: PMC11766216 DOI: 10.3390/insects16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Many social and environmental variables can affect the interactions among individuals in an insect colony that fundamentally structure its social organization. Along with important attributes such as age and caste, immunity-related factors such as the performance of sanitary tasks or exposure to a pathogen can also influence an individual's social interactions and their place in the resulting social network. Most work on this subject has supported the hypothesis that health-compromised individuals will exhibit altered social or spatial behavior that presumably limits the spread of infection. Here, we test this hypothesis using honey bee workers recently involved in hygienic behavior, an important set of sanitary tasks in which unhealthy brood are uncapped and then removed from the colony. Using static social networks, we quantify the interaction patterns of workers recently involved in hygienic tasks and compare their network centrality to non-hygienic workers. Using dynamic networks, we analyze the capability of hygienic workers to spread a potential infection throughout the colony. We find no substantial differences in how connected hygienic workers are in the network, and we show that hygienic workers would spread a novel infection throughout the colony to the same extent as non-hygienic workers. Our results suggest that experience with certain sanitary tasks may not necessarily produce rapid changes in social behavior. This work highlights the importance of considering the benefits of remaining socially integrated in important information networks and the temporal limitations for how quickly organized immune responses can occur in response to potential infections.
Collapse
Affiliation(s)
- Adrian Perez
- Department of Entomology and Nematology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | | |
Collapse
|
2
|
Li X, Yang X, You F, Miao C, Li M, Wang K, Niu Q, Ji T, Wang Z, Lin Z. Differences between uncapping and removal behaviors in Apis cerana from the perspective of long non-coding RNAs. BMC Genomics 2024; 25:912. [PMID: 39350014 PMCID: PMC11440941 DOI: 10.1186/s12864-024-10817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Hygienic behavior, a specialized form of immune response evolved in social insects, plays a crucial role in safeguarding colonies from disease spread. In honeybee colonies, such behavior typically entails the dual steps of uncapping and removal of unhealthy and deceased brood. Although in recent years, numerous studies have examined the development of hygienic behavior, the mechanisms underlying the division in the performance of uncapping and removal have yet to be sufficiently elucidated. In this regard, long non-coding RNAs (lncRNAs) have been evidenced to be engaged in regulating the physiological activities of honeybees; however, whether lncRNAs are likewise involved in the uncapping and removal tasks has not been clarified. RESULTS In this study, the strong hygienic Apis cerana worker bees were used and the processes of uncapping and removal behaviors in three colonies were assayed with freeze-killed brood in the field. We then sequenced the antennal RNAs of honeybees to identify differentially expressed lncRNAs and performed lncRNA-mRNA association analysis to establish the differences between uncapping and removal. We detected 1,323 differentially expressed lncRNAs in the antennae, and the findings of lncRNA-mRNA association analyses revealed that the target genes of differentially expressed lncRNAs between uncapping and removal worker bees were predominantly linked to response to stimulus, receptor activity, and synapse. Notably, among the lncRNAs enriched in cellular response to stimulus, XR_001766094.2 was exclusively expressed in the uncapping worker bees. Based on these findings, we hypothesize that XR_001766094.2 plays a key role in distinguishing uncapping from removal behaviors by responding to external stimulus, thereby suggesting that the division of hygienic behaviors is governed by differential thresholds of responsiveness to environmental cues. CONCLUSION We characterized differences in the uncapping and removal behaviors of worker bees from a perspective of lncRNAs. Uncapping bees may be equipped with a more rapid stimulatory response and more acute olfactory sensitivity, contributing to the rapid hygienic behavior in honeybee colonies. Our results thus establish a foundation for potential lncRNA-mediated gene expression regulation in hygienic behavior.
Collapse
Affiliation(s)
- Xiao Li
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoxiao Yang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Fangdong You
- Yunnan Animal Husbandry Station, Kunming, 650225, China
| | - Chunhui Miao
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, China
| | - Meng Li
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhi Wang
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China.
| | - Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Haran R, Sumathi E, Iqbal J, Krupesh S, Parthasarathi G, Vijay S, Saminathan VR, Srinivasan MR, Kokiladevi E, Jayakanthan M, Zeshan A. Field Exploration for Colony Selection: Evaluating Hygienic Behavior in Apis cerana indica Colonies. INSECTS 2024; 15:598. [PMID: 39194803 DOI: 10.3390/insects15080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/20/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
Hygienic behavior (HB) emerges as a pivotal trait, impacting colony resistance to diseases. This study aimed to understand the behavioral traits of Apis cerana indica colonies, with a focus on HB and other key characteristics crucial for colony health, and to screen and identify colonies with superior hygienic behavior and better performance to combat prevailing diseases and pests. This research spans a comprehensive field analysis with different seasons and locations, encompassing the distinct environmental and management factors that influence honey bee behavior. The inclusion of A. cerana indica colonies from various locations provides a novel perspective, offering valuable insights regarding the hygienic behavior of A. cerana indica. Several statistical analyses, including descriptive statistics, principal component analysis (PCA), and Aligned Rank Transformation-Analysis of Variance (ART-ANOVA) for repeated measures, shed light on the distribution of hive metrics, emphasizing the significance of considering seasonality and location-specific factors. PCA highlights unique characteristics in Tirupur and Coimbatore colonies, while correlation analyses uncover relationships among HB, honey, pollen, brood area, and adult population. Moreover, the study's nuanced findings gave the status of hygienic behavior of A. cerana indica colonies and identified colonies with better colony performance, which will be useful for future breeding programs with A. cerana indica.
Collapse
Affiliation(s)
- Ramkumar Haran
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Ettiappan Sumathi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Javaid Iqbal
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Sivakumar Krupesh
- Department of Physical Science and Information Technology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Ganesan Parthasarathi
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Settu Vijay
- Silkworm Seed Production Centre, National Silkworm Seed Organization, Central Silk Board, Dakshin Bhawanipur, Uttar Dinajpur 733132, India
| | | | | | - Eswaran Kokiladevi
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Mannu Jayakanthan
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Ali Zeshan
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| |
Collapse
|
4
|
Walton A, Herman JJ, Rueppell O. Social life results in social stress protection: a novel concept to explain individual life-history patterns in social insects. Biol Rev Camb Philos Soc 2024; 99:1444-1457. [PMID: 38468146 DOI: 10.1111/brv.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Resistance to and avoidance of stress slow aging and confer increased longevity in numerous organisms. Honey bees and other superorganismal social insects have two main advantages over solitary species to avoid or resist stress: individuals can directly help each other by resource or information transfer, and they can cooperatively control their environment. These benefits have been recognised in the context of pathogen and parasite stress as the concept of social immunity, which has been extensively studied. However, we argue that social immunity is only a special case of a general concept that we define here as social stress protection to include group-level defences against all biotic and abiotic stressors. We reason that social stress protection may have allowed the evolution of reduced individual-level defences and individual life-history optimization, including the exceptional aging plasticity of many social insects. We describe major categories of stress and how a colonial lifestyle may protect social insects, particularly against temporary peaks of extreme stress. We use the honey bee (Apis mellifera L.) to illustrate how patterns of life expectancy may be explained by social stress protection and how modern beekeeping practices can disrupt social stress protection. We conclude that the broad concept of social stress protection requires rigorous empirical testing because it may have implications for our general understanding of social evolution and specifically for improving honey bee health.
Collapse
Affiliation(s)
- Alexander Walton
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| | - Jacob J Herman
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Mountford-McAuley R, Robertson A, Taylor M, Clavijo McCormick A. Characterisation of New Zealand Propolis from Different Regions Based on Its Volatile Organic Compounds. Molecules 2024; 29:3143. [PMID: 38999095 PMCID: PMC11243487 DOI: 10.3390/molecules29133143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Propolis is a bee product mainly consisting of plant resins and is used by bees to maintain the structural integrity of the colony. Propolis is known to contribute to bee health via its antimicrobial activity and is a valued product for human use owing to its nutritional and medicinal properties. Propolis is often characterised into seven categories depending on the resin source. New Zealand propolis is typically assumed as being poplar-type propolis, but few studies have chemically characterised New Zealand propolis to confirm or reject this assumption. Here, for the first time, we characterise propolis originating from different regions in New Zealand based on its volatile organic compounds, using gas chromatography coupled with mass spectrometry (GC-MS). To support this characterisation, we also collected and analysed resin samples from a variety of resin-producing plants (both native to New Zealand and introduced). Our findings suggest that bees mainly use poplar as a resin source, but also utilize native plant species to produce propolis. While regional variation did not allow for clear separation between samples, some patterns emerged, with samples from some regions having more chemical complexity and a higher contribution from native species (as suggested by a higher number of compounds unique to native species resin). Further studies are needed to accurately identify the botanical sources contributing to these samples. It may be also of interest to explore the biological activity of regional propolis samples and their potential nutritional or medicinal benefits.
Collapse
Affiliation(s)
- Ruby Mountford-McAuley
- School of Food Technology & Natural Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Alastair Robertson
- School of Food Technology & Natural Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Michelle Taylor
- The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand
| | | |
Collapse
|
6
|
Li H, Liu J, Wang Q, Ma Y, Zhao W, Chen B, Price JH, Zhang D. Oleic acid triggers burial behavior in a termite population through an odorant binding protein. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 167:104090. [PMID: 38369269 DOI: 10.1016/j.ibmb.2024.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Social insects maintain hygienic conditions through their social immunity behaviors. Among these behaviors, burial behavior of termites is central for protecting healthy individuals from corpses. Many factors trigger burial behavior, and it is generally believed that chemicals released by corpses, such as oleic acid, are the most important cues for triggering burial behavior in termites. However, the contribution of the olfactory system to this behavior remains unclear. Here we report an odorant binding protein (OBP) that transports oleic acid and triggers burial behavior in Coptotermes formosanus Shiraki. We demonstrated that CforOBP7 is highly expressed in the antennae of workers. Fluorescent competition binding experiments exhibited that CforOBP7 has a strong affinity for oleic acid. Furthermore, the antennal response to oleic acid was significantly reduced, and oleic acid-triggered burial behavior was also inhibited in CforOBP7-silenced termites. We conclude that CforOBP7 governs the burial behavior of C. formosanus triggered by oleic acid.
Collapse
Affiliation(s)
- Hongyue Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jiahan Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qian Wang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yuanfei Ma
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Weisong Zhao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Bosheng Chen
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jennifer Hackney Price
- School of Mathematical & Natural Sciences, New College of Interdisciplinary Arts & Sciences, Arizona State University, Phoenix, AZ, USA
| | - Dayu Zhang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
7
|
Neiva de Jesus J, Ribeiro Mesquita PR, Barbosa da Silva K, de Medeiros Rodrigues F, Lopes de Carvalho CA, Gomes da Costa J, Lima Aguiar CM. Volatile Organic Compounds from Offspring of Stingless Bee Sacrificed in Hygienic Behavior Test. Chem Biodivers 2024; 21:e202301641. [PMID: 38358043 DOI: 10.1002/cbdv.202301641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
This study shows the profile of volatile organic compounds (VOCs) from pupae and larvae of Melipona quadrifasciata anthidioides Lepeletier subjected to three death induction techniques for hygienic behavior (HB) studies: freezing in liquid nitrogen (LN2), freezing in a freezer (FRZ) and piercing of offspring with an entomological pin (PIN). The VOCs from larvae and pupae were obtained through headspace solid-phase microextraction and characterized using gas chromatography coupled to mass spectrometry. In addition, an HB test was performed on the colonies. The main classes of VOCs were hydrocarbons, terpenes and alcohols. Multivariate analysis was applied and showed that there was a separation in the compound profiles between the different treatments. The HB test in the colonies showed that 24 hours after the application of the techniques, the bees removed more dead larvae in LN2 treatment (83.5 %), while after 48 hours more larvae were removed in the LN2 and FRZ treatments (92.3 %). When compared to pupae removal, larvae removal was significantly faster in LN2.
Collapse
Affiliation(s)
- Jossimara Neiva de Jesus
- Agricultural Technological Center of the State of Bahia, Ondina, CEP, 40170-110, n° 967, Salvador, Bahia, Brazil
- Universidade Federal do Recôncavo da Bahia, CEP, 44380-000, n° 710, Cruz das Almas, Bahia, Brasil
| | | | - Kelly Barbosa da Silva
- Agricultural Technological Center of the State of Bahia, Ondina, CEP, 40170-110, n° 967, Salvador, Bahia, Brazil
| | | | | | - João Gomes da Costa
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Alimentos e Territórios, CEP, 57020-050, n° 348, Maceió, Alagoas, Brasil
| | | |
Collapse
|
8
|
Conradie TA, Lawson K, Allsopp M, Jacobs K. Exploring the impact of fungicide exposure and nutritional stress on the microbiota and immune response of the Cape honey bee (Apis mellifera capensis). Microbiol Res 2024; 280:127587. [PMID: 38142516 DOI: 10.1016/j.micres.2023.127587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Honey bees (Apis mellifera) harbour a stable core microbial community within their gut, that is suggested to play a role in metabolic functioning, immune regulation, and host homeostasis. This microbiota presents a unique opportunity to observe the effects of stressors on honey bee health. We examined the effects of two common honey bee stressors: indirect fungicide contamination and nutrient limitation. These effects were observed through changes in their hind- and midgut microbiota using Automated Ribosomal Intergenic Spacer Analysis (ARISA), alongside high-throughput amplicon sequencing. Expression of the honey bees' immune response was examined through the expression of three immune-related genes, namely, immune deficiency (imd), proPhenolOxidase (proPO), and spaetzle (spz). Additionally, longevity of the honey bees was monitored through observation of the expression levels of Vitellogenin (Vg). Both treatment groups were compared to a negative control, and a diseased positive control. There was no effect on the hindgut microbiota due to the stressors, while significant changes in the midgut was observed. This was also observed in the expression of the immune-related genes within the treatment groups. The Imd pathway was substantially downregulated, with upregulation in the prophenoloxidase pathway. However, no significant effect was observed in the expression of spz, and only the pollen treatment group showed reduced longevity through a downregulation of Vg. Overall, the effect of these two common stressors indicate a compromise in honey bee immunity, and potential vulnerabilities within the immune defence mechanisms.
Collapse
Affiliation(s)
- Tersia A Conradie
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Kayla Lawson
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Mike Allsopp
- Agricultural Research Council - Plant, Health & Protection, Stellenbosch 7600, South Africa
| | - Karin Jacobs
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
9
|
Esparza-Mora MA, Mazumdar T, Jiang S, Radek R, Thiem JN, Feng L, Petrašiūnaitė V, Banasiak R, Golian M, Gleske M, Lucas C, Springer A, Buellesbach J, McMahon DP. Defensive behavior is linked to altered surface chemistry following infection in a termite society. Sci Rep 2023; 13:20606. [PMID: 37996442 PMCID: PMC10667546 DOI: 10.1038/s41598-023-42947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/16/2023] [Indexed: 11/25/2023] Open
Abstract
The care-kill response determines whether a sick individual will be treated or eliminated from an insect society, but little is known about the physiological underpinnings of this process. We exploited the stepwise infection dynamics of an entomopathogenic fungus in a termite to explore how care-kill transitions occur, and identify the chemical cues behind these shifts. We found collective responses towards pathogen-injected individuals to vary according to severity and timing of pathogen challenge, with elimination, via cannibalism, occurring sooner in response to a severe active infection. However, injection with inactivated fungal blastospores also resulted in increased albeit delayed cannibalism, even though it did not universally cause host death. This indicates that the decision to eliminate an individual is triggered before pathogen viability or terminal disease status has been established. We then compared the surface chemistry of differently challenged individuals, finding increased amounts of long-chained methyl-branched alkanes with similar branching patterns in individuals injected with both dead and viable fungal blastospores, with the latter showing the largest increase. This coincided with the highest amounts of observed cannibalism as well as signs of severe moribundity. Our study provides new mechanistic insight into the emergent collective behaviors involved in the disease defense of a termite society.
Collapse
Affiliation(s)
- M Alejandra Esparza-Mora
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Tilottama Mazumdar
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Shixiong Jiang
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Renate Radek
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Julian N Thiem
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Linshan Feng
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Vesta Petrašiūnaitė
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Ronald Banasiak
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Marek Golian
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Melanie Gleske
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS-University of Tours, Tours, France
| | - Andreas Springer
- Core Facility BioSupraMol, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany.
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.
| |
Collapse
|
10
|
Mee L, Barribeau SM. Influence of social lifestyles on host-microbe symbioses in the bees. Ecol Evol 2023; 13:e10679. [PMID: 37928198 PMCID: PMC10620586 DOI: 10.1002/ece3.10679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Microbiomes are increasingly recognised as critical for the health of an organism. In eusocial insect societies, frequent social interactions allow for high-fidelity transmission of microbes across generations, leading to closer host-microbe coevolution. The microbial communities of bees with other social lifestyles are less studied, and few comparisons have been made between taxa that vary in social structure. To address this gap, we leveraged a cloud-computing resource and publicly available transcriptomic data to conduct a survey of microbial diversity in bee samples from a variety of social lifestyles and taxa. We consistently recover the core microbes of well-studied corbiculate bees, supporting this method's ability to accurately characterise microbial communities. We find that the bacterial communities of bees are influenced by host location, phylogeny and social lifestyle, although no clear effect was found for fungal or viral microbial communities. Bee genera with more complex societies tend to harbour more diverse microbes, with Wolbachia detected more commonly in solitary tribes. We present a description of the microbiota of Euglossine bees and find that they do not share the "corbiculate core" microbiome. Notably, we find that bacteria with known anti-pathogenic properties are present across social bee genera, suggesting that symbioses that enhance host immunity are important with higher sociality. Our approach provides an inexpensive means of exploring microbiomes of a given taxa and identifying avenues for further research. These findings contribute to our understanding of the relationships between bees and their associated microbial communities, highlighting the importance of considering microbiome dynamics in investigations of bee health.
Collapse
Affiliation(s)
- Lauren Mee
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Seth M. Barribeau
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
11
|
Akongte PN, Park BS, Kim DW, Choi YS. Honey Bee Colonies ( Apis mellifera L.) Perform Orientation Defensiveness That Varies among Bred Lines. INSECTS 2023; 14:546. [PMID: 37367362 DOI: 10.3390/insects14060546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Honey bees (Apis mellifera L.) express complex behavioral patterns (aggressiveness) in defensive mechanisms for their survival. Their phenotypic expression of defensive behavior is influenced by internal and external stimuli. Knowledge of this behavior has recently become increasingly important, though beekeepers are still faced with the challenges of selecting defensive and less-defensive bred lines. Field evaluation of defensive behavior among bred lines of honey bees is required to overcome the challenges. Chemical cues (alarm pheromone and isopentyl acetate mixed with paraffin oil) and physical and visual stimuli (dark leather suede, colony marbling, and suede jiggling) were used to evaluate defensiveness and orientation among five bred lines of honeybee colonies. Our results showed that both chemical assays recruited bees, but the time of recruitment was significantly faster for alarm pheromone. Honeybees' response to both assays culminated in stings that differed among bred lines for alarm pheromone and paraffin when colonies were marbled. Honeybee orientation defensiveness varied among bred lines and was higher in more defensive bred lines compared to less-defensive bred lines. Our findings suggest that it is crucial to repeatedly evaluate orientation defensiveness at the colony level and among bred lines when selecting breeding colonies.
Collapse
Affiliation(s)
- Peter Njukang Akongte
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju 55365, Republic of Korea
- Institute of Agricultural Research for Development (IRAD), Yaounde 2123, Cameroon
| | - Bo-Sun Park
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju 55365, Republic of Korea
| | - Dong-Won Kim
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju 55365, Republic of Korea
| | - Yong-Soo Choi
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju 55365, Republic of Korea
| |
Collapse
|
12
|
Casillas-Pérez B, Boďová K, Grasse AV, Tkačik G, Cremer S. Dynamic pathogen detection and social feedback shape collective hygiene in ants. Nat Commun 2023; 14:3232. [PMID: 37270641 PMCID: PMC10239465 DOI: 10.1038/s41467-023-38947-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Cooperative disease defense emerges as group-level collective behavior, yet how group members make the underlying individual decisions is poorly understood. Using garden ants and fungal pathogens as an experimental model, we derive the rules governing individual ant grooming choices and show how they produce colony-level hygiene. Time-resolved behavioral analysis, pathogen quantification, and probabilistic modeling reveal that ants increase grooming and preferentially target highly-infectious individuals when perceiving high pathogen load, but transiently suppress grooming after having been groomed by nestmates. Ants thus react to both, the infectivity of others and the social feedback they receive on their own contagiousness. While inferred solely from momentary ant decisions, these behavioral rules quantitatively predict hour-long experimental dynamics, and synergistically combine into efficient colony-wide pathogen removal. Our analyses show that noisy individual decisions based on only local, incomplete, yet dynamically-updated information on pathogen threat and social feedback can lead to potent collective disease defense.
Collapse
Affiliation(s)
- Barbara Casillas-Pérez
- ISTA (Institute of Science and Technology Austria), Am Campus 1, AT-3400, Klosterneuburg, Austria
| | - Katarína Boďová
- Department of Mathematical Analysis and Numerics, Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska Dolina, SK-84248, Bratislava, Slovakia
| | - Anna V Grasse
- ISTA (Institute of Science and Technology Austria), Am Campus 1, AT-3400, Klosterneuburg, Austria
| | - Gašper Tkačik
- ISTA (Institute of Science and Technology Austria), Am Campus 1, AT-3400, Klosterneuburg, Austria.
| | - Sylvia Cremer
- ISTA (Institute of Science and Technology Austria), Am Campus 1, AT-3400, Klosterneuburg, Austria.
| |
Collapse
|
13
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
14
|
Stock M, Milutinović B, Hoenigsberger M, Grasse AV, Wiesenhofer F, Kampleitner N, Narasimhan M, Schmitt T, Cremer S. Pathogen evasion of social immunity. Nat Ecol Evol 2023; 7:450-460. [PMID: 36732670 PMCID: PMC9998270 DOI: 10.1038/s41559-023-01981-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers' detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts.
Collapse
Affiliation(s)
- Miriam Stock
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Barbara Milutinović
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria. .,Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| | | | - Anna V Grasse
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | | | - Niklas Kampleitner
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | | | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Sylvia Cremer
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria.
| |
Collapse
|
15
|
Ebeling J, Reinecke A, Sibum N, Fünfhaus A, Aumeier P, Otten C, Genersch E. A Comparison of Different Matrices for the Laboratory Diagnosis of the Epizootic American Foulbrood of Honey Bees. Vet Sci 2023; 10:vetsci10020103. [PMID: 36851407 PMCID: PMC9962136 DOI: 10.3390/vetsci10020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
American Foulbrood (AFB) of honey bees caused by the spore-forming bacterium Paenibacillus larvae is a notifiable epizootic in most countries. Authorities often consider a rigorous eradication policy the only sustainable control measure. However, early diagnosis of infected but not yet diseased colonies opens up the possibility of ridding these colonies of P. larvae spores by the shook swarm method, thus preventing colony destruction by AFB or official control orders. Therefore, surveillance of bee colonies for P. larvae infection followed by appropriate sanitary measures is a very important intervention to control AFB. For the detection of P. larvae spores in infected colonies, samples of brood comb honey, adult bees, or hive debris are commonly used. We here present our results from a comparative study on the suitability of these matrices in reliably and correctly detecting P. larvae spores contained in these matrices. Based on the sensitivity and limit of detection of P. larvae spores in samples from hive debris, adult bees, and brood comb honey, we conclude that the latter two are equally well-suited for AFB surveillance programs. Hive debris samples should only be used when it is not possible to collect honey or adult bee samples from brood combs.
Collapse
Affiliation(s)
- Julia Ebeling
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540 Hohen Neuendorf, Germany
| | - Antonia Reinecke
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540 Hohen Neuendorf, Germany
| | - Niklas Sibum
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540 Hohen Neuendorf, Germany
| | - Anne Fünfhaus
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540 Hohen Neuendorf, Germany
| | - Pia Aumeier
- Department for Biology and Biotechnology, Behavioural Biology and Biology Education, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christoph Otten
- Fachzentrum Bienen und Imkerei, Dienstleistungszentrum Ländlicher Raum Westerwald-Osteifel, 56727 Mayen, Germany
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540 Hohen Neuendorf, Germany
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Correspondence: ; Tel.: +49-3303-293833
| |
Collapse
|
16
|
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 2023; 13:1112278. [PMID: 36699674 PMCID: PMC9868318 DOI: 10.3389/fphys.2022.1112278] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Threatening the global community is a wide variety of potential threats, most notably invasive pest species. Invasive pest species are non-native organisms that humans have either accidentally or intentionally spread to new regions. One of the most effective and first lines of control strategies for controlling pests is the application of insecticides. These toxic chemicals are employed to get rid of pests, but they pose great risks to people, animals, and plants. Pesticides are heavily used in managing invasive pests in the current era. Due to the overuse of synthetic chemicals, numerous invasive species have already developed resistance. The resistance development is the main reason for the failure to manage the invasive species. Developing pesticide resistance management techniques necessitates a thorough understanding of the mechanisms through which insects acquire insecticide resistance. Insects use a variety of behavioral, biochemical, physiological, genetic, and metabolic methods to deal with toxic chemicals, which can lead to resistance through continuous overexpression of detoxifying enzymes. An overabundance of enzymes causes metabolic resistance, detoxifying pesticides and rendering them ineffective against pests. A key factor in the development of metabolic resistance is the amplification of certain metabolic enzymes, specifically esterases, Glutathione S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally, insect guts offer unique habitats for microbial colonization, and gut bacteria may serve their hosts a variety of useful services. Most importantly, the detoxification of insecticides leads to resistance development. The complete knowledge of invasive pest species and their mechanisms of resistance development could be very helpful in coping with the challenges and effectively developing effective strategies for the control of invasive species. Integrated Pest Management is particularly effective at lowering the risk of chemical and environmental contaminants and the resulting health issues, and it may also offer the most effective ways to control insect pests.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Hira Naz
- Research and Development Centre for Fine Chemicals, National Key Laboratory of Green Pesticides, Guizhou University, Guiyang, China
| | - Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yiming Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- College of Science, Tibet University, Lhasa, China
| |
Collapse
|
17
|
Becchimanzi A, Nicoletti R. Aspergillus-bees: A dynamic symbiotic association. Front Microbiol 2022; 13:968963. [PMID: 36160228 PMCID: PMC9489833 DOI: 10.3389/fmicb.2022.968963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Besides representing one of the most relevant threats of fungal origin to human and animal health, the genus Aspergillus includes opportunistic pathogens which may infect bees (Hymenoptera, Apoidea) in all developmental stages. At least 30 different species of Aspergillus have been isolated from managed and wild bees. Some efficient behavioral responses (e.g., diseased brood removal) exerted by bees negatively affect the chance to diagnose the pathology, and may contribute to the underestimation of aspergillosis importance in beekeeping. On the other hand, bee immune responses may be affected by biotic and abiotic stresses and suffer from the loose co-evolutionary relationships with Aspergillus pathogenic strains. However, if not pathogenic, these hive mycobiota components can prove to be beneficial to bees, by affecting the interaction with other pathogens and parasites and by detoxifying xenobiotics. The pathogenic aptitude of Aspergillus spp. likely derives from the combined action of toxins and hydrolytic enzymes, whose effects on bees have been largely overlooked until recently. Variation in the production of these virulence factors has been observed among strains, even belonging to the same species. Toxigenic and non-toxigenic strains/species may co-exist in a homeostatic equilibrium which is susceptible to be perturbed by several external factors, leading to mutualistic/antagonistic switch in the relationships between Aspergillus and bees.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| |
Collapse
|
18
|
Townsend AK, Sewall KB, Leonard AS, Hawley DM. Infectious disease and cognition in wild populations. Trends Ecol Evol 2022; 37:899-910. [PMID: 35872026 DOI: 10.1016/j.tree.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Infectious disease is linked to impaired cognition across a breadth of host taxa and cognitive abilities, potentially contributing to variation in cognitive performance within and among populations. Impaired cognitive performance can stem from direct damage by the parasite, the host immune response, or lost opportunities for learning. Moreover, cognitive impairment could be compounded by factors that simultaneously increase infection risk and impair cognition directly, such as stress and malnutrition. As highlighted in this review, however, answers to fundamental questions remain unresolved, including the frequency, duration, and fitness consequences of infection-linked cognitive impairment in wild animal populations, the cognitive abilities most likely to be affected, and the potential for adaptive evolution of cognition in response to accelerating emergence of infectious disease.
Collapse
Affiliation(s)
- Andrea K Townsend
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA.
| | - Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
19
|
Rosengaus R, Traniello J, Bakker T. Sociality and disease: behavioral perspectives in ecological and evolutionary immunology. Behav Ecol Sociobiol 2022; 76:98. [PMID: 35821673 PMCID: PMC9263030 DOI: 10.1007/s00265-022-03203-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rebeca Rosengaus
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA 02115-5000 USA
| | - James Traniello
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215 USA
| | - Theo Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
20
|
Multiple benefits of breeding honey bees for hygienic behavior. J Invertebr Pathol 2022; 193:107788. [DOI: 10.1016/j.jip.2022.107788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022]
|
21
|
Wiernasz DC, Cole BJ. The ontogeny of selection on genetic diversity in harvester ants. Proc Biol Sci 2022; 289:20220496. [PMID: 35673867 PMCID: PMC9174731 DOI: 10.1098/rspb.2022.0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Selection may favour traits throughout an individual's lifetime or at a particular life stage. In many species of social insects, established colonies that are more genetically diverse outperform less diverse colonies with respect to a variety of traits that contribute to fitness, but whether selection favours high diversity in small colonies is unknown. We tested the hypothesis that selection favours genetically diverse colonies during the juvenile period using a multi-year field experiment with the harvester ant, Pogonomyrmex occidentalis. We used controlled matings to generate colonies that varied in genetic diversity and transplanted them into the field. We monitored their survival for seven (the 2015 cohort, n = 149) and six (the 2016 cohort, n = 157) years. Genetically more diverse colonies had greater survival, resulting in significant viability selection. However, in both cohorts survival was not influenced by genetic diversity until colonies were three years old. We suggest that changes in their internal organization enabled colonies to use the benefits of multiple genotypes, and discuss possible mechanisms that can generate this pattern.
Collapse
Affiliation(s)
- Diane C. Wiernasz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Blaine J. Cole
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| |
Collapse
|
22
|
Diet Supplementation Helps Honey Bee Colonies in Combat Infections by Enhancing their Hygienic Behaviour. ACTA VET-BEOGRAD 2022. [DOI: 10.2478/acve-2022-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
The hygienic behavior in honey bees is a complex polygenic trait that serves as a natural defense mechanism against bacterial and fungal brood diseases and Varroa destructor mites infesting brood cells. The aim of this study was to evaluate the effect of a dietary amino acids and vitamins supplement “BEEWELL AminoPlus” on hygienic behavior of Apis mellifera colonies combating microsporidial and viral infections. The experiment was performed during a one-year period on 40 colonies alloted to five groups: one supplemented and infected with Nosema ceranae and four viruses (Deformed wing virus - DWV, Acute bee paralysis virus - ABPV, Chronic bee paralysis virus - CBPV and Sacbrood virus – SBV), three not supplemented, but infected with N. ceranae and/ or viruses, and one negative control group. Beside the l isted pathogens, honey bee trypanosomatids were also monitored in all groups.
The supplement “BEEWELL AminoPlus” induced a significant and consistent increase of the hygienic behavior in spite of the negative effects of N. ceranae and viral infections. N. ceranae and viruses significantly and consistently decreased hygienic behavior, but also threatened the survival of bee colonies. The tested supplement showed anti-Nosema effect, since the N. ceranae infection level significantly and consistently declined only in the supplemented group. Among infected groups, only the supplemented one remained Lotmaria passim-free throughout the study. In conclusion, diet supplementation enhances hygienic behavior of honey bee colonies and helps them fight the most common infections of honey bees.
Collapse
|
23
|
Effects of Two Commercial Protein Diets on the Health of Two Imago Ages of Apis mellifera L. Reared in Laboratory. Animals (Basel) 2022; 12:ani12080968. [PMID: 35454215 PMCID: PMC9032503 DOI: 10.3390/ani12080968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Beekeepers often feed their bees with supplemented artificial diets. The formulation of an integrative diet for honey bee colonies able to prevent nutritional deficiencies is yet to be found. In this work, the effects of pollen diet substitution with commercial protein diets in newly emerged bees (that still feed a little on pollen) and in forager bees (that usually do not feed on pollen) were tested. Results obtained suggest that commercial protein diets do not compensate pollen diets in newly emerged bees and do not determine an increase in life span or immunity in forager bees. Further investigations on the effect of concentration and quality of proteins are desirable in order to provide beekeepers with scientific evidence on protein-based feeding. Abstract Protein-supplemented artificial diets are widely used by beekeepers during winter and whenever food availability is low, yet no data are available concerning their effects on bees’ health. In this work, the effects of two commercial diets enriched with 1.7% and 7.7% protein concentration on feed intake, survival rate, glucose oxidase, phenoloxidase and glutathione S-transferase in newly emerged and forager bees were tested. Administration of a 7.7% protein-enriched diet significantly reduced the lifespan of both newly emerged and forager bees, while only in foragers a significantly higher feed intake was recorded. In newly emerged bees, administration of a high-protein-enriched diet stimulated glucose oxidase production at the 10th day of feeding, determined a reduction of phenoloxidase and did not affect glutathione S-transferase activity. In forager bees, a high level of protein inclusion did not determine any significant variation in either glucose oxidase, phenoloxidase or glutathione S-transferase activity. Therefore, the results obtained in this investigation suggest that administration of commercial protein diets negatively affect honey bee health, determining an increase in mortality. Further investigations on the effect of concentration and quality of proteins are desirable to provide beekeepers with scientific evidence on protein feeding.
Collapse
|
24
|
Paolillo G, Petrini A, Casiraghi E, De Iorio MG, Biffani S, Pagnacco G, Minozzi G, Valentini G. Automated image analysis to assess hygienic behaviour of honeybees. PLoS One 2022; 17:e0263183. [PMID: 35085372 PMCID: PMC8794212 DOI: 10.1371/journal.pone.0263183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Focus of this study is to design an automated image processing pipeline for handling uncontrolled acquisition conditions of images acquired in the field. The pipeline has been tested on the automated identification and count of uncapped brood cells in honeybee (Apis Mellifera) comb images to reduce the workload of beekeepers during the study of the hygienic behavior of honeybee colonies. The images used to develop and test the model were acquired by beekeepers on different days and hours in summer 2020 and under uncontrolled conditions. This resulted in images differing for background noise, illumination, color, comb tilts, scaling, and comb sizes. All the available 127 images were manually cropped to approximately include the comb area. To obtain an unbiased evaluation, the cropped images were randomly split into a training image set (50 images), which was used to develop and tune the proposed model, and a test image set (77 images), which was solely used to test the model. To reduce the effects of varied illuminations or exposures, three image enhancement algorithms were tested and compared followed by the Hough Transform, which allowed identifying individual cells to be automatically counted. All the algorithm parameters were automatically chosen on the training set by grid search. When applied to the 77 test images the model obtained a correlation of 0.819 between the automated counts and the experts' counts. To provide an assessment of our model with publicly available images acquired by a different equipment and under different acquisition conditions, we randomly extracted 100 images from a comb image dataset made available by a recent literature work. Though it has been acquired under controlled exposure, the images in this new set have varied illuminations; anyhow, our pipeline obtains a correlation between automatic and manual counts equal to 0.997. In conclusion, our tests on the automatic count of uncapped honey bee comb cells acquired in the field and on images extracted from a publicly available dataset suggest that the hereby generated pipeline successfully handles varied noise artifacts, illumination, and exposure conditions, therefore allowing to generalize our method to different acquisition settings. Results further improve when the acquisition conditions are controlled.
Collapse
Affiliation(s)
- Gianluigi Paolillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Petrini
- AnacletoLab—Computer Science Department “Giovanni degli Antoni”—DI, Università degli Studi di Milano, Milan, Italy
| | - Elena Casiraghi
- AnacletoLab—Computer Science Department “Giovanni degli Antoni”—DI, Università degli Studi di Milano, Milan, Italy
- CINI National Laboratory in Artificial Intelligence and Intelligent Systems, Rome, Italy
| | | | | | | | - Giulietta Minozzi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Giorgio Valentini
- AnacletoLab—Computer Science Department “Giovanni degli Antoni”—DI, Università degli Studi di Milano, Milan, Italy
- CINI National Laboratory in Artificial Intelligence and Intelligent Systems, Rome, Italy
| |
Collapse
|
25
|
Shibao H, Kutsukake M, Matsuyama S, Fukatsu T. Linoleic acid as corpse recognition signal in a social aphid. ZOOLOGICAL LETTERS 2022; 8:2. [PMID: 34991720 PMCID: PMC8734330 DOI: 10.1186/s40851-021-00184-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Social insect colonies constantly produce dead insects, which cause sanitary problems and potentially foster deadly pathogens and parasites. Hence, many social insects have evolved a variety of hygienic behaviors to remove cadavers from the colonies. To that end, they have to discriminate dead insects from live ones, where chemical cues should play important roles. In ants, bees and termites, such corpse recognition signals, also referred to as "death pheromones" or "necromones", have been identified as fatty acids, specifically oleic acid and/or linoleic acid. Meanwhile, there has been no such report on social aphids. Here we attempted to identify the "death pheromone" of a gall-forming social aphid with second instar soldiers, Tuberaphis styraci, by making use of an artificial diet rearing system developed for this species. On the artificial diet plates, soldiers exhibited the typical cleaning behavior, pushing colony wastes with their heads continuously, against dead aphids but not against live aphids. GC-MS and GC-FID analyses revealed a remarkable increase of linoleic acid on the body surface of the dead aphids in comparison with the live aphids. When glass beads coated with either linoleic acid or body surface extract of the dead aphids were placed on the artificial diet plates, soldiers exhibited the cleaning behavior against the glass beads. A series of behavioral assays showed that (i) soldiers exhibit the cleaning behavior more frequently than non-soldiers, (ii) young soldiers perform the cleaning behavior more frequently than old soldiers, and (iii) the higher the concentration of linoleic acid is, the more active cleaning behavior is induced. Analysis of the lipids extracted from the aphids revealed that linoleic acid is mainly derived from phospholipids that constitute the cell membranes. In conclusion, we identified linoleic acid as the corpse recognition factor of the social aphid T. styraci. The commonality of the death pheromones across the divergent social insect groups (Hymenoptera, Blattodea and Hemiptera) highlights that these unsaturated fatty acids are generally produced by enzymatic autolysis of cell membranes after death and therefore amenable to utilization as a reliable signal of dead insects.
Collapse
Affiliation(s)
- Harunobu Shibao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Mayako Kutsukake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Shigeru Matsuyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takema Fukatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
26
|
Luz GFD, Santana WC, Santos CG, Medeiros Santana L, Serrão JE. Cuticle melanization and the expression of immune-related genes in the honeybee Apis mellifera (Hymenoptera: Apidae) adult workers. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110679. [PMID: 34673246 DOI: 10.1016/j.cbpb.2021.110679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
The global decline of bee populations has several factors, including pathogens, which need overcome the insect defenses such as the physical barriers, the body cuticle and peritrophic matrix (primary defenses), as well as the secondary defenses with antimicrobial peptides (AMPs) and the enzyme lysozyme. The regulation of immune defenses according to the infection risks raises questions about the immunity of social bees due to their exposition to different pathogens pressures during the adult lifespan and tasks performed. This study evaluated the primary (body cuticle melanization, peritrophic matrix and cpr14 expression) and secondary (AMPs and lysozyme expression) defenses of the honeybee Apis mellifera workers according to the age and tasks. The expression of malvolio was used to detect precocious forage tasks outside the colony. Forager workers have higher amount of cuticular melanization in the body cuticle than nurse, but not when the age effect is retired, indicating the gradual acquisition of this compound in the integument of adult bees. The relative value of chitin in the peritrophic matrix and cpr14 mRNA are similar in all bees evaluated, suggesting that these components of primary defenses do not change according to the task and age. Differential expression of genes for AMPs in workers performing different tasks, within the same age group, indicates that the behavior stimulates expression of genes related to secondary immune defense. The expression of malvolio gene, accelerating the change in workers behavior, and those related to immune defense suggest the investment in secondary defense mechanisms when the primary defense of the body cuticle is not yet completed.
Collapse
Affiliation(s)
- Geisyane Franco da Luz
- Departamento de Biologia Geral/BIOAGRO, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil
| | | | | | - Luanda Medeiros Santana
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral/BIOAGRO, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil.
| |
Collapse
|
27
|
Soper DM, Ekroth AKE, Martins MJF. Direct evidence for increased disease resistance in polyandrous broods exists only in eusocial Hymenoptera. BMC Ecol Evol 2021; 21:189. [PMID: 34670487 PMCID: PMC8527725 DOI: 10.1186/s12862-021-01925-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Background The ‘genetic diversity’ hypothesis posits that polyandry evolved as a mechanism to increase genetic diversity within broods. One extension of this hypothesis is the ‘genetic diversity for disease resistance’ hypothesis (GDDRH). Originally designed for eusocial Hymenoptera, GDDRH states that polyandry will evolve as an effect of lower parasite prevalence in genetically variable broods. However, this hypothesis has been broadly applied to several other taxa. It is unclear how much empirical evidence supports GDDRH specifically, especially outside eusocial Hymenoptera. Results This question was addressed by conducting a literature review and posteriorly conducting meta-analyses on the data available using Hedges’s g. The literature review found 10 direct and 32 indirect studies with both having a strong publication bias towards Hymenoptera. Two meta-analyses were conducted and both found increased polyandry (direct tests; n = 8, g = 0.2283, p = < 0.0001) and genetic diversity generated by other mechanisms (indirect tests; n = 10, g = 0.21, p = < 0.0001) reduced parasite load. A subsequent moderator analysis revealed that there were no differences among Orders, indicating there may be applicability outside of Hymenoptera. However, due to publication bias and low sample size we must exercise caution with these results. Conclusion Despite the fact that the GDDRH was developed for Hymenoptera, it is frequently applied to other taxa. This study highlights the low amount of direct evidence supporting GDDRH, particularly outside of eusocial Hymenoptera. It calls for future research to address species that have high dispersal rates and contain mixes of solitary and communal nesting. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01925-3.
Collapse
Affiliation(s)
- D M Soper
- Department of Biology, University of Dallas, 1845 E. Northgate Dr., Irving, TX, 75062, USA.
| | - A K E Ekroth
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - M J F Martins
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| |
Collapse
|
28
|
Özgör E. The Effects of Nosema apis and Nosema ceranae Infection on Survival and Phenoloxidase Gene Expression in Galleria mellonella (Lepidoptera: Galleriidae) Compared to Apis mellifera. INSECTS 2021; 12:953. [PMID: 34680722 PMCID: PMC8538655 DOI: 10.3390/insects12100953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022]
Abstract
The study aims to prove the possibility of colonization of N. apis and N. ceranae to the intestine of the greater wax moth, detect the differences of greater wax moth based on the presence of Nosema species and examine the effect of Nosema species on the phenoloxidase level of greater wax moth compared with honeybees. Each group was fed on the 1st day of the experiment with its appropriate diet containing 106 Nosema spores per insect. Each group was checked daily, and dead insects were counted. Furthermore, changes in the level of expression of the phenoloxidase-related gene after Nosema spp. treatment on the 6th, 9th and 12th days, which was detected by Q-PCR, and the mRNA level of phenoloxidase gene were measured in all experiment groups with the CFX Connect Real-Time PCR Detection System. This study shows that Apis mellifera L. has a 66.7% mortality rate in mixed Nosema infections, a 50% mortality rate in N. ceranae infection, a 40% mortality rate in N. apis infection, while there is no death in G. mellonella. A significant difference was found in the mixed Nosema infection group compared to the single Nosema infection groups by means of A. mellifera and G. mellonella (Duncan, p < 0.05). G. mellonella histopathology also shows that Nosema spores multiply in the epithelial cells of greater wax moth without causing any death. The increase in the mRNA level of Phenoloxidase gene in A. mellifera was detected (Kruskal-Wallis, p < 0.05), while the mRNA level of the Phenoloxidase gene did not change in G. mellonella (Kruskal-Wallis, p > 0.05). These findings prove that the Nosema species can colonize into the greater wax moth, which contributes to the dissemination of these Nosema species between beehives.
Collapse
Affiliation(s)
- Erkay Özgör
- Department of Molecular Biology and Genetics, Cyprus International University, 99258 Mersin-10, Turkey; ; Tel.: +90-3926711111
- Cyprus Bee and Bee Products Research Centre, Cyprus International University, 99258 Mersin-10, Turkey
| |
Collapse
|
29
|
Cole BJ, Jordan D, LaCour-Roy M, O'Fallon S, Manaker L, Ternest JJ, Askew M, Garey D, Wiernasz DC. The benefits of being big and diverse: early colony survival in harvester ants. Ecology 2021; 103:e03556. [PMID: 34622941 DOI: 10.1002/ecy.3556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022]
Abstract
In sessile organisms such as plants and benthic invertebrates, founding propagules typically suffer extremely high rates of mortality due to both extrinsic and intrinsic factors. Many social insect species share similarities with these groups, but factors influencing early colony survival are relatively unstudied. We used a field experiment to measure the importance of environmental quality relative to intrinsic colony properties in the harvester ant, Pogonomyrmex occidentalis, by monitoring the survival of 584 experimental colonies. We measured survival of transplanted colonies over four months in each of three years (2014-2016) at a site in western Colorado. Colony survival was primarily determined by colony features. Multiple mating by the queen and larger colony size at the time of transplant increased survival, but queen size, maternal lineage and the composition of plant species in the vicinity of the colony did not. Food supplementation increased survival significantly when natural food was scarce, but was not consistently beneficial, in contrast to predictions. Our results emphasize the general importance of rapid growth and early attainment of large size in the survival of sessile species. However, attributes specific to ants that are a consequence of their sociality also strongly affected survival. Colonies with multiply-mated queens were more likely to survive over a wide range of circumstances, highlighting the importance of this trait even at the early stages of colony life.
Collapse
Affiliation(s)
- Blaine J Cole
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204-5001, USA
| | - Dayne Jordan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204-5001, USA
| | - Montrel LaCour-Roy
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204-5001, USA
| | - Sean O'Fallon
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204-5001, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Logan Manaker
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204-5001, USA
| | - John J Ternest
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204-5001, USA.,Department of Entomology and Nematology, University of Florida, Gainesville, Florida, 32608, USA
| | - Megan Askew
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204-5001, USA
| | - Daniel Garey
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204-5001, USA
| | - Diane C Wiernasz
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204-5001, USA
| |
Collapse
|
30
|
Almasri H, Tavares DA, Diogon M, Pioz M, Alamil M, Sené D, Tchamitchian S, Cousin M, Brunet JL, Belzunces LP. Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112258. [PMID: 33915451 DOI: 10.1016/j.ecoenv.2021.112258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Pathogens and pollutants, such as pesticides, are potential stressors to all living organisms, including honey bees. Herbicides and fungicides are among the most prevalent pesticides in beehive matrices, and their interaction with Nosema ceranae is not well understood. In this study, the interactions between N. ceranae, the herbicide glyphosate and the fungicide difenoconazole were studied under combined sequential and overlapping exposure to the pesticides at a concentration of 0.1 µg/L in food. In the sequential exposure experiment, newly emerged bees were exposed to the herbicide from day 3 to day 13 after emerging and to the fungicide from day 13 to day 23. In the overlapping exposure experiment, bees were exposed to the herbicide from day 3 to day 13 and to the fungicide from day 7 to day 17. Infection by Nosema in early adult life stages (a few hours post emergence) greatly affected the survival of honey bees and elicited much higher mortality than was induced by pesticides either alone or in combination. Overlapping exposure to both pesticides induced higher mortality than was caused by sequential or individual exposure. Overlapping, but not sequential, exposure to pesticides synergistically increased the adverse effect of N. ceranae on honey bee longevity. The combination of Nosema and pesticides had a strong impact on physiological markers of the nervous system, detoxification, antioxidant defenses and social immunity of honey bees.
Collapse
Affiliation(s)
- Hanine Almasri
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | | | - Marie Diogon
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Maryline Pioz
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Maryam Alamil
- INRAE, UR Biostatistiques et Processus Spatiaux, F-84914 Avignon, France
| | - Déborah Sené
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Sylvie Tchamitchian
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Marianne Cousin
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Jean-Luc Brunet
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Luc P Belzunces
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France.
| |
Collapse
|
31
|
Koprivnikar J, Rochette A, Forbes MR. Risk-Induced Trait Responses and Non-consumptive Effects in Plants and Animals in Response to Their Invertebrate Herbivore and Parasite Natural Enemies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predators kill and consume prey, but also scare living prey. Fitness of prey can be reduced by direct killing and consumption, but also by non-consumptive effects (NCEs) if prey show costly risk-induced trait responses (RITRs) to predators, which are meant to reduce predation risk. Recently, similarities between predators and parasites as natural enemies have been recognized, including their potential to cause victim RITRs and NCEs. However, plant-herbivore and animal host-parasite associations might be more comparable as victim-enemy systems in this context than either is to prey-predator systems. This is because plant herbivores and animal parasites are often invertebrate species that are typically smaller than their victims, generally cause lower lethality, and allow for further defensive responses by victims after consumption begins. Invertebrate herbivores can cause diverse RITRs in plants through various means, and animals also exhibit assorted RITRs to increased parasitism risk. This synthesis aims to broadly compare these two enemy-victim systems by highlighting the ways in which plants and animals perceive threat and respond with a range of induced victim trait responses that can provide pre-emptive defense against invertebrate enemies. We also review evidence that RITRs are costly in terms of reducing victim fitness or abundance, demonstrating how work with one victim-enemy system can inform the other with respect to the frequency and magnitude of RITRs and possible NCEs. We particularly highlight gaps in our knowledge about plant and animal host responses to their invertebrate enemies that may guide directions for future research. Comparing how potential plant and animal victims respond pre-emptively to the threat of consumption via RITRs will help to advance our understanding of natural enemy ecology and may have utility for pest and disease control.
Collapse
|
32
|
Hassan A, Huang Q, Mehmood N, Xu H, Zhou W, Gao Y. Alteration of Termite Locomotion and Allogrooming in Response to Infection by Pathogenic Fungi. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1256-1263. [PMID: 33909076 DOI: 10.1093/jee/toab071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Termites, being vulnerable to parasitic or pathogenic infections due to large number of individuals living together in colonies, have evolved various behavioral and physiological tactics to resist the infections by those pathogens. Locomotion can help termites collect information on parasites and accordingly exhibit hygienic behaviors. Termites inevitably encounter entomopathogenic fungi during nesting and foraging. However, how these fungal pathogens influence locomotion of termites and how hygienic behavior benefits their survival remains unknown. Here, we examined locomotion alteration of the termite Reticulitermes chinensis (Isoptera: Rhinotermitidae) after infections with different concentrations of the entomopathogenic fungus Metarhizium anisopliae (Hypocreales: Clavicipitaceae). When R. chinensis was isolated, the low concentration (5 × 103 conidia/ml) significantly increased termite locomotion after 6, 12, and 24 h compared with control. However, the high concentrations (5 × 107, 5 × 109 conidia/ml) significantly decreased termite locomotion after 48 h, and termite survival was also significantly lower at 5 × 107 and 5 × 109 conidia/ml compared with the low concentrations and the control. When R. chinensis was in group, however, the locomotion significantly increased 24 h after exposure to 5 × 103 and 5 × 109 conidia/ml but was normalized after 48 h of exposure compared with the control. Allogrooming was significantly higher at 5 × 103 and 5 × 109 conidia/ml compared with the control. The fungal infection did not result in significantly higher mortality of the group termites probably owing to their allogrooming. These findings enhance our understanding on how a termite species copes with biotic stress (i.e., fungal infections) via adaptive behaviors.
Collapse
Affiliation(s)
- Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Nasir Mehmood
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Klett K, Zhang JJ, Zhang YY, Wang Z, Dong S, Tan K. The Nasonov gland pheromone as a potential source of death cue in Apis cerana. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104238. [PMID: 33839141 DOI: 10.1016/j.jinsphys.2021.104238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The ability to detect and remove dead adult bees is an essential part of honeybee colony fitness that prevents the spread of pathogens. Fatty acid olfactory cues stimulate undertaking behavior among different social species within Hymenoptera, but the chemicals responsible for the death cue in Apis cerana have not yet been identified. We explored the Nasonov gland as a potential source of these chemicals in A. cerana. Gas chromatography indicated that unlike A. mellifera, the A. cerana Nasonov gland does not contain any volatile terpenes, only fatty acids. As a bioassay, dead honeybees were rinsed free of their individual cuticular hydrocarbons via dichloromethane and two concentrations of oleic acid and a synthetic blend of the Nasonov pheromone in A. cerana were applied to the dummies. Results showed that oleic acid did not stimulate corpse removal in A. cerana. However, the synthetic pheromone blend of A. cerana Nasonov did stimulate removal.
Collapse
Affiliation(s)
- Katrina Klett
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Jun Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Ying Zhang
- Academy of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhengwei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, Yunnan, China
| | - Shihao Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, Yunnan, China.
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, Yunnan, China.
| |
Collapse
|
34
|
Chance or Necessity-The Fungi Co-Occurring with Formica polyctena Ants. INSECTS 2021; 12:insects12030204. [PMID: 33670956 PMCID: PMC7997191 DOI: 10.3390/insects12030204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary There are about 13,800 species of ants living around the world, but only some of them have been extensively studied in the context of their non−antagonistic relationships with fungi. The best−known example is the symbiosis between leaf−cutting ants and fungi serving them as food. Others include the relationship between ants living in carton nests in the trees’ canopy with fungi increasing the durability of the nest. Do ants utilize fungi in the northern hemisphere and cooler climatic zone? This question is still open. Our goal was to study the less−obvious interactions between ants and common fungi in temperate climates. In our study, we characterized the mycobiota of the surroundings of Formica polyctena ants. We identified nearly 600 strains and investigated their taxonomic affinity. The most abundant fungi in F. polyctena nests are strains belonging to Penicillium—a genus well−known as an antibiotic producer. Other common and widespread fungi related to Penicillium, such as the toxin−producing Aspergillus species, were isolated very rarely. Additionally, the high diversity and high frequency of Penicillium colonies isolated from ants in this study suggest that certain representatives of this genus may be adapted to survive in ant nests, or that they are preferentially sustained by the insects. Abstract Studies on carton nesting ants and domatia−dwelling ants have shown that ant–fungi interactions may be much more common and widespread than previously thought. Until now, studies focused predominantly on parasitic and mutualistic fungi–ant interactions occurring mostly in the tropics, neglecting less−obvious interactions involving the fungi common in ants’ surroundings in temperate climates. In our study, we characterized the mycobiota of the surroundings of Formica polyctena ants by identifying nearly 600 fungal colonies that were isolated externally from the bodies of F. polyctena workers. The ants were collected from mounds found in northern and central Poland. Isolated fungi were assigned to 20 genera via molecular identification (ITS rDNA barcoding). Among these, Penicillium strains were the most frequent, belonging to eight different taxonomic sections. Other common and widespread members of Eurotiales, such as Aspergillus spp., were isolated very rarely. In our study, we managed to characterize the genera of fungi commonly present on F. polyctena workers. Our results suggest that Penicillium, Trichoderma, Mucor, Schwanniomyces and Entomortierella are commonly present in F. polyctena surroundings. Additionally, the high diversity and high frequency of Penicillium colonies isolated from ants in this study suggest that representatives of this genus may be adapted to survive in ant nests environment better than the other fungal groups, or that they are preferentially sustained by the insects in nests.
Collapse
|
35
|
Laho M, Šedivá M, Majtán J, Klaudiny J. Fructose and Trehalose Selectively Enhance In Vitro Sporulation of Paenibacillus larvae ERIC I and ERIC II Strains. Microorganisms 2021; 9:225. [PMID: 33499318 PMCID: PMC7912100 DOI: 10.3390/microorganisms9020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
Paenibacillus larvae is a Gram-positive bacterium, the spores of which are the causative agent of the most destructive brood disease of honeybees, American foulbrood (AFB). Obtaining viable spores of pathogen strains is requisite for different studies concerning AFB. The aim of this work was to investigate the effects of five saccharides that may naturally occur in higher amounts in bee larvae on in vitro sporulation of P. larvae. The effect of individual saccharides at different concentrations on spore yields of P. larvae strains of epidemiologically important ERIC genotypes was examined in Columbia sheep blood agar (CSA) and MYPGP agar media. It was found that fructose in ERIC I and trehalose in ERIC II strains at concentrations in the range of 0.5-2% represent new sporulation factors that significantly enhanced the yields of viable spores in both media, mostly in a concentration-dependent manner. The enhancements in spore yield were mainly caused by improvements of the germination ability of the spores produced. Glucose, maltose and sucrose at 1% or 0.5% concentrations also supported sporulation but to a lower extent and not in all strains and media. Based on the knowledge gained, a novel procedure was proposed for the preparation of viable P. larvae spores with supposed improved quality for AFB research.
Collapse
Affiliation(s)
- Maroš Laho
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia; (M.L.); (M.Š.)
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia;
| | - Mária Šedivá
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia; (M.L.); (M.Š.)
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia;
| | - Jaroslav Klaudiny
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia; (M.L.); (M.Š.)
| |
Collapse
|
36
|
Mookhploy W, Krongdang S, Chantawannakul P. Effects of Deformed Wing Virus Infection on Expressions of Immune- and Apoptosis-Related Genes in Western Honeybees ( Apis mellifera). INSECTS 2021; 12:82. [PMID: 33477797 PMCID: PMC7832323 DOI: 10.3390/insects12010082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/11/2023]
Abstract
Honeybees are globally threatened by several pathogens, especially deformed wing virus (DWV), as the presence of DWV in western honeybees is indicative of colony loss. The high mortality rate is further exacerbated by the lack of effective treatment, and therefore understanding the immune and apoptosis responses could pave an avenue for the treatment method. In this study, DWV was directly injected into the white-eyed pupae stage of western honeybees (Apis mellifera). The DWV loads and selected gene responses were monitored using the real-time PCR technique. The results showed that honeybee pupae that were injected with the highest concentration of viral loads showed a significantly higher mortality rate than the control groups. Deformed wings could be observed in newly emerged adult bees when the infected bees harbored high levels of viral loads. However, the numbers of viral loads in both normal and crippled wing groups were not significantly different. DWV-injected honeybee pupae with 104 and 107 copy numbers per bee groups showed similar viral loads after 48 h until newly emerged adult bees. Levels of gene expression including immune genes (defensin, abaecin, and hymenoptaecin) and apoptosis genes (buffy, p53, Apaf1, caspase3-like, caspase8-like, and caspase9-like) were analyzed after DWV infection. The expressions of immune and apoptosis genes were significantly different in infected bees compared to those of the control groups. In the pupae stage, the immune genes were activated by injecting DWV (defensin and hymenoptaecin) or Escherichia coli (defensin, abaecin, and hymenoptaecin), a positive control. On the contrary, the expression of apoptosis-related genes (buffy, caspase3-like, caspase8-like, and caspase9-like genes) was suppressed at 96 h post-infection. In DWV-infected newly emerged adult bees, abaecin, hymenoptaecin, Apaf1, and caspase8-like genes were upregulated. However, these genes were not significantly different between the normal and crippled wing bees. Our results suggested that DWV could activate the humoral immunity in honeybees and that honeybee hosts may be able to protect themselves from the virus infection through immune responses. Apoptosis gene expressions were upregulated in newly emerged adult bees by the virus, however, they were downregulated during the initial phase of viral infection.
Collapse
Affiliation(s)
- Wannapha Mookhploy
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; or
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiprapa Krongdang
- Faculty of Science and Social Sciences, Burapha University Sa Kaeo Campus, Sa Kaeo 27160, Thailand; or
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; or
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
37
|
Bhatia S, Baral SS, Vega Melendez C, Amiri E, Rueppell O. Comparing Survival of Israeli Acute Paralysis Virus Infection among Stocks of U.S. Honey Bees. INSECTS 2021; 12:60. [PMID: 33445412 PMCID: PMC7827508 DOI: 10.3390/insects12010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Among numerous viruses that infect honey bees (Apis mellifera), Israeli acute paralysis virus (IAPV) can be linked to severe honey bee health problems. Breeding for virus resistance may improve honey bee health. To evaluate the potential for this approach, we compared the survival of IAPV infection among stocks from the U.S. We complemented the survival analysis with a survey of existing viruses in these stocks and assessing constitutive and induced expression of immune genes. Worker offspring from selected queens in a common apiary were inoculated with IAPV by topical applications after emergence to assess subsequent survival. Differences among stocks were small compared to variation within stocks, indicating the potential for improving honey bee survival of virus infections in all stocks. A positive relation between worker survival and virus load among stocks further suggested that honey bees may be able to adapt to better cope with viruses, while our molecular studies indicate that toll-6 may be related to survival differences among virus-infected worker bees. Together, these findings highlight the importance of viruses in queen breeding operations and provide a promising starting point for the quest to improve honey bee health by selectively breeding stock to be better able to survive virus infections.
Collapse
Affiliation(s)
- Shilpi Bhatia
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- Department of Applied Science & Technology, North Carolina Agricultural & Technical University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Saman S. Baral
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
| | - Carlos Vega Melendez
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- US Dairy Forage Research Center, USDA-ARS, 1925 Linden Drive, Madison, WI 53706, USA
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
38
|
Barrs KR, Ani MO, Eversman KK, Rowell JT, Wagoner KM, Rueppell O. Time-accuracy trade-off and task partitioning of hygienic behavior among honey bee (Apis mellifera) workers. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02940-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Ostroverkhova NV. Association between the Microsatellite Ap243, AC117 and SV185 Polymorphisms and Nosema Disease in the Dark Forest Bee Apis mellifera mellifera. Vet Sci 2020; 8:vetsci8010002. [PMID: 33383841 PMCID: PMC7823830 DOI: 10.3390/vetsci8010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
The microsporidian Nosema parasites, primarily Nosema ceranae, remain critical threats to the health of the honey bee Apis mellifera. One promising intervention approach is the breeding of Nosema-resistant honey bee colonies using molecular technologies, for example marker-assisted selection (MAS). For this, specific genetic markers used in bee selection should be developed. The objective of the paper is to search for associations between some microsatellite markers and Nosema disease in a dark forest bee Apis mellifera mellifera. For the dark forest bee, the most promising molecular genetic markers for determining resistance to nosemosis are microsatellite loci AC117, Ap243 and SV185, the alleles of which (“177”, “263” and “269”, respectively) were associated with a low level of Nosema infection. This article is the first associative study aimed at finding DNA loci of resistance to nosemosis in the dark forest bee. Nevertheless, microsatellite markers identified can be used to predict the risk of developing the Nosema disease.
Collapse
Affiliation(s)
- Nadezhda V. Ostroverkhova
- Invertebrate Zoology Department, Biology Institute, National Research Tomsk State University, 36 Lenina Avenue, 634050 Tomsk, Russia; ; Tel.: +7-3822-529-461
- Department of Biology and Genetics, Siberian State Medical University, 2 Moskovsky Trakt, 634055 Tomsk, Russia
| |
Collapse
|
40
|
Imirzian N, Araújo JP, Hughes DP. A new zombie ant behavior unraveled: Aggregating on tree trunks. J Invertebr Pathol 2020; 177:107499. [DOI: 10.1016/j.jip.2020.107499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/02/2020] [Accepted: 10/24/2020] [Indexed: 01/03/2023]
|
41
|
Li-Byarlay H, Boncristiani H, Howell G, Herman J, Clark L, Strand MK, Tarpy D, Rueppell O. Transcriptomic and Epigenomic Dynamics of Honey Bees in Response to Lethal Viral Infection. Front Genet 2020; 11:566320. [PMID: 33101388 PMCID: PMC7546774 DOI: 10.3389/fgene.2020.566320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Honey bees (Apis mellifera L.) suffer from many brood pathogens, including viruses. Despite considerable research, the molecular responses and dynamics of honey bee pupae to viral pathogens remain poorly understood. Israeli Acute Paralysis Virus (IAPV) is emerging as a model virus since its association with severe colony losses. Using worker pupae, we studied the transcriptomic and methylomic consequences of IAPV infection over three distinct time points after inoculation. Contrasts of gene expression and 5 mC DNA methylation profiles between IAPV-infected and control individuals at these time points - corresponding to the pre-replicative (5 h), replicative (20 h), and terminal (48 h) phase of infection - indicate that profound immune responses and distinct manipulation of host molecular processes accompany the lethal progression of this virus. We identify the temporal dynamics of the transcriptomic response to with more genes differentially expressed in the replicative and terminal phases than in the pre-replicative phase. However, the number of differentially methylated regions decreased dramatically from the pre-replicative to the replicative and terminal phase. Several cellular pathways experienced hyper- and hypo-methylation in the pre-replicative phase and later dramatically increased in gene expression at the terminal phase, including the MAPK, Jak-STAT, Hippo, mTOR, TGF-beta signaling pathways, ubiquitin mediated proteolysis, and spliceosome. These affected biological functions suggest that adaptive host responses to combat the virus are mixed with viral manipulations of the host to increase its own reproduction, all of which are involved in anti-viral immune response, cell growth, and proliferation. Comparative genomic analyses with other studies of viral infections of honey bees and fruit flies indicated that similar immune pathways are shared. Our results further suggest that dynamic DNA methylation responds to viral infections quickly, regulating subsequent gene activities. Our study provides new insights of molecular mechanisms involved in epigenetic that can serve as foundation for the long-term goal to develop anti-viral strategies for honey bees, the most important commercial pollinator.
Collapse
Affiliation(s)
- Hongmei Li-Byarlay
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Humberto Boncristiani
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Gary Howell
- High Performance Cluster, Office of Information Technology, North Carolina State University, Raleigh, NC, United States
| | - Jake Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Lindsay Clark
- High Performance Computing in Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Micheline K. Strand
- Army Research Office, Army Research Laboratory, Research Triangle Park, NC, United States
| | - David Tarpy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
42
|
Individual-Level Comparisons of Honey Bee (Hymenoptera: Apoidea) Hygienic Behavior Towards Brood Infested with Varroa destructor (Parasitiformes: Varroidae) or Tropilaelaps mercedesae (Mesostigmata: Laelapidae). INSECTS 2020; 11:insects11080510. [PMID: 32784569 PMCID: PMC7469190 DOI: 10.3390/insects11080510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
The mites Varroa destructor Anderson and Trueman and Tropilaelaps mercedesae Anderson and Morgan are both serious threats to the Apis mellifera beekeeping industry. A trait frequently used in selection programs for V. destructor resistance is hygienic behavior, the selective removal of diseased/damaged brood. Here, we measured the level of association of the expression of hygienic behavior against both mites in A. mellifera, by observing whether the same individual bees would carry out the opening and removal of brood infested by the two parasites. The groups of bees showing these behaviors on cells artificially infested by either parasite showed a large overlap, making it appear likely that the two traits are at least closely coupled. Therefore, breeding for V. destructor resistance based on hygienic behavior could prepare A. mellifera populations for dealing with Tropilaelaps sp. mites, and vice versa. Using the same bioassay, we also compared the hygienic behavior of A. mellifera towards T. mercedesae to that of the Asiatic honey bee, Apis cerana. A. cerana workers eliminated a greater proportion of infested cells, which may in part explain the resistance of this bee to Tropilaelaps and the observation that Tropilaelaps reproduction on brood of this species is extremely rare.
Collapse
|
43
|
Pereira H, Detrain C. Prophylactic Avoidance of Hazardous Prey by the Ant Host Myrmica rubra. INSECTS 2020; 11:E444. [PMID: 32674516 PMCID: PMC7412340 DOI: 10.3390/insects11070444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Ants are the hosts of many microorganisms, including pathogens that are incidentally brought inside the nest by foragers. This is particularly true for scavenging species, which collect hazardous food such as dead insects. Foragers limit sanitary risks by not retrieving highly infectious prey releasing entomopathogenic fungal spores. This study investigates whether similar prophylactic strategies are also developed for food associated with weak or delayed risks of fungal contamination. We compared, in Myrmica rubra ant colonies, the retrieval dynamics of dead flies that were (1) conidia-free, (2) covered with a low amount of Metarhizium brunneum entomopathogenic conidia or (3) recently fungus-killed but not yet sporulating. Foragers mostly avoided fungus-killed prey and delayed the retrieval of conidia-covered flies. A second sanitary filter occurred inside the nest through a careful inspection of the retrieved prey. Ultimately, ants mostly consumed conidia-free and conidia-covered flies, but they relocated and discarded all fungus-killed prey outside of the nest. Our study confirms that, as a host of generalist entomopathogenic fungi, Myrmica rubra ants have developed a prophylactic avoidance and a differential management of prey depending on their infectious potential. We discuss the functional value as well as the possible cues underlying pathogen avoidance and prey discrimination in ants.
Collapse
Affiliation(s)
- Hugo Pereira
- Unit of Social Ecology, CP 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium;
| | | |
Collapse
|
44
|
Pull CD, McMahon DP. Superorganism Immunity: A Major Transition in Immune System Evolution. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
45
|
Abstract
When animals become sick, infected cells and an armada of activated immune cells attempt to eliminate the pathogen from the body. Once infectious particles have breached the body's physical barriers of the skin or gut lining, an initially local response quickly escalates into a systemic response, attracting mobile immune cells to the site of infection. These cells complement the initial, unspecific defense with a more specialized, targeted response. This can also provide long-term immune memory and protection against future infection. The cell-autonomous defenses of the infected cells are thus aided by the actions of recruited immune cells. These specialized cells are the most mobile cells in the body, constantly patrolling through the otherwise static tissue to detect incoming pathogens. Such constant immune surveillance means infections are noticed immediately and can be rapidly cleared from the body. Some immune cells also remove infected cells that have succumbed to infection. All this prevents pathogen replication and spread to healthy tissues. Although this may involve the sacrifice of some somatic tissue, this is typically replaced quickly. Particular care is, however, given to the reproductive organs, which should always remain disease free (immune privilege).
Collapse
|
46
|
Dillard J, Benbow ME. From Symbionts to Societies: How Wood Resources Have Shaped Insect Sociality. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Goes AC, Barcoto MO, Kooij PW, Bueno OC, Rodrigues A. How Do Leaf-Cutting Ants Recognize Antagonistic Microbes in Their Fungal Crops? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
48
|
Wagoner KM, Millar JG, Schal C, Rueppell O. Cuticular pheromones stimulate hygienic behavior in the honey bee (Apis mellifera). Sci Rep 2020; 10:7132. [PMID: 32346037 PMCID: PMC7188687 DOI: 10.1038/s41598-020-64144-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/08/2020] [Indexed: 11/08/2022] Open
Abstract
The health of western honey bee (Apis mellifera) colonies is challenged by the parasitic mite Varroa destructor and the numerous harmful pathogens it vectors. Selective breeding for the naturally occurring social immune trait "hygienic behavior" has emerged as one sustainable approach to reducing the mites' impact on honey bees. To expand our understanding of hygienic triggers and improve hygienic selection tools, we tested the hypothesis that the cuticular compounds (Z)-10-tritriacontene and (Z)-6-pentadecene, previously associated with unhealthy honey bee brood and/or brood targeted for hygiene, are triggers of honey bee hygienic behavior independent of brood health. In support of our hypothesis, application of synthetic (Z)-10-tritriacontene and (Z)-6-pentadecene onto brood and brood cell caps significantly increased hygienic behavior compared to application of similarly structured hydrocarbon controls (Z)-16-dotriacontene and (Z)-7-pentadecene. Furthermore, we demonstrate a significant positive correlation between colony-level hygienic responses to (Z)-10-tritriacontene and the traditional freeze-killed brood assay for selection of hygienic honey bee stocks. These results confirm biological activity of (Z)-6-pentadecene and reveal (Z)-10-tritriacontene as a novel hygiene trigger. They also support development of improved tools for honey bee colony monitoring and hygienic selection, and thus may accelerate development of honey bee stocks with greater resistance to Varroa and associated pathogens.
Collapse
Affiliation(s)
- Kaira M Wagoner
- Biology Department, University of North Carolina at Greensboro, Greensboro, USA.
| | - Jocelyn G Millar
- Department of Entomology, University of California, Riverside, USA
| | - Coby Schal
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, USA
| | - Olav Rueppell
- Biology Department, University of North Carolina at Greensboro, Greensboro, USA
| |
Collapse
|
49
|
Taric E, Glavinic U, Vejnovic B, Stanojkovic A, Aleksic N, Dimitrijevic V, Stanimirovic Z. Oxidative Stress, Endoparasite Prevalence and Social Immunity in Bee Colonies Kept Traditionally vs. Those Kept for Commercial Purposes. INSECTS 2020; 11:E266. [PMID: 32349295 PMCID: PMC7290330 DOI: 10.3390/insects11050266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
Commercially and traditionally managed bees were compared for oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and malondialdehyde (MDA)), the prevalence of parasites (Lotmaria passim, Crithidia mellificae and Nosema ceranae/apis) and social immunity (glucose oxidase gene expression). The research was conducted on Pester plateau (Serbia-the Balkan Peninsula), on seemingly healthy colonies. Significant differences in CAT, GST and SOD activities (p < 0.01), and MDA concentrations (p < 0.002) were detected between commercial and traditional colonies. In the former, the prevalence of both L. passim and N. ceranae was significantly (p < 0.05 and p < 0.01, respectively) higher. For the first time, L. passim was detected in honey bee brood. In commercial colonies, the prevalence of L. passim was significantly (p < 0.01) lower in brood than in adult bees, whilst in traditionally kept colonies the prevalence in adult bees and brood did not differ significantly. In commercially kept colonies, the GOX gene expression level was significantly (p < 0.01) higher, which probably results from their increased need to strengthen their social immunity. Commercially kept colonies were under higher oxidative stress, had higher parasite burdens and higher GOX gene transcript levels. It may be assumed that anthropogenic influence contributed to these differences, but further investigations are necessary to confirm that.
Collapse
Affiliation(s)
- Elmin Taric
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia; (E.T.); (Z.S.)
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia; (E.T.); (Z.S.)
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Aleksandar Stanojkovic
- Department of Animal Source Foods Science and Technology, Institute for Animal Husbandry, Autoput 16, 11080 Belgrade–Zemun, Serbia;
| | - Nevenka Aleksic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Vladimir Dimitrijevic
- Department of Animal Husbandry and Genetics, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia; (E.T.); (Z.S.)
| |
Collapse
|
50
|
Esparza-Mora MA, Davis HE, Meconcelli S, Plarre R, McMahon DP. Inhibition of a Secreted Immune Molecule Interferes With Termite Social Immunity. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|