1
|
Liu JC, Li QJ, He MH, Hu C, Dai P, Meng FL, Zhou BO, Zhou JQ. Swc4 positively regulates telomere length independently of its roles in NuA4 and SWR1 complexes. Nucleic Acids Res 2021; 48:12792-12803. [PMID: 33270890 PMCID: PMC7736797 DOI: 10.1093/nar/gkaa1150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Telomeres at the ends of eukaryotic chromosomes are essential for genome integrality and stability. In order to identify genes that sustain telomere maintenance independently of telomerase recruitment, we have exploited the phenotype of over-long telomeres in the cells that express Cdc13-Est2 fusion protein, and examined 195 strains, in which individual non-essential gene deletion causes telomere shortening. We have identified 24 genes whose deletion results in dramatic failure of Cdc13-Est2 function, including those encoding components of telomerase, Yku, KEOPS and NMD complexes, as well as quite a few whose functions are not obvious in telomerase activity regulation. We have characterized Swc4, a shared subunit of histone acetyltransferase NuA4 and chromatin remodeling SWR1 (SWR1-C) complexes, in telomere length regulation. Deletion of SWC4, but not other non-essential subunits of either NuA4 or SWR1-C, causes significant telomere shortening. Consistently, simultaneous disassembly of NuA4 and SWR1-C does not affect telomere length. Interestingly, inactivation of Swc4 in telomerase null cells accelerates both telomere shortening and senescence rates. Swc4 associates with telomeric DNA in vivo, suggesting a direct role of Swc4 at telomeres. Taken together, our work reveals a distinct role of Swc4 in telomere length regulation, separable from its canonical roles in both NuA4 and SWR1-C.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian-Jin Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Can Hu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengfei Dai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei-Long Meng
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo O Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Wu ZJ, Liu JC, Man X, Gu X, Li TY, Cai C, He MH, Shao Y, Lu N, Xue X, Qin Z, Zhou JQ. Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions. eLife 2020; 9:53144. [PMID: 32755541 PMCID: PMC7406354 DOI: 10.7554/elife.53144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Telomeres define the natural ends of eukaryotic chromosomes and are crucial for chromosomal stability. The budding yeast Cdc13, Stn1 and Ten1 proteins form a heterotrimeric complex, and the inactivation of any of its subunits leads to a uniformly lethal phenotype due to telomere deprotection. Although Cdc13, Stn1 and Ten1 seem to belong to an epistasis group, it remains unclear whether they function differently in telomere protection. Here, we employed the single-linear-chromosome yeast SY14, and surprisingly found that the deletion of CDC13 leads to telomere erosion and intrachromosome end-to-end fusion, which depends on Rad52 but not Yku. Interestingly, the emergence frequency of survivors in the SY14 cdc13Δ mutant was ~29 fold higher than that in either the stn1Δ or ten1Δ mutant, demonstrating a predominant role of Cdc13 in inhibiting telomere fusion. Chromosomal fusion readily occurred in the telomerase-null SY14 strain, further verifying the default role of intact telomeres in inhibiting chromosome fusion.
Collapse
Affiliation(s)
- Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Man
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Gu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ting-Yi Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Chen Cai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Lu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Xue
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
3
|
Guo Y, Chung W, Zhu Z, Shan Z, Li J, Liu S, Liang L. Genome-Wide Assessment for Resting Heart Rate and Shared Genetics With Cardiometabolic Traits and Type 2 Diabetes. J Am Coll Cardiol 2020; 74:2162-2174. [PMID: 31648709 DOI: 10.1016/j.jacc.2019.08.1055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/24/2019] [Accepted: 08/05/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND High resting heart rate (RHR) occurs in parallel with type 2 diabetes (T2D) and metabolic disorders, implying shared etiology between them. However, it is unknown if they are causally related, and no study has been conducted to investigate the shared mechanisms underlying these associations. OBJECTIVES The objective of this study was to understand the genetic basis of the association between resting heart rate and cardiometabolic disorders/T2D. METHODS This study examined the genetic correlation, causality, and shared genetics between RHR and T2D using LD Score regression, generalized summary data-based Mendelian randomization, and transcriptome wide association scan (TWAS) in UK Biobank data (n = 428,250) and summary-level data for T2D (74,124 cases and 824,006 control subjects) and 8 cardiometabolic traits (sample size ranges from 51,750 to 236,231). RESULTS Significant genetic correlation between RHR and T2D (rg = 0.22; 95% confidence interval: 0.18 to 0.26; p = 1.99 × 10-22), and 6 cardiometabolic traits (fasting insulin, fasting glucose, waist-hip ratio, triglycerides, high-density lipoprotein, and body mass index; rg range -0.12 to 0.24; all p < 0.05) were observed. RHR has significant estimated causal effect on T2D (odds ratio: 1.12 per 10-beats/min increment; p = 7.79 × 10-11) and weaker causal estimates from T2D to RHR (0.32 beats/min per doubling increment in T2D prevalence; p = 6.14 × 10-54). Sensitivity analysis by controlling for the included cardiometabolic traits did not modify the relationship between RHR and T2D. TWAS found locus chr2q23.3 (rs1260326) was highly pleiotropic among RHR, cardiometabolic traits, and T2D, and identified 7 genes (SMARCAD1, RP11-53O19.3, CTC-498M16.4, PDE8B, AKTIP, KDM4B, and TSHZ3) that were statistically independent and shared between RHR and T2D in tissues from the nervous and cardiovascular systems. These shared genes suggested the involvement of epigenetic regulation of energy and glucose metabolism, and AKT activation-related telomere dysfunction and vascular endothelial aging in the shared etiologies between RHR and T2D. Finally, FADS1 was found to be shared among RHR, fasting glucose, high-density lipoprotein, and triglycerides. CONCLUSIONS These findings provide evidence of significant genetic correlations and causation between RHR and T2D/cardiometabolic traits, advance our understanding of RHR, and provide insight into shared etiology for high RHR and T2D.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Wonil Chung
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zhilei Shan
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Simin Liu
- Departments of Epidemiology, Medicine, and Center for Global Cardiometabolic Health (CGCH), Brown University, Providence, Rhode Island
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
4
|
Genomic Considerations for the Modification of Saccharomyces cerevisiae for Biofuel and Metabolite Biosynthesis. Microorganisms 2020; 8:microorganisms8030321. [PMID: 32110897 PMCID: PMC7143498 DOI: 10.3390/microorganisms8030321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022] Open
Abstract
The growing global population and developing world has put a strain on non-renewable natural resources, such as fuels. The shift to renewable sources will, thus, help meet demands, often through the modification of existing biosynthetic pathways or the introduction of novel pathways into non-native species. There are several useful biosynthetic pathways endogenous to organisms that are not conducive for the scale-up necessary for industrial use. The use of genetic and synthetic biological approaches to engineer these pathways in non-native organisms can help ameliorate these challenges. The budding yeast Saccharomyces cerevisiae offers several advantages for genetic engineering for this purpose due to its widespread use as a model system studied by many researchers. The focus of this review is to present a primer on understanding genomic considerations prior to genetic modification and manipulation of S. cerevisiae. The choice of a site for genetic manipulation can have broad implications on transcription throughout a region and this review will present the current understanding of position effects on transcription.
Collapse
|
5
|
Ughreja RA, Ughreja RA. Type 2 diabetes mellitus, physical activity, yoga and telomere length: A literature review. JOURNAL OF INSULIN RESISTANCE 2019. [DOI: 10.4102/jir.v4i1.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background: Type 2 diabetes mellitus (DM), a chronic metabolic disease prevalent in adults, is also prevalent amongst children, adolescents and young adults. On understanding the molecular basis of diabetes, a significant association is found between telomere length (TL) and type 2 DM.Aim: The aim of the study was to review the available evidence on effect of physical activity and yoga on DM including their effect on TL.Setting: The study was conducted in Bangalore.Method: A number of databases such as Google Scholar, PubMed and Cochrane Review were searched for relevant articles using keywords such as ’diabetes’, ‘type 2 DM’, ‘physical activity’, ‘yoga’, ‘TL’ and ‘telomerase activity’. All types of articles were included for the study, such as randomised controlled trial, systematic reviews, literature review and pilot study. Non-English articles were excluded from the study.Results: Studies have demonstrated the effectiveness of yoga and physical exercise in type 2 DM in various ways, such as reducing fasting blood glucose and glycosylated haemoglobin; improving lipid profile, blood pressure and waist-to-hip ratio; reducing inflammatory, oxidative and psychological stress markers; and improving the quality of life of patients. However, limited information is available on the effect of these interventions on TL in type 2 DM and mechanisms involved.Conclusion: Recent studies have shown positive effects of yoga and physical activity on TL. However, there is a dearth of good-quality studies evaluating the effects of yoga on TL in type 2 DM. Future studies need to be conducted with standard treatment protocols, long-term follow-up, appropriate control groups and large sample size.
Collapse
|
6
|
Pohl TJ, Zakian VA. Pif1 family DNA helicases: A helpmate to RNase H? DNA Repair (Amst) 2019; 84:102633. [PMID: 31231063 DOI: 10.1016/j.dnarep.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/21/2023]
Abstract
An R-loop is a structure that forms when an RNA transcript stays bound to the DNA strand that encodes it and leaves the complementary strand exposed as a loop of single stranded DNA. R-loops accumulate when the processing of RNA transcripts is impaired. The failure to remove these RNA-DNA hybrids can lead to replication fork stalling and genome instability. Resolution of R-loops is thought to be mediated mainly by RNase H enzymes through the removal and degradation of the RNA in the hybrid. However, DNA helicases can also dismantle R-loops by displacing the bound RNA. In particular, the Pif1 family DNA helicases have been shown to regulate R-loop formation at specific genomic loci, such as tRNA genes and centromeres. Here we review the roles of Pif1 family helicases in vivo and in vitro and discuss evidence that Pif1 family helicases act on RNA-DNA hybrids and highlight their potential roles in complementing RNase H for R-loop resolution.
Collapse
Affiliation(s)
- Thomas J Pohl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States.
| |
Collapse
|
7
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
8
|
Saint-Leandre B, Nguyen SC, Levine MT. Diversification and collapse of a telomere elongation mechanism. Genome Res 2019; 29:920-931. [PMID: 31138619 PMCID: PMC6581046 DOI: 10.1101/gr.245001.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
In most eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert exclusively at telomeres. This exchange of goods between host and mobile element-wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation-has been called a "genomic symbiosis." However, these telomere-specialized, jockey family retrotransposons may actually evolve to "selfishly" overreplicate in the genomes that they ostensibly serve. Under this model, we expect rapid diversification of telomere-specialized retrotransposon lineages and, possibly, the breakdown of this ostensibly symbiotic relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-Myr-old melanogaster species group, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this retrotransposon lineage diversity. In Drosophila biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Telomeric retrotransposon diversification and disappearance suggest that persistently "selfish" machinery shapes telomere elongation across Drosophila rather than completely domesticated, symbiotic mobile elements.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Son C Nguyen
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mia T Levine
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Yang CW, Tseng SF, Yu CJ, Chung CY, Chang CY, Pobiega S, Teng SC. Telomere shortening triggers a feedback loop to enhance end protection. Nucleic Acids Res 2017; 45:8314-8328. [PMID: 28575419 PMCID: PMC5737367 DOI: 10.1093/nar/gkx503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/26/2017] [Indexed: 01/20/2023] Open
Abstract
Telomere homeostasis is controlled by both telomerase machinery and end protection. Telomere shortening induces DNA damage sensing kinases ATM/ATR for telomerase recruitment. Yet, whether telomere shortening also governs end protection is poorly understood. Here we discover that yeast ATM/ATR controls end protection. Rap1 is phosphorylated by Tel1 and Mec1 kinases at serine 731, and this regulation is stimulated by DNA damage and telomere shortening. Compromised Rap1 phosphorylation hampers the interaction between Rap1 and its interacting partner Rif1, which thereby disturbs the end protection. As expected, reduction of Rap1–Rif1 association impairs telomere length regulation and increases telomere–telomere recombination. These results indicate that ATM/ATR DNA damage checkpoint signal contributes to telomere protection by strengthening the Rap1–Rif1 interaction at short telomeres, and the checkpoint signal oversees both telomerase recruitment and end capping pathways to maintain telomere homeostasis.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shun-Fu Tseng
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 100, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 333, Taiwan
| | - Chia-Yu Chung
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Cheng-Yen Chang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sabrina Pobiega
- INSERM UMR 967, Institut de Biologie François Jacob, CEA Paris-Saclay, 92265 Fontenay-aux-roses, France
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
10
|
Strecker J, Stinus S, Caballero MP, Szilard RK, Chang M, Durocher D. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. eLife 2017; 6:23783. [PMID: 28826474 PMCID: PMC5595431 DOI: 10.7554/elife.23783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet they have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In Saccharomyces cerevisiae, the Pif1 helicase, a telomerase inhibitor, lies at the interface of these end-fate decisions. Using Pif1 as a sensor, we uncover a transition point in which 34 bp of telomeric (TG1-3)n repeat sequence renders a DNA end insensitive to Pif1 action, thereby enabling extension by telomerase. A similar transition point exists at natural chromosome ends, where telomeres shorter than ~40 bp are inefficiently extended by telomerase. This phenomenon is not due to known Pif1 modifications and we instead propose that Cdc13 renders TG34+ ends insensitive to Pif1 action. We contend that the observed threshold of Pif1 activity defines a dividing line between DSBs and telomeres.
Collapse
Affiliation(s)
- Jonathan Strecker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariana Pliego Caballero
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Raman V, Simon SA, Demirci F, Nakano M, Meyers BC, Donofrio NM. Small RNA Functions Are Required for Growth and Development of Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:517-530. [PMID: 28504560 DOI: 10.1094/mpmi-11-16-0236-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
RNA interference (RNAi) is conserved in eukaryotic organisms, and it has been well studied in many animal and plant species and some fungal species, yet it is not well studied in fungal plant pathogens. In the rice blast fungus Magnaporthe oryzae, we examined small RNA (sRNA) and their biogenesis in the context of growth and pathogenicity. Through genetic and genomic analyses, we demonstrate that loss of a single gene encoding Dicer, RNA-dependent RNA polymerase, or Argonaute reduces sRNA levels. These three proteins are required for the biogenesis of sRNA-matching genome-wide regions (coding regions, repeats, and intergenic regions). The loss of one Argonaute reduced both sRNA and fungal virulence on barley leaves. Transcriptome analysis of multiple mutants revealed that sRNA play an important role in transcriptional regulation of repeats and intergenic regions in M. oryzae. Together, these data support that M. oryzae sRNA regulate developmental processes including, fungal growth and virulence.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
| | - Stacey A Simon
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Feray Demirci
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Mayumi Nakano
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Blake C Meyers
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Nicole M Donofrio
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
| |
Collapse
|
12
|
Wang J, Dong X, Cao L, Sun Y, Qiu Y, Zhang Y, Cao R, Covasa M, Zhong L. Association between telomere length and diabetes mellitus: A meta-analysis. J Int Med Res 2016; 44:1156-1173. [PMID: 28322101 PMCID: PMC5536737 DOI: 10.1177/0300060516667132] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023] Open
Abstract
Objective We investigated the relationship between diabetes and telomere length by meta-analysis. Methods We searched five popular databases for articles published between 1990 and 2015 using "diabetes" and "telomere" as search terms. Data were processed with RevMan5, and random- or fixed-effects meta-analysis was applied. The effects of geographical region, diabetes type, body mass index (BMI), age and sex were examined. Funnel plots were applied to evaluate publication bias. Results Seventeen articles were obtained from 571 references. We identified a significant association between telomere length and diabetes mellitus (standardized mean difference [SMD]: -3.41; 95% confidence interval [CI]: -4.01, -2.80; heterogeneity, I2 = 99%) by comparing 5575 patients with diabetes and 6349 healthy individuals. The pooled SMD by geographic region indicated a significant association between shortened telomere length and diabetes mellitus (SMD: -3.41; 95% CI: -4.01, -2.80; heterogeneity, I2 = 99%). In addition, telomere length was significantly associated with age (SMD: -3.41; 95% CI: -4.01, -2.80), diabetes type (SMD: -3.41; 95% CI: -4.01, -2.80), BMI (SMD: -1.61; 95% CI: -1.98, -1.23) and sex (SMD: -4.94; 95% CI: -9.47, -0.40). Conclusions The study demonstrated a close relationship between diabetes mellitus and telomere length, which was influenced by region, age, diabetes type, BMI and sex.
Collapse
Affiliation(s)
- Jianfei Wang
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Xu Dong
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Li Cao
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Yangyang Sun
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Yu Qiu
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Yi Zhang
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Ruoqiong Cao
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Mihai Covasa
- Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA, USA
- University “Stefan cel Mare” Suceava, Romania
| | - Li Zhong
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
- Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA, USA
| |
Collapse
|
13
|
Lin CC, Hsieh MH, Teng SC. Genistein suppresses the proliferation of telomerase-negative cells. Food Sci Nutr 2016; 5:197-204. [PMID: 28265354 PMCID: PMC5332266 DOI: 10.1002/fsn3.382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 03/27/2016] [Accepted: 04/08/2016] [Indexed: 11/29/2022] Open
Abstract
In both tumor and yeast cells that lack telomerase, telomeres are maintained via an alternative recombination mechanism. In this study, we tested genistein, a potential TOP2 inhibitor required for telomere–telomere recombination, on the repression of telomere–telomere recombination. Genistein on the repression of type II recombination on a tlc1 yeast strain was examined by the telomeric DNA structures using Southern blot analysis. Telomere patterns of freshly dissected tlc1 spores containing an empty plasmid (pYES2) or a yeast TOP2 (yTOP2) plasmid were analyzed. The results indicated that the reintroduction of TOP2 recovered the type II pattern, implying genistein in the blockage of type II survivors in the tlc1 strain. The effects of genistein on both tlc1 and tlc1 rad 51 strains in liquid and solid mediums were also examined. Finally, treatment of 10 μmol/L of genistein showed inhibitory effect on the growth of telomerase‐negative U2OS alternative lengthening of telomere (ALT) cells, but not in telomerase‐positive HCT116 cells. These results provide evidences that the inhibitory effects of genistein on telomerase‐negative cells depend on type II recombination pathway in yeast and the ALT pathway in human tumors.
Collapse
Affiliation(s)
- Chuan-Chuan Lin
- Department of Food Science China University of Science and Technology Taipei 115 Taiwan
| | - Meng-Hsun Hsieh
- Department of Microbiology College of Medicine National Taiwan University Taipei 100 Taiwan
| | - Shu-Chun Teng
- Department of Microbiology College of Medicine National Taiwan University Taipei 100 Taiwan
| |
Collapse
|
14
|
Chiara M, Fanelli F, Mulè G, Logrieco AF, Pesole G, Leslie JF, Horner DS, Toomajian C. Genome Sequencing of Multiple Isolates Highlights Subtelomeric Genomic Diversity within Fusarium fujikuroi. Genome Biol Evol 2015; 7:3062-9. [PMID: 26475319 PMCID: PMC5635591 DOI: 10.1093/gbe/evv198] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Comparisons of draft genome sequences of three geographically distinct isolates of Fusarium fujikuroi with two recently published genome sequences from the same species suggest diverse profiles of secondary metabolite production within F. fujikuroi. Species- and lineage-specific genes, many of which appear to exhibit expression profiles that are consistent with roles in host–pathogen interactions and adaptation to environmental changes, are concentrated in subtelomeric regions. These genomic compartments also exhibit distinct gene densities and compositional characteristics with respect to other genomic partitions, and likely play a role in the generation of molecular diversity. Our data provide additional evidence that gene duplication, divergence, and differential loss play important roles in F. fujikuroi genome evolution and suggest that hundreds of lineage-specific genes might have been acquired through horizontal gene transfer.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, Italy Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy National Institute of Biostructures and Biosystems (INBB), Rome, Italy Center of Excellence in Comparative Genomics, University of Bari, Italy
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan
| | | | | |
Collapse
|
15
|
Qi Nan W, Ling Z, Bing C. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications. Expert Opin Ther Targets 2015; 19:849-64. [PMID: 25677239 DOI: 10.1517/14728222.2015.1016500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.
Collapse
Affiliation(s)
- Wu Qi Nan
- The First Affiliated Hospital of the Third Military Medical University, Endocrine Department , Chongqing, Post number: 400038 , China
| | | | | |
Collapse
|
16
|
PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase. Nat Commun 2014; 5:5312. [PMID: 25387524 DOI: 10.1038/ncomms6312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
In yeast, the initiation of telomere replication at the late S phase involves in combined actions of kinases on Cdc13, the telomere binding protein. Cdc13 recruits telomerase to telomeres through its interaction with Est1, a component of telomerase. However, how cells terminate the function of telomerase at G2/M is still elusive. Here we show that the protein phosphatase 2A (PP2A) subunit Pph22 and the yeast Aurora kinase homologue Ipl1 coordinately inhibit telomerase at G2/M by dephosphorylating and phosphorylating the telomerase recruitment domain of Cdc13, respectively. While Pph22 removes Tel1/Mec1-mediated Cdc13 phosphorylation to reduce Cdc13-Est1 interaction, Ipl1-dependent Cdc13 phosphorylation elicits dissociation of Est1-TLC1, the template RNA component of telomerase. Failure of these regulations prevents telomerase from departing telomeres, causing perturbed telomere lengthening and prolonged M phase. Together our results demonstrate that differential and additive actions of PP2A and Aurora on Cdc13 limit telomerase action by removing active telomerase from telomeres at G2/M phase.
Collapse
|
17
|
Naumova ES, Sadykova AZ, Martynenko NN, Naumov GI. Molecular polymorphism of β-fructosidase SUC genes in the Saccharomyces yeasts. Mol Biol 2014. [DOI: 10.1134/s0026893314040086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Telomere recombination preferentially occurs at short telomeres in telomerase-null type II survivors. PLoS One 2014; 9:e90644. [PMID: 24594632 PMCID: PMC3940914 DOI: 10.1371/journal.pone.0090644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/03/2014] [Indexed: 01/17/2023] Open
Abstract
In telomerase negative yeast cells, Rad52-dependent recombination is activated to maintain telomeres. This recombination-mediated telomere elongation usually involves two independent pathways, type I and type II, and leads to generation of type I and type II survivors. It remains elusive whether the recombination-mediated telomere elongation prefers to take place on shorter or longer telomeres. In this study, we exploited the de novo telomere addition system to examine the telomere recombination event in telomerase negative cells. We show that recombination preferentially occurs on shorter rather than longer telomeres in both pre-survivors and established type II survivors. In type II survivors, the short VII–L telomeres could invade either terminal TG1–3 sequence or short tracts of TG1–3 sequence in subtelomeric Y′-X and Y′-Y′ junction to initiate recombination. Unexpectedly, short VII–L telomere recombination still takes place in type II survivors lacking either Rad50 or Rad59, which are required for type II survivor generation in senescing telomerase-null cells. Our results support the notion that Rad50 and Rad59 are not essential for the maintenance of type II survivors once established.
Collapse
|
19
|
Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication. Mol Cell Biol 2013; 34:57-70. [PMID: 24164896 DOI: 10.1128/mcb.01235-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In budding yeast (Saccharomyces cerevisiae), the cell cycle-dependent telomere elongation by telomerase is controlled by the cyclin-dependent kinase 1 (Cdk1). The telomere length homeostasis is balanced between telomerase-unextendable and telomerase-extendable states that both require Cdc13. The recruitment of telomerase complex by Cdc13 promotes telomere elongation, while the formation of Cdc13-Stn1-Ten1 (CST) complex at the telomere blocks telomere elongation by telomerase. However, the cellular signaling that regulates the timing of the telomerase-extendable and telomerase-unextendable states is largely unknown. Phosphorylation of Cdc13 by Cdk1 promotes the interaction between Cdc13 and Est1 and hence telomere elongation. Here, we show that Cdk1 also phosphorylates Stn1 at threonine 223 and serine 250 both in vitro and in vivo, and these phosphorylation events are essential for the stability of the CST complexes at the telomeres. By controlling the timing of Cdc13 and Stn1 phosphorylations during cell cycle progression, Cdk1 regulates the temporal recruitment of telomerase complexes and CST complexes to the telomeres to facilitate telomere maintenance.
Collapse
|
20
|
Telomere, aging and age-related diseases. Aging Clin Exp Res 2013; 25:139-46. [PMID: 23739898 DOI: 10.1007/s40520-013-0021-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 03/30/2012] [Indexed: 12/28/2022]
Abstract
Aging is an inevitable biological process that affects most living organisms. The process of aging is regulated at the level of the organism, as well as at the level of tissues and cells. Despite the enormous consequences associated with the aging process, relatively little systematic effort has been expended on the scientific understanding of this important life process. Many theories have been proposed to explain the aging process, the centerpiece of which is molecular damage. Located at the ends of eukaryotic chromosomes and synthesized by telomerase, telomeres maintain the stabilization of chromosomes. Thus, the loss of telomeres may lead to DNA damage. The relationship between cellular senescence and telomere shortening is well established. Furthermore, telomere attrition occurs with age, and is proposed to be a fundamental factor in the aging process. Here, we review the contemporary literatures to explore the current views on the correlation of telomere loss and telomerase action with aging and age-related diseases.
Collapse
|
21
|
Li QJ, Tong XJ, Duan YM, Zhou JQ. Characterization of the intramolecular G-quadruplex promoting activity of Est1. FEBS Lett 2013; 587:659-65. [PMID: 23376615 DOI: 10.1016/j.febslet.2013.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/01/2013] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, telomeric DNA includes TG1-3/C1-3A double-stranded DNA and a protruding G-rich overhang. Our previous studies revealed that the telomerase regulatory subunit Est1 promotes telomeric single-stranded DNA to form intermolecular G-quadruplex in vitro, and this activity is required for telomere replication and protection in vivo. In this study, we further characterized the G-quadruplex promoting activity of Est1. Here we report that Est1 is able to promote the single-stranded oligonucleotide of (TGTGTGGG)4, which mimics the natural telomeric DNA, to form intramolecular G-quadruplex. Therefore, it remains possible that the intramolecular G-quadruplex promoting activity of Est1 is biologically relevant in telomere replication in vivo.
Collapse
Affiliation(s)
- Qian-Jin Li
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
22
|
Hector RE, Ray A, Chen BR, Shtofman R, Berkner KL, Runge KW. Mec1p associates with functionally compromised telomeres. Chromosoma 2012; 121:277-90. [PMID: 22289863 PMCID: PMC3350766 DOI: 10.1007/s00412-011-0359-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/30/2011] [Accepted: 12/30/2011] [Indexed: 12/22/2022]
Abstract
In many organisms, telomere DNA consists of simple sequence repeat tracts that are required to protect the chromosome end. In the yeast Saccharomyces cerevisiae, tract maintenance requires two checkpoint kinases of the ATM family, Tel1p and Mec1p. Previous work has shown that Tel1p is recruited to functional telomeres with shorter repeat tracts to promote telomerase-mediated repeat addition, but the role of Mec1p is unknown. We found that Mec1p telomere association was detected as cells senesced when telomere function was compromised by extreme shortening due to either the loss of telomerase or the double-strand break binding protein Ku. Exonuclease I effects the removal of the 5' telomeric strand, and eliminating it prevented both senescence and Mec1p telomere association. Thus, in contrast to Tel1p, Mec1p associates with short, functionally compromised telomeres.
Collapse
Affiliation(s)
- Ronald E. Hector
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NE20, Cleveland, OH 44195 USA
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4920 USA
- Present Address: NCAUR, ARS, USDA, 1815 N. University St., Peoria, IL 61604 USA
| | - Alo Ray
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NE20, Cleveland, OH 44195 USA
| | - Bo-Ruei Chen
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NE20, Cleveland, OH 44195 USA
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4920 USA
| | - Rebecca Shtofman
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NE20, Cleveland, OH 44195 USA
| | - Kathleen L. Berkner
- Department of Molecular Cardiology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NB50, Cleveland, OH 44195 USA
| | - Kurt W. Runge
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NE20, Cleveland, OH 44195 USA
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4920 USA
| |
Collapse
|
23
|
Modulation of telomeres in alternative lengthening of telomeres type I like human cells by the expression of werner protein and telomerase. JOURNAL OF ONCOLOGY 2012; 2012:806382. [PMID: 22545052 PMCID: PMC3321466 DOI: 10.1155/2012/806382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/13/2011] [Accepted: 01/10/2012] [Indexed: 02/06/2023]
Abstract
The alternative lengthening of telomeres (ALT) is a recombination-based mechanism of telomere maintenance activated in 5–20% of human cancers. In Saccharomyces cerevisiae, survivors that arise after inactivation of telomerase can be classified as type I or type II ALT. In type I, telomeres have a tandem array structure, with each subunit consisting of a subtelomeric Y′ element and short telomere sequence. Telomeres in type II have only long telomere repeats and require Sgs1, the S. cerevisiae RecQ family helicase. We previously described the first human ALT cell line, AG11395, that has a telomere structure similar to type I ALT yeast cells. This cell line lacks the activity of the Werner syndrome protein, a human RecQ helicase. The telomeres in this cell line consist of tandem repeats containing SV40 DNA, including the origin of replication, and telomere sequence. We investigated the role of the SV40 origin of replication and the effects of Werner protein and telomerase on telomere structure and maintenance in AG11395 cells. We report that the expression of Werner protein facilitates the transition in human cells of ALT type I like telomeres to type II like telomeres in some aspects. These findings have implications for the diagnosis and treatment of cancer.
Collapse
|
24
|
Murillo-Ortiz B, Albarrán-Tamayo F, Arenas-Aranda D, Benítez-Bribiesca L, Malacara-Hernández JM, Martínez-Garza S, Hernández-González M, Solorio S, Garay-Sevilla ME, Mora-Villalpando C. Telomere length and type 2 diabetes in males, a premature aging syndrome. Aging Male 2012; 15:54-8. [PMID: 21824049 DOI: 10.3109/13685538.2011.593658] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Increased telomere shortening has been demonstrated in several diseases including type 2 diabetes. However, it is not known whether telomere length changes during the course of type 2 diabetes. OBJECTIVE To determine telomere length at different stages of type 2 diabetes, including early and late stages. METHODS A total of 93 males with type 2 diabetes and 10 years or more since original diagnosis; 96 males with less than one year of diagnosis; 98 age matched healthy males. Telomere length was estimated by means of real-time polymerase chain reaction. Fasting venous blood samples were obtained for measurement of lipid peroxidation and inflammation markers. RESULTS We found a greater telomere shortening in group (A) with type 2 diabetes of 10 years or more since original diagnosis, compared with the control group (C) of healthy males (5.4 vs 9.6 Kb) (p = 0.04) and with group B (5.4 vs 8.7 kb) (p = 0.05). With regard to inflammatory markers TNF-α, malondialdehyde peroxidation and adiponectin we found significant differences. CONCLUSION Telomere shortening increases with the duration of diabetes. The time of exhibition suggests in parallel that the progressive increase of inflammation and/or oxidative stress plays a direct role in telomere shortening.
Collapse
Affiliation(s)
- Blanca Murillo-Ortiz
- Unidad de Investigación en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Instituto Mexicano del Seguro Social, León Guanajuato, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Anand RP, Shah KA, Niu H, Sung P, Mirkin SM, Freudenreich CH. Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res 2011; 40:1091-105. [PMID: 21984413 PMCID: PMC3273818 DOI: 10.1093/nar/gkr836] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat. Srs2 helicase activity is required for hairpin unwinding and fork progression. Also, the PCNA binding domain of Srs2 is required for its in vivo role of replication through hairpins. In contrast, the absence of Sgs1 or Pif1 helicases did not inhibit replication through structural barriers, though Pif1 did facilitate replication of a telomeric protein barrier. Interestingly, replication through a protein barrier but not a DNA structure barrier was modulated by nucleotide pool levels, illuminating a different mechanism by which cells can regulate fork progression through protein-mediated stall sites. Our analyses reveal fundamental differences in the replication of DNA structural versus protein barriers, with Srs2 helicase activity exclusively required for fork progression through hairpin structures.
Collapse
Affiliation(s)
- Ranjith P Anand
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Telomeres are essential for the stability and complete replication of linear chromosomes. Telomere elongation by telomerase counteracts the telomere shortening due to the incomplete replication of chromosome ends by DNA polymerase. Telomere elongation is cell-cycle-regulated and coupled to DNA replication during S-phase. However, the molecular mechanisms that underlie such cell-cycle-dependent telomere elongation by telomerase remain largely unknown. Several aspects of telomere replication in budding yeast, including the modulation of telomere chromatin structure, telomere end processing, recruitment of telomere-binding proteins and telomerase complex to telomere as well as the coupling of DNA replication to telomere elongation during cell cycle progression will be discussed, and the potential roles of Cdk (cyclin-dependent kinase) in these processes will be illustrated.
Collapse
|
27
|
Abstract
In the budding yeast Saccharomyces cerevisiae, the structure and function of telomeres are maintained by binding proteins, such as Cdc13-Stn1-Ten1 (CST), Yku, and the telomerase complex. Like CST and Yku, telomerase also plays a role in telomere protection or capping. Unlike CST and Yku, however, the underlying molecular mechanism of telomerase-mediated telomere protection remains unclear. In this study, we employed both the CDC13-EST1 fusion gene and the separation-of-function allele est1-D514A to elucidate that Est1 provided a telomere protection pathway that was independent of both the CST and Yku pathways. Est1's ability to convert single-stranded telomeric DNA into a G quadruplex was required for telomerase-mediated telomere protection function. Additionally, Est1 maintained the integrity of telomeres by suppressing the recombination of subtelomeric Y' elements. Our results demonstrate that one major functional role that Est1 brings to the telomerase complex is the capping or protection of telomeres.
Collapse
|
28
|
Abstract
The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure.
Collapse
Affiliation(s)
- Angela Taddei
- UMR 218, Centre National de la Recherche Scientifique, 26 rue d'Ulm, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
29
|
Qian W, Fu XH, Zhou JQ. Purification and characterization of Stn1p, a single-stranded telomeric DNA binding protein. Protein Expr Purif 2010; 73:107-12. [PMID: 20576529 DOI: 10.1016/j.pep.2010.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
In Saccharomyces cerevisiae, Stn1p and Ten1p are required for telomere maintenance. These two proteins and another telomeric single-stranded DNA binding protein, Cdc13p, have been proposed to form a complex to control telomere integrity. In this work, we purified the recombinant Stn1p in Escherichia coli and found that the purified protein could specifically interact with single-stranded telomeric DNA in vitro. Co-fractionation of co-overexpressed Stn1p and Ten1p in insect cells revealed their stable association. A Stn1p/Ten1p binary complex was reconstituted with purified recombinant proteins in vitro. These results indicated that Stn1p and Ten1p interact with each other directly, which is important in telomere length regulation and end protection.
Collapse
Affiliation(s)
- Wei Qian
- Department of Biochemistry, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| | | | | |
Collapse
|
30
|
Flueck C, Bartfai R, Niederwieser I, Witmer K, Alako BTF, Moes S, Bozdech Z, Jenoe P, Stunnenberg HG, Voss TS. A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLoS Pathog 2010; 6:e1000784. [PMID: 20195509 PMCID: PMC2829057 DOI: 10.1371/journal.ppat.1000784] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/20/2010] [Indexed: 12/30/2022] Open
Abstract
The heterochromatic environment and physical clustering of chromosome ends at the nuclear periphery provide a functional and structural framework for antigenic variation and evolution of subtelomeric virulence gene families in the malaria parasite Plasmodium falciparum. While recent studies assigned important roles for reversible histone modifications, silent information regulator 2 and heterochromatin protein 1 (PfHP1) in epigenetic control of variegated expression, factors involved in the recruitment and organization of subtelomeric heterochromatin remain unknown. Here, we describe the purification and characterization of PfSIP2, a member of the ApiAP2 family of putative transcription factors, as the unknown nuclear factor interacting specifically with cis-acting SPE2 motif arrays in subtelomeric domains. Interestingly, SPE2 is not bound by the full-length protein but rather by a 60kDa N-terminal domain, PfSIP2-N, which is released during schizogony. Our experimental re-definition of the SPE2/PfSIP2-N interaction highlights the strict requirement of both adjacent AP2 domains and a conserved bipartite SPE2 consensus motif for high-affinity binding. Genome-wide in silico mapping identified 777 putative binding sites, 94% of which cluster in heterochromatic domains upstream of subtelomeric var genes and in telomere-associated repeat elements. Immunofluorescence and chromatin immunoprecipitation (ChIP) assays revealed co-localization of PfSIP2-N with PfHP1 at chromosome ends. Genome-wide ChIP demonstrated the exclusive binding of PfSIP2-N to subtelomeric SPE2 landmarks in vivo but not to single chromosome-internal sites. Consistent with this specialized distribution pattern, PfSIP2-N over-expression has no effect on global gene transcription. Hence, contrary to the previously proposed role for this factor in gene activation, our results provide strong evidence for the first time for the involvement of an ApiAP2 factor in heterochromatin formation and genome integrity. These findings are highly relevant for our understanding of chromosome end biology and variegated expression in P. falciparum and other eukaryotes, and for the future analysis of the role of ApiAP2-DNA interactions in parasite biology.
Collapse
Affiliation(s)
- Christian Flueck
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, University of Basel, Basel, Switzerland
| | - Richard Bartfai
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, University of Basel, Basel, Switzerland
| | - Kathrin Witmer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, University of Basel, Basel, Switzerland
| | - Blaise T. F. Alako
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Suzette Moes
- Biozentrum, University of Basel, Basel, Switzerland
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Paul Jenoe
- Biozentrum, University of Basel, Basel, Switzerland
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Silent chromatin at the middle and ends: lessons from yeasts. EMBO J 2009; 28:2149-61. [PMID: 19629038 PMCID: PMC2722250 DOI: 10.1038/emboj.2009.185] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/15/2009] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic centromeres and telomeres are specialized chromosomal regions that share one common characteristic: their underlying DNA sequences are assembled into heritably repressed chromatin. Silent chromatin in budding and fission yeast is composed of fundamentally divergent proteins tat assemble very different chromatin structures. However, the ultimate behaviour of silent chromatin and the pathways that assemble it seem strikingly similar among Saccharomyces cerevisiae (S. cerevisiae), Schizosaccharomyces pombe (S. pombe) and other eukaryotes. Thus, studies in both yeasts have been instrumental in dissecting the mechanisms that establish and maintain silent chromatin in eukaryotes, contributing substantially to our understanding of epigenetic processes. In this review, we discuss current models for the generation of heterochromatic domains at centromeres and telomeres in the two yeast species.
Collapse
|
32
|
Chen YC, Teng SC, Wu KJ. Phosphorylation of Telomeric Repeat Binding Factor 1 (TRF1) by Akt Causes Telomere Shortening. Cancer Invest 2009; 27:24-8. [DOI: 10.1080/07357900802027081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Ungar L, Yosef N, Sela Y, Sharan R, Ruppin E, Kupiec M. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res 2009; 37:3840-9. [PMID: 19386622 PMCID: PMC2709559 DOI: 10.1093/nar/gkp259] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Telomeres are structures composed of repetitive DNA and proteins that protect the chromosomal ends in eukaryotic cells from fusion or degradation, thus contributing to genomic stability. Although telomere length varies between species, in all organisms studied telomere length appears to be controlled by a dynamic equilibrium between elongating mechanisms (mainly addition of repeats by the enzyme telomerase) and nucleases that shorten the telomeric sequences. Two previous studies have analyzed a collection of yeast deletion strains (deleted for nonessential genes) and found over 270 genes that affect telomere length (Telomere Length Maintenance or TLM genes). Here we complete the list of TLM by analyzing a collection of strains carrying hypomorphic alleles of most essential genes (DAmP collection). We identify 87 essential genes that affect telomere length in yeast. These genes interact with the nonessential TLM genes in a significant manner, and provide new insights on the mechanisms involved in telomere length maintenance. The newly identified genes span a variety of cellular processes, including protein degradation, pre-mRNA splicing and DNA replication.
Collapse
Affiliation(s)
- Lior Ungar
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Pérez G, Pangilinan J, Pisabarro AG, Ramírez L. Telomere organization in the ligninolytic basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 2009; 75:1427-36. [PMID: 19114509 PMCID: PMC2648151 DOI: 10.1128/aem.01889-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/21/2008] [Indexed: 01/19/2023] Open
Abstract
Telomeres are structural and functional chromosome regions that are essential for the cell cycle to proceed normally. They are, however, difficult to map genetically and to identify in genome-wide sequence programs because of their structure and repetitive nature. We studied the telomeric and subtelomeric organization in the basidiomycete Pleurotus ostreatus using a combination of molecular and bioinformatics tools that permitted us to determine 19 out of the 22 telomeres expected in this fungus. The telomeric repeating unit in P. ostreatus is TTAGGG, and the numbers of repetitions of this unit range between 25 and 150. The mapping of the telomere restriction fragments to linkage groups 6 and 7 revealed polymorphisms compatible with those observed by pulsed field gel electrophoresis separation of the corresponding chromosomes. The subtelomeric regions in Pleurotus contain genes similar to those described in other eukaryotic systems. The presence of a cluster of laccase genes in chromosome 6 and a bipartite structure containing a Het-related protein and an alcohol dehydrogenase are especially relevant; this bipartite structure is characteristic of the Pezizomycotina fungi Neurospora crassa and Aspergillus terreus. As far as we know, this is the first report describing the presence of such structures in basidiomycetes and the location of a laccase gene cluster in the subtelomeric region, where, among others, species-specific genes allowing the organism to adapt rapidly to the environment usually map.
Collapse
Affiliation(s)
- Gúmer Pérez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006 Pamplona, Spain
| | | | | | | |
Collapse
|
35
|
Taddei A, Van Houwe G, Nagai S, Erb I, van Nimwegen E, Gasser SM. The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Res 2009; 19:611-25. [PMID: 19179643 DOI: 10.1101/gr.083881.108] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Budding yeast telomeres and cryptic mating-type loci are enriched at the nuclear envelope, forming foci that sequester silent information regulators (SIR factors), much as heterochromatic chromocenters in higher eukaryotes sequester HP1. Here we examine the impact of such subcompartments for regulating transcription genome-wide. We show that the efficiency of subtelomeric reporter gene repression depends not only on the strength of SIR factor recruitment by cis-acting elements, but also on the accumulation of SIRs in such perinuclear foci. To monitor the effects of disrupting this subnuclear compartment, we performed microarray analyses under conditions that eliminate telomere anchoring, while preserving SIR complex integrity. We found 60 genes reproducibly misregulated. Among those with increased expression, 22% were within 20 kb of a telomere, confirming that the nuclear envelope (NE) association of telomeres helps repress natural subtelomeric genes. In contrast, loci that were down-regulated were distributed over all chromosomes. Half of this ectopic repression was SIR complex dependent. We conclude that released SIR factors can promiscuously repress transcription at nontelomeric genes despite the presence of "anti-silencing" mechanisms. Bioinformatic analysis revealed that promoters bearing the PAC (RNA Polymerase A and C promoters) or Abf1 binding consenses are consistently down-regulated by mislocalization of SIR factors. Thus, the normal telomeric sequestration of SIRs both favors subtelomeric repression and prevents promiscuous effects at a distinct subset of promoters. This demonstrates that patterns of gene expression can be regulated by changing the spatial distribution of repetitive DNA sequences that bind repressive factors.
Collapse
Affiliation(s)
- Angela Taddei
- Friedrich Miescher Institute for Biomedical Research and National Center for Competence in Research "Frontiers in Genetics," CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Li S, Makovets S, Matsuguchi T, Blethrow JD, Shokat KM, Blackburn EH. Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 2009; 136:50-61. [PMID: 19135888 PMCID: PMC2642970 DOI: 10.1016/j.cell.2008.11.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/11/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022]
Abstract
Elongation of telomeres by telomerase replenishes the loss of terminal telomeric DNA repeats during each cell cycle. In budding yeast, Cdc13 plays an essential role in telomere length homeostasis, partly through its interactions with both the telomerase complex and the competing Stn1-Ten1 complex. Previous studies in yeast have shown that telomere elongation by telomerase is cell cycle dependent, but the mechanism underlying this dependence is unclear. In S. cerevisiae, a single cyclin-dependent kinase Cdk1 (Cdc28) coordinates the serial events required for the cell division cycle, but no Cdk1 substrate has been identified among telomerase and telomere-associated factors. Here we show that Cdk1-dependent phosphorylation of Cdc13 is essential for efficient recruitment of the yeast telomerase complex to telomeres by favoring the interaction of Cdc13 with Est1 rather than the competing Stn1-Ten1 complex. These results provide a direct mechanistic link between coordination of telomere elongation and cell-cycle progression in vivo.
Collapse
Affiliation(s)
- Shang Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, Box 2200, 94143-2200, USA
| | - Svetlana Makovets
- Department of Biochemistry and Biophysics, University of California, San Francisco, Box 2200, 94143-2200, USA
| | - Tetsuya Matsuguchi
- Department of Biochemistry and Biophysics, University of California, San Francisco, Box 2200, 94143-2200, USA
| | - Justin D. Blethrow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
| | - Elizabeth H. Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, Box 2200, 94143-2200, USA
| |
Collapse
|
37
|
Ponnusamy S, Alderson NL, Hama H, Bielawski J, Jiang JC, Bhandari R, Snyder SH, Jazwinski SM, Ogretmen B. Regulation of telomere length by fatty acid elongase 3 in yeast. Involvement of inositol phosphate metabolism and Ku70/80 function. J Biol Chem 2008; 283:27514-27524. [PMID: 18694931 DOI: 10.1074/jbc.m802980200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study, we investigated the roles of very long-chain fatty acid (VLCFA) synthesis by fatty acid elongase 3 (ELO3) in the regulation of telomere length and life span in the yeast Saccharomyces cerevisiae. Loss of VLCFA synthesis via deletion of ELO3 reduced telomere length, and reconstitution of the expression of wild type ELO3, and not by its mutant with decreased catalytic activity, rescued telomere attrition. Further experiments revealed that alterations of phytoceramide seem to be dispensable for telomere shortening in response to loss of ELO3. Interestingly, telomere shortening in elo3Delta cells was almost completely prevented by deletion of IPK2 or KCS1, which are involved in the generation of inositol phosphates (IP4, IP5, and inositol pyrophosphates). Deletion of IPK1, which generates IP6, however, did not affect regulation of telomere length. Further data also suggested that elo3Delta cells exhibit accelerated chronologic aging, and reduced replicative life span compared with wild type cells, and deletion of KCS1 helped recover these biological defects. Importantly, to determine downstream mechanisms, epistasis experiments were performed, and data indicated that ELO3 and YKU70/80 share a common pathway for the regulation of telomere length. More specifically, chromatin immunoprecipitation assays revealed that the telomere binding and protective function of YKu80p in vivo was reduced in elo3Delta cells, whereas its non-homologues end-joining function was not altered. Deletion of KCS1 in elo3Delta cells recovered the telomere binding and protective function of Ku, consistent with the role of KCS1 mutation in the rescue of telomere length attrition. Thus, these findings provide initial evidence of a possible link between Elo3-dependent VLCFA synthesis, and IP metabolism by KCS1 and IPK2 in the regulation of telomeres, which play important physiological roles in the control of senescence and aging, via a mechanism involving alterations of the telomere-binding/protection function of Ku.
Collapse
Affiliation(s)
- Suriyan Ponnusamy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Nathan L Alderson
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hiroko Hama
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - James C Jiang
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Rashna Bhandari
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Solomon H Snyder
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - S Michal Jazwinski
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
38
|
Incorporation of Y'-Ty1 cDNA destabilizes telomeres in Saccharomyces cerevisiae telomerase-negative mutants. Genetics 2008; 179:2313-7. [PMID: 18660531 DOI: 10.1534/genetics.108.089052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ty1 retrotransposons in Saccharomyces cerevisiae are activated by telomere erosion. Ty1-dependent reverse transcription of mRNA from subtelomeric Y' repeats generates chimeric Y'-Ty1 cDNA. Here, we show that Y'-Ty1 cDNA is incorporated at eroding telomeres in the absence of telomerase. Telomeric incorporation of Y'-Ty1 cDNA promotes genome rearrangements.
Collapse
|
39
|
Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 2008; 4:e1000046. [PMID: 18404212 PMCID: PMC2289846 DOI: 10.1371/journal.pgen.1000046] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 03/04/2008] [Indexed: 01/23/2023] Open
Abstract
We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".
Collapse
Affiliation(s)
- Natalie D. Fedorova
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Nora Khaldi
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin, Ireland
| | - Vinita S. Joardar
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rama Maiti
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Paolo Amedeo
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael J. Anderson
- School of Medicine and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jonathan Crabtree
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Joana C. Silva
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jonathan H. Badger
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Ahmed Albarraq
- School of Medicine and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sam Angiuoli
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Howard Bussey
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Paul Bowyer
- School of Medicine and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Peter J. Cotty
- Agricultural Research Service, United States Department of Agriculture, Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Paul S. Dyer
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Amy Egan
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Kevin Galens
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Brian J. Haas
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jason M. Inman
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Richard Kent
- School of Medicine and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sebastien Lemieux
- Institute for Research in Immunology and Cancer, Department of Computer Science and Operations Research, Universite de Montreal, Montreal, Canada
| | - Iran Malavazi
- Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Joshua Orvis
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Terry Roemer
- Merck & Co., Inc., Whitehouse Station, New Jersey, United States of America
| | | | - Jaideep P. Sundaram
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Granger Sutton
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Geoff Turner
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - J. Craig Venter
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Owen R. White
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Brett R. Whitty
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Phil Youngman
- Merck & Co., Inc., Whitehouse Station, New Jersey, United States of America
| | - Kenneth H. Wolfe
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin, Ireland
| | - Gustavo H. Goldman
- Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jennifer R. Wortman
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bo Jiang
- Merck & Co., Inc., Whitehouse Station, New Jersey, United States of America
| | - David W. Denning
- School of Medicine and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - William C. Nierman
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington DC, United States of America
| |
Collapse
|
40
|
The telotype defines the telomere state in Saccharomyces cerevisiae and is inherited as a dominant non-Mendelian characteristic in cells lacking telomerase. Genetics 2008; 178:245-57. [PMID: 18202371 DOI: 10.1534/genetics.107.083030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeres are an unusual component of the genome because they do not encode genes, but their structure and cellular maintenance machinery (which we define as "telotype") are essential for chromosome stability. Cells can switch between different phenotypic states. One such example is when they switch from maintenance mediated by telomerase (TERT telotype) to one of the two alternative mechanisms of telomere preservation (ALT I and ALT II telotype). The nature of this switch is largely unknown. Reintroduction of telomerase into ALT II, but not ALT I, yeast led to the loss of their ability to survive a second round of telomerase withdrawal. Mating-based genetic analysis of ALT I and II revealed that both types of telomerase-independent telomere maintenance are inherited as a non-Mendelian trait dominant over senescence (SEN telotype). Additionally, inheritance of ALT I and ALT II did not depend on either the mitochondrial genome or a prion-based mechanism. Type I, but not type II, survivor cells exhibited impaired gene silencing, potentially connecting the switch to the ALT telotype epigenetic changes. These data provide evidence that nonprion epigenetic-like mechanisms confer flexibility on cells as a population to adjust to the life-threatening situation of telomerase loss, allowing cells to switch from TERT to ALT telotypes that can sustain viable populations.
Collapse
|
41
|
Lin YC, Wu Lee YH, Lin JJ. Genetic analysis reveals essential and non-essential amino acids within the telomeric DNA-binding interface of Cdc13p. Biochem J 2007; 403:289-95. [PMID: 17166094 PMCID: PMC1874236 DOI: 10.1042/bj20061698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cdc13p is a specific single-stranded telomeric DNA-binding protein of Saccharomyces cerevisiae. It is involved in protecting telomeres and regulating telomere length. The telomere-binding domain of Cdc13p is located between residues 497 and 693, and its structure has been resolved by NMR spectroscopy. A series of aromatic, hydrophobic and basic residues located at the DNA-binding surface of Cdc13p are involved in binding to telomeres. Here we applied a genetic approach to analyse the involvements of these residues in telomere binding. A series of mutants within the telomere-binding domain of Cdc13p were identified that failed to complement cdc13 mutants in vivo. Among the amino acids that were isolated, the Tyr522, Arg635, and Ile633 residues were shown to locate at the DNA-binding surface. We further demonstrated that Y522C and R635A mutants failed to bind telomeric DNA in vitro, indicating that these residues are indeed required for telomere binding. We did not, however, isolate other mutant residues located at the DNA-binding surface of Cdc13p beyond these three residues. Instead, a mutant on Lys568 was isolated that did not affect the essential function of Cdc13p. The Lys568 is also located on the DNA-binding surface of Cdc13p. Thus these results suggested that other DNA-binding residues are not essential for telomere binding. In the present study, we have established a genetic test that enabled the identification of telomere-binding residues of Cdc13p in vivo. This type of analysis provides information on those residues that indeed contribute to telomere binding in vivo.
Collapse
Affiliation(s)
- Yi-Chien Lin
- *Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Shih-Pai 112, Taipei, Taiwan, People's Republic of China
| | - Yan-Hwa Wu Lee
- *Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Shih-Pai 112, Taipei, Taiwan, People's Republic of China
- Correspondence may be addressed to either of these authors (email or )
| | - Jing-Jer Lin
- †Institute of Biopharmaceutical Science, National Yang-Ming University, Shih-Pai 112, Taipei, Taiwan, People's Republic of China
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
42
|
Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 2007; 25:319-26. [PMID: 17334359 DOI: 10.1038/nbt1290] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 01/22/2007] [Indexed: 02/03/2023]
Abstract
Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose metabolism in Saccharomyces cerevisiae. We have sequenced and assembled the complete genome of P. stipitis. The sequence data have revealed unusual aspects of genome organization, numerous genes for bioconversion, a preliminary insight into regulation of central metabolic pathways and several examples of colocalized genes with related functions. The genome sequence provides insight into how P. stipitis regulates its redox balance while very efficiently fermenting xylose under microaerobic conditions.
Collapse
Affiliation(s)
- Thomas W Jeffries
- US Department of Agriculture, Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
In recent years, the sequencing and annotation of complete genomes, together with the development of genetic and proteomic techniques to study previously intractable eukaryotic microbes, has revealed interesting new themes in the control of virulence gene expression. Families of variantly expressed genes are found adjacent to telomeres in the genomes of both pathogenic and non-pathogenic organisms. This subtelomeric DNA is normally heterochromatic and higher-order chromatin structure has now come to be recognized as an important factor controlling both the evolution and expression dynamics of these multigene families. In eukaryotic cells, higher-order chromatin structure plays a central role in many DNA processes including the control of chromosome integrity and recombination, DNA partitioning during cell division, and transcriptional control. DNA can be packaged in two distinct forms: euchromatin is relatively accessible to DNA binding proteins and generally contains active genes, while heterochromatin is densely packaged, relatively inaccessible and usually transcriptionally silent. These features of chromatin are epigenetically inherited from cell cycle to cell cycle. This review will focus on the epigenetic mechanisms used to control expression of virulence genes in medically important microbial pathogens. Examples of such control have now been reported in several evolutionarily distant species, revealing what may be a common strategy used to regulate many very different families of genes.
Collapse
Affiliation(s)
- Catherine J Merrick
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Ave, Building I, Rm 706, Boston, MA 02115, USA
| | | |
Collapse
|
44
|
Guan Q, Zheng W, Tang S, Liu X, Zinkel RA, Tsui KW, Yandell BS, Culbertson MR. Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast. PLoS Genet 2006; 2:e203. [PMID: 17166056 PMCID: PMC1657058 DOI: 10.1371/journal.pgen.0020203] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/18/2006] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic mechanism of RNA surveillance that selectively eliminates aberrant transcripts coding for potentially deleterious proteins. NMD also functions in the normal repertoire of gene expression. In Saccharomyces cerevisiae, hundreds of endogenous RNA Polymerase II transcripts achieve steady-state levels that depend on NMD. For some, the decay rate is directly influenced by NMD (direct targets). For others, abundance is NMD-sensitive but without any effect on the decay rate (indirect targets). To distinguish between direct and indirect targets, total RNA from wild-type (Nmd+) and mutant (Nmd−) strains was probed with high-density arrays across a 1-h time window following transcription inhibition. Statistical models were developed to describe the kinetics of RNA decay. 45% ± 5% of RNAs targeted by NMD were predicted to be direct targets with altered decay rates in Nmd− strains. Parallel experiments using conventional methods were conducted to empirically test predictions from the global experiment. The results show that the global assay reliably distinguished direct versus indirect targets. Different types of targets were investigated, including transcripts containing adjacent, disabled open reading frames, upstream open reading frames, and those prone to out-of-frame initiation of translation. Known targeting mechanisms fail to account for all of the direct targets of NMD, suggesting that additional targeting mechanisms remain to be elucidated. 30% of the protein-coding targets of NMD fell into two broadly defined functional themes: those affecting chromosome structure and behavior and those affecting cell surface dynamics. Overall, the results provide a preview for how expression profiles in multi-cellular eukaryotes might be impacted by NMD. Furthermore, the methods for analyzing decay rates on a global scale offer a blueprint for new ways to study mRNA decay pathways in any organism where cultured cell lines are available. Genes determine the structure of proteins through transcription and translation in which an RNA copy of the gene is made (mRNA) and then translated to make the protein. Cellular protein levels reflect the relative rates of mRNA synthesis and degradation, which are subject to multiple layers of controls. Mechanisms also exist to ensure the quality of each mRNA. One quality control mechanism called nonsense-mediated mRNA decay (NMD) triggers the rapid degradation of mRNAs containing coding errors that would otherwise lead to the production of non-functional or potentially deleterious proteins. NMD occurs in yeasts, plants, flies, worms, mice, and humans. In humans, NMD affects the etiology of genetic disorders by affecting the expression of genes that carry disease-causing mutations. Besides quality assurance, NMD plays another role in gene expression by controlling the abundance of hundreds of normal mRNAs that are devoid of coding errors. In this paper, the authors used DNA arrays to monitor the relative decay rates of all mRNAs in budding yeast and found a subset where decay rates were dependent on NMD. Many of the corresponding proteins perform related functional roles affecting both the structure and behavior of chromosomes and the structure and integrity of the cell surface.
Collapse
Affiliation(s)
- Qiaoning Guan
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Wei Zheng
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shijie Tang
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Xiaosong Liu
- Department of Physics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Robert A Zinkel
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kam-Wah Tsui
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael R Culbertson
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Rehmeyer C, Li W, Kusaba M, Kim YS, Brown D, Staben C, Dean R, Farman M. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Res 2006; 34:4685-701. [PMID: 16963777 PMCID: PMC1635262 DOI: 10.1093/nar/gkl588] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic pathogens of humans often evade the immune system by switching the expression of surface proteins encoded by subtelomeric gene families. To determine if plant pathogenic fungi use a similar mechanism to avoid host defenses, we sequenced the 14 chromosome ends of the rice blast pathogen, Magnaporthe oryzae. One telomere is directly joined to ribosomal RNA-encoding genes, at the end of the ∼2 Mb rDNA array. Two are attached to chromosome-unique sequences, and the remainder adjoin a distinct subtelomere region, consisting of a telomere-linked RecQ-helicase (TLH) gene flanked by several blocks of tandem repeats. Unlike other microbes, M.oryzae exhibits very little gene amplification in the subtelomere regions—out of 261 predicted genes found within 100 kb of the telomeres, only four were present at more than one chromosome end. Therefore, it seems unlikely that M.oryzae uses switching mechanisms to evade host defenses. Instead, the M.oryzae telomeres have undergone frequent terminal truncation, and there is evidence of extensive ectopic recombination among transposons in these regions. We propose that the M.oryzae chromosome termini play more subtle roles in host adaptation by promoting the loss of terminally-positioned genes that tend to trigger host defenses.
Collapse
Affiliation(s)
- Cathryn Rehmeyer
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Weixi Li
- Department of Biology, University of KentuckyLexington, KY 40546 USA
| | - Motoaki Kusaba
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Yun-Sik Kim
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Doug Brown
- Center for Integrated Fungal Research, North Carolina State UniversityRaleigh, NC 27695 USA
| | - Chuck Staben
- Department of Biology, University of KentuckyLexington, KY 40546 USA
| | - Ralph Dean
- Center for Integrated Fungal Research, North Carolina State UniversityRaleigh, NC 27695 USA
| | - Mark Farman
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
- To whom correspondence should be addressed. Tel: 859 257 7445, ext. 80728; Fax: 859 323 1961;
| |
Collapse
|
46
|
Tsai HJ, Huang WH, Li TK, Tsai YL, Wu KJ, Tseng SF, Teng SC. Involvement of Topoisomerase III in Telomere-Telomere Recombination. J Biol Chem 2006; 281:13717-13723. [PMID: 16546998 DOI: 10.1074/jbc.m600649200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative (ALT) recombination mechanism. In yeast, Sgs1p and its associated type IA topoisomerase, Top3p, may work coordinately in removing Holliday junction intermediates from a crossover-producing recombination pathway. Previous studies have also indicated that Sgs1 helicase acts in a telomere recombination pathway. Here we show that topoisomerase III is involved in telomere-telomere recombination. The recovery of telomere recombination-dependent survivors in a telomerase-minus yeast strain was dependent on Top3p catalytic activity. Moreover, the RIF1 and RIF2 genes are required for the establishment of TOP3/SGS1-dependent telomere-telomere recombination. In human Saos-2 ALT cells, human topoisomerase IIIalpha (hTOP3alpha) also contributes to telomere recombination. Strikingly, the telomerase activity is clearly enhanced in surviving si-hTOP3alpha Saos-2 ALT cells. Altogether, the present results suggest a potential role for hTOP3alpha in dissociating telomeric structures in telomerase-deficient cells, providing therapeutic implications in human tumors.
Collapse
Affiliation(s)
- Hung-Ji Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan
| | - Wei-Hsiang Huang
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan
| | - Tsai-Kun Li
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan
| | - Yun-Luen Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan
| | - Kou-Juey Wu
- Institute of Biochemistry, National Yang-Ming University, Taipei 11221, Taiwan
| | - Shun-Fu Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10018, Taiwan; Institute of Internal Medicine, National Taiwan University Hospital, Taipei 10018, Taiwan.
| |
Collapse
|
47
|
Gatbonton T, Imbesi M, Nelson M, Akey JM, Ruderfer DM, Kruglyak L, Simon JA, Bedalov A. Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2006; 2:e35. [PMID: 16552446 PMCID: PMC1401499 DOI: 10.1371/journal.pgen.0020035] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 01/27/2006] [Indexed: 01/30/2023] Open
Abstract
Telomere length-variation in deletion strains of Saccharomyces cerevisiae was used to identify genes and pathways that regulate telomere length. We found 72 genes that when deleted confer short telomeres, and 80 genes that confer long telomeres relative to those of wild-type yeast. Among identified genes, 88 have not been previously implicated in telomere length control. Genes that regulate telomere length span a variety of functions that can be broadly separated into telomerase-dependent and telomerase-independent pathways. We also found 39 genes that have an important role in telomere maintenance or cell proliferation in the absence of telomerase, including genes that participate in deoxyribonucleotide biosynthesis, sister chromatid cohesion, and vacuolar protein sorting. Given the large number of loci identified, we investigated telomere lengths in 13 wild yeast strains and found substantial natural variation in telomere length among the isolates. Furthermore, we crossed a wild isolate to a laboratory strain and analyzed telomere length in 122 progeny. Genome-wide linkage analysis among these segregants revealed two loci that account for 30%–35% of telomere length-variation between the strains. These findings support a general model of telomere length-variation in outbred populations that results from polymorphisms at a large number of loci. Furthermore, our results laid the foundation for studying genetic determinants of telomere length-variation and their roles in human disease. Telomere maintenance is of great importance to ensure genome stability in organisms with linear genomes. In humans, telomeres shorten as a function of age and serve as a marker of cell replication history. Understanding the genetic differences in telomere length-maintenance may help provide the insights into the basis for different rates of aging among individuals and differences in individuals' propensity for aging-associated diseases such as cancer. Studies in yeast and other model organisms have defined several pathways that ensure stability of chromosome ends. In order to capture full complement of genes that participate in telomere maintenance in yeast Saccharomyces cerevisiae, the authors undertook a comprehensive screen for genes that affect telomere length. Among 152 identified genes, the authors found 39 genes whose function is critical for telomere maintenance in the absence of telomerase. The authors extended their studies from laboratory yeast strains to outbred populations of yeast and discovered significant phenotypic variation in telomere length among the isolates. Telomere length-analysis of a cross between a wild yeast isolate and a laboratory strain support a general model of telomere length-variation in outbred populations that results from polymorphisms at a large number of loci. This finding provides a basis for genetic studies of telomere maintenance in human populations.
Collapse
Affiliation(s)
- Tonibelle Gatbonton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Maria Imbesi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Melisa Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Douglas M Ruderfer
- Lewis-Sigler Institute for Integrative Genomics and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Julian A Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Wen WY, Tsai HJ, Lin CC, Tseng SF, Wong CW, Teng SC. Telomere configuration influences the choice of telomere maintenance pathways. Biochem Biophys Res Commun 2006; 343:459-66. [PMID: 16546132 DOI: 10.1016/j.bbrc.2006.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In yeast cells that lack telomerase, telomeres are maintained by alternative type I and type II recombination mechanisms. Previous studies identified several proteins to control the choice between two types of recombinations. Here, we demonstrate that configuration of telomeres also plays a role to determine the fate of telomere replication in progeny. When diploid yeasts from mating equip with a specific type of telomeric structure in their genomes, they prefer to maintain this type of telomere replication in their descendants. While inherited telomere structure is easier to be utilized in progeny at the beginning stage, the telomeres in type I diploids can gradually switch to the type II cells in liquid culture. Importantly, the TLC1/tlc1 yeast cells develop type II survivors suggesting that haploid insufficiency of telomerase RNA component, which is similar to a type of dyskeratosis congenital in human. Altogether, our results suggest that both protein factors and substrate availability contribute to the choice among telomere replication pathways in yeast.
Collapse
Affiliation(s)
- Wan-Ying Wen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
49
|
Yang CP, Chen YB, Meng FL, Zhou JQ. Saccharomyces cerevisiae Est3p dimerizes in vitro and dimerization contributes to efficient telomere replication in vivo. Nucleic Acids Res 2006; 34:407-16. [PMID: 16418502 PMCID: PMC1331985 DOI: 10.1093/nar/gkj445] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In Saccharomyces cerevisiae at least five genes, EST1, EST2, EST3, TLC1 and CDC13, are required for telomerase activity in vivo. The telomerase catalytic subunit Est2p and telomerase RNA subunit Tlc1 constitute the telomerase core enzyme. Est1p and Est3p are the other subunits of telomerase holoenzyme. In order to dissect the function of Est3p in telomere replication, we over-expressed and purified recombinant wild-type and mutant Est3 proteins. The wild-type protein, as well as the K71A, E104A and T115A mutants were able to dimerize in vitro, while the Est3p-D49A, -K68A or -D166A mutant showed reduced ability to dimerize. Mutations in Est3p that decreased dimerization also appeared to cause telomere shortening in vivo. Double point mutation of Est3p-D49A-K68A and single point mutation of Est3p-K68A showed similar telomere shortening, suggesting that the K68 residue might be more important for telomerase activity. The ectopic co-expression of K71A or T115A mutant with wild-type Est3p using centromere plasmids caused telomere shortening, while co-expression of the D49A, K68A, D86A or F103A mutants with wild-type Est3p had no effect on telomere length regulation. These data suggested that dimerization is important for Est3p function in vivo.
Collapse
Affiliation(s)
| | | | | | - Jin-Qiu Zhou
- To whom correspondence should be addressed. Tel: 011 86 21 54921078; Fax: 011 86 21 54921076;
| |
Collapse
|
50
|
Liao XH, Zhang ML, Yang CP, Xu LX, Zhou JQ. Characterization of recombinant Saccharomyces cerevisiae telomerase core enzyme purified from yeast. Biochem J 2005; 390:169-76. [PMID: 15813705 PMCID: PMC1184572 DOI: 10.1042/bj20050208] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Telomerase is a cellular reverse transcriptase that elongates the single-stranded chromosome ends and oligonucleotides in vivo and in vitro. In Saccharomyces cerevisiae, Est2p (telomerase catalytic subunit) and Tlc1 (telomerase RNA template subunit) constitute the telomerase core complex. We co-overexpressed GST (glutathione S-transferase)-Est2p and Tlc1 in S. cerevisiae, and reconstituted the telomerase activity. The GST-Est2p-Tlc1 complex was partially purified by ammonium sulphate fractionation and affinity chromatography on glutathione beads, and the partially purified telomerase did not contain the other two subunits of the telomerase holoenzyme, Est1p and Est3p. The purified recombinant GST-Est2p-Tlc1 telomerase core complex could specifically add nucleotides on to the single-stranded TG(1-3) primer in a processive manner, but could not translocate to synthesize more than one telomeric repeat. The purified telomerase core complex exhibited different activities when primers were paired with the Tlc1 template at different positions. The procedure of reconstitution and purification of telomerase core enzyme that we have developed now allows for further mechanistic studies of the functions of other subunits of the telomerase holoenzyme as well as other telomerase regulation proteins.
Collapse
Affiliation(s)
- Xin-Hua Liao
- Max-Planck Junior Research Group in the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Liang Zhang
- Max-Planck Junior Research Group in the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cui-Ping Yang
- Max-Planck Junior Research Group in the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu-Xia Xu
- Max-Planck Junior Research Group in the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin-Qiu Zhou
- Max-Planck Junior Research Group in the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai, 200031, China
- To whom correspondence should be addressed (email )
| |
Collapse
|