1
|
Wang Y, Chen S, Liu Y, Zhang S, Jin X, Zheng S, Li J, Peng Y, Zhang K, Zhang C, Liu B. Comparative Analysis of the Complete Mitochondrial Genomes of Three Sisoridae (Osteichthyes, Siluriformes) and the Phylogenetic Relationships of Sisoridae. Biochem Genet 2025; 63:1901-1923. [PMID: 38635013 DOI: 10.1007/s10528-024-10793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
The family Sisoridae is one of the largest and most diverse Asiatic catfish families, with most species occurring in the water systems of the Qinhai-Tibetan Plateau and East Himalayas. At present, the phylogenetic relationship of the Sisoridae is relatively chaotic. In this study, the mitochondrial genomes (mitogenomes) of three species Creteuchiloglanis kamengensis, Glaridoglanis andersonii, and Exostoma sp. were systematically investigated, the phylogenetic relationships of the family were reconstructed and to determine the phylogenetic position of Exostoma sp. within Sisoridae. The lengths of the mitogenomes' sequences of C. kamengensis, G. andersonii, and Exostoma sp. were 16,589 bp, 16,531 bp, and 16,529 bp, respectively. They all contained one identical control region (D-loop), two ribosomal RNAs (rRNAs), 13 protein-coding genes (PCGs) and 22 transfer RNA (tRNA) genes. We applied two approaches, Bayesian Inference (BI) and Maximum Likelihood (ML), to construct phylogenetic trees. Our findings revealed that the topological structure of both ML and BI trees exhibited significant congruence. Specifically, the phylogenetic tree strongly supports the monophyly of Sisorinae and Glyptosternoids and provides new molecular biological data to support the reconstruction of phylogenetic relationships with Sisoridae. This study is of great scientific value for phylogenetic and genetic variation studies of the Sisoridae.
Collapse
Affiliation(s)
- Yunpeng Wang
- National engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Shiyi Chen
- National engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Yifan Liu
- National engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, Guangdong, China
| | - Xun Jin
- National engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Sixu Zheng
- National engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Jiasheng Li
- National engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Ying Peng
- National engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Kun Zhang
- National engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Chi Zhang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.
| | - Bingjian Liu
- National engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Arora R, Kumar H, Sharma U, Ahlawat S, Sharma R, Chhabra P, Sankhyan V, Vijh RK. Mapping genome-wide diversity and population dynamics in Indian chicken breeds for targeted conservation and breeding. Br Poult Sci 2024; 65:665-676. [PMID: 39212228 DOI: 10.1080/00071668.2024.2379968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024]
Abstract
1. Genetic improvement and widespread use of artificial selection may have impacted the genetic make-up of Indian chicken breeds. The genetic architecture of contemporary chicken population of India needs to be assessed for future improvement and conservation programmes. This study utilised whole-genome sequences in 180 chicken samples from 16 indigenous breeds, along with the Red Jungle Fowl and the commercial White Leghorn.2. A panel of 76 978 genome-wide single-nucleotide polymorphisms (SNP) was selected for comparative genome analysis after stringent screening. Breeds originating from the eastern regions of India exhibited higher genomic diversity, indicative of a rich repository of distinct germplasm. Conversely, the Uttara breed, from the northern hilly areas, display considerable genetic differentiation with diminished diversity compared to others, underscoring conservation concerns. The average coefficient (FIS) of 0.084 caution the need to mitigate risks associated with inbreeding.3. The study revealed that the analysis of 76 978 genome-wide SNP will serve as a cornerstone in refining conservation strategies, to design interventions with greater precision.4. The contribution of Red Jungle Fowl to the gene pool of all native breeds was supported by this study. Genetic structuring indicated a relationship among breeds based on geographical proximity, underscored by varying levels of admixture.
Collapse
Affiliation(s)
- R Arora
- Animal Biotechnology Division, ICAR - National Bureau of Animal Genetic Resources, Karnal, India
| | - H Kumar
- Animal Genetics and Breeding, ICAR - National Research Centre on Mithun, Medziphema, India
| | - U Sharma
- Animal Biotechnology Division, ICAR - National Bureau of Animal Genetic Resources, Karnal, India
| | - S Ahlawat
- Animal Biotechnology Division, ICAR - National Bureau of Animal Genetic Resources, Karnal, India
| | - R Sharma
- Animal Biotechnology Division, ICAR - National Bureau of Animal Genetic Resources, Karnal, India
| | - P Chhabra
- Animal Biotechnology Division, ICAR - National Bureau of Animal Genetic Resources, Karnal, India
| | - V Sankhyan
- Animal Genetics and Breeding, Chaudhary Sarwan Kumar Himachal Pradesh Agriculture University, Palampur, India
| | - R K Vijh
- Animal Biotechnology Division, ICAR - National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
3
|
Fan H, Xu Y, Zhao Y, Feng K, Hong L, Zhao Q, Lu X, Shi M, Li H, Wang L, Wen S. Development and validation of YARN: A novel SE-400 MPS kit for East Asian paternal lineage analysis. Forensic Sci Int Genet 2024; 71:103029. [PMID: 38518712 DOI: 10.1016/j.fsigen.2024.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Y-chromosomal short tandem repeat polymorphisms (Y-STRs) and Y-chromosomal single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used in paternal lineage identification and population genetics. Currently, there is a lack of an effective panel that integrates Y-STRs and Y-SNPs for studying paternal lineages, particularly in East Asian populations. Hence, we developed a novel Y-chromosomal targeted panel called YARN (Y-chromosome Ancestry and Region Network) based on multiplex PCR and a single-end 400 massive parallel sequencing (MPS) strategy, consisting of 44 patrilineage Y-STRs and 260 evolutionary Y-SNPs. A total of 386 reactions were validated for the effectiveness and applicability of YARN according to SWGDAM validation guidelines, including sensitivity (with a minimum input gDNA of 0.125 ng), mixture identification (ranging from 1:1-1:10), PCR inhibitor testing (using substances such as 50 μM hematin, 100 μM hemoglobin, 100 μM humic acid, and 2.5 mM indigo dye), species specificity (successfully distinguishing humans from other animals), repeatability study (achieved 100% accuracy), and concordance study (with 99.91% accuracy for 1121 Y-STR alleles). Furthermore, we conducted a pilot study using YARN in a cohort of 484 Han Chinese males from Huaiji County, Zhaoqing City, Guangdong, China (GDZQHJ cohort). In this cohort, we identified 52 different Y-haplogroups and 73 different surnames. We found weak to moderate correlations between the Y-haplogroups, Chinese surnames, and geographical locations of the GDZQHJ cohort (with λ values ranging from 0.050 to 0.340). However, when we combined two different categories into a new independent variable, we observed stronger correlations (with λ values ranging from 0.617 to 0.754). Overall, the YARN panel, which combines Y-STR and Y-SNP genetic markers, meets forensic DNA quality assurance guidelines and holds potential for East Asian geographical origin inference and paternal lineage analysis.
Collapse
Affiliation(s)
- Haoliang Fan
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China.
| | - Yutao Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Kai Feng
- Duanzhou Branch of Zhaoqing Public Security Bureau, Zhaoqing 526060, China.
| | - Liuxi Hong
- Sihui Public Security Bureau of Guangdong Province, Zhaoqing 526299, China.
| | - Qiancheng Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Xiaoyu Lu
- Deepreads Biotech Company Limited, Guangzhou 510663, China.
| | - Meisen Shi
- Criminal Justice College of China University of Political Science and Law, Beijing 100088, China.
| | - Haiyan Li
- Criminal Technology Center of Guangdong Provincial Public Security Department, Guangzhou 510050, China.
| | - Lingxiang Wang
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| | - Shaoqing Wen
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Institute of Archaeological Science, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Liu W, Li P, Wang X, Zhang Z, Wang Y. Functional Identification of Malus halliana MhbZIP23 Gene Demonstrates That It Enhances Saline-Alkali Stress Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:1803. [PMID: 38999645 PMCID: PMC11244090 DOI: 10.3390/plants13131803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Saline-alkali stress is a significant abiotic stress that restricts plant growth globally. Basic region leucine zipper (bZIP) transcription factor proteins are widely involved in plants in response to abiotic stress such as saline-alkali stress. Based on transcriptome and quantitative real-time PCR (qRT-PCR), we found that the MhbZIP23 gene could respond to saline-alkali stress. Despite this discovery, the underlying mechanism by which the MhbZIP23 transcription factor responds to saline-alkaline stress remains unexplored. To address this gap in knowledge, we successfully cloned the MhbZIP23 (MD05G1121500) gene from Malus halliana for heterologous expression in Arabidopsis thaliana, facilitating the investigation of its functional role in stress response. Compared to the wild type (WT), Arabidopsis plants demonstrated enhanced growth and a lower degree of wilting when subjected to saline-alkali stress. Furthermore, several physiological indices of the plants altered under such stress conditions. The transgenic Arabidopsis plants (OE-5, 6, and 8), which grew normally, exhibited a higher chlorophyll content and had greater root length in comparison to the control check (CK). MhbZIP23 effectively regulated the levels of the osmoregulatory substance proline (Pro), enhanced the activities of antioxidant enzymes such as peroxidase (POD) and superoxide dismutase (SOD), and reduced the levels of malondialdehyde (MDA) and relative conductivity (REC). These actions improved the ability of plant cells in transgenic Arabidopsis to counteract ROS, as evidenced by the decreased accumulation of O2- and hydrogen peroxide (H2O2). In summary, the MhbZIP23 gene demonstrated effectiveness in alleviating saline-alkali stress in M. halliana, presenting itself as an outstanding resistance gene for apples to combat saline-alkali stress.
Collapse
Affiliation(s)
| | | | | | | | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (P.L.); (X.W.); (Z.Z.)
| |
Collapse
|
5
|
Knanghat R, Senapati S. Toward Greater DNA Stability by Leveraging the Proton-Donating Ability of Protic Ionic Liquids. J Phys Chem B 2024; 128:4301-4314. [PMID: 38682809 DOI: 10.1021/acs.jpcb.3c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Deoxyribonucleic acid (DNA) stability is a prerequisite in many applications, ranging from DNA-based vaccines and data storage to gene therapy. However, the strategies to enhance DNA stability are limited, and the underlying mechanisms are poorly understood. Ionic liquids (ILs), molten salts of organic cations and organic/inorganic anions, are showing tremendous prospects in myriads of applications. With a judicious choice of constituent ions, the protic nature of ILs can be tuned. In this work, we investigate the relative stability of full-length genomic DNA in aqueous IL solutions of increasing protic nature. Our experimental measurements show that the protic ionic liquids (PILs) enhance the DNA melting temperature significantly while unaltering its native B-conformation. Molecular dynamics simulations and quantum mechanical calculation results suggest that the intramolecular Watson-Crick H-bonding in DNA remains unaffected and, in addition, the PILs induce stronger H-bonding networks in solution through their ability to make multiple intermolecular H-bonds with the nucleobases and among its constituent ions, thus aiding greater DNA stability. The detailed understanding obtained from this study could bring about the much-awaited breakthrough in improved DNA stability for its sustained use in the aforesaid applications!
Collapse
Affiliation(s)
- Rajani Knanghat
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
6
|
Al Yafei Z, Hajjej A, Alvares M, Al Mahri A, Nasr A, Mirghani R, Al Obaidli A, Al Seiari M, Mack SJ, Askar M, Edinur HA, Almawi WY, ElGhazali G. Analysis of the Origin of Emiratis as Inferred from a Family Study Based on HLA-A, -C, -B, - DRB1, and -DQB1 Genes. Genes (Basel) 2023; 14:1159. [PMID: 37372339 PMCID: PMC10298278 DOI: 10.3390/genes14061159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, we investigated HLA class I and class II allele and haplotype frequencies in Emiratis and compared them to those of Asian, Mediterranean, and Sub-Saharan African populations. METHODS Two-hundred unrelated Emirati parents of patients selected for bone marrow transplantation were genotyped for HLA class I (A, B, C) and class II (DRB1, DQB1) genes using reverse sequence specific oligonucleotide bead-based multiplexing. HLA haplotypes were assigned with certainty by segregation (pedigree) analysis, and haplotype frequencies were obtained by direct counting. HLA class I and class II frequencies in Emiratis were compared to data from other populations using standard genetic distances (SGD), Neighbor-Joining (NJ) phylogenetic dendrograms, and correspondence analysis. RESULTS The studied HLA loci were in Hardy-Weinberg Equilibrium. We identified 17 HLA-A, 28 HLA-B, 14 HLA-C, 13 HLA-DRB1, and 5 HLA-DQB1 alleles, of which HLA-A*02 (22.2%), -B*51 (19.5%), -C*07 (20.0%), -DRB1*03 (22.2%), and -DQB1*02 (32.8%) were the most frequent allele lineages. DRB1*03~DQB1*02 (21.2%), DRB1*16~DQB1*05 (17.3%), B*35~C*04 (11.7%), B*08~DRB1*03 (9.7%), A*02~B*51 (7.5%), and A*26~C*07~B*08~DRB1*03~DQB1*02 (4.2%) were the most frequent two- and five-locus HLA haplotypes. Correspondence analysis and dendrograms showed that Emiratis were clustered with the Arabian Peninsula populations (Saudis, Omanis and Kuwaitis), West Mediterranean populations (North Africans, Iberians) and Pakistanis, but were distant from East Mediterranean (Turks, Albanians, Greek), Levantine (Syrians, Palestinians, Lebanese), Iranian, Iraqi Kurdish, and Sub-Saharan populations. CONCLUSIONS Emiratis were closely related to Arabian Peninsula populations, West Mediterranean populations and Pakistanis. However, the contribution of East Mediterranean, Levantine Arab, Iranian, and Sub-Saharan populations to the Emiratis' gene pool appears to be minor.
Collapse
Affiliation(s)
- Zain Al Yafei
- Sheikh Khalifa Medical City-Union71-Purehealth, Abu Dhabi P.O. Box 51900, United Arab Emirates; (Z.A.Y.); (M.A.); (A.A.M.)
- United Arab Emirates University, Al Ain P.O. Box 51900, United Arab Emirates
| | - Abdelhafidh Hajjej
- Department of Immunogenetics, National Blood Transfusion Center, Tunis P.O. Box 1006, Tunisia
| | - Marion Alvares
- Sheikh Khalifa Medical City-Union71-Purehealth, Abu Dhabi P.O. Box 51900, United Arab Emirates; (Z.A.Y.); (M.A.); (A.A.M.)
- United Arab Emirates University, Al Ain P.O. Box 51900, United Arab Emirates
| | - Ayeda Al Mahri
- Sheikh Khalifa Medical City-Union71-Purehealth, Abu Dhabi P.O. Box 51900, United Arab Emirates; (Z.A.Y.); (M.A.); (A.A.M.)
- United Arab Emirates University, Al Ain P.O. Box 51900, United Arab Emirates
| | - Amre Nasr
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh P.O. Box 22490, Saudi Arabia;
| | - Rajaa Mirghani
- Higher College of Technology, Abu Dhabi P.O. Box 25026, United Arab Emirates
| | - Ali Al Obaidli
- SEHA Kidney Care, SEHA, Abu Dhabi P.O. Box 92900, United Arab Emirates
| | - Mohamed Al Seiari
- SEHA Kidney Care, SEHA, Abu Dhabi P.O. Box 92900, United Arab Emirates
| | - Steven J. Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA 94609, USA
| | | | - Hisham A. Edinur
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Wassim Y. Almawi
- Faculty of Sciences, El-Manar University, Tunis P.O. Box 94, Tunisia;
| | - Gehad ElGhazali
- Sheikh Khalifa Medical City-Union71-Purehealth, Abu Dhabi P.O. Box 51900, United Arab Emirates; (Z.A.Y.); (M.A.); (A.A.M.)
- United Arab Emirates University, Al Ain P.O. Box 51900, United Arab Emirates
| |
Collapse
|
7
|
Hajjej A, Abdrakhmanova S, Turganbekova A, Almawi WY. HLA allele and haplotype frequencies in Kazakhstani Russians and their relationship with other populations. HLA 2023; 101:249-261. [PMID: 36502279 DOI: 10.1111/tan.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
HLA class I and class II genotypes from 947 Kazakhstani individuals of Russian origin were analyzed for investigating their most likely origin. The results were compared with similar data from other Russians (East and West), and also Worldwide populations, using standard genetic distances, neighbor-joining dendrograms, correspondence and haplotype analysis. Of the five HLA loci analyzed (HLA-A, HLA-C, HLA-B, HLA-DRB1, and HLA-DQB1) genotyped, 216 HLA alleles were identified. The most frequent alleles were A*02:01 (26.5%), B*07:02 (11.1%), C*04:01 (13.5%) and C*06:02 (12.1%), DRB1*07:01 (13.8%) and DRB1*15:01 (12.2%), and DQB1*03:01 (19.7%). Significant linkage disequilibrium was noted between all HLA pairs. DRB1*15:01 ~ DQB1*06:02 (10.5%), B*07:02 ~ C*07:02 (10.0%), B*07:02 ~ DRB1*15:01 (6.3%), and A*01:01 ~ B*08:01 (4.5%) were the most frequent two-locus haplotypes identified. Subsequent analyses showed that Kazakhstani Russians were closely related to West Russia-residing populations (Northwest Slavic, Vologda, Chelyabinsk, Moscow), East Europeans (Belarus Brest, Ukraine, Poland) and Scandinavians (Swedish, Finns), but distinct from East Russia-residing populations (Tuvians, Siberians from Chukotka, Kamchatka, and Ulchi) and East Mediterraneans (Levantines, Turks, North Macedonians, Albanians), and East Asians (Koreans, Japanese, Taiwanese, Mongolians). These results are in accordance with historical data indicating that the Russians of central Asia originate mainly from European Russia during the migratory flow of 18th and 19th centuries.
Collapse
Affiliation(s)
- Abdelhafidh Hajjej
- Department of Immunogenetics, National Blood Transfusion Center, Tunis, Tunisia
| | - Saniya Abdrakhmanova
- Research and Production Center of Transfusion, Kazakhstan Ministry of Health, Astana, Kazakhstan
| | - Aida Turganbekova
- Research and Production Center of Transfusion, Kazakhstan Ministry of Health, Astana, Kazakhstan
| | - Wassim Y Almawi
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan.,Faculty of Sciences, El-Manar University, Tunis, Tunisia
| |
Collapse
|
8
|
HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies in Lebanese and their relatedness to neighboring and distant populations. BMC Genomics 2022; 23:456. [PMID: 35725365 PMCID: PMC9208108 DOI: 10.1186/s12864-022-08682-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study examined the origin of present-day Lebanese using high-resolution HLA class I and class II allele and haplotype distributions. The study subjects comprised 152 unrelated individuals, and their HLA class I and class II alleles and two-locus and five-locus haplotypes were compared with those of neighboring and distant communities using genetic distances, neighbor-joining dendrograms, correspondence, and haplotype analyses. HLA class I (A, B, C) and class II (DRB1, DQB1) were genotyped at a high-resolution level by PCR-SSP. RESULTS In total, 76 alleles across the five HLA loci were detected: A*03:01 (17.1%), A*24:02 (16.5%), B*35:01 (25.7%), C*04:01 (25.3%), and C*07:01 (20.7%) were the most frequent class I alleles, while DRB1*11:01 (34.2%) and DQB1*03:01 (43.8%) were the most frequent class II alleles. All pairs of HLA loci were in significant linkage disequilibrium. The most frequent two-locus haplotypes recorded were DRB1*11:01 ~ DQB1*03:01 (30.9%), B*35:01-C*04:01 (20.7%), B*35:01 ~ DRB1*11:01 (13.8%), and A*24:02 ~ B*35:01 (10.3%). Lebanese appear to be closely related to East Mediterranean communities such as Levantines (Palestinians, Syrians, and Jordanians), Turks, Macedonians, and Albanians. However, Lebanese appear to be distinct from North African, Iberian, and Sub-Saharan communities. CONCLUSIONS Collectively, this indicates a limited genetic contribution of Arabic-speaking populations (from North Africa or the Arabian Peninsula) and Sub-Saharan communities to the present-day Lebanese gene pool. This confirms the notion that Lebanese population are of mixed East Mediterranean and Asian origin, with a marked European component.
Collapse
|
9
|
Liang Y, Xia J, Jiang Y, Bao Y, Chen H, Wang D, Zhang D, Yu J, Cang J. Genome-Wide Identification and Analysis of bZIP Gene Family and Resistance of TaABI5 ( TabZIP96) under Freezing Stress in Wheat ( Triticum aestivum). Int J Mol Sci 2022; 23:2351. [PMID: 35216467 PMCID: PMC8874521 DOI: 10.3390/ijms23042351] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 01/07/2023] Open
Abstract
The basic leucine zipper (bZIP) regulates plant growth and responds to stress as a key transcription factor of the Abscisic acid (ABA) signaling pathway. In this study, TabZIP genes were identified in wheat and the gene structure, physicochemical properties, cis-acting elements, and gene collinearity were analyzed. RNA-Seq and qRT-PCR analysis showed that ABA and abiotic stress induced most TabZIP genes expression. The ectopic expression of TaABI5 up-regulated the expression of several cold-responsive genes in Arabidopsis. Physiological indexes of seedlings of different lines under freezing stress showed that TaABI5 enhanced the freezing tolerance of plants. Subcellular localization showed that TaABI5 is localized in the nucleus. Furthermore, TaABI5 physically interacted with cold-resistant transcription factor TaICE1 in yeast two-hybrid system. In conclusion, this study identified and analyzed members of the TabZIP gene family in wheat. It proved for the first time that the gene TaABI5 affected the cold tolerance of transgenic plants and was convenient for us to understand the cold resistance molecular mechanism of TaABI5. These results will provide a new inspiration for further study on improving plant abiotic stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (J.X.); (Y.J.); (Y.B.); (H.C.); (D.W.); (D.Z.); (J.Y.)
| |
Collapse
|
10
|
Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat Methods 2021; 18:1506-1514. [PMID: 34857936 DOI: 10.1038/s41592-021-01325-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Mapping the cell phylogeny of a complex multicellular organism relies on somatic mutations accumulated from zygote to adult. Available cell barcoding methods can record about three mutations per barcode, enabling only low-resolution mapping of the cell phylogeny of complex organisms. Here we developed SMALT, a substitution mutation-aided lineage-tracing system that outperforms the available cell barcoding methods in mapping cell phylogeny. We applied SMALT to Drosophila melanogaster and obtained on average more than 20 mutations on a three-kilobase-pair barcoding sequence in early-adult cells. Using the barcoding mutations, we obtained high-quality cell phylogenetic trees, each comprising several thousand internal nodes with 84-93% median bootstrap support. The obtained cell phylogenies enabled a population genetic analysis that estimates the longitudinal dynamics of the number of actively dividing parental cells (Np) in each organ through development. The Np dynamics revealed the trajectory of cell births and provided insight into the balance of symmetric and asymmetric cell division.
Collapse
|
11
|
Gupta A, Styczynski MP, Galinski MR, Voit EO, Fonseca LL. Dramatic transcriptomic differences in Macaca mulatta and Macaca fascicularis with Plasmodium knowlesi infections. Sci Rep 2021; 11:19519. [PMID: 34593836 PMCID: PMC8484567 DOI: 10.1038/s41598-021-98024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Plasmodium knowlesi, a model malaria parasite, is responsible for a significant portion of zoonotic malaria cases in Southeast Asia and must be controlled to avoid disease severity and fatalities. However, little is known about the host-parasite interactions and molecular mechanisms in play during the course of P. knowlesi malaria infections, which also may be relevant across Plasmodium species. Here we contrast P. knowlesi sporozoite-initiated infections in Macaca mulatta and Macaca fascicularis using whole blood RNA-sequencing and transcriptomic analysis. These macaque hosts are evolutionarily close, yet malaria-naïve M. mulatta will succumb to blood-stage infection without treatment, whereas malaria-naïve M. fascicularis controls parasitemia without treatment. This comparative analysis reveals transcriptomic differences as early as the liver phase of infection, in the form of signaling pathways that are activated in M. fascicularis, but not M. mulatta. Additionally, while most immune responses are initially similar during the acute stage of the blood infection, significant differences arise subsequently. The observed differences point to prolonged inflammation and anti-inflammatory effects of IL10 in M. mulatta, while M. fascicularis undergoes a transcriptional makeover towards cell proliferation, consistent with its recovery. Together, these findings suggest that timely detection of P. knowlesi in M. fascicularis, coupled with control of inflammation while initiating the replenishment of key cell populations, helps contain the infection. Overall, this study points to specific genes and pathways that could be investigated as a basis for new drug targets that support recovery from acute malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Tarasjuk SI, Zamorov VV, Zaloilo OV, Bielikova OI, Radionov DB. Genetic Differentiation of the Round Goby (Neogobius melanostomus) from Certain Localities of the Black and Azov Sea Basin Using Microsatellite Loci. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Li A, Hou Z. Phylogeographic analyses of poplar revealed potential glacial refugia and allopatric divergence in southwest China. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 32:66-72. [PMID: 33305612 DOI: 10.1080/24701394.2020.1856828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The distribution pattern and genetic structure of plant species have been profoundly influenced by climate oscillations. Phylogeographic analyses have been numerously conducted in biodiversity hotspot regions and some general conclusions have been documented. However, other regions have received less attentions and these places may serve as potential glacial refugia for plant species to survive the Quaternary glaciation. Here, we used six nuclear and three cpDNA markers to estimate the phylogeographic pattern of Populus davidiana, a widespread species distributed in southwest China. As a widely distributed species in southwest China, the nucleotide diversity of P. davidiana was relatively high (N a = 6.28, H O = 0.534, and H E = 0.658). Genetic differentiation (F ST) between the two main distribution regions, Yunnan and Guizhou provinces, was 0.21221. According to the composition of chloroplast haplotypes and the result of structure in these populations, we clearly distinguished two distantly sublineages corresponding to two distribution regions. Results of the Mantel test showed that there was a significant correlation between genetic distance and geographical distance (R 2 = 0.8252, p<.05). The topographically heterogeneous regions and the low dispersal ability of seed and pollen may lead to high genetic differentiation between these two regions. A potential glacial refugia for P. davidiana located in adjacent regions to the Hengduan range was revealed and allopatric divergence in separated glacial refugia may directly lead to the present phylogeographic pattern of this species.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Zhe Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China.,Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China.,MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| |
Collapse
|
14
|
Phylogenetic Relationships of Turkish Indigenous Donkey Populations Determined by Mitochondrial DNA D-loop Region. Animals (Basel) 2020; 10:ani10111970. [PMID: 33120938 PMCID: PMC7692571 DOI: 10.3390/ani10111970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary This paper represents the first fundamental report of mtDNA diversity in Turkish indigenous donkey breeds and presents findings for the origin and genetic characterization of donkey populations dispersed in seven geographical regions in Turkey, and thus reveals insights into their genetic history. The median-joining network and phylogenetic tree exhibit two different maternal lineages of the 16 Turkish indigenous donkey populations. Abstract In this study, to analyze the mtDNA D-loop region and the origin of the maternal lineages of 16 different donkey populations, and to assess the domestication of Turkish indigenous donkeys in seven geographical regions, we investigated the DNA sequences of the D-loop region of 315 indigenous donkeys from Turkey. A total of 54 haplotypes, resulting from 35 polymorphic regions (27 parsimoniously informative and 6 singleton sites), were defined. Twenty-eight of these haplotypes are unique (51.85%), and 26 are shared among different Turkish indigenous donkey populations. The most frequent haplotype was Hap 1 (45.71%), followed by two haplotypes (Hap 4, 15.55% and Hap 7, 5.39%). The breed genetic diversity, evaluated by the haplotype diversity (HD) and nucleotide diversity (πD), for the Turkish donkey populations ranged from 0.533 ± 0.180 (Tekirdağ–Malkara, MAL) to 0.933 ± 0.122 (Aydin, AYD), and from 0.01196 ± 0.0026 (Antalya, ANT) to 0.02101 ± 0.0041 (Aydin, AYD), respectively. We observed moderate-to-high levels of haplotype diversity and moderate nucleotide diversity, indicating plentiful genetic diversity in all of the Turkish indigenous donkey populations. Phylogenetic analysis (NJT) and median-joining network analysis established that all haplotypes were distinctly grouped into two major haplogroups. The results of AMOVA analyses, based on geographic structuring of Turkish native donkey populations, highlighted that the majority of the observed variance is due to differences among samples within populations. The observed differences between groups were found to be statistically significant. Comparison among Turkish indigenous donkey mtDNA D-loop regions and haplotypes, and different countries’ donkey breeds and wild asses, identified two clades and which is named Somali (Clade IV) and Nubian (Clade V) lineages. The results can be used to understand the origin of Turkish donkey populations clearly, and to resolve the phylogenetic relationship among all of the different regions.
Collapse
|
15
|
Yin C, Su K, He Z, Zhai D, Guo K, Chen X, Jin L, Li S. Genetic Reconstruction and Forensic Analysis of Chinese Shandong and Yunnan Han Populations by Co-Analyzing Y Chromosomal STRs and SNPs. Genes (Basel) 2020; 11:743. [PMID: 32635262 PMCID: PMC7397191 DOI: 10.3390/genes11070743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022] Open
Abstract
Y chromosomal short tandem repeats (Y-STRs) have been widely harnessed for forensic applications, such as pedigree source searching from public security databases and male identification from male-female mixed samples. For various populations, databases composed of Y-STR haplotypes have been built to provide investigating leads for solving difficult or cold cases. Recently, the supplementary application of Y chromosomal haplogroup-determining single-nucleotide polymorphisms (SNPs) for forensic purposes was under heated debate. This study provides Y-STR haplotypes for 27 markers typed by the Yfiler™ Plus kit and Y-SNP haplogroups defined by 24 loci within the Y-SNP Pedigree Tagging System for Shandong Han (n = 305) and Yunnan Han (n = 565) populations. The genetic backgrounds of these two populations were explicitly characterized by the analysis of molecular variance (AMOVA) and multi-dimensional scaling (MDS) plots based on 27 Y-STRs. Then, population comparisons were conducted by observing Y-SNP allelic frequencies and Y-SNP haplogroups distribution, estimating forensic parameters, and depicting distribution spectrums of Y-STR alleles in sub-haplogroups. The Y-STR variants, including null alleles, intermedia alleles, and copy number variations (CNVs), were co-listed, and a strong correlation between Y-STR allele variants ("DYS518~.2" alleles) and the Y-SNP haplogroup QR-M45 was observed. A network was reconstructed to illustrate the evolutionary pathway and to figure out the ancestral mutation event. Also, a phylogenetic tree on the individual level was constructed to observe the relevance of the Y-STR haplotypes to the Y-SNP haplogroups. This study provides the evidence that basic genetic backgrounds, which were revealed by both Y-STR and Y-SNP loci, would be useful for uncovering detailed population differences and, more importantly, demonstrates the contributing role of Y-SNPs in population differentiation and male pedigree discrimination.
Collapse
Affiliation(s)
- Caiyong Yin
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.Y.); (K.S.); (Z.H.); (K.G.)
- Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Kaiyuan Su
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.Y.); (K.S.); (Z.H.); (K.G.)
- Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Ziwei He
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.Y.); (K.S.); (Z.H.); (K.G.)
- Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Dian Zhai
- Criminal Investigation Department of Yunnan Province, Kunming 650021, China; (D.Z.); (X.C.)
| | - Kejian Guo
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.Y.); (K.S.); (Z.H.); (K.G.)
- Public Security Bureau of Zibo City, Zibo 255000, China
| | - Xueyun Chen
- Criminal Investigation Department of Yunnan Province, Kunming 650021, China; (D.Z.); (X.C.)
| | - Li Jin
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.Y.); (K.S.); (Z.H.); (K.G.)
- Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Shilin Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Dezhi C, Meili L, Yingjian H, Yiping H, Yu T, Weibo L. Population genetics of 27 Y-STRs for the Yi population from Liangshan Yi Autonomous Prefecture, China. Int J Legal Med 2020; 135:441-442. [PMID: 32025783 DOI: 10.1007/s00414-020-02249-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 11/27/2022]
Abstract
Liangshan Yi Autonomous Prefecture locates at the south of Sichuan, China, and this area has the largest population of Yi ethnic nationally. In order to study the population data of Y-STRs of this area and contribute to the worldwide Y-STR database, we genotyped 628 unrelated individuals using commercially available Goldeneye® DNA ID 27Y system. Gene diversity (GD) values and haplotype diversity (HD) were calculated. Population comparison results showed that Liangshan Yi population was significantly differently from other populations.
Collapse
Affiliation(s)
- Chen Dezhi
- Criminal Science and Technology Division, Criminal Investigation Bureau, Chengdu Public Security Bureau, Chengdu, 610000, Sichuan, China
| | - Lv Meili
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huang Yingjian
- Public Security Bureau of Liangshan Prefecture, Liangshan Yi Autonomous Prefecture 615000, Sichuan, China
| | - Hou Yiping
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tan Yu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Liang Weibo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Grugni V, Raveane A, Colombo G, Nici C, Crobu F, Ongaro L, Battaglia V, Sanna D, Al-Zahery N, Fiorani O, Lisa A, Ferretti L, Achilli A, Olivieri A, Francalacci P, Piazza A, Torroni A, Semino O. Y-chromosome and Surname Analyses for Reconstructing Past Population Structures: The Sardinian Population as a Test Case. Int J Mol Sci 2019; 20:E5763. [PMID: 31744094 PMCID: PMC6888588 DOI: 10.3390/ijms20225763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 11/17/2022] Open
Abstract
Many anthropological, linguistic, genetic and genomic analyses have been carried out to evaluate the potential impact that evolutionary forces had in shaping the present-day Sardinian gene pool, the main outlier in the genetic landscape of Europe. However, due to the homogenizing effect of internal movements, which have intensified over the past fifty years, only partial information has been obtained about the main demographic events. To overcome this limitation, we analyzed the male-specific region of the Y chromosome in three population samples obtained by reallocating a large number of Sardinian subjects to the place of origin of their monophyletic surnames, which are paternally transmitted through generations in most of the populations, much like the Y chromosome. Three Y-chromosome founding lineages, G2-L91, I2-M26 and R1b-V88, were identified as strongly contributing to the definition of the outlying position of Sardinians in the European genetic context and marking a significant differentiation within the island. The present distribution of these lineages does not always mirror that detected in ancient DNAs. Our results show that the analysis of the Y-chromosome gene pool coupled with a sampling method based on the origin of the family name, is an efficient approach to unravelling past heterogeneity, often hidden by recent movements, in the gene pool of modern populations. Furthermore, the reconstruction and comparison of past genetic isolates represent a starting point to better assess the genetic information deriving from the increasing number of available ancient DNA samples.
Collapse
Affiliation(s)
- Viola Grugni
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Alessandro Raveane
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Giulia Colombo
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Carmen Nici
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Francesca Crobu
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy
| | - Linda Ongaro
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
- Estonian Biocentre, Institute of Genomics, Riia 23, 51010 Tartu, Estonia
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, 51010 Tartu, Estonia
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Daria Sanna
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy
| | - Nadia Al-Zahery
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Ornella Fiorani
- Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; (O.F.); (A.L.)
| | - Antonella Lisa
- Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; (O.F.); (A.L.)
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Paolo Francalacci
- Dipartimento di Scienza della Vita e dell’Ambiente, Università di Cagliari, 09123 Cagliari, Italy;
| | - Alberto Piazza
- Dipartimento di Scienze Mediche, Scuola di Medicina, Università di Torino, 10124 Torino, Italy;
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| |
Collapse
|
18
|
Li H, Teng RM, Liu JX, Yang RY, Yang YZ, Lin SJ, Han MH, Liu JY, Zhuang J. Identification and Analysis of Genes Involved in Auxin, Abscisic Acid, Gibberellin, and Brassinosteroid Metabolisms Under Drought Stress in Tender Shoots of Tea Plants. DNA Cell Biol 2019; 38:1292-1302. [DOI: 10.1089/dna.2019.4896] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruo-Yan Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Zhuo Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shi-Jia Lin
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Miao-Hua Han
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing-Yu Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Investigation of the Complete Sequence of HAV1B Isolated in Ahvaz City, Iran. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.83965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
SikanderAzam S, Ahmad S, Navid A, Sajid NUA, Ahmad I, Wadood A. Implications of sequence conservation patterns of serpin B family leading to structural and functional importance. GENE REPORTS 2018; 12:30-38. [DOI: 10.1016/j.genrep.2018.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
22
|
Abstract
: Because HIV is a fast-evolving virus, HIV genomic sequences of several individuals can be used to investigate whether they belong to a transmission network. Since the infamous 'Florida dentist case' in the beginning of the 1990s, phylogenetic analyses has been recurrently used in court settings as a forensic tool in HIV transmission investigations, for example cases where one or more complainants allege that a defendant has unlawfully infected them with HIV. Such cases can arise both in the context of HIV-specific criminal laws - in countries where transmission of HIV infection is specifically criminalized - or in the context of general laws, for example, by applying physical or sexual assault laws to HIV-related cases. Although phylogenetic analysis as a forensic technique for HIV transmission investigations has become common in several countries, the methodologies have not yet been standardized, sometimes giving rise to unwarranted conclusions. In this literature review, we revisit HIV court case investigations published in the scientific literature, as well as the methodological aspects important for the application and standardization of phylogenetic analyses methods as a forensic tool. Phylogenetic methodologies are improving quickly, such that more recently, phylogenetic relatedness, directionality of transmission and timing of nodes in the tree are used to assess whether the phylogenetic transmission analysis is consistent with or contradicting the charges. We find that there has been a lack of consistency between methods used in court case investigations and that it is essential to define guidelines to be used by phylogenetic forensic experts in HIV transmission cases in court.
Collapse
|
23
|
Hajjej A, Almawi WY, Arnaiz-Villena A, Hattab L, Hmida S. The genetic heterogeneity of Arab populations as inferred from HLA genes. PLoS One 2018. [PMID: 29522542 PMCID: PMC5844529 DOI: 10.1371/journal.pone.0192269] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This is the first genetic anthropology study on Arabs in MENA (Middle East and North Africa) region. The present meta-analysis included 100 populations from 36 Arab and non-Arab communities, comprising 16,006 individuals, and evaluates the genetic profile of Arabs using HLA class I (A, B) and class II (DRB1, DQB1) genes. A total of 56 Arab populations comprising 10,283 individuals were selected from several databases, and were compared with 44 Mediterranean, Asian, and sub-Saharan populations. The most frequent alleles in Arabs are A*01, A*02, B*35, B*51, DRB1*03:01, DRB1*07:01, DQB1*02:01, and DQB1*03:01, while DRB1*03:01-DQB1*02:01 and DRB1*07:01-DQB1*02:02 are the most frequent class II haplotypes. Dendrograms, correspondence analyses, genetic distances, and haplotype analysis indicate that Arabs could be stratified into four groups. The first consists of North Africans (Algerians, Tunisians, Moroccans, and Libyans), and the first Arabian Peninsula cluster (Saudis, Kuwaitis, and Yemenis), who appear to be related to Western Mediterraneans, including Iberians; this might be explained for a massive migration into these areas when Sahara underwent a relatively rapid desiccation, starting about 10,000 years BC. The second includes Levantine Arabs (Palestinians, Jordanians, Lebanese, and Syrians), along with Iraqi and Egyptians, who are related to Eastern Mediterraneans. The third comprises Sudanese and Comorians, who tend to cluster with Sub-Saharans. The fourth comprises the second Arabian Peninsula cluster, made up of Omanis, Emiratis, and Bahrainis. It is noteworthy that the two large minorities (Berbers and Kurds) are indigenous (autochthonous), and are not genetically different from "host" and neighboring populations. In conclusion, this study confirmed high genetic heterogeneity among present-day Arabs, and especially those of the Arabian Peninsula.
Collapse
Affiliation(s)
- Abdelhafidh Hajjej
- Department of Immunogenetics, National Blood Transfusion Center, Tunis, Tunisia
- * E-mail:
| | - Wassim Y. Almawi
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Antonio Arnaiz-Villena
- Department of Immunology, University Complutense, School of Medicine, Madrid Regional Blood Center, Madrid, Spain
| | - Lasmar Hattab
- Department of Medical Analysis, Hospital of Gabes (Ghannouch), Gabes, Tunisia
| | - Slama Hmida
- Department of Immunogenetics, National Blood Transfusion Center, Tunis, Tunisia
| |
Collapse
|
24
|
Xia X. Topological Bias in Distance-Based Phylogenetic Methods: Problems with Over- and Underestimated Genetic Distances. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
I show several types of topological biases in distance-based methods that use the least-squares method to evaluate branch lengths and the minimum evolution (ME) or the Fitch-Margoliash (FM) criterion to choose the best tree. For a 6-species tree, there are two tree shapes, one with three cherries (a cherry is a pair of adjacent leaves descending from the most recent common ancestor), and the other with two. When genetic distances are underestimated, the 3-cherry tree shape is favored with either the ME or FM criterion. When the genetic distances are overestimated, the ME criterion favors the 2-cherry tree, but the direction of bias with the FM criterion depends on whether negative branches are allowed, i.e. allowing negative branches favors the 3-cherry tree shape but disallowing negative branches favors the 2-cherry tree shape. The extent of the bias is explored by computer simulation of sequence evolution.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Abstract
MySSP is a new program for the simulation of DNA sequence evolution across a phylogenetic tree. Although many programs are available for sequence simulation, MySSP is unique in its inclusion of indels, flexibility in allowing for non-stationary patterns, and output of ancestral sequences. Some of these features can individually be found in existing programs, but have not all have been previously available in a single package.
Collapse
|
26
|
A comparative study on the characterization of hepatitis B virus quasispecies by clone-based sequencing and third-generation sequencing. Emerg Microbes Infect 2017; 6:e100. [PMID: 29116219 PMCID: PMC5717089 DOI: 10.1038/emi.2017.88] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) has a high mutation rate due to the extremely high replication rate and the proofreading deficiency during reverse transcription. The generated variants with genetic heterogeneity are described as viral quasispecies (QS). Clone-based sequencing (CBS) is thought to be the ‘gold standard’ for assessing QS complexity and diversity of HBV, but an important issue about CBS is cost-effectiveness and laborious. In this study, we investigated the utility of the third-generation sequencing (TGS) DNA sequencing to characterize genetic heterogeneity of HBV QS and assessed the possible contribution of TGS technology in HBV QS studies. Parallel experiments including 3 control samples, which consisted of HBV full gene genotype B and genotype C plasmids, and 10 patients samples were performed by using CBS and TGS to analyze HBV whole-genome QS. Characterization of QS heterogeneity was conducted by using comprehensive statistical analysis. The results showed that TGS had a high consistency with CBS when measuring the complexity and diversity of QS. In addition, to detect rare variants, there were strong advantages conferred by TGS. In summary, TGS was considered to be practicable in HBV QS studies and it might have a relevant role in the clinical management of HBV infection in the future.
Collapse
|
27
|
Duan W, Ren J, Li Y, Liu T, Song X, Chen Z, Huang Z, Hou X, Li Y. Conservation and Expression Patterns Divergence of Ascorbic Acid d-mannose/l-galactose Pathway Genes in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2016; 7:778. [PMID: 27313597 PMCID: PMC4889602 DOI: 10.3389/fpls.2016.00778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/20/2016] [Indexed: 05/25/2023]
Abstract
Ascorbic acid (AsA) participates in diverse biological processes, is regulated by multiple factors and is a potent antioxidant and cellular reductant. The D-Mannose/L-Galactose pathway is a major plant AsA biosynthetic pathway that is highly connected within biosynthetic networks, and generally conserved across plants. Previous work has shown that, although most genes of this pathway are expressed under standard growth conditions in Brassica rapa, some paralogs of these genes are not. We hypothesize that regulatory evolution in duplicate AsA pathway genes has occurred as an adaptation to environmental stressors, and that gene retention has been influenced by polyploidation events in Brassicas. To test these hypotheses, we explored the conservation of these genes in Brassicas and their expression patterns divergence in B. rapa. Similar retention and a high degree of gene sequence similarity were identified in B. rapa (A genome), B. oleracea (C genome) and B. napus (AC genome). However, the number of genes that encode the same type of enzymes varied among the three plant species. With the exception of GMP, which has nine genes, there were one to four genes that encoded the other enzymes. Moreover, we found that expression patterns divergence widely exists among these genes. (i) VTC2 and VTC5 are paralogous genes, but only VTC5 is influenced by FLC. (ii) Under light treatment, PMI1 co-regulates the AsA pool size with other D-Man/L-Gal pathway genes, whereas PMI2 is regulated only by darkness. (iii) Under NaCl, Cu(2+), MeJA and wounding stresses, most of the paralogs exhibit different expression patterns. Additionally, GME and GPP are the key regulatory enzymes that limit AsA biosynthesis in response to these treatments. In conclusion, our data support that the conservative and divergent expression patterns of D-Man/L-Gal pathway genes not only avoid AsA biosynthesis network instability but also allow B. rapa to better adapt to complex environments.
Collapse
Affiliation(s)
- Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural UniversityNanjing, China
| | - Jun Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural UniversityNanjing, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural UniversityNanjing, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural UniversityNanjing, China
| | - Xiaoming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural UniversityNanjing, China
- Center of Genomics and Computational Biology, College of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Zhongwen Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural UniversityNanjing, China
| | - Zhinan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural UniversityNanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural UniversityNanjing, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
28
|
Huang HH. An ensemble distance measure of k-mer and Natural Vector for the phylogenetic analysis of multiple-segmented viruses. J Theor Biol 2016; 398:136-44. [DOI: 10.1016/j.jtbi.2016.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 11/29/2022]
|
29
|
Beutin L, Delannoy S, Fach P. Genetic Analysis and Detection of fliC H1 and fliC H12 Genes Coding for Serologically Closely Related Flagellar Antigens in Human and Animal Pathogenic Escherichia coli. Front Microbiol 2016; 7:135. [PMID: 26913025 PMCID: PMC4753304 DOI: 10.3389/fmicb.2016.00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/25/2016] [Indexed: 01/29/2023] Open
Abstract
The E. coli flagellar types H1 and H12 show a high serological cross-reactivity and molecular serotyping appears an advantageous method to establish a clear discrimination between these flagellar types. Analysis of fliCH1 and fliCH12 gene sequences showed that they were 97.5% identical at the nucleotide level. Because of this high degree of homology we developed a two-step real-time PCR detection procedure for reliable discrimination of H1 and H12 flagellar types in E. coli. In the first step, a real-time PCR assay for common detection of both fliCH1 and fliCH12 genes is used, followed in a second step by real-time PCR assays for specific detection of fliCH1 and fliCH12, respectively. The real-time PCR for common detection of fliCH1 and fliCH12 demonstrated 100% sensitivity and specificity as it reacted with all tested E. coli H1 and H12 strains and not with any of the reference strains encoding all the other 51 flagellar antigens. The fliCH1 and fliCH12 gene specific assays detected all E. coli H1 and all E. coli H12 strains, respectively (100% sensitivity). However, both assays showed cross-reactions with some flagellar type reference strains different from H1 and H12. The real-time PCR assays developed in this study can be used in combination for the detection and identification of E. coli H1 and H12 strains isolated from different sources.
Collapse
Affiliation(s)
- Lothar Beutin
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Sabine Delannoy
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Maisons-Alfort, France
| | - Patrick Fach
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Maisons-Alfort, France
| |
Collapse
|
30
|
Reassessment of Species Diversity of the Subfamily Denticollinae (Coleoptera: Elateridae) through DNA Barcoding. PLoS One 2016; 11:e0148602. [PMID: 26848744 PMCID: PMC4744053 DOI: 10.1371/journal.pone.0148602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
The subfamily Denticollinae is a taxonomically diverse group in the family Elateridae. Denticollinae includes many morphologically similar species and crop pests, as well as many undescribed species at each local fauna. To construct a rapid and reliable identification system for this subfamily, the effectiveness of molecular species identification was assessed based on 421 cytochrome c oxidase subunit I (COI) sequences of 84 morphologically identified species. Among the 84 morphospecies, molecular species identification of 60 species (71.4%) was consistent with their morphological identifications. Six cryptic and/or pseudocryptic species with large genetic divergence (>5%) were confirmed by their sympatric or allopatric distributions. However, 18 species, including a subspecies, had ambiguous genetic distances and shared overlapping intra- and interspecific genetic distances (range: 2.12%–3.67%) suggesting incomplete lineage sorting, introgression of mitochondrial genome, or affection by endosymbionts, such as Wolbachia infection, between species and simple genetic variation within species. In this study, we propose a conservative threshold of 3.6% for convenient molecular operational taxonomic unit (MOTU) identification in the subfamily Denticollinae based on the results of pairwise genetic distances analyses using neighbor-joining, mothur, Automatic Barcode Gap Discovery analysis, and tree-based species delimitation by Poisson Tree Processes analysis. Using the 3.6% threshold, we identified 87 MOTUs and found 8 MOTUs in the interval between 2.5% to 3.5%. Evaluation of MOTUs identified in this range requires integrative species delimitation, including review of morphological and ecological differences as well as sensitive genetic markers. From this study, we confirmed that COI sequence is useful for reassessing species diversity for polymorphic and polytypic species occurring in sympatric and allopatric distributions, and for a single species having an extensively large habitat.
Collapse
|
31
|
Nguyen HT, Lee DK, Lee WJ, Lee G, Yoon SJ, Shin BK, Nguyen MD, Park JH, Lee J, Kwon SW. UPLC-QTOFMS based metabolomics followed by stepwise partial least square-discriminant analysis (PLS-DA) explore the possible relation between the variations in secondary metabolites and the phylogenetic divergences of the genus Panax. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1012-1013:61-8. [DOI: 10.1016/j.jchromb.2016.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/27/2015] [Accepted: 01/02/2016] [Indexed: 10/24/2022]
|
32
|
Eisenhardt BD. Small heat shock proteins: recent developments. Biomol Concepts 2015; 4:583-95. [PMID: 25436758 DOI: 10.1515/bmc-2013-0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
Small heat shock proteins (sHSPs) are abundantly present in many different organisms at elevated temperatures. Members of the subgroup of alpha crystallin domain (ACD)-type sHSPs belong to the large family of protein chaperones. They bind non-native proteins in an ATP-independent manner, thereby holding the incorporated clients soluble for subsequent refolding by other molecular chaperoning systems. sHSPs do not actively refold incorporated peptides therefore they are sometimes referred to as holdases. Varying numbers of sHSPs have been documented in the different domains of life and dependent on the analyzed organism. Generally, diverse sHSPs possess more sequence similarities in the conserved ACD, whereas the N- and C-terminal extensions are less conserved. Despite their designation as sHSPs, they are not solely present during heat stress. sHSPs presumably help to protect cells under various stresses, but they were also found during development, e.g., in embryonic development of higher plants which is associated with ongoing seed desiccation. The functional and physiological relevance of several different sHSPs in one organism remains still unclear, especially in plants where several highly similar sHSPs are present in the same compartment. The wide range of biotic and abiotic stresses that induce the expression of multiple sHSP genes makes it challenging to define the physiological relevance of each of these versatile proteins.
Collapse
|
33
|
Filipski A, Tamura K, Billing-Ross P, Murillo O, Kumar S. Phylogenetic placement of metagenomic reads using the minimum evolution principle. BMC Genomics 2015; 16 Suppl 1:S13. [PMID: 25923672 PMCID: PMC4315155 DOI: 10.1186/1471-2164-16-s1-s13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background A central problem of computational metagenomics is determining the correct placement into an existing phylogenetic tree of individual reads (nucleotide sequences of varying lengths, ranging from hundreds to thousands of bases) obtained using next-generation sequencing of DNA samples from a mixture of known and unknown species. Correct placement allows us to easily identify or classify the sequences in the sample as to taxonomic position or function. Results Here we propose a novel method (PhyClass), based on the Minimum Evolution (ME) phylogenetic inference criterion, for determining the appropriate phylogenetic position of each read. Without using heuristics, the new approach efficiently finds the optimal placement of the unknown read in a reference phylogenetic tree given a sequence alignment for the taxa in the tree. In short, the total resulting branch length for the tree is computed for every possible placement of the unknown read and the placement that gives the smallest value for this total is the best (optimal) choice. By taking advantage of computational efficiencies and mathematical formulations, we are able to find the true optimal ME placement for each read in the phylogenetic tree. Using computer simulations, we assessed the accuracy of the new approach for different read lengths over a variety of data sets and phylogenetic trees. We found the accuracy of the new method to be good and comparable to existing Maximum Likelihood (ML) approaches. Conclusions In particular, we found that the consensus assignments based on ME and ML approaches are more correct than either method individually. This is true even when the statistical support for read assignments was low, which is inevitable given that individual reads are often short and come from only one gene.
Collapse
|
34
|
Juhász Z, Fehér T, Bárány G, Zalán A, Németh E, Pádár Z, Pamjav H. New clustering methods for population comparison on paternal lineages. Mol Genet Genomics 2014; 290:767-84. [PMID: 25388803 DOI: 10.1007/s00438-014-0949-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
The goal of this study is to show two new clustering and visualising techniques developed to find the most typical clusters of 18-dimensional Y chromosomal haplogroup frequency distributions of 90 Western Eurasian populations. The first technique called "self-organizing cloud (SOC)" is a vector-based self-learning method derived from the Self Organising Map and non-metric Multidimensional Scaling algorithms. The second technique is a new probabilistic method called the "maximal relation probability" (MRP) algorithm, based on a probability function having its local maximal values just in the condensation centres of the input data. This function is calculated immediately from the distance matrix of the data and can be interpreted as the probability that a given element of the database has a real genetic relation with at least one of the remaining elements. We tested these two new methods by comparing their results to both each other and the k-medoids algorithm. By means of these new algorithms, we determined 10 clusters of populations based on the similarity of haplogroup composition. The results obtained represented a genetically, geographically and historically well-interpretable picture of 10 genetic clusters of populations mirroring the early spread of populations from the Fertile Crescent to the Caucasus, Central Asia, Arabia and Southeast Europe. The results show that a parallel clustering of populations using SOC and MRP methods can be an efficient tool for studying the demographic history of populations sharing common genetic footprints.
Collapse
Affiliation(s)
- Z Juhász
- Department of Complex Systems, Research Centre for Natural Sciences of the HAS, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
35
|
Phylogenetic investigation of human FGFR-bearing paralogons favors piecemeal duplication theory of vertebrate genome evolution. Mol Phylogenet Evol 2014; 81:49-60. [PMID: 25245952 DOI: 10.1016/j.ympev.2014.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Understanding the genetic mechanisms underlying the organismal complexity and origin of novelties during vertebrate history is one of the central goals of evolutionary biology. Ohno (1970) was the first to postulate that whole genome duplications (WGD) have played a vital role in the evolution of new gene functions: permitting an increase in morphological, physiological and anatomical complexity during early vertebrate history. RESULTS Here, we analyze the evolutionary history of human FGFR-bearing paralogon (human autosome 4/5/8/10) by the phylogenetic analysis of multigene families with triplicate and quadruplicate distribution on these chromosomes. Our results categorized the histories of 21 families into discrete co-duplicated groups. Genes of a particular co-duplicated group exhibit identical evolutionary history and have duplicated in concert with each other, whereas genes belonging to different groups have dissimilar histories and have not duplicated concurrently. CONCLUSION Taken together with our previously published data, we submit that there is sufficient empirical evidence to disprove the 1R/2R hypothesis and to support the general prediction that vertebrate genome evolved by relatively small-scale, regional duplication events that spread across the history of life.
Collapse
|
36
|
Genetic differences in the rat lungworm, Angiostrongylus cantonensis (Nematoda: Angiostrongylidae), in Thailand. J Helminthol 2014; 89:545-51. [DOI: 10.1017/s0022149x14000388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis study surveyed the genetic differences among Angiostrongylus cantonensis (A. cantonensis) using the mitochondrial cytochrome b (cytb) gene. Partial cytb sequences were determined for 91 worms from eight locations in Thailand. Using morphological techniques, the nematodes were found to be A. cantonensis. Phylogenetic analysis found two main clades, which were subdivided into four subclades (clusters). Haplotype network analysis showed that 11 distinct cytb haplotypes were also present in four groups of A. cantonensis. There was no observable relationship between the genetic differentiation of gene flow and geographical distance. This low genetic variation and geographical distribution of A. cantonensis in each location indicates a founder effect, which may have resulted from multiple independent origins, and suggests that haplotypes migrated from endemic areas via human-related activities.
Collapse
|
37
|
K-mer natural vector and its application to the phylogenetic analysis of genetic sequences. Gene 2014; 546:25-34. [PMID: 24858075 DOI: 10.1016/j.gene.2014.05.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/04/2014] [Accepted: 05/20/2014] [Indexed: 11/21/2022]
Abstract
Based on the well-known k-mer model, we propose a k-mer natural vector model for representing a genetic sequence based on the numbers and distributions of k-mers in the sequence. We show that there exists a one-to-one correspondence between a genetic sequence and its associated k-mer natural vector. The k-mer natural vector method can be easily and quickly used to perform phylogenetic analysis of genetic sequences without requiring evolutionary models or human intervention. Whole or partial genomes can be handled more effective with our proposed method. It is applied to the phylogenetic analysis of genetic sequences, and the obtaining results fully demonstrate that the k-mer natural vector method is a very powerful tool for analysing and annotating genetic sequences and determining evolutionary relationships both in terms of accuracy and efficiency.
Collapse
|
38
|
Towards a better understanding of the novel avian-origin H7N9 influenza A virus in China. Sci Rep 2014; 3:2318. [PMID: 23897131 PMCID: PMC3727058 DOI: 10.1038/srep02318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/15/2013] [Indexed: 01/02/2023] Open
Abstract
Recently, a highly dangerous bird flu has infected over 130 patients in China, and the outbreak was attributed to a novel avian-origin H7N9 virus. Here, we performed a systematic analysis of the virus. We clarified the controversial viewpoint on neuraminidase (NA) origin and confirmed it was reassorted from Korean wild birds with higher confidence, whereas common ancestors of pathogenic H7N9 genes existed only one or two years ago. Further analysis of NA sequences suggested that most variations are not drug resistant and current drugs are still effective for the therapy. We also identified a potentially optimal 9-mer epitope, which can be helpful for vaccine development. The interaction of hemagglutinin (HA) and human receptor analog was confirmed by structural modeling, while NA might influence cellular processes through a PDZ-binding motif. A simplified virus infection model was proposed. Taken together, our studies provide a better understanding of the newly reassorted H7N9 viruses.
Collapse
|
39
|
Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.). BMC Genomics 2013; 14:721. [PMID: 24144082 PMCID: PMC3816612 DOI: 10.1186/1471-2164-14-721] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radish (Raphanus sativus L., 2n = 2× = 18) is an economically important vegetable crop worldwide. A large collection of radish expressed sequence tags (ESTs) has been generated but remains largely uncharacterized. RESULTS In this study, approximately 315,000 ESTs derived from 22 Raphanus cDNA libraries from 18 different genotypes were analyzed, for the purpose of gene and marker discovery and to evaluate large-scale genome duplication and phylogenetic relationships among Raphanus spp. The ESTs were assembled into 85,083 unigenes, of which 90%, 65%, 89% and 89% had homologous sequences in the GenBank nr, SwissProt, TrEMBL and Arabidopsis protein databases, respectively. A total of 66,194 (78%) could be assigned at least one gene ontology (GO) term. Comparative analysis identified 5,595 gene families unique to radish that were significantly enriched with genes related to small molecule metabolism, as well as 12,899 specific to the Brassicaceae that were enriched with genes related to seed oil body biogenesis and responses to phytohormones. The analysis further indicated that the divergence of radish and Brassica rapa occurred approximately 8.9-14.9 million years ago (MYA), following a whole-genome duplication event (12.8-21.4 MYA) in their common ancestor. An additional whole-genome duplication event in radish occurred at 5.1-8.4 MYA, after its divergence from B. rapa. A total of 13,570 simple sequence repeats (SSRs) and 28,758 high-quality single nucleotide polymorphisms (SNPs) were also identified. Using a subset of SNPs, the phylogenetic relationships of eight different accessions of Raphanus was inferred. CONCLUSION Comprehensive analysis of radish ESTs provided new insights into radish genome evolution and the phylogenetic relationships of different radish accessions. Moreover, the radish EST sequences and the associated SSR and SNP markers described in this study represent a valuable resource for radish functional genomics studies and breeding.
Collapse
|
40
|
Elucidating the origin of the ExbBD components of the TonB system through Bayesian inference and maximum-likelihood phylogenies. Mol Phylogenet Evol 2013; 69:674-86. [PMID: 23891663 DOI: 10.1016/j.ympev.2013.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 01/03/2023]
Abstract
Uptake of ferric siderophores, vitamin B12, and other molecules in gram-negative bacteria is mediated by a multi-protein complex known as the TonB system. The ExbB and ExbD protein components of the TonB system play key energizing roles and are homologous with the flagellar motor proteins MotA and MotB. Here, the phylogenetic relationships of ExbBD and MotAB were investigated using Bayesian inference and the maximum-likelihood method. Phylogenetic trees of these proteins suggest that they are separated into distinct monophyletic groups and have originated from a common ancestral system. Several horizontal gene transfer events for ExbB-ExbD are also inferred, and a model for the evolution of the TonB system is proposed.
Collapse
|
41
|
Melatonin receptor genes in vertebrates. Int J Mol Sci 2013; 14:11208-23. [PMID: 23712359 PMCID: PMC3709728 DOI: 10.3390/ijms140611208] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/28/2013] [Accepted: 05/20/2013] [Indexed: 01/06/2023] Open
Abstract
Melatonin receptors are members of the G protein-coupled receptor (GPCR) family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A) and MT2 (or Mel1b or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C), has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.
Collapse
|
42
|
Nozaki H, Yang Y, Maruyama S, Suzaki T. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes. PLoS One 2012; 7:e50827. [PMID: 23226396 PMCID: PMC3511332 DOI: 10.1371/journal.pone.0050827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/25/2012] [Indexed: 01/09/2023] Open
Abstract
Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs), intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates]) was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA), disruption of the monophyly between haptophytes and SAR (or SA) in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA) clade in the absence of intracellular endoparasite/ciliate OTUs.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
43
|
Lambret-Frotté J, Perini FA, de Moraes Russo CA. Efficiency of nuclear and mitochondrial markers recovering and supporting known amniote groups. Evol Bioinform Online 2012; 8:463-73. [PMID: 23032608 PMCID: PMC3422098 DOI: 10.4137/ebo.s9656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We have analysed the efficiency of all mitochondrial protein coding genes and six nuclear markers (Adora3, Adrb2, Bdnf, Irbp, Rag2 and Vwf) in reconstructing and statistically supporting known amniote groups (murines, rodents, primates, eutherians, metatherians, therians). The efficiencies of maximum likelihood, Bayesian inference, maximum parsimony, neighbor-joining and UPGMA were also evaluated, by assessing the number of correct and incorrect recovered groupings. In addition, we have compared support values using the conservative bootstrap test and the Bayesian posterior probabilities. First, no correlation was observed between gene size and marker efficiency in recovering or supporting correct nodes. As expected, tree-building methods performed similarly, even UPGMA that, in some cases, outperformed other most extensively used methods. Bayesian posterior probabilities tend to show much higher support values than the conservative bootstrap test, for correct and incorrect nodes. Our results also suggest that nuclear markers do not necessarily show a better performance than mitochondrial genes. The so-called dependency among mitochondrial markers was not observed comparing genome performances. Finally, the amniote groups with lowest recovery rates were therians and rodents, despite the morphological support for their monophyletic status. We suggest that, regardless of the tree-building method, a few carefully selected genes are able to unfold a detailed and robust scenario of phylogenetic hypotheses, particularly if taxon sampling is increased.
Collapse
Affiliation(s)
- Julia Lambret-Frotté
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro
| | | | | |
Collapse
|
44
|
Du XH, Zhao Q, Yang ZL, Hansen K, Taskin H, Büyükalaca S, Dewsbury D, Moncalvo JM, Douhan GW, Robert VARG, Crous PW, Rehner SA, Rooney AP, Sink S, O'Donnell K. How well do ITS rDNA sequences differentiate species of true morels (Morchella)? Mycologia 2012; 104:1351-68. [PMID: 22802394 DOI: 10.3852/12-056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Arguably more mycophiles hunt true morels (Morchella) during their brief fruiting season each spring in the northern hemisphere than any other wild edible fungus. Concerns about overharvesting by individual collectors and commercial enterprises make it essential that science-based management practices and conservation policies are developed to ensure the sustainability of commercial harvests and to protect and preserve morel species diversity. Therefore, the primary objectives of the present study were to: (i) investigate the utility of the ITS rDNA locus for identifying Morchella species, using phylogenetic species previously inferred from multilocus DNA sequence data as a reference; and (ii) clarify insufficiently identified sequences and determine whether the named sequences in GenBank were identified correctly. To this end, we generated 553 Morchella ITS rDNA sequences and downloaded 312 additional ones generated by other researchers from GenBank using emerencia and analyzed them phylogenetically. Three major findings emerged: (i) ITS rDNA sequences were useful in identifying 48/62 (77.4%) of the known phylospecies; however, they failed to identify 12 of the 22 species within the species-rich Elata Subclade and two closely related species in the Esculenta Clade; (ii) at least 66% of the named Morchella sequences in GenBank are misidentified; and (iii) ITS rDNA sequences of up to six putatively novel Morchella species were represented in GenBank. Recognizing the need for a dedicated Web-accessible reference database to facilitate the rapid identification of known and novel species, we constructed Morchella MLST (http://www.cbs.knaw.nl/morchella/), which can be queried with ITS rDNA sequences and those of the four other genes used in our prior multilocus molecular systematic studies of this charismatic genus.
Collapse
Affiliation(s)
- Xi-Hui Du
- Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abbasi AA, Hanif H. Phylogenetic history of paralogous gene quartets on human chromosomes 1, 2, 8 and 20 provides no evidence in favor of the vertebrate octoploidy hypothesis. Mol Phylogenet Evol 2012; 63:922-7. [PMID: 22425707 DOI: 10.1016/j.ympev.2012.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/08/2012] [Accepted: 02/27/2012] [Indexed: 01/24/2023]
Abstract
Fourfold paralogy regions in the human genome have been considered historical remnants of whole-genome duplication events predicted to have occurred early in vertebrate evolution. Taking advantage of the well-annotated and high-quality human genomic sequence map as well as the ever-increasing accessibility of large-scale genomic sequence data from a diverse range of animal species, we investigated the prediction that the ancestral vertebrate genome was shaped by two rapid rounds of whole-genome duplication within a period of 10 million years. Both the map self-comparison approach and a phylogenetic analysis revealed that gene families identified as tetralogous on human chromosomes 1/2/8/20 arose by small-scale duplication events that occurred at widely different time points in animal evolution. Furthermore, the data discount the likelihood that tree topologies of the form ((A,B)(C,D)) are best explained by the octoploidy hypothesis. We instead propose that such symmetrical tree patterns are also consistent with local duplications and rearrangement events.
Collapse
Affiliation(s)
- Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | | |
Collapse
|
46
|
Castro-Nallar E, Crandall KA, Pérez-Losada M. Genetic diversity and molecular epidemiology of HIV transmission. Future Virol 2012. [DOI: 10.2217/fvl.12.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high genetic diversity of HIV is one of its most significant features, as it has consequences in global distribution, vaccine design, therapy success, disease progression, transmissibility and viral load testing. Studying HIV diversity helps to understand its origins, migration patterns, current distribution and transmission events. New advances in sequencing technologies based on the parallel acquisition of data are now used to characterize within-host and population processes in depth. Additionally, we have seen similar advances in statistical methods designed to model the past history of lineages (the phylodynamic framework) to ultimately gain better insights into the evolutionary history of HIV. We can, for example, estimate population size changes, lineage dispersion over geographic areas and epidemiological parameters solely from sequence data. In this article, we review some of the evolutionary approaches used to study transmission patterns and processes in HIV and the insights gained from such studies.
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA
| | - Keith A Crandall
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA
| | - Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
47
|
HAN TAEMAN, KANG TAEHWA, JEONG JONGCHEL, LEE YOUNGBO, CHUNG HYOJUNG, PARK SANGWOOK, LEE SEUNGHWAN, KIM KIGYOUNG, PARK HAECHUL. Pseudocryptic speciation of Chrysochroa fulgidissima (Coleoptera: Buprestidae) with two new species from Korea, China and Vietnam. Zool J Linn Soc 2012. [DOI: 10.1111/j.1096-3642.2011.00763.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Cai B, Yang X, Tuskan GA, Cheng ZM. MicroSyn: a user friendly tool for detection of microsynteny in a gene family. BMC Bioinformatics 2011; 12:79. [PMID: 21418570 PMCID: PMC3072343 DOI: 10.1186/1471-2105-12-79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 03/18/2011] [Indexed: 12/04/2022] Open
Abstract
Background The traditional phylogeny analysis within gene family is mainly based on DNA or amino acid sequence homologies. However, these phylogenetic tree analyses are not suitable for those "non-traditional" gene families like microRNA with very short sequences. For the normal protein-coding gene families, low bootstrap values are frequently encountered in some nodes, suggesting low confidence or likely inappropriateness of placement of those members in those nodes. Results We introduce MicroSyn software as a means of detecting microsynteny in adjacent genomic regions surrounding genes in gene families. MicroSyn searches for conserved, flanking colinear homologous gene pairs between two genomic fragments to determine the relationship between two members in a gene family. The colinearity of homologous pairs is controlled by a statistical distance function. As a result, gene duplication history can be inferred from the output independent of gene sequences. MicroSyn was designed for both experienced and non-expert users with a user-friendly graphical-user interface. MicroSyn is available from: http://fcsb.njau.edu.cn/microsyn/. Conclusions Case studies of the microRNA167 genes in plants and Xyloglucan ndotransglycosylase/Hydrolase family in Populus trichocarpa were presented to show the utility of the software. The easy using of MicroSyn in these examples suggests that the software is an additional valuable means to address the problem intrinsic in the computational methods and sequence qualities themselves in gene family analysis.
Collapse
Affiliation(s)
- Bin Cai
- College of Horticulture, Nanjing Agricultural University, China
| | | | | | | |
Collapse
|
49
|
Falniowski A, Szarowska M, Grzmil P. DaphniolaRadoman, 1973 (Gastropoda: Hydrobiidae): shell biometry, mtDNA, and the Pliocene flooding. J NAT HIST 2010. [DOI: 10.1080/00222930701630733] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Albayrak A, Otu HH, Sezerman UO. Clustering of protein families into functional subtypes using Relative Complexity Measure with reduced amino acid alphabets. BMC Bioinformatics 2010; 11:428. [PMID: 20718947 PMCID: PMC2936399 DOI: 10.1186/1471-2105-11-428] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 08/18/2010] [Indexed: 11/30/2022] Open
Abstract
Background Phylogenetic analysis can be used to divide a protein family into subfamilies in the absence of experimental information. Most phylogenetic analysis methods utilize multiple alignment of sequences and are based on an evolutionary model. However, multiple alignment is not an automated procedure and requires human intervention to maintain alignment integrity and to produce phylogenies consistent with the functional splits in underlying sequences. To address this problem, we propose to use the alignment-free Relative Complexity Measure (RCM) combined with reduced amino acid alphabets to cluster protein families into functional subtypes purely on sequence criteria. Comparison with an alignment-based approach was also carried out to test the quality of the clustering. Results We demonstrate the robustness of RCM with reduced alphabets in clustering of protein sequences into families in a simulated dataset and seven well-characterized protein datasets. On protein datasets, crotonases, mandelate racemases, nucleotidyl cyclases and glycoside hydrolase family 2 were clustered into subfamilies with 100% accuracy whereas acyl transferase domains, haloacid dehalogenases, and vicinal oxygen chelates could be assigned to subfamilies with 97.2%, 96.9% and 92.2% accuracies, respectively. Conclusions The overall combination of methods in this paper is useful for clustering protein families into subtypes based on solely protein sequence information. The method is also flexible and computationally fast because it does not require multiple alignment of sequences.
Collapse
Affiliation(s)
- Aydin Albayrak
- Biological Sciences and Bioengineering, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
| | | | | |
Collapse
|