1
|
Kondo T, Hosokawa Y, Ozawa R, Kasahara S. A cryptic promoter in the exon of HKR1 drives expression of a truncated form of Hkr1 in Saccharomyces cerevisiae. PLoS One 2024; 19:e0314016. [PMID: 39570974 PMCID: PMC11581313 DOI: 10.1371/journal.pone.0314016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Hansenula mrakii killer toxin resistant gene 1 (HKR1) is an intronless, single-exon gene that encodes Hkr1, the signaling mucin of the budding yeast Saccharomyces cerevisiae. HKR1 overexpression confers S. cerevisiae cells with resistance to the HM-1 killer toxin produced by the killer yeast Hansenula mrakii (currently known as Cyberlindnera mrakii). Hkr1 comprises multiple functional domains and participates in several signal transduction pathways, including the high-osmolarity glycerol (HOG) pathway, the cell wall integrity (CWI) mitogen-activated protein (MAP) kinase pathway, and the filamentation MAP kinase pathway; Hkr1 also controls bud-site selection. In this study, we identified a cryptic promoter in the HKR1 exon that regulates the transcription of a shorter transcript encoding a truncated form of Hkr1. This shorter protein still conferred resistance to the HM-1 killer toxin, suggesting that this cryptic promoter helps carry out Hkr1-mediated signal transduction efficiently by producing a specific Hkr1 domain with functions as a signaling messenger. Notably, reporter assays using the fluorescent protein gene mUkG1 and the β-galactosidase gene lacZ revealed that the transcriptional activity of this cryptic promoter was modulated by its upstream sequence within the single exon. Hkr1 thus differs from other signaling mucins, whose active C-terminal fragments are generated by post-translational processing, whereas the active C-terminal fragment of Hkr1 is generated by transcription from the exonic promoter. These findings describe a previously unknown example of functional diversification from a single gene, especially for a gene encoding a multidomain, multifunctional protein such as Hkr1.
Collapse
Affiliation(s)
- Toshihiro Kondo
- Food Microbiology Unit, Miyagi University School of Food Industrial Sciences, Sendai, Japan
| | - Yuna Hosokawa
- Food Microbiology Unit, Miyagi University School of Food Industrial Sciences, Sendai, Japan
| | - Ryotaro Ozawa
- Food Microbiology Unit, Miyagi University School of Food Industrial Sciences, Sendai, Japan
| | - Shin Kasahara
- Food Microbiology Unit, Miyagi University School of Food Industrial Sciences, Sendai, Japan
| |
Collapse
|
2
|
Chen S, Liu W, Xiong L, Tao Z, Zhao D. Tissue-specific silencing of integrated transgenes achieved through endogenous RNA interference in Caenorhabditis elegans. RNA Biol 2024; 21:1-10. [PMID: 38531838 PMCID: PMC10978027 DOI: 10.1080/15476286.2024.2332856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/22/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Transgene silencing is a common phenomenon observed in Caenorhabditis elegans, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of C. elegans, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of C. elegans. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed in vivo, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, mut-2 and mut-16, are significantly enriched in the intestine. Additionally, histone modification factors, such as met-2, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.
Collapse
Affiliation(s)
- Siyu Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Weihong Liu
- Intelligent Perception Lab, Hanwang Technology Co. Ltd, Beijing, China
| | - Lei Xiong
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiju Tao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Di Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
3
|
Nava S, Palma W, Wan X, Oh JY, Gharib S, Wang H, Revanna JS, Tan M, Zhang M, Liu J, Chen CH, Lee JS, Perry B, Sternberg PW. A cGAL-UAS bipartite expression toolkit for Caenorhabditis elegans sensory neurons. Proc Natl Acad Sci U S A 2023; 120:e2221680120. [PMID: 38096407 PMCID: PMC10743456 DOI: 10.1073/pnas.2221680120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/05/2023] [Indexed: 12/18/2023] Open
Abstract
Animals integrate sensory information from the environment and display various behaviors in response to external stimuli. In Caenorhabditis elegans hermaphrodites, 33 types of sensory neurons are responsible for chemosensation, olfaction, and mechanosensation. However, the functional roles of all sensory neurons have not been systematically studied due to the lack of facile genetic accessibility. A bipartite cGAL-UAS system has been previously developed to study tissue- or cell-specific functions in C. elegans. Here, we report a toolkit of new cGAL drivers that can facilitate the analysis of a vast majority of the 60 sensory neurons in C. elegans hermaphrodites. We generated 37 sensory neuronal cGAL drivers that drive cGAL expression by cell-specific regulatory sequences or intersection of two distinct regulatory regions with overlapping expression (split cGAL). Most cGAL-drivers exhibit expression in single types of cells. We also constructed 28 UAS effectors that allow expression of proteins to perturb or interrogate sensory neurons of choice. This cGAL-UAS sensory neuron toolkit provides a genetic platform to systematically study the functions of C. elegans sensory neurons.
Collapse
Affiliation(s)
- Stephanie Nava
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Wilber Palma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Xuan Wan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jun Young Oh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Shahla Gharib
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Han Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jasmin S. Revanna
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Minyi Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Mark Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jonathan Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Chun-Hao Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - James S. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Barbara Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
4
|
Gene Amplification and the Extrachromosomal Circular DNA. Genes (Basel) 2021; 12:genes12101533. [PMID: 34680928 PMCID: PMC8535887 DOI: 10.3390/genes12101533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Oncogene amplification is closely linked to the pathogenesis of a broad spectrum of human malignant tumors. The amplified genes localize either to the extrachromosomal circular DNA, which has been referred to as cytogenetically visible double minutes (DMs), or submicroscopic episome, or to the chromosomal homogeneously staining region (HSR). The extrachromosomal circle from a chromosome arm can initiate gene amplification, resulting in the formation of DMs or HSR, if it had a sequence element required for replication initiation (the replication initiation region/matrix attachment region; the IR/MAR), under a genetic background that permits gene amplification. In this article, the nature, intracellular behavior, generation, and contribution to cancer genome plasticity of such extrachromosomal circles are summarized and discussed by reviewing recent articles on these topics. Such studies are critical in the understanding and treating human cancer, and also for the production of recombinant proteins such as biopharmaceuticals by increasing the recombinant genes in the cells.
Collapse
|
5
|
Molecular cytogenetics in the study of repetitive sequences helping to understand the evolution of heterochromatin in Melipona (Hymenoptera, Meliponini). Genetica 2021; 149:55-62. [PMID: 33449238 DOI: 10.1007/s10709-020-00111-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
The eukaryote genome is enriched by different types of repetitive DNA sequences and is most abundant in heterochromatin regions. Historically, no function has been assigned to these sequences, which makes them the target of studies that have demonstrated their structural and functional importance in the genome. Despite having a constant chromosome number, the genus Melipona has species with wide variation in heterochromatin content, from 8 to 73%, which is an important feature to be investigated regarding its origin and evolution. In the present study, a repetitive DNA sequence of Melipona mondury was isolated by restriction enzyme digestion. This sequence was used to hybridize chromosomes of eight Melipona species that include representatives of the four subgenera and present divergent characteristics in relation to the heterochromatin content. Considering that rDNA localization has shown differences in Melipona, 16 species of this genus were analyzed with 18S rDNA probe. Our data suggest that heterochromatin growth occurred independently in the Michmelia and Melikerria subgenera, considering that the isolated repetitive DNA sequence was shared only by the Michmelia species. Amplification possibly occurred from the centromeric region, causing the displacement of the rDNA sites to the ends of the chromosomes. The repetitive DNA sequence used is a constituent of Michmelia heterochromatin, which that arose from the common ancestor of the species of this subgenus.
Collapse
|
6
|
Sae-Lee W, Scott LL, Brose L, Encarnacion AJ, Shi T, Kore P, Oyibo LO, Ye C, Rozmiarek SK, Pierce JT. APP-Induced Patterned Neurodegeneration Is Exacerbated by APOE4 in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:2851-2861. [PMID: 32580938 PMCID: PMC7407474 DOI: 10.1534/g3.120.401486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022]
Abstract
Genetic and epidemiological studies have found that variations in the amyloid precursor protein (APP) and the apoliopoprotein E (APOE) genes represent major modifiers of the progressive neurodegeneration in Alzheimer's disease (AD). An extra copy of or gain-of-function mutations in APP correlate with early onset AD. Compared to the other variants (APOE2 and APOE3), the ε4 allele of APOE (APOE4) hastens and exacerbates early and late onset forms of AD. Convenient in vivo models to study how APP and APOE4 interact at the cellular and molecular level to influence neurodegeneration are lacking. Here, we show that the nematode C. elegans can model important aspects of AD including age-related, patterned neurodegeneration that is exacerbated by APOE4 Specifically, we found that APOE4, but not APOE3, acts with APP to hasten and expand the pattern of cholinergic neurodegeneration caused by APP Molecular mechanisms underlying how APP and APOE4 synergize to kill some neurons while leaving others unaffected may be uncovered using this convenient worm model of neurodegeneration.
Collapse
Affiliation(s)
- Wisath Sae-Lee
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Luisa L Scott
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Lotti Brose
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Aliyah J Encarnacion
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Ted Shi
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Pragati Kore
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Lashaun O Oyibo
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Congxi Ye
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Susan K Rozmiarek
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Jonathan T Pierce
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| |
Collapse
|
7
|
Ogaki Y, Fukuma M, Shimizu N. Repeat induces not only gene silencing, but also gene activation in mammalian cells. PLoS One 2020; 15:e0235127. [PMID: 32579599 PMCID: PMC7313748 DOI: 10.1371/journal.pone.0235127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022] Open
Abstract
Repeat-induced gene silencing (RIGS) establishes the centromere structure, prevents the spread of transposons and silences transgenes, thereby limiting recombinant protein production. We previously isolated a sequence (B-3-31) that alleviates RIGS from the human genome. Here, we developed an assay system for evaluating the influence of repeat sequences on gene expression, based on in vitro ligation followed by our original gene amplification technology in animal cells. Using this assay, we found that the repeat of B-3-31, three core sequences of replication initiation regions (G5, C12, and D8) and two matrix attachment regions (AR1 and 32–3), activated the co-amplified plasmid-encoded d2EGFP gene in both human and hamster cell lines. This upregulation effect persisted for up to 82 days, which was confirmed to be repeat-induced, and was thus designated as a repeat-induced gene activation (RIGA). In clear contrast, the repeat of three bacterial sequences (lambda-phage, Amp, and ColE1) and three human retroposon sequences (Alu, 5’-untranslated region, and ORF1 of a long interspersed nuclear element) suppressed gene expression, thus reflecting RIGS. RIGS was CpG-independent. We suggest that RIGA might be associated with replication initiation. The discovery of RIGS and RIGA has implications for the repeat in mammalian genome, as well as practical value in recombinant production.
Collapse
Affiliation(s)
- Yusuke Ogaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Miki Fukuma
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
8
|
Gupta SD, Levey M, Schulze S, Karki S, Emmerling J, Streubel M, Gowik U, Paul Quick W, Westhoff P. The C 4 Ppc promoters of many C 4 grass species share a common regulatory mechanism for gene expression in the mesophyll cell. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:204-216. [PMID: 31529521 DOI: 10.1111/tpj.14532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
C4 photosynthetic plants have evolved from C3 ancestors and are characterized by differential expression of several hundred genes. Strict compartmentalization of key C4 enzymes either to mesophyll (M) or bundle sheath cells is considered a crucial step towards the evolution of C4 photosynthesis. In this study, we demonstrate that the 5'-flanking sequences of the C4 type phosphoenolpyruvate carboxylase (Ppc) gene from three C4 grass species could drive M-cell-specific expression of a reporter gene in rice. In addition to that, we identified about 450 bp (upstream of their transcription start site) of the analyzed C4 Ppc promoters contain all the essential regulatory elements for driving M-cell-specific expression in rice leaves. Importantly, four motifs of conserved nucleotide sequences (CNSs) were also determined, which are essential for the activity of the promoter. A putative interaction between the CNSs and an unknown upstream element(s) is required for driving M-cell-specific expression. This work identifies the evolutionary conservation of C4 Ppc regulatory mechanisms of multiple closely related C4 grass species.
Collapse
Affiliation(s)
- Shipan Das Gupta
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakahli, 3814, Bangladesh
| | - Myles Levey
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Stefanie Schulze
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Shanta Karki
- International Rice Research Institute, Los Banos, Laguna, 4031, Philippines
- National Citrus Development Program, Kirtipur, Kathmandu, Nepal
| | - Jan Emmerling
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Monika Streubel
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
- Department of Biology and Environmental Sciences, Carl Von Ossietzky University, D-26129, Oldenburg, Germany
| | - W Paul Quick
- International Rice Research Institute, Los Banos, Laguna, 4031, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences from Complex Traits towards Synthetic Modules, 40225 Duesseldorf and, 50923, Cologne, Germany
| |
Collapse
|
9
|
Rapid Integration of Multi-copy Transgenes Using Optogenetic Mutagenesis in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2018; 8:2091-2097. [PMID: 29691291 PMCID: PMC5982835 DOI: 10.1534/g3.118.200158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Stably transmitted transgenes are indispensable for labeling cellular components and manipulating cellular functions. In Caenorhabditis elegans, transgenes are generally generated as inheritable multi-copy extrachromosomal arrays, which can be stabilized in the genome through a mutagenesis-mediated integration process. Standard methods to integrate extrachromosomal arrays primarily use protocols involving ultraviolet light plus trimethylpsoralen or gamma- or X-ray irradiation, which are laborious and time-consuming. Here, we describe a one-step integration method, following germline-mutagenesis induced by mini Singlet Oxygen Generator (miniSOG). Upon blue light treatment, miniSOG tagged to histone (Histone-miniSOG) generates reactive oxygen species (ROS) and induces heritable mutations, including DNA double-stranded breaks. We demonstrate that we can bypass the need to first establish extrachromosomal transgenic lines by coupling microinjection of desired plasmids with blue light illumination on Histone-miniSOG worms to obtain integrants in the F3 progeny. We consistently obtained more than one integrant from 12 injected animals in two weeks. This optogenetic approach significantly reduces the amount of time and labor for transgene integration. Moreover, it enables to generate stably expressed transgenes that cause toxicity in animal growth.
Collapse
|
10
|
Ruiz-Ruano FJ, Castillo-Martínez J, Cabrero J, Gómez R, Camacho JPM, López-León MD. High-throughput analysis of satellite DNA in the grasshopper Pyrgomorpha conica reveals abundance of homologous and heterologous higher-order repeats. Chromosoma 2018; 127:323-340. [PMID: 29549528 DOI: 10.1007/s00412-018-0666-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/13/2018] [Accepted: 03/06/2018] [Indexed: 12/25/2022]
Abstract
Satellite DNA (satDNA) constitutes an important fraction of repetitive DNA in eukaryotic genomes, but it is barely known in most species. The high-throughput analysis of satDNA in the grasshopper Pyrgomorpha conica revealed 87 satDNA variants grouped into 76 different families, representing 9.4% of the genome. Fluorescent in situ hybridization (FISH) analysis of the 38 most abundant satDNA families revealed four different patterns of chromosome distribution. Homology search between the 76 satDNA families showed the existence of 15 superfamilies, each including two or more families, with the most abundant superfamily representing more than 80% of all satDNA found in this species. This also revealed the presence of two types of higher-order repeats (HORs), one showing internal homologous subrepeats, as conventional HORs, and an additional type showing non-homologous internal subrepeats, the latter arising by the combination of a given satDNA family with a non-annotated sequence, or with telomeric DNA. Interestingly, the heterologous subrepeats included in these HORs showed higher divergence within the HOR than outside it, suggesting that heterologous HORs show poor homogenization, in high contrast with conventional (homologous) HORs. Finally, heterologous HORs can show high differences in divergence between their constituent subrepeats, suggesting the possibility of regional homogenization.
Collapse
Affiliation(s)
- Francisco J Ruiz-Ruano
- Departamento de Genética. Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jesús Castillo-Martínez
- Departamento de Genética. Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain.,Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001, Valencia, Spain
| | - Josefa Cabrero
- Departamento de Genética. Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Ricardo Gómez
- Departamento de Ciencia y Tecnología Agroforestal, E.T.S. de Ingenieros Agrónomos, Universidad de Castilla La Mancha, 02071, Albacete, Spain
| | - Juan Pedro M Camacho
- Departamento de Genética. Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | |
Collapse
|
11
|
Si L, Xu H, Zhou X, Zhang Z, Tian Z, Wang Y, Wu Y, Zhang B, Niu Z, Zhang C, Fu G, Xiao S, Xia Q, Zhang L, Zhou D. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science 2016; 354:1170-1173. [DOI: 10.1126/science.aah5869] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023]
|
12
|
van den Oord EJCG, Clark SL, Xie LY, Shabalin AA, Dozmorov MG, Kumar G, Vladimirov VI, Magnusson PKE, Aberg KA. A Whole Methylome CpG-SNP Association Study of Psychosis in Blood and Brain Tissue. Schizophr Bull 2016; 42:1018-26. [PMID: 26656881 PMCID: PMC4903046 DOI: 10.1093/schbul/sbv182] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mutated CpG sites (CpG-SNPs) are potential hotspots for human diseases because in addition to the sequence variation they may show individual differences in DNA methylation. We performed methylome-wide association studies (MWAS) to test whether methylation differences at those sites were associated with schizophrenia. We assayed all common CpG-SNPs with methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) using DNA extracted from 1408 blood samples and 66 postmortem brain samples (BA10) of schizophrenia cases and controls. Seven CpG-SNPs passed our FDR threshold of 0.1 in the blood MWAS. Of the CpG-SNPs methylated in brain, 94% were also methylated in blood. This significantly exceeded the 46.2% overlap expected by chance (P-value < 1.0×10(-8)) and justified replicating findings from blood in brain tissue. CpG-SNP rs3796293 in IL1RAP replicated (P-value = .003) with the same direction of effects. This site was further validated through targeted bisulfite pyrosequencing in 736 independent case-control blood samples (P-value < 9.5×10(-4)). Our top result in the brain MWAS (P-value = 8.8×10(-7)) was CpG-SNP rs16872141 located in the potential promoter of ENC1. Overall, our results suggested that CpG-SNP methylation may reflect effects of environmental insults and can provide biomarkers in blood that could potentially improve disease management.
Collapse
Affiliation(s)
- Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA;
| | - Shaunna L Clark
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Lin Ying Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Andrey A Shabalin
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA
| | - Gaurav Kumar
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Vladimir I Vladimirov
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA; Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA; Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
13
|
Spencer S, Gugliotta A, Koenitzer J, Hauser H, Wirth D. Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation. J Biotechnol 2015; 195:15-29. [DOI: 10.1016/j.jbiotec.2014.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022]
|
14
|
Leisle L, Valiyaveetil F, Mehl RA, Ahern CA. Incorporation of Non-Canonical Amino Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 869:119-51. [PMID: 26381943 DOI: 10.1007/978-1-4939-2845-3_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this chapter we discuss the strengths, caveats and technical considerations of three approaches for reprogramming the chemical composition of selected amino acids within a membrane protein. In vivo nonsense suppression in the Xenopus laevis oocyte, evolved orthogonal tRNA and aminoacyl-tRNA synthetase pairs and protein ligation for biochemical production of semisynthetic proteins have been used successfully for ion channel and receptor studies. The level of difficulty for the application of each approach ranges from trivial to technically demanding, yet all have untapped potential in their application to membrane proteins.
Collapse
Affiliation(s)
- Lilia Leisle
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, 52246, Iowa City, IA, USA
| | - Francis Valiyaveetil
- Department of Physiology and Pharmacology, Oregon Health and Sciences University, 97239, Portland, OR, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University Corvallis, 97331, Corvallis, OR, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, 52246, Iowa City, IA, USA.
| |
Collapse
|
15
|
Zhang Z, Yang Q, Sun G, Chen S, He Q, Li S, Liu Y. Histone H3K56 acetylation is required for quelling-induced small RNA production through its role in homologous recombination. J Biol Chem 2014; 289:9365-71. [PMID: 24554705 DOI: 10.1074/jbc.m113.528521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Quelling and DNA damage-induced small RNA (qiRNA) production are RNA interference (RNAi)-related phenomenon from repetitive genomic loci in Neurospora. We have recently proposed that homologous recombination from repetitive DNA loci allows the RNAi pathway to recognize repetitive DNA to produce small RNA. However, the mechanistic detail of this pathway remains largely unclear. By systematically screening the Neurospora knock-out library, we identified RTT109 as a novel component required for small RNA production. RTT109 is a histone acetyltransferase for histone H3 lysine 56 (H3K56) and H3K56 acetylation is essential for the small RNA biogenesis pathway. Furthermore, we showed that RTT109 is required for homologous recombination and H3K56Ac is enriched around double strand break, which overlaps with RAD51 binding. Taken together, our results suggest that H3K56 acetylation is required for small RNA production through its role in homologous recombination.
Collapse
Affiliation(s)
- Zhenyu Zhang
- From the Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
A plethora of non-protein coding RNAs are produced throughout eukaryotic genomes, many of which are transcribed antisense to protein-coding genes and could potentially instigate RNA interference (RNAi) responses. Here we have used a synthetic RNAi system to show that gene copy number is a key factor controlling RNAi for transcripts from endogenous loci, since transcripts from multi-copy loci form double stranded RNA more efficiently than transcripts from equivalently expressed single-copy loci. Selectivity towards transcripts from high-copy DNA is therefore an emergent property of a minimal RNAi system. The ability of RNAi to selectively degrade transcripts from high-copy loci would allow suppression of newly emerging transposable elements, but such a surveillance system requires transcription. We show that low-level genome-wide pervasive transcription is sufficient to instigate RNAi, and propose that pervasive transcription is part of a defense mechanism capable of directing a sequence-independent RNAi response against transposable elements amplifying within the genome. DOI:http://dx.doi.org/10.7554/eLife.01581.001 Genes contain the codes that are needed to make the proteins used by cells. This code is transcribed to make a messenger RNA molecule that is then translated to make a protein. However, other types of RNA called non-coding RNA molecules can disrupt this process by binding to messenger RNA molecules, with matching sequences, before translation begins. This phenomenon, which is known as RNA interference, involves enzymes called Dicer and Argonaute. Many cells contain large numbers of non-coding RNA molecules—so called because they are not translated to produce proteins—and many of these are capable of starting the process of RNA interference. However, most do not, and the reasons for this are not understood. Now, work by Cruz and Houseley has provided new insight into this phenomenon by showing that it is related to the number of copies of the gene encoding such RNAs in the genome. Yeast cells normally do not have the genes for RNA interference, but Cruz and Houseley used genetically engineered yeast cells containing Dicer and Argonaute. Although most of the messenger RNA molecules in these cells showed no change, the expression of some genes with high ‘copy numbers’ was reduced. Further experiments that involved adding more and more copies of other genes showed that RNA interference could selectively target messenger RNA molecules produced from genes with an increased copy number—particularly if the copies of the genes were clustered in one location in the genome. RNA interference is also used to defend against DNA sequences that invade and multiply within a genome, such as viruses and other ‘genetic parasites’. As such, the effect observed by Cruz and Houseley could explain why entire genomes are often continuously copied to RNA at low levels. This activity would allow the monitoring of the genome for the invasion of any genetic parasites that had multiplied to high numbers. Following on from this work, the next challenge will be to understand how gene copy number and location are balanced to achieve a selective RNA interference system. DOI:http://dx.doi.org/10.7554/eLife.01581.002
Collapse
Affiliation(s)
- Cristina Cruz
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
17
|
Groen JN, Morris KV. Chromatin, non-coding RNAs, and the expression of HIV. Viruses 2013; 5:1633-45. [PMID: 23812489 PMCID: PMC3738951 DOI: 10.3390/v5071633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/20/2022] Open
Abstract
HIV is a chronic viral infection affecting an estimated 34 million people worldwide. Current therapies employ the use of a cocktail of antiretroviral medications to reduce the spread and effects of HIV, however complete eradication from an individual currently remains unattainable. Viral latency and regulation of gene expression is a key consideration when developing effective treatments. While our understanding of these processes remains incomplete new developments suggest that non-coding RNA (ncRNA) mediated regulation may provide an avenue to controlling both viral expression and latency. Here we discuss the importance of known regulatory mechanisms and suggest directions for further study, in particular the use ncRNAs in controlling HIV expression.
Collapse
Affiliation(s)
- Jessica N. Groen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia; E-Mail:
| | - Kevin V. Morris
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia; E-Mail:
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-2-9385-2019
| |
Collapse
|
18
|
Sharma R, Meister P. Nuclear organization in the nematode C. elegans. Curr Opin Cell Biol 2013; 25:395-402. [PMID: 23481208 DOI: 10.1016/j.ceb.2013.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
Abstract
With its invariant cell lineage, easy genetics and small genome, the nematode Caenorhabditis elegans has emerged as one of the prime models in developmental biology over the last 50 years. Surprisingly however, until a decade ago very little was known about nuclear organization in worms, even though it is an ideal model system to explore the link between nuclear organization and cell fate determination. Here, we review the latest findings that exploit the repertoire of genetic tools developed in worms, leading to the identification of important sequences and signals governing the changes in chromatin tridimensional architecture. We also highlight parallels and differences to other model systems.
Collapse
Affiliation(s)
- Rahul Sharma
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
19
|
Meister P, Taddei A. Building silent compartments at the nuclear periphery: a recurrent theme. Curr Opin Genet Dev 2013; 23:96-103. [PMID: 23312840 DOI: 10.1016/j.gde.2012.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 01/12/2023]
Abstract
In eukaryotes, the genetic material is stored in the nucleus, which is enclosed in a double lipid bilayer, the nuclear envelope (NE). It protects the genome from physical stress and separates it from the rest of the cell. On top of this physical function, growing evidence shows that the nuclear periphery contributes to the 3D organization of the genome. In turn, tridimensional organization of chromatin in the nuclear space influences genome expression. Here we review recent findings on the function of this physical barrier in gene repression and latest models on how silent subnuclear compartments at the NE are built in yeast as well as in the nematode C. elegans and mammalian cells; trying to draw parallels between the three systems.
Collapse
Affiliation(s)
- Peter Meister
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland.
| | | |
Collapse
|
20
|
Montiel EE, Cabrero J, Camacho JPM, López-León MD. Gypsy, RTE and Mariner transposable elements populate Eyprepocnemis plorans genome. Genetica 2012; 140:365-74. [PMID: 23073915 DOI: 10.1007/s10709-012-9686-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 10/08/2012] [Indexed: 12/12/2022]
Abstract
We analyze here the presence and abundance of three types of transposable elements (TEs), i.e. Gypsy, RTE and Mariner, in the genome of the grasshopper Eyprepocnemis plorans. PCR experiments allowed amplification, cloning and sequencing of these elements (EploGypI, EploRTE5, EploMar20) from the E. plorans genome. Fluorescent in situ hybridization (FISH) showed that all three elements are restricted to euchromatic regions, thus being absent from the pericentromeric region of all A chromosomes, which contain a satellite DNA (satDNA) and ribosomal DNA (rDNA), and being very scarce in B chromosomes mostly made up of these two types of repetitive DNA. FISH suggested that EploGypI is the most abundant and EploMar20 is the least abundant, with EploRTE5 showing intermediate abundance. An estimation of copy number, by means of quantitative PCR, showed that EploGypI is, by far, the most abundant element, followed by EploRTE5 and EploMar20, in consistency with FISH results. RNA isolation and PCR experiments on complementary DNA (cDNA) showed the presence of transcripts for the three TE elements. The implications of the preferential location of these TE elements into euchromatin, the significance of TE abundance in the giant genome of this species, and a possible relationship between TEs and B chromosome mutability, are discussed.
Collapse
Affiliation(s)
- Eugenia E Montiel
- Departamento de Genética, Universidad de Granada, 18071 Granada, Spain
| | | | | | | |
Collapse
|
21
|
Step-Wise Methylation of Histone H3K9 Positions Heterochromatin at the Nuclear Periphery. Cell 2012; 150:934-47. [DOI: 10.1016/j.cell.2012.06.051] [Citation(s) in RCA: 443] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 04/05/2012] [Accepted: 06/26/2012] [Indexed: 11/20/2022]
|
22
|
Mutations in the pqe-1 gene enhance transgene expression in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2012; 2:741-51. [PMID: 22870397 PMCID: PMC3385980 DOI: 10.1534/g3.112.002832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/24/2012] [Indexed: 11/18/2022]
Abstract
Although various genetic tools have been developed and used as transgenes, the expression of the transgenes often is hampered by negative regulators. Disrupting such negative regulators of gene expression is potentially a way to overcome the common problem of low expression of transgenes. To find such regulators whose mutations enhance transgene expression in Caenorhabditis elegans, we took advantage of a newly developed reporter transgene, lin-11pAΔ::venus. This transgene induces expression of a fluorescent protein, Venus, in specific neurons including AIZ, where the expression was stochastic. The frequency of reporter expression in AIZ seemed to be correlated with the strength of transgene expression. By using this system, in which a moderate increase of expression was converted to all-or-none expression states, we describe here a forward genetic screen for mutations that enhance the expression of transgenes. Through the screen, we found that mutations in the pqe-1 gene, which encodes a Q/P-rich nuclear protein with an exonuclease domain, increase the chance of reporter expression in AIZ. The fluorescence intensity in RIC, in which all lin-11pAΔ::venus animals show reporter expression, was increased in pqe-1 mutants, suggesting that pqe-1 reduces the expression level of the transgene. Expression of transgenes with other promoters, 3'UTR, or reporter genes was also enhanced by the pqe-1 mutation, suggesting that the effect was not specific to a particular type of transgenes, whereas the effect did not seem to extend to endogenous genes. We propose that pqe-1 mutants can be used to increase the expression of various useful transgenes.
Collapse
|
23
|
Abstract
RNA interference (RNAi) is a conserved eukaryotic gene regulatory mechanism that uses small noncoding RNAs to mediate posttranscriptional/transcriptional gene silencing. The fission yeast Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa have served as important model systems for RNAi research. Studies on these two organisms and other fungi have contributed significantly to our understanding of the mechanisms and functions of RNAi in eukaryotes. In addition, surprisingly diverse RNAi-mediated processes and small RNA biogenesis pathways have been discovered in fungi. In this review, we give an overview of different fungal RNAi pathways with a focus on their mechanisms and functions.
Collapse
Affiliation(s)
- Shwu-Shin Chang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | |
Collapse
|
24
|
Wei X, Potter CJ, Luo L, Shen K. Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans. Nat Methods 2012; 9:391-5. [PMID: 22406855 PMCID: PMC3846601 DOI: 10.1038/nmeth.1929] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 02/09/2012] [Indexed: 11/09/2022]
Abstract
We establish the first transcription-based binary gene expression system in C. elegans using the recently developed Q system. This system, derived from genes in Neurospora crassa, uses the transcriptional activator QF to induce the expression of target genes. Activation can be efficiently suppressed by the transcriptional repressor QS, and suppression in turn can be relieved by the non-toxic small molecule, quinic acid (QA). We used QF/QS and QA to achieve temporal and spatial control of transgene expression in various tissues in C. elegans. We further developed a Split Q system, in which we separated QF into two parts encoding its DNA-binding and transcription-activation domains. Each domain shows negligible transcriptional activity when expressed alone, but co-expression reconstitutes QF activity, providing additional combinatorial power to control gene expression.
Collapse
Affiliation(s)
- Xing Wei
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
25
|
A model of DNA repeat-assembled mitotic chromosomal skeleton. Genes (Basel) 2011; 2:661-70. [PMID: 24710285 PMCID: PMC3927603 DOI: 10.3390/genes2040661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 01/01/2023] Open
Abstract
Despite intensive investigation for decades, the principle of higher-order organization of mitotic chromosomes is unclear. Here, I describe a novel model that emphasizes a critical role of interactions of homologous DNA repeats (repetitive elements; repetitive sequences) in mitotic chromosome architecture. According to the model, DNA repeats are assembled, via repeat interactions (pairing), into compact core structures that govern the arrangement of chromatins in mitotic chromosomes. Tandem repeat assemblies form a chromosomal axis to coordinate chromatins in the longitudinal dimension, while dispersed repeat assemblies form chromosomal nodes around the axis to organize chromatins in the halo. The chromosomal axis and nodes constitute a firm skeleton on which non-skeletal chromatins can be anchored, folded, and supercoiled.
Collapse
|
26
|
Chromatin Organization by Repetitive Elements (CORE): A Genomic Principle for the Higher-Order Structure of Chromosomes. Genes (Basel) 2011; 2:502-15. [PMID: 24710208 PMCID: PMC3927610 DOI: 10.3390/genes2030502] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 12/01/2022] Open
Abstract
Eukaryotic genomes contain a large amount of DNA repeats (also known as repetitive DNA, repetitive elements, and repetitive sequences). Here, I propose a role of repetitive DNA in the formation of higher-order structures of chromosomes. The central idea of this theory is that chromatin regions with repetitive sequences pair with regions harboring homologous repeats and that such somatic repeat pairing (RP) assembles repetitive DNA chromatin into compact chromosomal domains that specify chromatin folding in a site-directed manner. According to this theory, DNA repeats are not randomly distributed in the genome. Instead, they form a core framework that coordinates the architecture of chromosomes. In contrast to the viewpoint that DNA repeats are genomic ‘junk’, this theory advocates that repetitive sequences are chromatin organizer modules that determine chromatin-chromatin contact points within chromosomes. This novel concept, if correct, would suggest that DNA repeats in the linear genome encode a blueprint for higher-order chromosomal organization.
Collapse
|
27
|
The homeobox protein CEH-23 mediates prolonged longevity in response to impaired mitochondrial electron transport chain in C. elegans. PLoS Biol 2011; 9:e1001084. [PMID: 21713031 PMCID: PMC3119657 DOI: 10.1371/journal.pbio.1001084] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 05/06/2011] [Indexed: 11/20/2022] Open
Abstract
Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC) can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases. Mitochondria have long been associated with aging and age-related diseases. Recent research has shown that a slight dampening of mitochondrial function can dramatically increase the lifespan of a wide range of organisms, suggesting that a similar mechanism likely operates in humans. The molecular basis of this observation is largely unknown, however. Uncovering the genes that allow altered mitochondrial function to impact longevity will give us important new insights into how mitochondria affect the aging process and will pave the way for future therapeutic developments aiming to improve healthy aging and to treat age-related diseases. Here, we used an RNAi screen in the genetic model organism C. elegans, a nematode worm, to uncover how altered mitochondrial function can modulate longevity. We found that in order for mitochondria to affect lifespan, they must communicate with several unique transcription factors in the nucleus. Notably, we discovered that the putative homeobox transcription factor CEH-23, which has not previously been implicated in longevity determination, is able to respond to changes in mitochondrial function and in turn causes an extension in lifespan.
Collapse
|
28
|
Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, Boileau P, Le Bouc Y, Deal CL, Lillycrop K, Scharfmann R, Sheppard A, Skinner M, Szyf M, Waterland RA, Waxman DJ, Whitelaw E, Ong K, Albertsson-Wikland K. Child health, developmental plasticity, and epigenetic programming. Endocr Rev 2011; 32:159-224. [PMID: 20971919 PMCID: PMC3365792 DOI: 10.1210/er.2009-0039] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs.
Collapse
Affiliation(s)
- Z Hochberg
- Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lesch BJ, Bargmann CI. The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. Genes Dev 2010; 24:1802-15. [PMID: 20713521 DOI: 10.1101/gad.1932610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Differentiated neurons balance the need to maintain a stable identity with their flexible responses to dynamic environmental inputs. Here we characterize these opposing influences on gene expression in Caenorhabditis elegans olfactory neurons. Using transcriptional reporters that are expressed differentially in two olfactory neurons, AWC(ON) and AWC(OFF), we identify mutations that affect the long-term maintenance of appropriate chemoreceptor expression. A newly identified gene from this screen, the conserved transcription factor hmbx-1, stabilizes AWC gene expression in adult animals through dosage-sensitive interactions with its transcriptional targets. The late action of hmbx-1 complements the early role of the transcriptional repressor gene nsy-7: Both repress expression of multiple AWC(OFF) genes in AWC(ON) neurons, but they act at different developmental stages. Environmental signals are superimposed onto this stable cell identity through at least two different transcriptional pathways that regulate individual chemoreceptor genes: a cGMP pathway regulated by sensory activity, and a daf-7 (TGF-beta)/daf-3 (SMAD repressor) pathway regulated by specific components of the density-dependent C. elegans dauer pheromone.
Collapse
Affiliation(s)
- Bluma J Lesch
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
30
|
QIP, a component of the vegetative RNA silencing pathway, is essential for meiosis and suppresses meiotic silencing in Neurospora crassa. Genetics 2010; 186:127-33. [PMID: 20592262 DOI: 10.1534/genetics.110.118422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among the processes that play essential roles in both genome defense and organism survival are those involved in chromosome comparison. They are acutely active in the meiotic cells of Neurospora crassa, where they evaluate the mutual identity of homologs by a process we call trans-sensing. When nonsymmetrical regions are found, they are silenced. The known molecular components of this meiotic silencing machinery are related to RNA-dependent RNA polymerases, Argonautes and Dicers, suggesting that the mechanisms of how heterologous chromosomal regions are silenced involves, at some stage, the production of small interfering RNAs. Neurospora has two active and clearly distinct RNA interference pathways: quelling (vegetative specific) and meiotic silencing (meiosis specific). Both pathways require a common set of protein types like RNA-dependent RNA polymerases, Argonautes and Dicers. In this work we demonstrate the involvement of quelling defective-2 interacting protein (qip(+)), a Neurospora gene whose function is essential to silencing by quelling, in meiotic silencing, and normal sexual development. Our observations reinforce the molecular connection between these two silencing pathways.
Collapse
|
31
|
Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore RW, Dubcovsky J. Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 2010; 11:408. [PMID: 20584339 PMCID: PMC2996936 DOI: 10.1186/1471-2164-11-408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/29/2010] [Indexed: 12/15/2022] Open
Abstract
Background More than 80% of the wheat genome is composed of transposable elements (TEs). Since active TEs can move to different locations and potentially impose a significant mutational load, their expression is suppressed in the genome via small non-coding RNAs (sRNAs). sRNAs guide silencing of TEs at the transcriptional (mainly 24-nt sRNAs) and post-transcriptional (mainly 21-nt sRNAs) levels. In this study, we report the distribution of these two types of sRNAs among the different classes of wheat TEs, the regions targeted within the TEs, and their impact on the methylation patterns of the targeted regions. Results We constructed an sRNA library from hexaploid wheat and developed a database that included our library and three other publicly available sRNA libraries from wheat. For five completely-sequenced wheat BAC contigs, most perfectly matching sRNAs represented TE sequences, suggesting that a large fraction of the wheat sRNAs originated from TEs. An analysis of all wheat TEs present in the Triticeae Repeat Sequence database showed that sRNA abundance was correlated with the estimated number of TEs within each class. Most of the sRNAs perfectly matching miniature inverted repeat transposable elements (MITEs) belonged to the 21-nt class and were mainly targeted to the terminal inverted repeats (TIRs). In contrast, most of the sRNAs matching class I and class II TEs belonged to the 24-nt class and were mainly targeted to the long terminal repeats (LTRs) in the class I TEs and to the terminal repeats in CACTA transposons. An analysis of the mutation frequency in potentially methylated sites revealed a three-fold increase in TE mutation frequency relative to intron and untranslated genic regions. This increase is consistent with wheat TEs being preferentially methylated, likely by sRNA targeting. Conclusions Our study examines the wheat epigenome in relation to known TEs. sRNA-directed transcriptional and post-transcriptional silencing plays important roles in the short-term suppression of TEs in the wheat genome, whereas DNA methylation and increased mutation rates may provide a long-term mechanism to inactivate TEs.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang Y, Mariati, Chusainow J, Yap MG. DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. J Biotechnol 2010; 147:180-5. [DOI: 10.1016/j.jbiotec.2010.04.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/18/2010] [Accepted: 04/11/2010] [Indexed: 11/16/2022]
|
33
|
Meister P, Towbin BD, Pike BL, Ponti A, Gasser SM. The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev 2010; 24:766-82. [PMID: 20395364 PMCID: PMC2854392 DOI: 10.1101/gad.559610] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/25/2010] [Indexed: 12/23/2022]
Abstract
To understand whether the spatial organization of the genome reflects the cell's differentiated state, we examined whether genes assume specific subnuclear positions during Caenorhabditis elegans development. Monitoring the radial position of developmentally controlled promoters in embryos and larval tissues, we found that small integrated arrays bearing three different tissue-specific promoters have no preferential position in nuclei of undifferentiated embryos. However, in differentiated cells, they shifted stably toward the nuclear lumen when activated, or to the nuclear envelope when silent. In contrast, large integrated arrays bearing the same promoters became heterochromatic and nuclear envelope-bound in embryos. Tissue-specific activation of promoters in these large arrays in larvae overrode the perinuclear anchorage. For transgenes that carry both active and inactive promoters, the inward shift of the active promoter was dominant. Finally, induction of master regulator HLH-1 prematurely induced internalization of a muscle-specific promoter array in embryos. Fluorescence in situ hybridization confirmed analogous results for the endogenous endoderm-determining gene pha-4. We propose that, in differentiated cells, subnuclear organization arises from the selective positioning of active and inactive developmentally regulated promoters. We characterize two forces that lead to tissue-specific subnuclear organization of the worm genome: large repeat-induced heterochromatin, which associates with the nuclear envelope like repressed genes in differentiated cells, and tissue-specific promoters that shift inward in a dominant fashion over silent promoters, when they are activated.
Collapse
Affiliation(s)
- Peter Meister
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Benjamin D. Towbin
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Brietta L. Pike
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Aaron Ponti
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| |
Collapse
|
34
|
Goll MG, Anderson R, Stainier DYR, Spradling AC, Halpern ME. Transcriptional silencing and reactivation in transgenic zebrafish. Genetics 2009; 182:747-55. [PMID: 19433629 PMCID: PMC2710156 DOI: 10.1534/genetics.109.102079] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 04/30/2009] [Indexed: 11/18/2022] Open
Abstract
Epigenetic regulation of transcriptional silencing is essential for normal development. Despite its importance, in vivo systems for examining gene silencing at cellular resolution have been lacking in developing vertebrates. We describe a transgenic approach that allows monitoring of an epigenetically regulated fluorescent reporter in developing zebrafish and their progeny. Using a self-reporting Gal4-VP16 gene/enhancer trap vector, we isolated tissue-specific drivers that regulate expression of the green fluorescent protein (GFP) gene through a multicopy, upstream activator sequence (UAS). Transgenic larvae initially exhibit robust fluorescence (GFP(high)); however, in subsequent generations, gfp expression is mosaic (GFP(low)) or entirely absent (GFP(off)), despite continued Gal4-VP16 activity. We find that transcriptional repression is heritable and correlated with methylation of the multicopy UAS. Silenced transgenes can be reactivated by increasing Gal4-VP16 levels or in DNA methyltransferase-1 (dnmt1) mutants. Strikingly, in dnmt1 homozygous mutants, reactivation of gfp expression occurs in a reproducible subset of cells, raising the possibility of different sensitivities or alternative silencing mechanisms in discrete cell populations. The results demonstrate the power of the zebrafish system for in vivo monitoring of epigenetic processes using a genetic approach.
Collapse
Affiliation(s)
- Mary G Goll
- Department of Embryology, carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
35
|
Wang Q, Parrish AR, Wang L. Expanding the genetic code for biological studies. CHEMISTRY & BIOLOGY 2009; 16:323-36. [PMID: 19318213 PMCID: PMC2696486 DOI: 10.1016/j.chembiol.2009.03.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 11/15/2022]
Abstract
Using an orthogonal tRNA-synthetase pair, unnatural amino acids can be genetically encoded with high efficiency and fidelity, and over 40 unnatural amino acids have been site-specifically incorporated into proteins in Escherichia coli, yeast, or mammalian cells. Novel chemical or physical properties embodied in these amino acids enable new means for tailored manipulation of proteins. This review summarizes the methodology and recent progress in expanding this technology to eukaryotic cells. Applications of genetically encoded unnatural amino acids are highlighted with reports on labeling and modifying proteins, probing protein structure and function, identifying and regulating protein activity, and generating proteins with new properties. Genetic incorporation of unnatural amino acids provides a powerful method for investigating a wide variety of biological processes both in vitro and in vivo.
Collapse
Affiliation(s)
- Qian Wang
- The Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Angela R. Parrish
- The Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lei Wang
- The Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
36
|
Jose AM, Smith JJ, Hunter CP. Export of RNA silencing from C. elegans tissues does not require the RNA channel SID-1. Proc Natl Acad Sci U S A 2009; 106:2283-8. [PMID: 19168628 PMCID: PMC2650148 DOI: 10.1073/pnas.0809760106] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Indexed: 01/21/2023] Open
Abstract
Double-stranded RNA (dsRNA) triggers RNA interference (RNAi) to silence genes of matching sequence. In some animals this experimentally induced silencing is transported between cells, and studies in the nematode Caenorhabditis elegans have shown that the dsRNA channel SID-1 is required for the import of such transported silencing signals. Gene silencing can also be triggered by endogenously expressed RNAi triggers, but it is unknown whether such silencing is transported between cells. Here, we show that, in C. elegans, SID-1 is required for efficient silencing of multicopy transgenes, indicating that mobile silencing signals contribute to transgene silencing. Further, most tissues can transport silencing initiated by the tissue-specific transgenic expression of RNAi triggers to other tissues, consistent with expressed RNAi triggers generating mobile silencing signals. Whereas the import of silencing signals requires SID-1, we found that mobile silencing signals generated by transgene-expressed RNAi triggers are exported to other tissues through a SID-1-independent mechanism. Furthermore, when RNAi triggers are expressed in ingested Escherichia coli, silencing signals can be transported to internal tissues from the gut lumen across gut cells that lack SID-1. Thus, C. elegans can transport endogenous and exogenous RNA silencing signals between many different tissues via at least 2 SID-1 independent export pathways.
Collapse
Affiliation(s)
- Antony M. Jose
- Department of Molecular and Cellular Biology, Harvard University, Room 3050, 16 Divinity Avenue, Cambridge, MA 02138
| | - Jessica J. Smith
- Department of Molecular and Cellular Biology, Harvard University, Room 3050, 16 Divinity Avenue, Cambridge, MA 02138
| | - Craig P. Hunter
- Department of Molecular and Cellular Biology, Harvard University, Room 3050, 16 Divinity Avenue, Cambridge, MA 02138
| |
Collapse
|
37
|
Frøkjær-Jensen C, Davis MW, Hopkins CE, Newman B, Thummel JM, Olesen SP, Grunnet M, Jorgensen EM. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 2008; 40:1375-83. [PMID: 18953339 PMCID: PMC2749959 DOI: 10.1038/ng.248] [Citation(s) in RCA: 887] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 08/14/2008] [Indexed: 12/14/2022]
Abstract
At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines.
Collapse
Affiliation(s)
- Christian Frøkjær-Jensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Denmark
| | - M. Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Christopher E. Hopkins
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Blake Newman
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Jason M. Thummel
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Søren-Peter Olesen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Denmark
- NeuroSearch A/S, Ballerup, Denmark
| | - Morten Grunnet
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Denmark
- NeuroSearch A/S, Ballerup, Denmark
| | - Erik M. Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
38
|
Bamps S, Hope IA. Large-scale gene expression pattern analysis, in situ, in Caenorhabditis elegans. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:175-83. [DOI: 10.1093/bfgp/eln013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
39
|
Tseng RJ, Armstrong KR, Wang X, Chamberlin HM. The bromodomain protein LEX-1 acts with TAM-1 to modulate gene expression in C. elegans. Mol Genet Genomics 2007; 278:507-18. [PMID: 17618463 DOI: 10.1007/s00438-007-0265-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
In many organisms, repetitive DNA serves as a trigger for gene silencing. However, some gene expression is observed from repetitive genomic regions such as heterochromatin, suggesting mechanisms exist to modulate the silencing effects. From a genetic screen in C. elegans, we have identified mutations in two genes important for expression of repetitive sequences: lex-1 and tam-1. Here we show that lex-1 encodes a protein containing an ATPase domain and a bromodomain. LEX-1 is similar to the yeast Yta7 protein, which maintains boundaries between silenced and active chromatin. tam-1 has previously been shown to encode a RING finger/B-box protein that modulates gene expression from repetitive DNA. We find that lex-1, like tam-1, acts as a class B synthetic multivulva (synMuv) gene. However, since lex-1 and tam-1 mutants have normal P granule localization, it suggests they act through a mechanism distinct from other class B synMuvs. We observe intragenic (interallelic) complementation with lex-1 and a genetic interaction between lex-1 and tam-1, data consistent with the idea that the gene products function in the same biological process, perhaps as part of a protein complex. We propose that LEX-1 and TAM-1 function together to influence chromatin structure and to promote expression from repetitive sequences.
Collapse
Affiliation(s)
- Rong-Jeng Tseng
- Department of Molecular Genetics, Ohio State University, 938 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
40
|
Judelson HS, Tani S. Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. EUKARYOTIC CELL 2007; 6:1200-9. [PMID: 17483289 PMCID: PMC1951104 DOI: 10.1128/ec.00311-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clustered within the genome of the oomycete phytopathogen Phytophthora infestans are four genes encoding spore-specific nuclear LIM interactor-interacting factors (NIF proteins, a type of transcriptional regulator) that are moderately conserved in DNA sequence. NIFC1, NIFC2, and NIFC3 are zoosporogenesis-induced and grouped within 4 kb, and 20 kb away resides a sporulation-induced form, NIFS. To test the function of the NIFC family, plasmids expressing full-length hairpin constructs of NIFC1 or NIFC2 were stably transformed into P. infestans. This triggered silencing of the cognate gene in about one-third of transformants, and all three NIFC genes were usually cosilenced. However, NIFS escaped silencing despite its high sequence similarity to the NIFC genes. Silencing of the three NIFC genes impaired zoospore cyst germination by 60% but did not affect other aspects of the life cycle. Silencing was transcriptional based on nuclear run-on assays and associated with tighter chromatin packing based on nuclease accessibility experiments. The chromatin alterations extended a few hundred nucleotides beyond the boundaries of the transcribed region of the NIFC cluster and were not associated with increased DNA methylation. A plasmid expressing a short hairpin RNA having sequence similarity only to NIFC1 silenced both that gene and an adjacent member of the gene cluster, likely due to the expansion of a heterochromatic domain from the targeted locus. These data help illuminate the mechanism of silencing in Phytophthora and suggest that caution should be used when interpreting silencing experiments involving closely spaced genes.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA.
| | | |
Collapse
|
41
|
Abstract
At certain evolutionary junctures, two or more mutations participating in the build-up of a new complex function may be required to become available simultaneously in the same individuals. How could this happen in higher organisms whose populations are small compared to those of microbes, and in which chances of combined nearly simultaneous highly specific favorable mutations are correspondingly low? The question can in principle be answered for regulatory evolution, one of the basic processes of evolutionary change. A combined resetting of transcription rates in several genes could occur in the same individual. It is proposed that, in eukaryotes, changes in epigenetic trends and epigenetically transforming encounters between alternative chromatin structures could arise frequently enough so as to render probable particular conjunctions of changed transcription rates. Such conjunctions could involve mutational changes with low specificity requirements in gene-associated regions of non-protein-coding sequences. The effects of such mutations, notably when they determine the use of histone variants and covalent modifications of histones, can be among those that migrate along chromatin. Changes in chromatin structure are often cellularly inheritable over at least a limited number of generations of cells, and of individuals when the germ line is involved. SINEs and LINEs, which have been considered "junk DNA", are among the repeat sequences that would appear liable to have teleregulatory effects on the function of a nearby promoter, through changes in their numbers and distribution. There may also be present preexisting unstably inheritable epigenetic trends leading to cellular variegation, trends endemic in a cell population based on DNA sequences previously established in the neighborhood. Either way, epigenetically conditioned teleregulatory trends may display only limited penetrance. The imposition at a distance of new chromatin structures with regulatory impact can occur in cis as well as in trans, and is examined as intrachromosomally spreading teleregulation and interchromosomal "gene kissing". The chances for two or more particular epigenetically determined regulatory trends to occur together in a cell are increased thanks to the proposed low specificity requirements for most of the pertinent sequence changes in intergenic and intronic DNA or in the distribution of middle repetitive sequences that have teleregulatory impact. Inheritable epigenetic changes ("epimutations") with effects at a distance would then perdure over the number of generations required for "assimilation" of the several regulatory novelties through the occurrence and selection, gene by gene, of specific classical mutations. These mutations would have effects similar to the epigenetic effects, yet would provide stability and penetrance. The described epigenetic/genetic partnership may well at times have opened the way toward certain complex new functions. Thus, the presence of "junk DNA", through co-determining the (higher or lower) order and the variants of chromatin structure with regulatory effects at a distance, might make an important contribution to the evolution of complex organisms.
Collapse
Affiliation(s)
- Emile Zuckerkandl
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
42
|
Abstract
In recent years, the sequencing and annotation of complete genomes, together with the development of genetic and proteomic techniques to study previously intractable eukaryotic microbes, has revealed interesting new themes in the control of virulence gene expression. Families of variantly expressed genes are found adjacent to telomeres in the genomes of both pathogenic and non-pathogenic organisms. This subtelomeric DNA is normally heterochromatic and higher-order chromatin structure has now come to be recognized as an important factor controlling both the evolution and expression dynamics of these multigene families. In eukaryotic cells, higher-order chromatin structure plays a central role in many DNA processes including the control of chromosome integrity and recombination, DNA partitioning during cell division, and transcriptional control. DNA can be packaged in two distinct forms: euchromatin is relatively accessible to DNA binding proteins and generally contains active genes, while heterochromatin is densely packaged, relatively inaccessible and usually transcriptionally silent. These features of chromatin are epigenetically inherited from cell cycle to cell cycle. This review will focus on the epigenetic mechanisms used to control expression of virulence genes in medically important microbial pathogens. Examples of such control have now been reported in several evolutionarily distant species, revealing what may be a common strategy used to regulate many very different families of genes.
Collapse
Affiliation(s)
- Catherine J Merrick
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Ave, Building I, Rm 706, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
Fire A, Alcazar R, Tan F. Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans. Genetics 2006; 173:1259-73. [PMID: 16648589 PMCID: PMC1526662 DOI: 10.1534/genetics.106.057364] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 04/21/2006] [Indexed: 11/18/2022] Open
Abstract
We describe a surprising long-range periodicity that underlies a substantial fraction of C. elegans genomic sequence. Extended segments (up to several hundred nucleotides) of the C. elegans genome show a strong bias toward occurrence of AA/TT dinucleotides along one face of the helix while little or no such constraint is evident on the opposite helical face. Segments with this characteristic periodicity are highly overrepresented in intron sequences and are associated with a large fraction of genes with known germline expression in C. elegans. In addition to altering the path and flexibility of DNA in vitro, sequences of this character have been shown by others to constrain DNA::nucleosome interactions, potentially producing a structure that could resist the assembly of highly ordered (phased) nucleosome arrays that have been proposed as a precursor to heterochromatin. We propose a number of ways that the periodic occurrence of An/Tn clusters could reflect evolution and function of genes that express in the germ cell lineage of C. elegans.
Collapse
Affiliation(s)
- Andrew Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA.
| | | | | |
Collapse
|
44
|
Abstract
In this paper, we describe an algorithm for the localization of structured models, i.e. sequences of (simple) motifs and distance constraints. It basically combines standard pattern matching procedures with a constraint satisfaction solver, and it has the ability, not present in similar tools, to search for partial matches. A significant feature of our approach, especially in terms of efficiency for the application context, is that the (potentially) exponentially many solutions to the considered problem are represented in compact form as a graph. Moreover, the time and space necessary to build the graph are linear in the number of occurrences of the component patterns.
Collapse
Affiliation(s)
- Michele Morgante
- Department of Crop Sciences and Agricultural Engineering, via delle Scienze 206, 33100 Udine, Italy
| | | | | | | |
Collapse
|
45
|
Influence of the Nature of the T-DNA Insertion Region on Transgene Expression in Arabidopsis thaliana. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-006-0002-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Azhikina TL, Sverdlov ED. Study of tissue-specific CpG methylation of DNA in extended genomic loci. BIOCHEMISTRY (MOSCOW) 2005; 70:596-603. [PMID: 15948713 DOI: 10.1007/s10541-005-0153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modern approaches for studies on genome functioning include investigation of its epigenetic regulation. Methylation of cytosines in CpG dinucleotides is an inherited epigenetic modification that is responsible for both functional activity of certain genomic loci and total chromosomal stability. This review describes the main approaches for studies on DNA methylation. Under consideration are site-specific approaches based on bisulfite sequencing and methyl-sensitive PCR, whole-genome approaches aimed at searching for new methylation hot spots, and also mapping of unmethylated CpG sites in extended genomic loci.
Collapse
Affiliation(s)
- T L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | |
Collapse
|
47
|
Schmidt AL, Mitter V. Microsatellite mutation directed by an external stimulus. Mutat Res 2005; 568:233-43. [PMID: 15542110 DOI: 10.1016/j.mrfmmm.2004.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/17/2004] [Accepted: 09/15/2004] [Indexed: 11/25/2022]
Abstract
Microsatellites are regions of DNA containing tandem repeats of a core 2-6 bp nucleotide sequence. To test the hypothesis that microsatellite mutation can be directed by exposure to specific external cues, control and treatment groups of resistant and susceptible wheat varieties were grown under controlled conditions and genotyped at a number of microsatellite loci that map to chromosomes known to contain Fusarium head blight (FHB) resistance/susceptibility loci. Genotyping was undertaken both prior to and following exposure to Fusarium graminearum, the FHB pathogen. Within a month of inoculation of inflorescences, 58% of experimental plants, and no control plants, had acquired a novel allele at the locus Xgwm112.1. This allele was detected only in head blight affected tissue. Uninoculated control plants, and leaf samples from inoculated plants, showed no mutation. Cloning and sequencing of PCR products indicates that the new allele was generated by contraction of the (CT)(n) repeat motif. Observation of the same deletion-based mutation in all varieties, its absence in control plants not exposed to the head blight pathogen, and the detection of no similar mutational events in a control panel of loci not expected to show mutation, indicates that this example of microsatellite mutation is induced and/or caused by FHB infection.
Collapse
Affiliation(s)
- Adele L Schmidt
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Qld 4067, Australia.
| | | |
Collapse
|
48
|
Duraisingh MT, Voss TS, Marty AJ, Duffy MF, Good RT, Thompson JK, Freitas-Junior LH, Scherf A, Crabb BS, Cowman AF. Heterochromatin Silencing and Locus Repositioning Linked to Regulation of Virulence Genes in Plasmodium falciparum. Cell 2005; 121:13-24. [PMID: 15820675 DOI: 10.1016/j.cell.2005.01.036] [Citation(s) in RCA: 373] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 10/06/2004] [Accepted: 01/14/2005] [Indexed: 11/26/2022]
Abstract
The malaria parasite Plasmodium falciparum undergoes antigenic variation to evade host immune responses through switching expression of variant surface proteins encoded by the var gene family. We demonstrate that both a subtelomeric transgene and var genes are subject to reversible gene silencing. Var gene silencing involves the SIR complex as gene disruption of PfSIR2 results in activation of this gene family. We also demonstrate that perinuclear gene activation involves chromatin alterations and repositioning into a location that may be permissive for transcription. Together, this implies that locus repositioning and heterochromatic silencing play important roles in the epigenetic regulation of virulence genes in P. falciparum.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Noma KI, Sugiyama T, Cam H, Verdel A, Zofall M, Jia S, Moazed D, Grewal SIS. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 2004; 36:1174-80. [PMID: 15475954 DOI: 10.1038/ng1452] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 09/16/2004] [Indexed: 11/08/2022]
Abstract
RNA interference is a conserved mechanism by which double-stranded RNA is processed into short interfering RNAs (siRNAs) that can trigger both post-transcriptional and transcriptional gene silencing. In fission yeast, the RNA-induced initiation of transcriptional gene silencing (RITS) complex contains Dicer-generated siRNAs and is required for heterochromatic silencing. Here we show that RITS components, including Argonaute protein, bind to all known heterochromatic loci. At the mating-type region, RITS is recruited to the centromere-homologous repeat cenH in a Dicer-dependent manner, whereas the spreading of RITS across the entire 20-kb silenced domain, as well as its subsequent maintenance, requires heterochromatin machinery including Swi6 and occurs even in the absence of Dicer. Furthermore, our analyses suggest that RNA interference machinery operates in cis as a stable component of heterochromatic domains with RITS tethered to silenced loci by methylation of histone H3 at Lys9. This tethering promotes the processing of transcripts and generation of additional siRNAs for heterochromatin maintenance.
Collapse
Affiliation(s)
- Ken-ichi Noma
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Heterochromatin mediates various nuclear processes including centromere function, gene silencing and nuclear organization. Although it was discovered nearly 75 years ago, the pathways involved in heterochromatin establishment, assembly and epigenetic maintenance have been elusive. Recent reports have demonstrated that distinct and novel chromatin-associated factors, including DNA, RNA and histone modifications, are involved in each of these events. These new findings define a novel conserved mechanism of heterochromatin formation that is likely to have an impact on all eukaryotic silencing pathways.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|