1
|
Regulation of fenestra formation via actin-dynamin2 interaction in rat pituitary endothelial cells. Cell Tissue Res 2022; 390:441-451. [PMID: 36102975 DOI: 10.1007/s00441-022-03685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022]
Abstract
Endothelial fenestrae are transcellular pores divided by a diaphragm consisting of plasmalemma vesicle-associated protein (PLVAP). They function as a channel for peptide hormones and other substances. Invagination of the plasma membrane is necessary for the fenestra formation. The actin cytoskeleton is essential for scission of endocytic vesicles from the invaginated plasma membrane. Therefore, we examined the involvement of the actin cytoskeleton in fenestra formation in cultured endothelial cells isolated from the anterior lobe (AL) of the rat pituitary, using immunofluorescence and scanning electron microscopy. Inhibition of polymerization and depolymerization of the actin cytoskeleton by latrunculin A and jasplakinolide, respectively, remarkably increased the PLVAP-positive sieve plate area and number of fenestrae. Jasplakinolide significantly affected the arrangement of the fenestra on the cell surface, resulting in parallel serpentine furrows of the fenestra. These results suggest that the actin cytoskeleton not only induces fenestra formation but also regulates cell arrangement. Dynamin is a scission protein of the invaginated plasma membrane and interacts with the actin cytoskeleton. We found that dynamin2 is mainly expressed in the endothelial cells of the rat AL. We then investigated the function of dynamin2 by the treatment with dyngo-4a, a potent inhibitor of dynamin1 and dynamin2, on the fenestra formation. As a result, the PLVAP-positive area is significantly increased by the treatment. These results show that the actin-dynamin2 interaction is essential for the control of the fenestra formation in endothelial cells of rat AL. In conclusion, the actin cytoskeleton and dynamin2 function as regulators of endothelial fenestra formation.
Collapse
|
2
|
Menon D, Hummel D, Kaksonen M. Regulation of membrane scission in yeast endocytosisDepartment of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland. Mol Biol Cell 2022; 33:ar114. [PMID: 35976707 DOI: 10.1091/mbc.e21-07-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During clathrin-mediated endocytosis, a flat plasma membrane is shaped into an invagination that undergoes scission to form a vesicle. In mammalian cells, the force that drives the transition from invagination to vesicle is primarily provided by the GTPase dynamin that acts in concert with crescent-shaped BAR domain proteins. In yeast cells, the mechanism of endocytic scission is unclear. The yeast BAR domain protein complex Rvs161/167 (Rvs) nevertheless plays an important role in this process: deletion of Rvs dramatically reduces scission efficiency. A mechanistic understanding of the influence of Rvs on scission however, remains incomplete. We used quantitative live-cell imaging and genetic manipulation to understand the recruitment and function of Rvs and other late-stage proteins at yeast endocytic sites. We found that arrival of Rvs at endocytic sites is timed by interaction of its BAR domain with specific membrane curvature. A second domain of Rvs167 - the SH3 domain - affects localization efficiency of Rvs. We show that Myo3, one of the two type-I myosins in Saccharomyces cerevisiae, has a role in recruiting Rvs167 via the SH3 domain. Removal of the SH3 domain also affects assembly and disassembly of actin and impedes membrane invagination. Our results indicate that both BAR and SH3 domains are important for the role of Rvs as a regulator of scission. We tested other proteins implicated in vesicle formation in Saccharomyces cerevisiae, and found that neither synaptojanins nor dynamin contribute directly to membrane scission. We propose that recruitment of Rvs BAR domains delays scission and allows invaginations to grow by stabilizing them. We also propose that vesicle formation is dependent on the force exerted by the actin network.
Collapse
Affiliation(s)
- Deepikaa Menon
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Daniel Hummel
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Marko Kaksonen
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Zhang T, Yang J, Sun Y, Kang Y, Yang J, Qi Z. Calcium deprivation enhances non-selective fluid-phase endocytosis and modifies membrane lipid profiles in Arabidopsis roots. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:22-30. [PMID: 29689431 DOI: 10.1016/j.jplph.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Ecological studies have revealed significant decreases in calcium (Ca) levels in various soils, and widely occurring physiological Ca deficits worldwide. These changes may cause decreases in plant diversity and increases in plant vulnerability to environmental stress, but the underlying cellular mechanism is not well understood. In this study, we found that in Arabidopsis thaliana roots, deprivation of Ca2+, but not other minerals, dramatically enhanced plasma membrane invagination, endosome formation, and trafficking to the vacuole through the trans-Golgi network and pre-vacuole compartment, a typical pathway of endocytosis. Antagonist and cellular tracing analyses using non-bioactive, membrane-impermeable fluorescent probes indicated that this type of endocytosis is not regulated by receptors, instead representing a non-selective, non-specific fluid phase-based process. We performed lipid-profiling analysis of roots in response to Ca2+ deprivation, finding increased phosphatidylcholine (PC), Lyso-PC, phosphatidylethanolamine (PE), Lyso-PE, phosphatidylinositol (PI) and triacylglycerols (TAG) biosynthesis but deceased phosphatidic acid (PA) and diacylglycerols (DAG) biosynthesis. The increased TAG contents and molar ratio of PC/PE in these roots might reflect a cellular response to maintain membrane stability and the balance between the membrane and storage lipids. This study demonstrates the essential role of Ca in maintaining plasma membrane stability and the selectivity of plant root cells, and it highlights the potential deleterious effect of decreased Ca levels in surface soil on plant growth.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China
| | - Ju Yang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yongwei Sun
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yan Kang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China
| | - Jia Yang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
4
|
Heo CH, Cho MK, Shin S, Yoo TH, Kim HM. Real-time monitoring of vesicle pH in an endocytic pathway using an EGF-conjugated two-photon probe. Chem Commun (Camb) 2018; 52:14007-14010. [PMID: 27853757 DOI: 10.1039/c6cc08036g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we developed a ratiometric two-photon probe (BHS3-EGF), derived from a pH sensitive dye and epidermal growth factor (EGF), for real-time monitoring and quantitative analysis of acidic luminal pH values during endocytic pathway activity. Two-photon microscopy imaging with BHS3-EGF allows the quantitative analysis of pH distributions of single vesicles and their dynamics in receptor-mediated endocytosis in real-time.
Collapse
Affiliation(s)
- Cheol Ho Heo
- Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea.
| | - Myoung Ki Cho
- Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea.
| | - Seunggun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 433-721, Korea.
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon 433-721, Korea.
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
5
|
Li Z, Zhang Y, Zhu D, Li S, Yu X, Zhao Y, Ouyang X, Xie Z, Li L. Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways. Drug Deliv 2017; 24:45-55. [PMID: 29069996 PMCID: PMC8812582 DOI: 10.1080/10717544.2017.1391889] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To develop novel therapies for clinical treatments, it increasingly depends on sophisticated delivery systems that facilitate the drugs entry into targeting cells. Profound understanding of cellular uptake routes for transporting carriers promotes the optimization of performance in drug delivery systems. Although endocytic pathway is the most important part of cellular uptake routes for many delivery systems, it suffers the trouble of enzymatic degradation of transporting carriers trapped in endosomes/lysosomes. Therefore, it is desirable to develop alternative transporting methods for delivery systems via non-endocytic pathways to achieve more effective intracellular delivery. In this review, we summarize the literature exploring transporting carriers that mediate intracellular delivery via non-endocytic pathways to present the current research status in this field. Cell-penetrating peptides, pH (low) insertion peptides, and nanoparticles are categorized to exhibit their ability to directly transport various cargos into cytoplasm via non-endocytic uptake in different cell lines. It is hoped that this review can spur the interesting on development of drug delivery systems via non-endocytic uptake pathway.
Collapse
Affiliation(s)
- Zuhong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Shuiqing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|
6
|
Villasmil ML, Gallo-Ebert C, Liu HY, Francisco J, Nickels JT. A link between very long chain fatty acid elongation and mating-specific yeast cell cycle arrest. Cell Cycle 2017; 16:2192-2203. [PMID: 28745545 DOI: 10.1080/15384101.2017.1329065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Ceramides and sphingolipid intermediates are well-established regulators of the cell cycle. In the budding yeast Saccharomyces cerevisae, the complex sphingolipid backbone, ceramide, comprises a long chain sphingoid base, a polar head group, and a very long chain fatty acid (VLCFA). While ceramides and long chain bases have been extensively studied as to their roles in regulating cell cycle arrest under multiple conditions, the roles of VLCFAs are not well understood. Here, we used the yeast elo2 and elo3 mutants, which are unable to elongate fatty acids, as tools to explore if maintaining VLCFA elongation is necessary for cell cycle arrest in response to yeast mating. We found that both elo2 and elo3 cells had severely reduced mating efficiencies and were unable to form polarized shmoo projections that are necessary for cell-cell contact during mating. They also lacked functional MAP kinase signaling activity and were defective in initiating a cell cycle arrest in response to pheromone. Additional data suggests that mislocalization of the Ste5 scaffold in elo2 and elo3 mutants upon mating initiation may be responsible for the inability to initiate a cell cycle arrest. Moreover, the lack of proper Ste5 localization may be caused by the inability of mutant cells to mobilize PIP2. We suggest that VLCFAs are required for Ste5 localization, which is a necessary event for initiating MAP kinase signaling and cell cycle arrest during yeast mating initiation.
Collapse
Affiliation(s)
| | - Christina Gallo-Ebert
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | - Hsing-Yin Liu
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | | | - Joseph T Nickels
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| |
Collapse
|
7
|
Molecular cloning and functional identification of sterol C24-methyltransferase gene from Tripterygium wilfordii. Acta Pharm Sin B 2017; 7:603-609. [PMID: 28924554 PMCID: PMC5595292 DOI: 10.1016/j.apsb.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 11/23/2022] Open
Abstract
Sterol C24-methyltransferase (SMT) plays multiple important roles in plant growth and development. SMT1, which belongs to the family of transferases and transforms cycloartenol into 24-methylene cycloartenol, is involved in the biosynthesis of 24-methyl sterols. Here, we report the cloning and characterization of a cDNA encoding a sterol C24-methyltransferase from Tripterygium wilfordii (TwSMT1). TwSMT1 (GenBank access number KU885950) is a 1530 bp cDNA with a 1041 bp open reading frame predicted to encode a 346-amino acid, 38.62 kDa protein. The polypeptide encoded by the SMT1 cDNA was expressed and purified as a recombinant protein from Escherichia coli (E. coli) and showed SMT activity. The expression of TwSMT1 was highly up-regulated in T. wilfordii cell suspension cultures treated with methyl jasmonate (MeJA). Tissue expression pattern analysis showed higher expression in the phellem layer compared to the other four organs (leaf, stem, xylem and phloem), which is about ten times that of the lowest expression in leaf. The results are meaningful for the study of sterol biosynthesis of T. wilfordii and will further lay the foundations for the research in regulating both the content of other main compounds and growth and development of T. wilfordii.
Collapse
|
8
|
Lima S, Milstien S, Spiegel S. Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking. J Biol Chem 2017; 292:3074-3088. [PMID: 28049734 DOI: 10.1074/jbc.m116.762377] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
The balance between cholesterol and sphingolipids within the plasma membrane has long been implicated in endocytic membrane trafficking. However, in contrast to cholesterol functions, little is still known about the roles of sphingolipids and their metabolites. Perturbing the cholesterol/sphingomyelin balance was shown to induce narrow tubular plasma membrane invaginations enriched with sphingosine kinase 1 (SphK1), the enzyme that converts the bioactive sphingolipid metabolite sphingosine to sphingosine-1-phosphate, and suggested a role for sphingosine phosphorylation in endocytic membrane trafficking. Here we show that sphingosine and sphingosine-like SphK1 inhibitors induced rapid and massive formation of vesicles in diverse cell types that accumulated as dilated late endosomes. However, much smaller vesicles were formed in SphK1-deficient cells. Moreover, inhibition or deletion of SphK1 prolonged the lifetime of sphingosine-induced vesicles. Perturbing the plasma membrane cholesterol/sphingomyelin balance abrogated vesicle formation. This massive endosomal influx was accompanied by dramatic recruitment of the intracellular SphK1 and Bin/Amphiphysin/Rvs domain-containing proteins endophilin-A2 and endophilin-B1 to enlarged endosomes and formation of highly dynamic filamentous networks containing endophilin-B1 and SphK1. Together, our results highlight the importance of sphingosine and its conversion to sphingosine-1-phosphate by SphK1 in endocytic membrane trafficking.
Collapse
Affiliation(s)
- Santiago Lima
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298.
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298.
| |
Collapse
|
9
|
Teixeira V, Costa V. Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism. Prog Lipid Res 2015; 61:109-33. [PMID: 26703187 DOI: 10.1016/j.plipres.2015.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Sphingolipids are important bioactive molecules that regulate basic aspects of cellular metabolism and physiology, including cell growth, adhesion, migration, senescence, apoptosis, endocytosis, and autophagy in yeast and higher eukaryotes. Since they have the ability to modulate the activation of several proteins and signaling pathways, variations in the relative levels of different sphingolipid species result in important changes in overall cellular functions and fate. Sphingolipid metabolism and their route of synthesis are highly conserved from yeast to mammalian cells. Studies using the budding yeast Saccharomyces cerevisiae have served in many ways to foster our understanding of sphingolipid dynamics and their role in the regulation of cellular processes. In the past decade, studies in S. cerevisiae have unraveled a functional association between the Target of Rapamycin (TOR) pathway and sphingolipids, showing that both TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) branches control temporal and spatial aspects of sphingolipid metabolism in response to physiological and environmental cues. In this review, we report recent findings in this emerging and exciting link between the TOR pathway and sphingolipids and implications in human health and disease.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
10
|
Malova IO, Petrunin DD. Natamycin - antimycotic of polyene macrolides class with unusual properties. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-3-161-184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In the current literature review issues regarding physicochemical peculiarities, mechanism ot action and satety aspects ot polyene macrolides class compound natamycin are enlightened along with the extensive clinical data upon the use ot pharmaceuticals containing this active ingredient.
Collapse
|
11
|
Wang J, Du Y, Zhang H, Zhou C, Qi Z, Zheng X, Wang P, Zhang Z. The actin-regulating kinase homologue MoArk1 plays a pleiotropic function in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2013; 14:470-82. [PMID: 23384308 PMCID: PMC3642230 DOI: 10.1111/mpp.12020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endocytosis is an essential cellular process in eukaryotic cells that involves concordant functions of clathrin and adaptor proteins, various protein and lipid kinases, phosphatases and the actin cytoskeleton. In Saccharomyces cerevisiae, Ark1p is a member of the serine/threonine protein kinase (SPK) family that affects profoundly the organization of the cortical actin cytoskeleton. To study the function of MoArk1, an Ark1p homologue identified in Magnaporthe oryzae, we disrupted the MoARK1 gene and characterized the ΔMoark1 mutant strain. The ΔMoark1 mutant exhibited various defects ranging from mycelial growth and conidial formation to appressorium-mediated host infection. The ΔMoark1 mutant also exhibited decreased appressorium turgor pressure and attenuated virulence on rice and barley. In addition, the ΔMoark1 mutant displayed defects in endocytosis and formation of the Spitzenkörper, and was hyposensitive to exogenous oxidative stress. Moreover, a MoArk1-green fluorescent protein (MoArk1-GFP) fusion protein showed an actin-like localization pattern by localizing to the apical regions of hyphae. This pattern of localization appeared to be regulated by the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins MoSec22 and MoVam7. Finally, detailed analysis revealed that the proline-rich region within the MoArk1 serine/threonine kinase (S_TKc) domain was critical for endocytosis, subcellular localization and pathogenicity. These results collectively suggest that MoArk1 exhibits conserved functions in endocytosis and actin cytoskeleton organization, which may underlie growth, cell wall integrity and virulence of the fungus.
Collapse
Affiliation(s)
- Jiamei Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yeast as a model system for studying lipid homeostasis and function. FEBS Lett 2012; 586:2858-67. [DOI: 10.1016/j.febslet.2012.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/11/2012] [Indexed: 12/14/2022]
|
13
|
Steinberg G. Cytoplasmic fungal lipases release fungicides from ultra-deformable vesicular drug carriers. PLoS One 2012; 7:e38181. [PMID: 22666476 PMCID: PMC3362563 DOI: 10.1371/journal.pone.0038181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/01/2012] [Indexed: 12/17/2022] Open
Abstract
The Transfersome® is a lipid vesicle that contains membrane softeners, such as Tween 80, to make it ultra-deformable. This feature makes the Transfersome® an efficient carrier for delivery of therapeutic drugs across the skin barrier. It was reported that TDT 067 (a topical formulation of 15 mg/ml terbinafine in Transfersome® vesicles) has a much more potent antifungal activity in vitro compared with conventional terbinafine, which is a water-insoluble fungicide. Here we use ultra-structural studies and live imaging in a model fungus to describe the underlying mode of action. We show that terbinafine causes local collapse of the fungal endoplasmic reticulum, which was more efficient when terbinafine was delivered in Transfersome® vesicles (TFVs). When applied in liquid culture, fluorescently labeled TFVs rapidly entered the fungal cells (T1/2∼2 min). Entry was F-actin- and ATP-independent, indicating that it is a passive process. Ultra-structural studies showed that passage through the cell wall involves significant deformation of the vesicles, and depends on a high concentration of the surfactant Tween 80 in their membrane. Surprisingly, the TFVs collapsed into lipid droplets after entry into the cell and the terbinafine was released from their interior. With time, the lipid bodies were metabolized in an ATP-dependent fashion, suggesting that cytosolic lipases attack and degrade intruding TFVs. Indeed, the specific monoacylglycerol lipase inhibitor URB602 prevented Transfersome® degradation and neutralized the cytotoxic effect of Transfersome®-delivered terbinafine. These data suggest that (a) Transfersomes deliver the lipophilic fungicide Terbinafine to the fungal cell wall, (b) the membrane softener Tween 80 allows the passage of the Transfersomes into the fungal cell, and (c) fungal lipases digest the invading Transfersome® vesicles thereby releasing their cytotoxic content. As this mode of action of Transfersomes is independent of the drug cargo, these results demonstrate the potential of Transfersomes in the treatment of all fungal diseases.
Collapse
Affiliation(s)
- Gero Steinberg
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
14
|
Gerondopoulos A, Jackson T, Monaghan P, Doyle N, Roberts LO. Murine norovirus-1 cell entry is mediated through a non-clathrin-, non-caveolae-, dynamin- and cholesterol-dependent pathway. J Gen Virol 2010; 91:1428-38. [PMID: 20147520 DOI: 10.1099/vir.0.016717-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For many viruses, endocytosis and exposure to the low pH within acidic endosomes is essential for infection. It has previously been reported that feline calicivirus uses clathrin-mediated endocytosis for entry into mammalian cells. Here, we report that infection of RAW264.7 macrophages by the closely related murine norovirus-1 (MNV-1) does not require the clathrin pathway, as infection was not inhibited by expression of dominant-negative Eps15 or by knockdown of the adaptin-2 complex. Further, infection was not inhibited by reagents that raise endosomal pH. RAW264.7 macrophages were shown not to express caveolin, and flotillin depletion did not inhibit infection, suggesting that caveolae and the flotillin pathway are not required for cell entry. However, MNV-1 infection was inhibited by methyl-beta-cyclodextrin and the dynamin inhibitor, dynasore. Addition of these drugs to the cells after a period of virus internalization did not inhibit infection, suggesting the involvement of cholesterol-sensitive lipid rafts and dynamin in the entry mechanism. Macropinocytosis (MPC) was shown to be active in RAW264.7 macrophages (as indicated by uptake of dextran) and could be blocked by 5-(N-ethyl-N-isopropyl) amiloride (EIPA), which is reported to inhibit this pathway. However, infection was enhanced in the presence of EIPA. Similarly, actin disruption, which also inhibits MPC, resulted in enhanced infection. These results suggest that MPC could contribute to virus degradation or that inhibition of MPC could lead to the upregulation of other endocytic pathways of virus uptake.
Collapse
Affiliation(s)
- Andreas Gerondopoulos
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | | | | | | |
Collapse
|
15
|
Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob Agents Chemother 2010; 54:2618-25. [PMID: 20385867 DOI: 10.1128/aac.01794-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The antifungal antibiotic natamycin belongs to the family of polyene antibiotics. Its antifungal activity arises via a specific interaction with ergosterol in the plasma membrane (te Welscher et al., J. Biol. Chem. 283:6393-6401, 2008). However, this activity does not involve disruption of the membrane barrier function, a well-known property of other members of the polyene antibiotic family, such as filipin and nystatin. Here we tested the effect of natamycin on vacuole membrane fusion, which is known to be ergosterol dependent. Natamycin blocked the fusion of isolated vacuoles without compromising the barrier function of the vacuolar membrane. Sublethal doses of natamycin perturbed the cellular vacuole morphology, causing the formation of many more small vacuolar structures in yeast cells. Using vacuoles isolated from yeast strains deficient in the ergosterol biosynthesis pathway, we showed that the inhibitory activity of natamycin was dependent on the presence of specific chemical features in the structure of ergosterol that allow the binding of natamycin. We found that natamycin inhibited the priming stage of vacuole fusion. Similar results were obtained with nystatin. These results suggest a novel mode of action of natamycin and perhaps all polyene antibiotics, which involves the impairment of membrane fusion via perturbation of ergosterol-dependent priming reactions that precede membrane fusion, and they may point to an effect of natamycin on ergosterol-dependent protein function in general.
Collapse
|
16
|
Ischebeck T, Seiler S, Heilmann I. At the poles across kingdoms: phosphoinositides and polar tip growth. PROTOPLASMA 2010; 240:13-31. [PMID: 20091065 PMCID: PMC2841259 DOI: 10.1007/s00709-009-0093-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 05/20/2023]
Abstract
Phosphoinositides (PIs) are minor, but essential phospholipid constituents of eukaryotic membranes, and are involved in the regulation of various physiological processes. Recent genetic and cell biological advances indicate that PIs play important roles in the control of polar tip growth in plant cells. In root hairs and pollen tubes, PIs control directional membrane trafficking required for the delivery of cell wall material and membrane area to the growing tip. So far, the exact mechanisms by which PIs control polarity and tip growth are unresolved. However, data gained from the analysis of plant, fungal and animal systems implicate PIs in the control of cytoskeletal dynamics, ion channel activity as well as vesicle trafficking. The present review aims at giving an overview of PI roles in eukaryotic cells with a special focus on functions pertaining to the control of cell polarity. Comparative screening of plant and fungal genomes suggests diversification of the PI system with increasing organismic complexity. The evolutionary conservation of the PI system among eukaryotic cells suggests a role for PIs in tip growing cells in models where PIs so far have not been a focus of attention, such as fungal hyphae.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Stephan Seiler
- Department of Microbiology and Genetics; and DFG Research Center Molecular Physiology of the Brain (CMPB), Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Abstract
Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milieu and also serves to regulate various processes initiated at the cell surface. These include nutrient uptake, signaling from cell-surface receptors, and many other processes essential for cell and tissue functioning in metazoans. It is also central to the maintenance of PM lipid and protein homeostasis. There are multiple means of internalization that operate concurrently, at the cell surface. With advancement in high-resolution visualization techniques, it is now possible to track multiple endocytic cargo at the same time, revealing a remarkable diversity of endocytic processes in a single cell. A combination of live cell imaging and efficient genetic manipulations has also aided in understanding the functional hierarchy of molecular players in these mechanisms of internalization. Here we provide an account of various endocytic routes, their mechanisms of operation and occurrence across phyla.
Collapse
|
18
|
Fontaine T, Lamarre C, Simenel C, Lambou K, Coddeville B, Delepierre M, Latgé JP. Characterization of glucuronic acid containing glycolipid in Aspergillus fumigatus mycelium. Carbohydr Res 2009; 344:1960-7. [DOI: 10.1016/j.carres.2009.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 12/31/2022]
|
19
|
Holm D, Fink DR, Grønlund J, Hansen S, Holmskov U. Cloning and characterization of SCART1, a novel scavenger receptor cysteine-rich type I transmembrane molecule. Mol Immunol 2009; 46:1663-72. [DOI: 10.1016/j.molimm.2009.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/13/2009] [Indexed: 12/25/2022]
|
20
|
Li SC, Kane PM. The yeast lysosome-like vacuole: endpoint and crossroads. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:650-63. [PMID: 18786576 PMCID: PMC2906225 DOI: 10.1016/j.bbamcr.2008.08.003] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 12/21/2022]
Abstract
Fungal vacuoles are acidic organelles with degradative and storage capabilities that have many similarities to mammalian lysosomes and plant vacuoles. In the past several years, well-developed genetic, genomic, biochemical and cell biological tools in S. cerevisiae have provided fresh insights into vacuolar protein sorting, organelle acidification, ion homeostasis, autophagy, and stress-related functions of the vacuole, and these insights have often found parallels in mammalian lysosomes. This review provides a broad overview of the defining features and functions of S. cerevisiae vacuoles and compares these features to mammalian lysosomes. Recent research challenges the traditional view of vacuoles and lysosomes as simply the terminal compartment of biosynthetic and endocytic pathways (i.e. the "garbage dump" of the cell), and suggests instead that these compartments are unexpectedly dynamic and highly regulated.
Collapse
Affiliation(s)
- Sheena Claire Li
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University
| | - Patricia M. Kane
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University
| |
Collapse
|
21
|
Van Leeuwen MR, Golovina EA, Dijksterhuis J. The polyene antimycotics nystatin and filipin disrupt the plasma membrane, whereas natamycin inhibits endocytosis in germinating conidia of Penicillium discolor. J Appl Microbiol 2009; 106:1908-18. [PMID: 19228256 DOI: 10.1111/j.1365-2672.2009.04165.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS To investigate the differences in membrane permeability and the effect on endocytosis of the polyene antimycotics nystatin, filipin and natamycin on germinating fungal conidia. METHODS AND RESULTS The model system was Penicillium discolor, a food spoilage fungus. Filipin resulted in permeabilization of germinating conidia for the fluorescent probes TOTO-1 and FM4-64, but not for ferricyanide ions. Nystatin caused influx of all these compounds while natamycin did not. Untreated germinating conidia internalize the endocytic marker FM4-64. Pretreatment of germinating conidia with natamycin showed a dose and time dependent inhibition of endocytosis as judged by the lack of formation of early endosomal compartments. CONCLUSIONS The results obtained from this study indicated that, unlike nystatin and filipin, natamycin is unable to permeabilize germinating conidia, but interferes with endocytosis in a dose and time dependent manner. SIGNIFICANCE AND IMPACT OF THE STUDY Natamycin acts via a different mode of action than other polyene antimycotics. These results offer useful information for new strategies to prevent fungal spoilage on food products and infection on agricultural crops. For laboratory use, natamycin can be used as a specific inhibitor of early endocytosis in fungal cells.
Collapse
Affiliation(s)
- M R Van Leeuwen
- Applied and Industrial Mycology, CBS/Fungal Biodiversity Centre, Utrecht, The Netherlands
| | | | | |
Collapse
|
22
|
Zhai C, Li K, Markaki V, Phelan JP, Bowers K, Cooke FT, Panaretou B. Ypp1/YGR198w plays an essential role in phosphoinositide signalling at the plasma membrane. Biochem J 2008; 415:455-66. [PMID: 18601652 DOI: 10.1042/bj20080209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
Phosphoinositide signalling through the eukaryotic plasma membrane makes essential contributions to many processes, including remodelling of the actin cytoskeleton, vesicle trafficking and signalling from the cell surface. A proteome-wide screen performed in Saccharomyces cerevisiae revealed that Ypp1 interacts physically with the plasma-membrane-associated phosphoinositide 4-kinase, Stt4. In the present study, we demonstrate that phenotypes of ypp1 and stt4 conditional mutants are identical, namely osmoremedial temperature sensitivity, hypersensitivity to cell wall destabilizers and defective organization of actin. We go on to show that overexpression of STT4 suppresses the temperature-sensitive growth defect of ypp1 mutants. In contrast, overexpression of genes encoding the other two phosphoinositide 4-kinases in yeast, Pik1 and Lsb6, do not suppress this phenotype. This implies a role for Ypp1 in Stt4-dependent events at the plasma membrane, as opposed to a general role in overall metabolism of phosphatidylinositol 4-phosphate. Use of a pleckstrin homology domain sensor reveals that there are substantially fewer plasma-membrane-associated 4-phosphorylated phosphoinositides in ypp1 mutants in comparison with wild-type cells. Furthermore, in vivo labelling with [(3)H]inositol indicates a dramatic reduction in the level of phosphatidylinositol 4-phosphate in ypp1 mutants. This is the principal cause of lethality under non-permissive conditions in ypp1 mutants, as limiting the activity of the Sac1 phosphoinositide 4-phosphate phosphatase leads to restoration of viability. Additionally, the endocytic defect associated with elevated levels of PtdIns4P in sac1Delta cells is restored in combination with a ypp1 mutant, consistent with the opposing effects that these two mutations have on levels of this phosphoinositide.
Collapse
Affiliation(s)
- Chao Zhai
- Pharmaceutical Science Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Birch PRJ, Boevink PC, Gilroy EM, Hein I, Pritchard L, Whisson SC. Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:373-9. [PMID: 18511334 DOI: 10.1016/j.pbi.2008.04.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 05/17/2023]
Abstract
To manipulate host defences, plant pathogenic oomycetes secrete and translocate RXLR effectors into plant cells. Recent reports have indicated that RXLR effectors are translocated from the extrahaustorial matrix during the biotrophic phase of infection and that they are able to suppress PAMP-triggered immunity. Oomycete genomes contain potentially hundreds of highly diverse RXLR effector genes, providing the potential for considerable functional redundancy and the consequent ability to readily shed effectors that are recognised by plant surveillance systems without compromising pathogenic fitness. Understanding how these effectors are translocated, their precise roles in virulence, and the extent to which functional redundancy exists in oomycete RXLR effector complements, are major challenges for the coming years.
Collapse
Affiliation(s)
- Paul R J Birch
- Division of Plant Science, College of Life Sciences, University of Dundee at SCRI, Errol Road, Invergowrie, Dundee DD2 5DA, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Baggett JJ, Shaw JD, Sciambi CJ, Watson HA, Wendland B. Fluorescent labeling of yeast. ACTA ACUST UNITED AC 2008; Chapter 4:Unit 4.13. [PMID: 18228435 DOI: 10.1002/0471143030.cb0413s20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit describes the use of several different fluorescence methods for labeling yeast cells. It includes methods to label the vacuole, the actin cytoskeleton, and chitin deposits on cell walls (bud scars), as well as methods for visualizing specific proteins in live cells with GFP chimeras and in fixed cells by immunofluorescence.
Collapse
Affiliation(s)
- J J Baggett
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
25
|
Rao RP, Acharya JK. Sphingolipids and membrane biology as determined from genetic models. Prostaglandins Other Lipid Mediat 2008; 85:1-16. [PMID: 18035569 PMCID: PMC2242731 DOI: 10.1016/j.prostaglandins.2007.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/05/2007] [Accepted: 10/07/2007] [Indexed: 12/20/2022]
Abstract
The importance of sphingolipids in membrane biology was appreciated early in the twentieth century when several human inborn errors of metabolism were linked to defects in sphingolipid degradation. The past two decades have seen an explosion of information linking sphingolipids with cellular processes. Studies have unraveled mechanistic details of the sphingolipid metabolic pathways, and these findings are being exploited in the development of novel therapies, some now in clinical trials. Pioneering work in yeast has laid the foundation for identifying genes encoding the enzymes of the pathways. The advent of the era of genomics and bioinformatics has led to the identification of homologous genes in other species and the subsequent creation of animal knock-out lines for these genes. Discoveries from these efforts have re-kindled interest in the role of sphingolipids in membrane biology. This review highlights some of the recent advances in understanding sphingolipids' roles in membrane biology as determined from genetic models.
Collapse
Affiliation(s)
- Raghavendra Pralhada Rao
- Laboratory of Cell and Developmental Signaling, National Cancer Institute Frederick, MD 21702, USA
| | | |
Collapse
|
26
|
Acharya JK, Dasgupta U, Rawat SS, Yuan C, Sanxaridis PD, Yonamine I, Karim P, Nagashima K, Brodsky MH, Tsunoda S, Acharya U. Cell-nonautonomous function of ceramidase in photoreceptor homeostasis. Neuron 2008; 57:69-79. [PMID: 18184565 PMCID: PMC2271043 DOI: 10.1016/j.neuron.2007.10.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 09/17/2007] [Accepted: 10/30/2007] [Indexed: 01/10/2023]
Abstract
Neutral ceramidase, a key enzyme of sphingolipid metabolism, hydrolyzes ceramide to sphingosine. These sphingolipids are critical structural components of cell membranes and act as second messengers in diverse signal transduction cascades. Here, we have isolated and characterized functional null mutants of Drosophila ceramidase. We show that secreted ceramidase functions in a cell-nonautonomous manner to maintain photoreceptor homeostasis. In the absence of ceramidase, photoreceptors degenerate in a light-dependent manner, are defective in normal endocytic turnover of rhodopsin, and do not respond to light stimulus. Consistent with a cell-nonautonomous function, overexpression of ceramidase in tissues distant from photoreceptors suppresses photoreceptor degeneration in an arrestin mutant and facilitates membrane turnover in a rhodopsin null mutant. Furthermore, our results show that secreted ceramidase is internalized and localizes to endosomes. Our findings establish a role for a secreted sphingolipid enzyme in the regulation of photoreceptor structure and function.
Collapse
Affiliation(s)
- Jairaj K. Acharya
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702, USA
| | - Ujjaini Dasgupta
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Satinder S. Rawat
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Changqing Yuan
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Ikuko Yonamine
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pusha Karim
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kunio Nagashima
- EM Facility/Image Analysis Laboratory, SAIC Frederick, MD 21702, USA
| | - Michael H. Brodsky
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Susan Tsunoda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Usha Acharya
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
27
|
Baumgärtner P, Geiger M, Zieseniss S, Malleier J, Huntington JA, Hochrainer K, Bielek E, Stoeckelhuber M, Lauber K, Scherfeld D, Schwille P, Wäldele K, Beyer K, Engelmann B. Phosphatidylethanolamine critically supports internalization of cell-penetrating protein C inhibitor. J Cell Biol 2007; 179:793-804. [PMID: 18025309 PMCID: PMC2080921 DOI: 10.1083/jcb.200707165] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/24/2007] [Indexed: 11/22/2022] Open
Abstract
Although their contribution remains unclear, lipids may facilitate noncanonical routes of protein internalization into cells such as those used by cell-penetrating proteins. We show that protein C inhibitor (PCI), a serine protease inhibitor (serpin), rapidly transverses the plasma membrane, which persists at low temperatures and enables its nuclear targeting in vitro and in vivo. Cell membrane translocation of PCI necessarily requires phosphatidylethanolamine (PE). In parallel, PCI acts as a lipid transferase for PE. The internalized serpin promotes phagocytosis of bacteria, thus suggesting a function in host defense. Membrane insertion of PCI depends on the conical shape of PE and is associated with the formation of restricted aqueous compartments within the membrane. Gain- and loss-of-function mutations indicate that the transmembrane passage of PCI requires a branched cavity between its helices H and D, which, according to docking studies, precisely accommodates PE. Our findings show that its specific shape enables cell surface PE to drive plasma membrane translocation of cell-penetrating PCI.
Collapse
Affiliation(s)
- Petra Baumgärtner
- Vaskuläre Biologie und Hämostase, Institut für Klinische Chemie, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The endoplasmic reticulum (ER) is a contiguous network of interconnected membrane sheets and tubules. The ER is differentiated into distinct domains, including the peripheral ER and nuclear envelope. Inhibition of two ER proteins, Rtn4a and DP1/NogoA, was previously shown to inhibit the formation of ER tubules in vitro. We show that the formation of ER tubules in vitro also requires a Rab family GTPase. Characterization of the 29 Caenorhabditis elegans Rab GTPases reveals that depletion of RAB-5 phenocopies the defects in peripheral ER structure that result from depletion of RET-1 and YOP-1, the C. elegans homologues of Rtn4a and DP1/NogoA. Perturbation of endocytosis by other means did not affect ER structure; the role of RAB-5 in ER morphology is thus independent of its well-studied requirement for endocytosis. RAB-5 and YOP-1/RET-1 also control the kinetics of nuclear envelope disassembly, which suggests an important role for the morphology of the peripheral ER in this process.
Collapse
Affiliation(s)
- Anjon Audhya
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
29
|
Strahl T, Thorner J. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:353-404. [PMID: 17382260 PMCID: PMC1868553 DOI: 10.1016/j.bbalip.2007.01.015] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 02/02/2023]
Abstract
It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast.
Collapse
Affiliation(s)
- Thomas Strahl
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jeremy Thorner
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
30
|
Souza CM, Pichler H. Lipid requirements for endocytosis in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:442-54. [PMID: 16997624 DOI: 10.1016/j.bbalip.2006.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 01/19/2023]
Abstract
Endocytosis is, besides secretion, the most prominent membrane transport pathway in eukaryotic cells. In membrane transport, defined areas of the donor membranes engulf solutes of the compartment they are bordering and bud off with the aid of coat proteins to form vesicles. These transport vehicles are guided along cytoskeletal paths, often matured and, finally, fuse to the acceptor membrane they are targeted to. Lipids and proteins are equally important components in membrane transport pathways. Not only are they the structural units of membranes and vesicles, but both classes of molecules also participate actively in membrane transport processes. Whereas proteins form the cytoskeleton and vesicle coats, confer signals and constitute attachment points for membrane-membrane interaction, lipids modulate the flexibility of bilayers, carry protein recognition sites and confer signals themselves. Over the last decade it has been realized that all classes of bilayer lipids, glycerophospholipids, sphingolipids and sterols, actively contribute to functional membrane transport, in particular to endocytosis. Thus, abnormal bilayer lipid metabolism leads to endocytic defects of different severity. Interestingly, there seems to be a great deal of interdependence and interaction among lipid classes. It will be a challenge to characterize this plenitude of interactions and find out about their impact on cellular processes.
Collapse
|
31
|
Abstract
Fungi invade substrates, such as host tissues, through hyphal tip growth. This article focuses on the corn smut fungus Ustilago maydis, in which tip growth and pathogenicity involve apical endocytic recycling by early endosomes. These organelles rapidly move bi-directionally along microtubules and this movement is mediated by opposing molecular motors. This motility seems to be essential for extended hyphal growth, possibly because it focuses the endocytic machinery at the hyphal tip and mediates communication between the tip and the sub-apical nucleus.
Collapse
Affiliation(s)
- Gero Steinberg
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch Strabe D-35043 Marburg, Germany.
| |
Collapse
|
32
|
Guan XL, Wenk MR. Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 2006; 23:465-77. [PMID: 16652392 DOI: 10.1002/yea.1362] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipids are rapidly moving to centre stage in many fields of biological sciences. Lipidomics, the systems-level scale analysis of lipids and their interacting factors, is thus an emerging field which holds great promise for drug and biomarker discovery. Here we present a mass spectrometry-based approach for profiling of polar lipids, in particular phospholipids and sphingolipids, in Saccharomyces cerevisiae. The first step includes semi-quantitative surveys of lipids in an untargeted fashion, which is particularly powerful for detection of changes that cannot easily be anticipated. This leads to the identification of ions with increased or decreased signal intensities. Comprehensive theoretical calculation of the masses of yeast phospholipid and sphingolipid molecular species, based on fatty acyl and headgroup heterogeneity, is next used to tentatively assign ions of interest. Subsequent targeted analysis using tandem mass spectrometry allows for characterization and quantification of phospholipids and sphingolipids. Given the high degree of conservation in pathways of lipid metabolism between different organisms, it can be expected that this method will lead to the discovery of novel enzymatic activities and modulators of known ones, particularly when used in combination with genetic and chemogenetic libraries and screens. We validated the method using the EUROSCARF library of non-essential deletion mutants. Mutants of SCS7, a lipid hydroxylase, and SLC1, a putative acyl transferase with unknown substrate specificity, were profiled for their phospholipid and sphingolipid content. The observed changes in lipid profiles are consistent with previous observations and extend our knowledge on in vivo substrate use under permissive growth conditions.
Collapse
Affiliation(s)
- Xue Li Guan
- Department of Biochemistry and Department of Biological Sciences, National University of Singapore, Singapore 117597
| | | |
Collapse
|
33
|
Gadura N, Michels CA. Sequences in the N-terminal cytoplasmic domain of Saccharomyces cerevisiae maltose permease are required for vacuolar degradation but not glucose-induced internalization. Curr Genet 2006; 50:101-14. [PMID: 16741702 DOI: 10.1007/s00294-006-0080-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 04/21/2006] [Accepted: 04/23/2006] [Indexed: 12/31/2022]
Abstract
In Saccharomyces cerevisiae, glucose addition to maltose fermenting cells causes a rapid loss of maltose transport activity and ubiquitin-mediated vacuolar proteolysis of maltose permease. GFP-tagged Mal61 maltose permease was used to explore the role of the N-terminal cytoplasmic domain in glucose-induced inactivation. In maltose-grown cells, Mal61/HA-GFP localizes to the cell surface and, surprisingly, to the vacuole. Studies of end3Delta and doa4Delta mutants indicate that a slow constitutive internalization of Mal61/HA-GFP is required for its vacuolar localization. Site-specific mutagenesis of multiple serine/threonine residues in a putative PEST sequence of the N-terminal cytoplasmic domain of maltose permease blocks glucose-induced Mal61p degradation but does not affect the rapid loss of maltose transport activity associated with glucose-induced internalization. The internalized multiple Ser/Thr mutant protein co-localizes with Snf7p in a putative late endosome or E-compartment. Further, alteration of a putative dileucine [D/EExxxLL/I] motif at residues 64-70 causes a significant defect in maltose transport activity and mislocalization to an E-compartment but appears to have little impact on glucose-induced internalization. We conclude that the N-terminal cytoplasmic domain of maltose permease is not the target of the signaling pathways leading to glucose-induced internalization of Mal61 permease but is required for its subsequent delivery to the vacuole for degradation.
Collapse
Affiliation(s)
- Nidhi Gadura
- Biology Department, Queens College and the Graduate School of the City University of New York, Flushing, 11367, USA
| | | |
Collapse
|
34
|
Martinez-Vicente M, Sovak G, Cuervo AM. Protein degradation and aging. Exp Gerontol 2006; 40:622-33. [PMID: 16125351 DOI: 10.1016/j.exger.2005.07.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 12/19/2022]
Abstract
Continuous turnover of intracellular proteins is essential for the maintenance of cellular homeostasis and for the regulation of multiple cellular functions. The first reports showing a decrease in total rates of protein degradation with age are dated more than 50 years ago, when the major players in protein degradation where still to be discovered. The current advances in the molecular characterization of the two main intracellular proteolytic systems, the lysosomal and the ubiquitin proteasome system, offer now the possibility of a systematic search for the defect(s) that lead to the declined activity of these systems in old organisms. We discuss here, in light of the current findings, how malfunctioning of these two proteolytic systems can contribute to different aspects of the phenotype of aging and to the pathogenesis of some age-related diseases.
Collapse
Affiliation(s)
- Marta Martinez-Vicente
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
35
|
Abstract
The purpose of this review is to draw the attention of general readers to the importance of cellular exocytic vesiculation as a normal mechanism of development and subsequent adjustment to changing conditions, focusing on red cell (RBC) vesiculation. Recent studies have emphasized the possible role of these microparticles as diagnostic and investigative tools. RBCs lose membrane, both in vivo and during ex vivo storage, by the blebbing of microvesicles from the tips of echinocytic spicules. Microvesicles shed by RBCs in vivo are rapidly removed by the reticuloendothelial system. During storage, this loss of membrane contributes to the storage lesion and the accumulation of the microvesicles are believed to be thrombogenic and thus to be clinically important.
Collapse
|
36
|
Gadura N, Robinson LC, Michels CA. Glc7-Reg1 phosphatase signals to Yck1,2 casein kinase 1 to regulate transport activity and glucose-induced inactivation of Saccharomyces maltose permease. Genetics 2005; 172:1427-39. [PMID: 16361229 PMCID: PMC1456300 DOI: 10.1534/genetics.105.051698] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces casein kinase 1 isoforms encoded by the essential gene pair YCK1 and YCK2 control cell growth and morphogenesis and are linked to the endocytosis of several membrane proteins. Here we define roles for the Yck1,2 kinases in Mal61p maltose permease activation and trafficking, using a yck1delta yck2-2(ts) (yck(ts)) strain with conditional Yck activity. Moreover, we provide evidence that Glc7-Reg1 phosphatase acts as an upstream activator of Yck1,2 kinases in a novel signaling pathway that modulates kinase activity in response to carbon source availability. The yck(ts) strain exhibits significantly reduced maltose transport activity despite apparently normal levels and cell surface localization of maltose permease protein. Glucose-induced internalization and rapid loss of maltose transport activity of Mal61/HAp-GFP are not observed in the yck(ts) strain and maltose permease proteolysis is blocked. We show that a reg1delta mutant exhibits a phenotype remarkably similar to that conferred by yck(ts). The reg1delta phenotype is not enhanced in the yck(ts) reg1delta double mutant and is suppressed by increased Yck1,2p dosage. Further, although Yck2p localization and abundance do not change in the reg1delta mutant, Yck1,2 kinase activity, as assayed by glucose-induced HXT1 expression and Mth1 repressor stability, is substantially reduced in the reg1delta strain.
Collapse
Affiliation(s)
- Nidhi Gadura
- Biology Department, Queens College and the Graduate School of CUNY, Flushing, New York 11367, USA
| | | | | |
Collapse
|
37
|
|
38
|
Abstract
A fusion of cutting-edge research in cell biology, developmental biology and immunology made the recent workshop on Membrane Dynamics in Endocytosis an outstanding success. Members of an increasingly diverse community converged upon the small town of Sant Feliu de Guixols on the coast of Spain, between September 17-22, 2005, to discuss common themes emerging from their studies on membrane transport. Organized by Margaret Robinson (Cambridge, UK) and Howard Riezman (Geneva, Switzerland), the meeting covered diverse topics that highlighted essential roles for endocytosis during cell growth, development and parasitic invasion.
Collapse
Affiliation(s)
- Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, 604 Allison Road, Nelson Biological Laboratories Room A307, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
39
|
Abstract
Clathrin-mediated endocytosis is the main path for receptor internalization in metazoans and is essential for controlling cell integrity and signaling. It is driven by a large array of protein and lipid interactions that have been deciphered mainly by biochemical and genetic means. To place these interactions into context, and ultimately build a fully operative model of endocytosis at the molecular level, it is necessary to know the kinetic details of the role of each protein in this process. In this review, we describe the recent efforts made, by using live cell imaging, to define clear steps in the formation of endocytic vesicles and to observe the recruitment of key proteins during membrane invagination, the scission of a newly formed vesicle, and its movement away from the plasma membrane.
Collapse
Affiliation(s)
- David Perrais
- Laboratoire de Physiologie Cellulaire de la Synapse, CNRS UMR 5091, Université Bordeaux 2, Institut François Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
40
|
Fuchs U, Steinberg G. Endocytosis in the plant-pathogenic fungus Ustilago maydis. PROTOPLASMA 2005; 226:75-80. [PMID: 16231103 DOI: 10.1007/s00709-005-0109-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
Filamentous fungi are an important group of tip-growing organisms, which include numerous plant pathogens such as Magnaporthe grisea and Ustilago maydis. Despite their ecological and economical relevance, we are just beginning to unravel the importance of endocytosis in filamentous fungi. Most evidence for endocytosis in filamentous fungi is based on the use of endocytic tracer dyes that are taken up into the cell and delivered to the vacuole. Moreover, genomewide screening for candidate genes in Neurospora crassa and U. maydis confirmed the presence of most components of the endocytic machinery, indicating that endocytosis participates in filamentous growth. Indeed, it was shown that in U. maydis early endosomes cluster at sites of growth, where they support morphogenesis and polar growth, most likely via endosome-based membrane recycling. In humans, such recycling processes to the plasma membrane involve small GTPases such as Rab4. A homologue of this protein is encoded in the genome of U. maydis but is absent from the yeast Saccharomyces cerevisiae, suggesting that Rab4-mediated recycling is important for filamentous growth. Furthermore, human Rab4 regulates traffic of early endosomes along microtubules, and a similar microtubule-based transport is described for U. maydis. These observations suggest that Rab4-like GTPases might regulate endosome- and microtubule-based recycling during tip growth of filamentous fungi.
Collapse
Affiliation(s)
- U Fuchs
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Federal Republic of Germany
| | | |
Collapse
|
41
|
Gachet Y, Hyams JS. Endocytosis in fission yeast is spatially associated with the actin cytoskeleton during polarised cell growth and cytokinesis. J Cell Sci 2005; 118:4231-42. [PMID: 16141239 DOI: 10.1242/jcs.02530] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the fission yeast, Schizosaccharomyces pombe, uptake of the fluorescent styryl dye FM4-64 via the endocytic pathway to the vacuole was localised to the poles of growing, interphase cells and to the cell equator during cell division, regions of cell wall deposition that are rich in actin. When the pattern of growth or the plane of cytokinesis was altered, the relationship between the actin cytoskeleton and the site of endocytosis was maintained. Transfer of the label to the vacuolar membrane was dependent upon the Rab GTPase Ypt7 and, hence, vesicle fusion. Endocytic vesicles transiently colocalised with actin patches and endocytosis was inhibited in mutants that affected actin patch integrity and by the actin inhibitor latrunculin A. Concentrations of latrunculin that removed actin cables but left patches unaffected had no effect on endocytosis at the poles, but abolished endocytosis at the cell equator. Equatorial, but not polar, endocytosis was also inhibited in cells lacking the formin For3 (which have selectively destabilised actin cables), in mutants of the exocyst complex and in cells treated with brefeldin A. Differential effects on endocytosis at the cell poles and equator were also observed in the actin mutant cps8 and the Arp2/3 complex mutant arp2. The redirection of endocytosis from the cell poles to the cell equator in M phase coincided with the anaphase separation of sister chromatids and was abolished in the septation initiation network (SIN) mutants cdc7, sid1 and sid2, demonstrating that the spatial reorganisation of the endocytic pathway in the S. pombe cell cycle requires a functional SIN pathway. We conclude that endocytosis in fission yeast has two distinct components, both of which are actin-based, but which are mechanistically distinct, as well as being spatially and temporally separated in the S. pombe cell cycle.
Collapse
Affiliation(s)
- Yannick Gachet
- Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
42
|
Liu J, Liang M, Liu L, Malhotra D, Xie Z, Shapiro JI. Ouabain-induced endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells requires caveolin-1. Kidney Int 2005; 67:1844-54. [PMID: 15840032 DOI: 10.1111/j.1523-1755.2005.00283.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We have demonstrated that ouabain causes dose- and time-dependent decreases in (86)Rb uptake in pig renal proximal tubule cell line (LLC-PK1) cells; and ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells in a clathrin-dependent pathway. Our data also suggest a role of endocytosis in both ouabain-induced signal transduction and proximal tubule sodium handling. The present study addresses the molecular mechanisms involved in this process. METHODS Studies were performed with cultured LLC-PK1 and a stable-expressed caveolin-1 knockdown LLC-PK1 cell line by SiRNA method. RESULTS In wild-type LLC-PK1 cells, depletion of cholesterol by methyl beta-cyclodextrin reduced ouabain-induced accumulation of Na/K-ATPase alpha-1 subunit, EGFR, Src, and MAPKs in clathrin-coated vesicles, as well as in endosomes. Depletion of cholesterol also significantly reduced the protein-protein interaction among alpha-1 subunit, AP2, PI-3K, and clathrin heavy chain. In LLC-PK1 cells expressing mock-vehicle and caveolin-1 siRNA, depletion of caveolin-1 abolished ouabain-induced decrease in Rb uptake and decrease in the plasmalemmal Na/K-ATPase content. Depletion of caveolin-1 also significantly reduced the ouabain-induced accumulation of Na/K-ATPase alpha-1 subunit, EGFR, Src, and MAPKs in clathrin-coat vesicles, as well as early and late endosomes. In addition, depletion of caveolin-1 also significantly reduced the protein-protein interaction among alpha-1 subunit, AP2, PI-3K, and clathrin heavy chain. These data suggest that caveolae are involved in ouabain-induced endocytosis and signal transduction by initiating assembly of signaling cascades through the caveolar Na/K-ATPase and/or the interaction with clathrin-mediated endocytosis of the Na/K-ATPase.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Medicine, Medical College of Ohio, Toledo, Ohio 43614-5089, USA
| | | | | | | | | | | |
Collapse
|
43
|
Berryman S, Clark S, Monaghan P, Jackson T. Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. J Virol 2005; 79:8519-34. [PMID: 15956594 PMCID: PMC1143743 DOI: 10.1128/jvi.79.13.8519-8534.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have shown that foot-and-mouth disease virus (FMDV) infection mediated by the integrin alphavbeta6 takes place through clathrin-dependent endocytosis but not caveolae or other endocytic pathways that depend on lipid rafts. Inhibition of clathrin-dependent endocytosis by sucrose treatment or expression of a dominant-negative version of AP180 inhibited virus entry and infection. Similarly, inhibition of endosomal acidification inhibited an early step in infection. Blocking endosomal acidification did not interfere with surface expression of alphavbeta6, virus binding to the cells, uptake of the virus into endosomes, or cytoplasmic virus replication, suggesting that the low pH within endosomes is a prerequisite for delivery of viral RNA into the cytosol. Using immunofluorescence confocal microscopy, FMDV colocalized with alphavbeta6 at the cell surface but not with the B subunit of cholera toxin, a marker for lipid rafts. At 37 degrees C, virus was rapidly taken up into the cells and colocalized with markers for early and recycling endosomes but not with a marker for lysosomes, suggesting that infection occurs from within the early or recycling endosomal compartments. This conclusion was supported by the observation that FMDV infection is not inhibited by nocodazole, a reagent that inhibits vesicular trafficking between early and late endosomes (and hence trafficking to lysosomes). The integrin alphavbeta6 was also seen to accumulate in early and recycling endosomes on virus entry, suggesting that the integrin serves not only as an attachment receptor but also to deliver the virus to the acidic endosomes. These findings are all consistent with FMDV infection proceeding via clathrin-dependent endocytosis.
Collapse
Affiliation(s)
- Stephen Berryman
- Mammalian Virology, Institute for Animal Health, Pirbright, Surrey GU24 ONF, United Kingdom
| | | | | | | |
Collapse
|
44
|
Abstract
Caenorhabditis elegans has recently been used as an attractive model system to gain insight into mechanisms of endocytosis in multicellular organisms. A combination of forward and reverse genetics has identified a number of new membrane trafficking factors. Most of them have mammalian homologues which function in the same transport events. We describe a novel C. elegans gene sand-1, whose loss of function causes profound endocytic defects in many tissues. SAND-1 belongs to a conserved family of proteins present in all eukaryotic species, whose genome is sequenced. However, SAND family has not been previously characterized in metazoa. Our comparison of C. elegans SAND-1 and its yeast homologue, Mon1p, showed a conserved role of the SAND-family proteins in late steps of endocytic transport.
Collapse
Affiliation(s)
- D Poteryaev
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, Tuebingen D-72076, Germany.
| | | |
Collapse
|
45
|
Benesch S, Polo S, Lai FPL, Anderson KI, Stradal TEB, Wehland J, Rottner K. N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J Cell Sci 2005; 118:3103-15. [PMID: 15985465 DOI: 10.1242/jcs.02444] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WASP and WAVE family proteins promote actin polymerization by stimulating Arp2/3-complex-dependent filament nucleation. Unlike WAVE proteins, which are known to drive the formation of protrusions such as lamellipodia and membrane ruffles, vertebrate cell functions of WASP or N-WASP are less well established. Recent work demonstrated that clathrin-coated pit invagination can coincide with assembly of actin filaments and with accumulation of N-WASP and Arp2/3 complex, but the relevance of their recruitment has remained poorly defined. We employed two-colour total internal reflection microscopy to study the recruitment and dynamics of various components of the actin polymerization machinery and the epidermal growth factor receptor signalling machinery during clathrin-coated pit internalization in control cells and cells genetically deficient for functional N-WASP. We found that clathrin-coated pit endocytosis coincides with the recruitment of N-WASP, Arp2/3 complex and associated proteins, but not of WAVE family members. Actin accumulation at clathrin-coated pits requires the Arp2/3 complex, since Arp2/3 complex sequestration in the cytosol abolished any detectable actin assembly. The absence of N-WASP caused a significant reduction in the frequencies of actin and Arp2/3 complex accumulations at sites of clathrin-coated pit invagination and vesicle departure. Although N-WASP was not essential for Arp2/3-complex-mediated actin assembly at these sites or for EGF receptor-mediated endocytosis, N-WASP deficiency caused a marked reduction of EGF internalization. We conclude that the assembly of WASP subfamily proteins and associated factors at sites of clathrin-coated pit invagination amplifies actin accumulations at these sites promoting efficient internalization of ligands via clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Stefanie Benesch
- Cytoskeleton Dynamics Group, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Miliaras NB, Park JH, Wendland B. The function of the endocytic scaffold protein Pan1p depends on multiple domains. Traffic 2005; 5:963-78. [PMID: 15522098 DOI: 10.1111/j.1600-0854.2004.00238.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pan1p is an essential protein of the yeast Saccharomyces cerevisiae that is required for the internalization step of endocytosis and organization of the actin cytoskeleton. Pan1p, which binds several other endocytic proteins, is composed of multiple protein-protein interaction domains including two Eps15 Homology (EH) domains, a coiled-coil domain, an acidic Arp2/3-activating region, and a proline-rich domain. In this study, we have induced high-level expression of various domains of Pan1p in wild-type cells to assess the dominant consequences on viability, endocytosis, and actin organization. We found that the most severe phenotypes, with blocked endocytosis and aggregated actin, required expression of nearly full length Pan1p, and also required the endocytic regulatory protein kinase Prk1p. The central coiled-coil domain was the smallest fragment whose overexpression caused any dominant effects; these effects were more pronounced by inclusion of the second EH domain. Co-overexpressing nonoverlapping amino- and carboxy-terminal fragments did not mimic the effects of the intact protein, whereas fragments that overlapped within the coiled-coil region could. Yeast two-hybrid and in vivo coimmunoprecipitation analyses suggest that Pan1 may form dimers or higher order oligomers. Collectively, our data support a view of Pan1p as a dimeric/oligomeric scaffold whose functions require both the amino- and carboxy-termini, linked by the central region.
Collapse
Affiliation(s)
- Nicholas B Miliaras
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
47
|
Yan Q, Sun W, Kujala P, Lotfi Y, Vida TA, Bean AJ. CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol Biol Cell 2005; 16:2470-82. [PMID: 15772161 PMCID: PMC1087250 DOI: 10.1091/mbc.e04-11-1014] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
48
|
Dupré S, Urban-Grimal D, Haguenauer-Tsapis R. Ubiquitin and endocytic internalization in yeast and animal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:89-111. [PMID: 15571811 DOI: 10.1016/j.bbamcr.2004.09.024] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Endocytosis is involved in a wide variety of cellular processes, and the internalization step of endocytosis has been extensively studied in both lower and higher eukaryotic cells. Studies in mammalian cells have described several endocytic pathways, with the main emphasis on clathrin-dependent endocytosis. Genetic studies in yeast have underlined the critical role of actin and actin-binding proteins, lipid modification, and the ubiquitin conjugation system. The combined results of studies of endocytosis in higher and lower eukaryotic cells reveal an interesting interplay in the two systems, including a crucial role for ubiquitin-associated events. The ubiquitylation of yeast cell-surface proteins clearly acts as a signal triggering their internalization. Mammalian cells display variations on the common theme of ubiquitin-linked endocytosis, according to the cell-surface protein considered. Many plasma membrane channels, transporters and receptors undergo cell-surface ubiquitylation, required for the internalization or later endocytic steps of some cell-surface proteins, whereas for others, internalization involves interaction with the ubiquitin conjugation system or with ancillary proteins, which are themselves ubiquitylated. Epsins and Eps15 (or Eps15 homologs), are commonly involved in the process of endocytosis in all eukaryotes, their critical role in this process stemming from their capacity to bind ubiquitin, and to undergo ubiquitylation.
Collapse
Affiliation(s)
- S Dupré
- Institut Jacques Monod-CNRS Universités Paris VI and Paris VII, 2 place Jussieu 75005 Paris, France
| | | | | |
Collapse
|
49
|
Zhan Y, Tremblay MR, Melian N, Carbonetto S. Evidence that dystroglycan is associated with dynamin and regulates endocytosis. J Biol Chem 2005; 280:18015-24. [PMID: 15728588 DOI: 10.1074/jbc.m409682200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Disruption of the dystroglycan gene in humans and mice leads to muscular dystrophies and nervous system defects including malformation of the brain and defective synaptic transmission. To identify proteins that interact with dystroglycan in the brain we have used immunoaffinity purification followed by mass spectrometry (LC/MS-MS) and found that the GTPase dynamin 1 is a novel dystroglycan-associated protein. The beta-dystroglycan-dynamin 1 complex also included alpha-dystroglycan and Grb2. Overlay assays indicated that dynamin interacts directly with dystroglycan, and immunodepletion showed that only a pool of dynamin is associated with dystroglycan. Dystroglycan was associated and colocalized immunohistochemically with dynamin 1 in the central nervous system in the outer plexiform layer of retina where photoreceptor terminals are found. Endocytosis in neurons is both constitutive, as in non-neural cells, and regulated by neural activity. To assess the function of dystroglycan in the former, we have assayed transferrin uptake in fibroblastic cells differentiated from embryonic stem cells null for both dystroglycan alleles. In wild-type cells, dystroglycan formed a complex with dynamin and codistributed with cortactin at membrane ruffles, which are organelles implicated in endocytosis. Dystroglycan-null cells had a significantly greater transferrin uptake, a process well known to require dynamin. Expression of dystroglycan in null cells by infection with an adenovirus containing dystroglycan reduced transferrin uptake to levels seen in wild-type embryonic stem cells. These data suggest that dystroglycan regulates endocytosis possibly as a result of its interaction with dynamin.
Collapse
Affiliation(s)
- Yougen Zhan
- Centre for Research in Neuroscience and the Department of Neurology and Neurosurgery, Montréal General Hospital Research Institute, McGill University, Montréal, Québec H3G 1A4, Canada
| | | | | | | |
Collapse
|
50
|
Pichler H, Riezman H. Where sterols are required for endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:51-61. [PMID: 15519308 DOI: 10.1016/j.bbamem.2004.05.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 05/28/2004] [Indexed: 12/15/2022]
Abstract
Sterols are essential membrane components of eukaryotic cells. Interacting closely with sphingolipids, they provide the membrane surrounding required for membrane sorting and trafficking processes. Altering the amount and/or structure of free sterols leads to defects in endocytic pathways in mammalian cells and yeast. Plasma membrane structures functioning in the internalization step in mammalian cells, caveolae and clathrin-coated pits, are affected by cholesterol depletion. Accumulation of improper plasma membrane sterols prevents hyperphosphorylation of a plasma membrane receptor in yeast. Once internalized, sterols still interact with sphingolipids and are recycled to the plasma membrane to keep an intracellular sterol gradient with the highest amount of free sterols at the cell periphery. Interestingly, cells from patients suffering from sphingolipid storage diseases show high intracellular amounts of free cholesterol. We propose that the balanced interaction of sterols and sphingolipids is responsible for protein recruitment to specialized membrane domains and their functionality in the endocytic pathway.
Collapse
Affiliation(s)
- Harald Pichler
- Institute of Molecular Biotechnology, Sciences II, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|