1
|
Gan T, Liu Y, Qiao Y, Dong Y, Feng J, Chen X, Zhu L. Translation regulation in Bacillus subtilis and its applications in heterologous protein expression: A review. Int J Biol Macromol 2025; 311:143653. [PMID: 40311986 DOI: 10.1016/j.ijbiomac.2025.143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Bacillus subtilis is widely used for industrial enzyme production due to its food safety and good capability of protein synthesis and secretion. However, the production of heterologous proteins is often inefficient, partly due to poor compatibility and versatility of genetic elements in B. subtilis. Recent study shows that transcription and translation is uncoupled in B. subtilis, which is quite different from general knowledge about the transcription-translation coupling mechanism in bacteria. The uncoupling mechanism in B. subtilis shows that the transcription rate is much faster than translation rate. Therefore, the translation regulation will play an important role in highly-effective synthesis of heterologous protein. To better understanding the different regulation strategies at the translation level in B. subtilis, this review will summarize the translation process in B. subtilis cell and its regulatory mechanisms as well as the differences in comparison to other bacteria. Besides, the genetic engineering strategies for engineering the translation regulatory elements are also summarized.
Collapse
Affiliation(s)
- Tian Gan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yidi Liu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Qiao
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangyang Dong
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiacheng Feng
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Li W, Yang H, Stachowski K, Norris AS, Lichtenthal K, Kelly S, Gollnick P, Wysocki VH, Foster MP. Structural basis of nearest-neighbor cooperativity in the ring-shaped gene regulatory protein TRAP from protein engineering and cryo-EM. Proc Natl Acad Sci U S A 2025; 122:e2409030121. [PMID: 39793047 PMCID: PMC11725872 DOI: 10.1073/pnas.2409030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
The homo-dodecameric ring-shaped trp RNA binding attenuation protein (TRAP) from Alkalihalobacillus halodurans (Aha) binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the trp operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity. To establish a solid basis for describing nearest-neighbor cooperativity in TRAP, we engineered variants constructed with two subunits connected by a flexible linker (dTRAP). We mutated the binding sites of alternating protomers such that only every other site was competent for Trp binding (WT-Mut dTRAP). Ligand binding monitored by NMR, calorimetry, and native mass spectrometry revealed strong cooperativity in dTRAP containing adjacent binding-competent sites, but a severe binding defect when the wild-type sites were separated by mutated sites. Cryo-EM experiments of dTRAP in its ligand-free apo state, and both dTRAP and WT-Mut dTRAP in the presence of Trp, revealed progressive stabilization of loops that gate the Trp binding site and participate in RNA binding. These studies provide important insights into the thermodynamic and structural basis for the observed ligand binding cooperativity in TRAP. Such insights can be useful for understanding allosteric control networks and for the development of those with defined ligand sensitivity and regulatory control.
Collapse
Affiliation(s)
- Weicheng Li
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
| | - Haoyun Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Center for RNA Biology, The Ohio State University, Columbus, OH43210
| | - Kye Stachowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
| | - Andrew S. Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, OH43210
| | | | - Skyler Kelly
- Department of Biology, University at Buffalo, Buffalo, NY14260
| | - Paul Gollnick
- Department of Biology, University at Buffalo, Buffalo, NY14260
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Center for RNA Biology, The Ohio State University, Columbus, OH43210
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, OH43210
| | - Mark P. Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Center for RNA Biology, The Ohio State University, Columbus, OH43210
- Biophysics Graduate Program, The Ohio State University, Columbus, OH43210
| |
Collapse
|
3
|
Muzquiz R, Jamshidi C, Conroy DW, Jaroniec CP, Foster MP. Insights into Ligand-Mediated Activation of an Oligomeric Ring-Shaped Gene-Regulatory Protein from Solution- and Solid-State NMR. J Mol Biol 2024; 436:168792. [PMID: 39270971 PMCID: PMC11563856 DOI: 10.1016/j.jmb.2024.168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The 91 kDa oligomeric ring-shaped ligand binding protein TRAP (trp RNA binding attenuation protein) regulates the expression of a series of genes involved in tryptophan (Trp) biosynthesis in bacilli. When cellular Trp levels rise, the free amino acid binds to sites buried in the interfaces between each of the 11 (or 12, depending on the species) protomers in the ring. Crystal structures of Trp-bound TRAP show the Trp ligands are sequestered from solvent by a pair of loops from adjacent protomers that bury the bound ligand via polar contacts to several threonine residues. Binding of the Trp ligands occurs cooperatively, such that successive binding events occur with higher apparent affinity but the structural basis for this cooperativity is poorly understood. We used solution methyl-TROSY NMR relaxation experiments focused on threonine and isoleucine sidechains, as well as magic angle spinning solid-state NMR 13C-13C and 15N-13C chemical shift correlation spectra on uniformly labeled samples recorded at 800 and 1200 MHz, to characterize the structure and dynamics of the protein. Methyl 13C relaxation dispersion experiments on ligand-free apo TRAP revealed concerted exchange dynamics on the µs-ms time scale, consistent with transient sampling of conformations that could allow ligand binding. Cross-correlated relaxation experiments revealed widespread disorder on fast timescales. Chemical shifts for methyl-bearing side chains in apo- and Trp-bound TRAP revealed subtle changes in the distribution of sampled sidechain rotameric states. These observations reveal a pathway and mechanism for induced conformational changes to generate homotropic Trp-Trp binding cooperativity.
Collapse
Affiliation(s)
- Rodrigo Muzquiz
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Cameron Jamshidi
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Daniel W Conroy
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Christopher P Jaroniec
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Mark P Foster
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, 484 W 12th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
4
|
Muzquiz R, Jamshidi C, Conroy DW, Jaroniec CP, Foster MP. Insights into Ligand-Mediated Activation of an Oligomeric Ring-Shaped Gene-Regulatory Protein from Solution- and Solid-State NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593404. [PMID: 38798368 PMCID: PMC11118279 DOI: 10.1101/2024.05.10.593404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The 91 kDa oligomeric ring-shaped ligand binding protein TRAP (trp RNA binding attenuation protein) regulates the expression of a series of genes involved in tryptophan (Trp) biosynthesis in bacilli. When cellular Trp levels rise, the free amino acid binds to sites buried in the interfaces between each of the 11 (or 12, depending on the species) protomers in the ring. Crystal structures of Trp-bound TRAP show the Trp ligands are sequestered from solvent by a pair of loops from adjacent protomers that bury the bound ligand via polar contacts to several threonine residues. Binding of the Trp ligands occurs cooperatively, such that successive binding events occur with higher apparent affinity but the structural basis for this cooperativity is poorly understood. We used solution methyl-TROSY NMR relaxation experiments focused on threonine and isoleucine sidechains, as well as magic angle spinning solid-state NMR 13C-13C and 15N-13C chemical shift correlation spectra on uniformly labeled samples recorded at 800 and 1200 MHz, to characterize the structure and dynamics of the protein. Methyl 13C relaxation dispersion experiments on ligand-free apo TRAP revealed concerted exchange dynamics on the μs-ms time scale, consistent with transient sampling of conformations that could allow ligand binding. Cross-correlated relaxation experiments revealed widespread disorder on fast timescales. Chemical shifts for methyl-bearing side chains in apo- and Trp-bound TRAP revealed subtle changes in the distribution of sampled sidechain rotameric states. These observations reveal a pathway and mechanism for induced conformational changes to generate homotropic Trp-Trp binding cooperativity.
Collapse
Affiliation(s)
- Rodrigo Muzquiz
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210, USA
| | - Cameron Jamshidi
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210, USA
| | - Daniel W. Conroy
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210, USA
| | - Christopher P. Jaroniec
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210, USA
| | - Mark P. Foster
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Pourciau C, Yakhnin H, Pannuri A, Gorelik MG, Lai YJ, Romeo T, Babitzke P. CsrA coordinates the expression of ribosome hibernation and anti-σ factor proteins. mBio 2023; 14:e0258523. [PMID: 37943032 PMCID: PMC10746276 DOI: 10.1128/mbio.02585-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The Csr/Rsm system (carbon storage regulator or repressor of stationary phase metabolites) is a global post-transcriptional regulatory system that coordinates and responds to environmental cues and signals, facilitating the transition between active growth and stationary phase. Another key determinant of bacterial lifestyle decisions is the management of the cellular gene expression machinery. Here, we investigate the connection between these two processes in Escherichia coli. Disrupted regulation of the transcription and translation machinery impacts many cellular functions, including gene expression, growth, fitness, and stress resistance. Elucidating the role of the Csr system in controlling the activity of RNAP and ribosomes advances our understanding of mechanisms controlling bacterial growth. A more complete understanding of these processes could lead to the improvement of therapeutic strategies for recalcitrant infections.
Collapse
Affiliation(s)
- Christine Pourciau
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archanna Pannuri
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Mark G. Gorelik
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ying-Jung Lai
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Bidô RDCDA, Pereira DE, Alves MDC, Dutra LMG, Costa ACDS, Viera VB, Araújo WJD, Leite EL, Oliveira CJBD, Alves AF, Freitas JCR, Martins ACS, Cirino JA, Soares JKB. Mix of almond baru (Dipteryx alata Vog.) and goat whey modulated intestinal microbiota, improved memory and induced anxiolytic like behavior in aged rats. J Psychiatr Res 2023; 164:98-117. [PMID: 37331263 DOI: 10.1016/j.jpsychires.2023.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
The objective was to evaluate the effects of the consumption of a mix of baru almond and goat whey on memory performance and anxiety parameters related to the intestinal health of rats treated during aging. The animals were divided into three groups and treated by gavage for 10 weeks (n = 10/each group): Control (CT) - distilled water; Baru almond (BA) - 2000 mg of baru/kg of body weight; and Baru + Whey (BW) - 2000 mg of baru + 2000 mg of goat milk whey/kg of body weight. Anxiety behavior, memory, brain fatty acid profile and fecal microbiota were measured. BA and BW realized less grooming, spent more time in the central area of the open field and the open arms, and realized more head dipping in the elevated plus maze. A higher rate of exploration of the new object in the short and long-term memory was observed in BA and BW. There was an increase in the deposition of MUFAs and PUFAs and oleic acid in the brain of BA and BW. Regarding spatial memory, BA and BW performed better, with an emphasis on BW. There was a beneficial modulation of the fecal microbiota with a reduction of the pathogenic genus Clostridia_UFC-014 in BA and BW and an increase in the abundance of metabolic pathways of interest in the brain-gut axis. Thus, consumption of the mix is efficient in beneficially altering the intestinal microbiota, improving memory and anxiolytic-like behavior in rats during aging.
Collapse
Affiliation(s)
- Rita de Cássia de Araújo Bidô
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil.
| | - Diego Elias Pereira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Maciel da Costa Alves
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Larissa Maria Gomes Dutra
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Ana Carolina Dos Santos Costa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil; Department of Rural Technology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Wydemberg José de Araújo
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Elma Lima Leite
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and Pathology, Center for Health Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Juliano Carlo Rufino Freitas
- Education and Health Center, Academic Unit of Biology and Chemistry, Federal University of Campina Grande, Cuité, PB, Brazil
| | | | - Janaína André Cirino
- National Institute of Technology in Bonding and Coating Materials, University City, Recife, PE, Brazil
| | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| |
Collapse
|
7
|
Richards J, Belasco JG. Graded impact of obstacle size on scanning by RNase E. Nucleic Acids Res 2023; 51:1364-1374. [PMID: 36620905 PMCID: PMC9943677 DOI: 10.1093/nar/gkac1242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
In countless bacterial species, the lifetimes of most mRNAs are controlled by the regulatory endonuclease RNase E, which preferentially degrades RNAs bearing a 5' monophosphate and locates cleavage sites within them by scanning linearly from the 5' terminus along single-stranded regions. Consequently, its rate of cleavage at distal sites is governed by any obstacles that it may encounter along the way, such as bound proteins or ribosomes or base pairing that is coaxial with the path traversed by this enzyme. Here, we report that the protection afforded by such obstacles is dependent on the size and persistence of the structural discontinuities they create, whereas the molecular composition of obstacles to scanning is of comparatively little consequence. Over a broad range of sizes, incrementally larger discontinuities are incrementally more protective, with corresponding effects on mRNA stability. The graded impact of such obstacles suggests possible explanations for why their effect on scanning is not an all-or-none phenomenon dependent simply on whether the size of the resulting discontinuity exceeds the step length of RNase E.
Collapse
Affiliation(s)
- Jamie Richards
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA,Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA
| | - Joel G Belasco
- To whom correspondence should be addressed. Tel: +1 212 263 5409;
| |
Collapse
|
8
|
Li W, Norris AS, Lichtenthal K, Kelly S, Ihms EC, Gollnick P, Wysocki VH, Foster MP. Thermodynamic coupling between neighboring binding sites in homo-oligomeric ligand sensing proteins from mass resolved ligand-dependent population distributions. Protein Sci 2022; 31:e4424. [PMID: 36173171 PMCID: PMC9514064 DOI: 10.1002/pro.4424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
Homo-oligomeric ligand-activated proteins are ubiquitous in biology. The functions of such molecules are commonly regulated by allosteric coupling between ligand-binding sites. Understanding the basis for this regulation requires both quantifying the free energy ΔG transduced between sites, and the structural basis by which it is transduced. We consider allostery in three variants of the model ring-shaped homo-oligomeric trp RNA-binding attenuation protein (TRAP). First, we developed a nearest-neighbor statistical thermodynamic binding model comprising microscopic free energies for ligand binding to isolated sites ΔG0 , and for coupling between adjacent sites, ΔGα . Using the resulting partition function (PF) we explored the effects of these parameters on simulated population distributions for the 2N possible liganded states. We then experimentally monitored ligand-dependent population shifts using conventional spectroscopic and calorimetric methods and using native mass spectrometry (MS). By resolving species with differing numbers of bound ligands by their mass, native MS revealed striking differences in their ligand-dependent population shifts. Fitting the populations to a binding polynomial derived from the PF yielded coupling free energy terms corresponding to orders of magnitude differences in cooperativity. Uniquely, this approach predicts which of the possible 2N liganded states are populated at different ligand concentrations, providing necessary insights into regulation. The combination of statistical thermodynamic modeling with native MS may provide the thermodynamic foundation for a meaningful understanding of the structure-thermodynamic linkage that drives cooperativity.
Collapse
Affiliation(s)
- Weicheng Li
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOhioUSA
| | - Andrew S. Norris
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOhioUSA
- Resource for Native Mass Spectrometry Guided Structural BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Katie Lichtenthal
- Department of Biological SciencesUniversity at Buffalo, State University of New YorkBuffaloNew YorkUSA
| | - Skyler Kelly
- Department of Biological SciencesUniversity at Buffalo, State University of New YorkBuffaloNew YorkUSA
| | - Elihu C. Ihms
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Paul Gollnick
- Department of Biological SciencesUniversity at Buffalo, State University of New YorkBuffaloNew YorkUSA
| | - Vicki H. Wysocki
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOhioUSA
- Resource for Native Mass Spectrometry Guided Structural BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Mark P. Foster
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
9
|
Majsterkiewicz K, Biela AP, Maity S, Sharma M, Piette BMAG, Kowalczyk A, Gaweł S, Chakraborti S, Roos WH, Heddle JG. Artificial Protein Cage with Unusual Geometry and Regularly Embedded Gold Nanoparticles. NANO LETTERS 2022; 22:3187-3195. [PMID: 35254086 PMCID: PMC9052746 DOI: 10.1021/acs.nanolett.1c04222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Artificial protein cages have great potential in a number of areas including cargo capture and delivery and as artificial vaccines. Here, we investigate an artificial protein cage whose assembly is triggered by gold nanoparticles. Using biochemical and biophysical methods we were able to determine both the mechanical properties and the gross compositional features of the cage which, combined with mathematical models and biophysical data, allowed the structure of the cage to be predicted. The accuracy of the overall geometrical prediction was confirmed by the cryo-EM structure determined to sub-5 Å resolution. This showed the cage to be nonregular but similar to a dodecahedron, being constructed from 12 11-membered rings. Surprisingly, the structure revealed that the cage also contained a single, small gold nanoparticle at each 3-fold axis meaning that each cage acts as a synthetic framework for regular arrangement of 20 gold nanoparticles in a three-dimensional lattice.
Collapse
Affiliation(s)
- Karolina Majsterkiewicz
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Postgraduate
School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw 02-091, Poland
| | - Artur P. Biela
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Institute
of Zoology and Biomedical Research, Department of Cell Biology and
Imaging, Jagiellonian University, Kraków 30-387, Poland
| | - Sourav Maity
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Groningen 9747 AG, Netherlands
| | - Mohit Sharma
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Postgraduate
School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw 02-091, Poland
| | | | - Agnieszka Kowalczyk
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Faculty of
Mathematics and Computer Science, Jagiellonian
University, Kraków 30-348, Poland
| | - Szymon Gaweł
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | | | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Groningen 9747 AG, Netherlands
| | - Jonathan G. Heddle
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
10
|
The Impact of Probiotic Bacillus subtilis on Injurious Behavior in Laying Hens. Animals (Basel) 2022; 12:ani12070870. [PMID: 35405859 PMCID: PMC8997090 DOI: 10.3390/ani12070870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Injurious behavior prevention is a critical issue in the poultry industry due to increasing social stress, leading to negative effects on bird production and survivability, consequently enhancing gut microbiota dysbiosis and neuroinflammation via the microbiota–gut–brain axis. Probiotics have been used as potential therapeutic psychobiotics to treat or improve neuropsychiatric disorders or symptoms by boosting cognitive and behavioral processes and reducing stress reactions in humans and various experimental animals. The current data will first report that probiotic Bacillus subtilis reduces stress-induced injurious behavior in laying hens via regulating microbiota–gut–brain function with the potential to be an alternative to beak trimming during poultry egg production. Abstract Intestinal microbiota functions such as an endocrine organ to regulate host physiological homeostasis and behavioral exhibition in stress responses via regulating the gut–brain axis in humans and other mammals. In humans, stress-induced dysbiosis of the gut microbiota leads to intestinal permeability, subsequently affecting the clinical course of neuropsychiatric disorders, increasing the frequency of aggression and related violent behaviors. Probiotics, as direct-fed microorganism, have been used as dietary supplements or functional foods to target gut microbiota (microbiome) for the prevention or therapeutic treatment of mental diseases including social stress-induced psychiatric disorders such as depression, anxiety, impulsivity, and schizophrenia. Similar function of the probiotics may present in laying hens due to the intestinal microbiota having a similar function between avian and mammals. In laying hens, some management practices such as hens reared in conventional cages or at a high stocking density may cause stress, leading to injurious behaviors such as aggressive pecking, severe feather pecking, and cannibalism, which is a critical issue facing the poultry industry due to negative effects on hen health and welfare with devastating economic consequences. We discuss the current development of using probiotic Bacillus subtilis to prevent or reduce injurious behavior in laying hens.
Collapse
|
11
|
Shuai H, Myronovskyi M, Rosenkränzer B, Paulus C, Nadmid S, Stierhof M, Kolling D, Luzhetskyy A. Novel Biosynthetic Route to the Isoquinoline Scaffold. ACS Chem Biol 2022; 17:598-608. [PMID: 35253423 DOI: 10.1021/acschembio.1c00869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isoquinoline alkaloids are a large class of natural products with a broad range of biological activities, including antimicrobial, antitumor, antileukemic and anti-inflammatory properties. Although mostly found in plants, isoquinolines can also be found in the extracts of bacterial and fungal cultures. Regardless of the origin, most of the reported biosynthetic routes for isoquinolines use tyrosine as a main biosynthetic precursor. Here, we report the identification of a new biosynthetic pathway for production of isoquinolinequinone alkaloid mansouramycin D in Streptomyces albus Del14. Using feeding, mass spectrometry, and nuclear magnetic resonance spectroscopy, we demonstrate that tryptophan serves instead of tyrosine as a main mansouramycin biosynthetic precursor. The biosynthetic genes were identified in the chromosome of the strain by using gene inactivation and heterologous expression. Insights into the biosynthesis of mansouramycins are also presented.
Collapse
Affiliation(s)
- Hui Shuai
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Birgit Rosenkränzer
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Constanze Paulus
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Suvd Nadmid
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Marc Stierhof
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Dominik Kolling
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
- Department of Metabolic Engineering of Actinomycetes, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus Building E8 1, 66123 Saarbruecken, Germany
| |
Collapse
|
12
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
13
|
The transcription regulator BrsR serves as a network hub of natural competence protein-protein interactions in Streptococcus mutans. Proc Natl Acad Sci U S A 2021; 118:2106048118. [PMID: 34544866 DOI: 10.1073/pnas.2106048118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Genome evolution is an essential and stringently regulated aspect of biological fitness. For bacteria, natural competence is one of the principal mechanisms of genome evolution and is frequently subject to multiple layers of regulation derived from a plethora of environmental and physiological stimuli. Here, we present a regulatory mechanism that illustrates how such disparate stimuli can be integrated into the Streptococcus mutans natural competence phenotype. S. mutans possesses an intriguing, but poorly understood ability to coordinately control its independently regulated natural competence and bacteriocin genetic pathways as a means to acquire DNA released from closely related, bacteriocin-susceptible streptococci. Our results reveal how the bacteriocin-specific transcription activator BrsR directly mediates this coordination by serving as an anti-adaptor protein responsible for antagonizing the proteolysis of the inherently unstable, natural competence-specific alternative sigma factor ComX. This BrsR ability functions entirely independent of its transcription regulator function and directly modulates the timing and severity of the natural competence phenotype. Additionally, many of the DNA uptake proteins produced by the competence system were surprisingly found to possess adaptor abilities, which are employed to terminate the BrsR regulatory circuit via negative feedback. BrsR-competence protein heteromeric complexes directly inhibit nascent brsR transcription as well as stimulate the Clp-dependent proteolysis of extant BrsR proteins. This study illustrates how critical genetic regulatory abilities can evolve in a potentially limitless variety of proteins without disrupting their conserved ancestral functions. These unrecognized regulatory abilities are likely fundamental for transducing information through complex genetic networks.
Collapse
|
14
|
Huang J, Voß B. Simulation of Folding Kinetics for Aligned RNAs. Genes (Basel) 2021; 12:genes12030347. [PMID: 33652983 PMCID: PMC7996734 DOI: 10.3390/genes12030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Studying the folding kinetics of an RNA can provide insight into its function and is thus a valuable method for RNA analyses. Computational approaches to the simulation of folding kinetics suffer from the exponentially large folding space that needs to be evaluated. Here, we present a new approach that combines structure abstraction with evolutionary conservation to restrict the analysis to common parts of folding spaces of related RNAs. The resulting algorithm can recapitulate the folding kinetics known for single RNAs and is able to analyse even long RNAs in reasonable time. Our program RNAliHiKinetics is the first algorithm for the simulation of consensus folding kinetics and addresses a long-standing problem in a new and unique way.
Collapse
Affiliation(s)
- Jiabin Huang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Björn Voß
- Computational Biology Group, Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
- Correspondence:
| |
Collapse
|
15
|
Vosloo JA, Rautenbach M. Following tyrothricin peptide production by Brevibacillus parabrevis with electrospray mass spectrometry. Biochimie 2020; 179:101-112. [DOI: 10.1016/j.biochi.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
|
16
|
Li S, Edelmann D, Berghoff BA, Georg J, Evguenieva-Hackenberg E. Bioinformatic prediction reveals posttranscriptional regulation of the chromosomal replication initiator gene dnaA by the attenuator sRNA rnTrpL in Escherichia coli. RNA Biol 2020; 18:1324-1338. [PMID: 33164661 DOI: 10.1080/15476286.2020.1846388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DnaA is the initiator protein of chromosome replication, but the regulation of its homoeostasis in enterobacteria is not well understood. The DnaA level remains stable at different growth rates, suggesting a link between metabolism and dnaA expression. In a bioinformatic prediction, which we made to unravel targets of the sRNA rnTrpL in Enterobacteriaceae, the dnaA mRNA was the most conserved target candidate. The sRNA rnTrpL is derived from the transcription attenuator of the tryptophan biosynthesis operon. In Escherichia coli, its level is higher in minimal than in rich medium due to derepressed transcription without external tryptophan supply. Overexpression and deletion of the rnTrpL gene decreased and increased, respectively, the levels of dnaA mRNA. The decrease of the dnaA mRNA level upon rnTrpL overproduction was dependent on hfq and rne. Base pairing between rnTrpL and dnaA mRNA in vivo was validated. In minimal medium, the oriC level was increased in the ΔtrpL mutant, in line with the expected DnaA overproduction and increased initiation of chromosome replication. In line with this, chromosomal rnTrpL mutation abolishing the interaction with dnaA increased both the dnaA mRNA and the oriC level. Moreover, upon addition of tryptophan to minimal medium cultures, the oriC level in the wild type was increased. Thus, rnTrpL is a base-pairing sRNA that posttranscriptionally regulates dnaA in E. coli. Furthermore, our data suggest that rnTrpL contributes to the DnaA homoeostasis in dependence on the nutrient availability, which is represented by the tryptophan level in the cell.
Collapse
Affiliation(s)
- Siqi Li
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Daniel Edelmann
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Bork A Berghoff
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
17
|
Ritchey LE, Tack DC, Yakhnin H, Jolley EA, Assmann SM, Bevilacqua PC, Babitzke P. Structure-seq2 probing of RNA structure upon amino acid starvation reveals both known and novel RNA switches in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2020; 26:1431-1447. [PMID: 32611709 PMCID: PMC7491331 DOI: 10.1261/rna.075986.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/28/2020] [Indexed: 06/01/2023]
Abstract
RNA structure influences numerous processes in all organisms. In bacteria, these processes include transcription termination and attenuation, small RNA and protein binding, translation initiation, and mRNA stability, and can be regulated via metabolite availability and other stresses. Here we use Structure-seq2 to probe the in vivo RNA structurome of Bacillus subtilis grown in the presence and absence of amino acids. Our results reveal that amino acid starvation results in lower overall dimethyl sulfate (DMS) reactivity of the transcriptome, indicating enhanced protection owing to protein binding or RNA structure. Starvation-induced changes in DMS reactivity correlated inversely with transcript abundance changes. This correlation was particularly pronounced in genes associated with the stringent response and CodY regulons, which are involved in adaptation to nutritional stress, suggesting that RNA structure contributes to transcript abundance change in regulons involved in amino acid metabolism. Structure-seq2 accurately reported on four known amino acid-responsive riboswitches: T-box, SAM, glycine, and lysine riboswitches. Additionally, we discovered a transcription attenuation mechanism that reduces yfmG expression when amino acids are added to the growth medium. We also found that translation of a leader peptide (YfmH) encoded just upstream of yfmG regulates yfmG expression. Our results are consistent with a model in which a slow rate of yfmH translation caused by limitation of the amino acids encoded in YfmH prevents transcription termination in the yfmG leader region by favoring formation of an overlapping antiterminator structure. This novel RNA switch offers a way to simultaneously monitor the levels of multiple amino acids.
Collapse
Affiliation(s)
- Laura E Ritchey
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
18
|
Holmquist ML, Ihms EC, Gollnick P, Wysocki VH, Foster MP. Population Distributions from Native Mass Spectrometry Titrations Reveal Nearest-Neighbor Cooperativity in the Ring-Shaped Oligomeric Protein TRAP. Biochemistry 2020; 59:2518-2527. [PMID: 32558551 PMCID: PMC8093080 DOI: 10.1021/acs.biochem.0c00352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding, it is necessary to define, at a microscopic level, the thermodynamic consequences of binding of each ligand to its energetically coupled site(s). However, extracting these microscopic constants is difficult for macromolecules with more than two binding sites, because the observable [e.g., nuclear magnetic resonance (NMR) chemical shift changes, fluorescence, and enthalpy] can be altered by allostery, thereby distorting its proportionality to site occupancy. Native mass spectrometry (MS) can directly quantify the populations of homo-oligomeric protein species with different numbers of bound ligands, provided the populations are proportional to ion counts and that MS-compatible electrolytes do not alter the overall thermodynamics. These measurements can help decipher allosteric mechanisms by providing unparalleled access to the statistical thermodynamic partition function. We used native MS (nMS) to study the cooperative binding of tryptophan (Trp) to Bacillus stearothermophilus trp RNA binding attenuation protein (TRAP), a ring-shaped homo-oligomeric protein complex with 11 identical binding sites. MS-compatible solutions did not significantly perturb protein structure or thermodynamics as assessed by isothermal titration calorimetry and NMR spectroscopy. Populations of Trpn-TRAP11 states were quantified as a function of Trp concentration by nMS. The population distributions could not be explained by a noncooperative binding model but were described well by a mechanistic nearest-neighbor cooperative model. Nonlinear least-squares fitting yielded microscopic thermodynamic constants that define the interactions between neighboring binding sites. This approach may be applied to quantify thermodynamic cooperativity in other ring-shaped proteins.
Collapse
Affiliation(s)
- Melody L Holmquist
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elihu C Ihms
- VPPL, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, 9W. Watkins Mill Road, Suite 250, Gaithersburg, Maryland 20878, United States
| | - Paul Gollnick
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Melior H, Li S, Madhugiri R, Stötzel M, Azarderakhsh S, Barth-Weber S, Baumgardt K, Ziebuhr J, Evguenieva-Hackenberg E. Transcription attenuation-derived small RNA rnTrpL regulates tryptophan biosynthesis gene expression in trans. Nucleic Acids Res 2020; 47:6396-6410. [PMID: 30993322 PMCID: PMC6614838 DOI: 10.1093/nar/gkz274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Ribosome-mediated transcription attenuation is a basic posttranscriptional regulation mechanism in bacteria. Liberated attenuator RNAs arising in this process are generally considered nonfunctional. In Sinorhizobium meliloti, the tryptophan (Trp) biosynthesis genes are organized into three operons, trpE(G), ppiD-trpDC-moaC-moeA, and trpFBA-accD-folC, of which only the first one, trpE(G), contains a short ORF (trpL) in the 5′-UTR and is regulated by transcription attenuation. Under conditions of Trp sufficiency, transcription is terminated between trpL and trpE(G), and a small attenuator RNA, rnTrpL, is produced. Here, we show that rnTrpL base-pairs with trpD and destabilizes the polycistronic trpDC mRNA, indicating rnTrpL-mediated downregulation of the trpDC operon in trans. Although all three trp operons are regulated in response to Trp availability, only in the two operons trpE(G) and trpDC the Trp-mediated regulation is controlled by rnTrpL. Together, our data show that the trp attenuator coordinates trpE(G) and trpDC expression posttranscriptionally by two fundamentally different mechanisms: ribosome-mediated transcription attenuation in cis and base-pairing in trans. Also, we present evidence that rnTrpL-mediated regulation of trpDC genes expression in trans is conserved in Agrobacterium and Bradyrhizobium, suggesting that the small attenuator RNAs may have additional conserved functions in the control of bacterial gene expression.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University, Giessen, 35392, Germany
| | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, 35392, Germany
| | | |
Collapse
|
20
|
Abstract
RNA-binding proteins (RBPs) are central to most if not all cellular processes, dictating the fate of virtually all RNA molecules in the cell. Starting with pioneering work on ribosomal proteins, studies of bacterial RBPs have paved the way for molecular studies of RNA-protein interactions. Work over the years has identified major RBPs that act on cellular transcripts at the various stages of bacterial gene expression and that enable their integration into post-transcriptional networks that also comprise small non-coding RNAs. Bacterial RBP research has now entered a new era in which RNA sequencing-based methods permit mapping of RBP activity in a truly global manner in vivo. Moreover, the soaring interest in understudied members of host-associated microbiota and environmental communities is likely to unveil new RBPs and to greatly expand our knowledge of RNA-protein interactions in bacteria.
Collapse
Affiliation(s)
- Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany. .,Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
21
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
22
|
Pokorzynski ND, Brinkworth AJ, Carabeo R. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in Chlamydia trachomatis. eLife 2019; 8:e42295. [PMID: 30938288 PMCID: PMC6504234 DOI: 10.7554/elife.42295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
During infection, pathogens are starved of essential nutrients such as iron and tryptophan by host immune effectors. Without conserved global stress response regulators, how the obligate intracellular bacterium Chlamydia trachomatis arrives at a physiologically similar 'persistent' state in response to starvation of either nutrient remains unclear. Here, we report on the iron-dependent regulation of the trpRBA tryptophan salvage pathway in C. trachomatis. Iron starvation specifically induces trpBA expression from a novel promoter element within an intergenic region flanked by trpR and trpB. YtgR, the only known iron-dependent regulator in Chlamydia, can bind to the trpRBA intergenic region upstream of the alternative trpBA promoter to repress transcription. Simultaneously, YtgR binding promotes the termination of transcripts from the primary promoter upstream of trpR. This is the first description of an iron-dependent mechanism regulating prokaryotic tryptophan biosynthesis that may indicate the existence of novel approaches to gene regulation and stress response in Chlamydia.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Amanda J Brinkworth
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Rey Carabeo
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| |
Collapse
|
23
|
Richards J, Belasco JG. Obstacles to Scanning by RNase E Govern Bacterial mRNA Lifetimes by Hindering Access to Distal Cleavage Sites. Mol Cell 2019; 74:284-295.e5. [PMID: 30852060 DOI: 10.1016/j.molcel.2019.01.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 01/29/2019] [Indexed: 12/27/2022]
Abstract
The diversity of mRNA lifetimes in bacterial cells is difficult to reconcile with the relaxed cleavage site specificity of RNase E, the endonuclease most important for governing mRNA degradation. This enzyme has generally been thought to locate cleavage sites by searching freely in three dimensions. However, our results now show that its access to such sites in 5'-monophosphorylated RNA is hindered by obstacles-such as bound proteins or ribosomes or coaxial small RNA (sRNA) base pairing-that disrupt the path from the 5' end to those sites and prolong mRNA lifetimes. These findings suggest that RNase E searches for cleavage sites by scanning linearly from the 5'-terminal monophosphate along single-stranded regions of RNA and that its progress is impeded by structural discontinuities encountered along the way. This discovery has major implications for gene regulation in bacteria and suggests a general mechanism by which other prokaryotic and eukaryotic regulatory proteins can be controlled.
Collapse
Affiliation(s)
- Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA.
| |
Collapse
|
24
|
Planqué R, Hulshof J, Teusink B, Hendriks JC, Bruggeman FJ. Maintaining maximal metabolic flux by gene expression control. PLoS Comput Biol 2018; 14:e1006412. [PMID: 30235207 PMCID: PMC6168163 DOI: 10.1371/journal.pcbi.1006412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
One of the marvels of biology is the phenotypic plasticity of microorganisms. It allows them to maintain high growth rates across conditions. Studies suggest that cells can express metabolic enzymes at tuned concentrations through adjustment of gene expression. The associated transcription factors are often regulated by intracellular metabolites. Here we study metabolite-mediated regulation of metabolic-gene expression that maximises metabolic fluxes across conditions. We developed an adaptive control theory, qORAC (for ‘Specific Flux (q) Optimization by Robust Adaptive Control’), and illustrate it with several examples of metabolic pathways. The key feature of the theory is that it does not require knowledge of the regulatory network, only of the metabolic part. We derive that maximal metabolic flux can be maintained in the face of varying N environmental parameters only if the number of transcription-factor binding metabolites is at least equal to N. The controlling circuits appear to require simple biochemical kinetics. We conclude that microorganisms likely can achieve maximal rates in metabolic pathways, in the face of environmental changes. To attain high growth rates, microorganisms need to sustain high activities of metabolic reactions. Since the catalysing enzymes are in finite supply, cells need to carefully tune their concentrations. When conditions change, cells need to adjust those concentrations. How cells maintain high metabolism rates across conditions by way of gene regulatory mechanisms and whether they can maximise metabolic activity is far from clear. Here we present a general theory that solves this metabolic control problem, which we have called qORAC for specific flux (q) Optimisation by Robust Adaptive Control. It considers that external changes are sensed by internal “sensor” metabolites that bind to transcription factors in order to regulate enzyme-synthesis rates. We show that such a combined system of metabolism and its gene network can self-optimise its metabolic activity across conditions. We present the mathematical conditions for the required adaptive control for robust system-steering to optimal states across conditions. We provide explicit examples of such self-optimising coupled metabolism and gene network systems. We prove that a cell can be robust to changes in K parameters, e.g. external conditions, if at least K internal metabolite concentrations act transcription-factor binding sensors. We find that the optimal relation of the enzyme synthesis rates of self-optimising systems and the concentration of the sensor metabolites can generally be implemented by basic biochemistry. Our results indicate how cells are able to maintain maximal reaction rates, even in changing conditions.
Collapse
Affiliation(s)
- Robert Planqué
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Josephus Hulshof
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes C. Hendriks
- Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Analytical ultracentrifugation in structural biology. Biophys Rev 2017; 10:229-233. [PMID: 29188538 DOI: 10.1007/s12551-017-0340-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Researchers in the field of structural biology, especially X-ray crystallography and protein nuclear magnetic resonance, are interested in knowing as much as possible about the state of their target protein in solution. Not only is this knowledge relevant to studies of biological function, it also facilitates determination of a protein structure using homogeneous monodisperse protein samples. A researcher faced with a new protein to study will have many questions even after that protein has been purified. Analytical ultracentrifugation (AUC) can provide all of this information readily from a small sample in a non-destructive way, without the need for labeling, enabling structure determination experiments without any wasting time and material on uncharacterized samples. In this article, I use examples to illustrate how AUC can contribute to protein structural analysis. Integrating information from a variety of biophysical experimental methods, such as X-ray crystallography, small angle X-ray scattering, electrospray ionization-mass spectrometry, AUC allows a more complete understanding of the structure and function of biomacromolecules.
Collapse
|
26
|
Evolutionary diversification of protein-protein interactions by interface add-ons. Proc Natl Acad Sci U S A 2017; 114:E8333-E8342. [PMID: 28923934 DOI: 10.1073/pnas.1707335114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein-protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein-protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein-protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein-protein interactions.
Collapse
|
27
|
Translational Repression of the RpoS Antiadapter IraD by CsrA Is Mediated via Translational Coupling to a Short Upstream Open Reading Frame. mBio 2017; 8:mBio.01355-17. [PMID: 28851853 PMCID: PMC5574718 DOI: 10.1128/mbio.01355-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CsrA is a global regulatory RNA binding protein that has important roles in regulating carbon metabolism, motility, biofilm formation, and numerous other cellular processes. IraD functions as an antiadapter protein that inhibits RssB-mediated degradation of RpoS, the general stress response and stationary-phase sigma factor of Escherichia coli. Here we identified a novel mechanism in which CsrA represses iraD translation via translational coupling. Expression studies with quantitative reverse transcriptase PCR, Western blotting, and lacZ fusions demonstrated that CsrA represses iraD expression. Gel mobility shift, footprint, and toeprint studies identified four CsrA binding sites in the iraD leader transcript, all of which are far upstream of the iraD ribosome binding site. Computational modeling and RNA structure mapping identified an RNA structure that sequesters the iraD Shine-Dalgarno (SD) sequence. Three open reading frames (ORFs), all of which are translated, were identified in the iraD leader region. Two of these ORFs do not affect iraD expression. However, the translation initiation region of the third ORF contains three of the CsrA binding sites, one of which overlaps its SD sequence. Furthermore, the ORF stop codon overlaps the iraD start codon, a sequence arrangement indicative of translational coupling. In vivo expression and in vitro translation studies with wild-type and mutant reporter fusions demonstrated that bound CsrA directly represses translation initiation of this ORF. We further established that CsrA-dependent repression of iraD translation occurs entirely via translational coupling with this ORF, leading to accelerated iraD mRNA decay. CsrA posttranscriptionally represses gene expression associated with stationary-phase bacterial growth, often in opposition to the transcriptional effects of the stationary-phase sigma factor RpoS. We show that CsrA employs a novel regulatory mechanism to repress translation of iraD, which encodes an antiadapter protein that protects RpoS against proteolysis. CsrA binds to four sites in the iraD leader transcript but does not directly occlude ribosome binding to the iraD SD sequence. Instead, CsrA represses translation of a short open reading frame encoded upstream of iraD, causing repression of iraD translation via translational coupling. This finding offers a novel mechanism of gene regulation by the global regulator CsrA, and since RpoS can activate csrA transcription, this also highlights a new negative-feedback loop within the complex Csr and RpoS circuitry.
Collapse
|
28
|
Modular Organization of the NusA- and NusG-Stimulated RNA Polymerase Pause Signal That Participates in the Bacillus subtilis trp Operon Attenuation Mechanism. J Bacteriol 2017; 199:JB.00223-17. [PMID: 28507243 DOI: 10.1128/jb.00223-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis trpEDCFBA operon is regulated by a transcription attenuation mechanism in which tryptophan-activated TRAP binds to the nascent transcript and blocks the formation of an antiterminator structure such that the formation of an overlapping intrinsic terminator causes termination in the 5' untranslated region (5' UTR). In the absence of bound TRAP, the antiterminator forms and transcription continues into the trp genes. RNA polymerase pauses at positions U107 and U144 in the 5' UTR. The general transcription elongation factors NusA and NusG stimulate pausing at both positions. NusG-stimulated pausing at U144 requires sequence-specific contacts with a T tract in the nontemplate DNA (ntDNA) strand within the paused transcription bubble. Pausing at U144 participates in a trpE translation repression mechanism. Since U107 just precedes the critical overlap between the antiterminator and terminator structures, pausing at this position is thought to participate in attenuation. Here we carried out in vitro pausing and termination experiments to identify components of the U107 pause signal and to determine whether pausing affects the termination efficiency in the 5' UTR. We determined that the U107 and U144 pause signals are organized in a modular fashion containing distinct RNA hairpin, U-tract, and T-tract components. NusA-stimulated pausing was affected by hairpin strength and the U-tract sequence, whereas NusG-stimulated pausing was affected by hairpin strength and the T-tract sequence. We also determined that pausing at U107 results in increased TRAP-dependent termination in the 5' UTR, implying that NusA- and NusG-stimulated pausing participates in the trp operon attenuation mechanism by providing additional time for TRAP binding.IMPORTANCE The expression of several bacterial operons is controlled by regulated termination in the 5' untranslated region (5' UTR). Transcription attenuation is defined as situations in which the binding of a regulatory molecule promotes transcription termination in the 5' UTR, with the default being transcription readthrough into the downstream genes. RNA polymerase pausing is thought to participate in several attenuation mechanisms by synchronizing the position of RNA polymerase with RNA folding and/or regulatory factor binding, although this has only been shown in a few instances. We found that NusA- and NusG-stimulated pausing participates in the attenuation mechanism controlling the expression of the Bacillus subtilis trp operon by increasing the TRAP-dependent termination efficiency. The pause signal is organized in a modular fashion containing RNA hairpin, U-tract, and T-tract components.
Collapse
|
29
|
Ihms EC, Kleckner IR, Gollnick P, Foster MP. Mechanistic Models Fit to Variable Temperature Calorimetric Data Provide Insights into Cooperativity. Biophys J 2017; 112:1328-1338. [PMID: 28402876 DOI: 10.1016/j.bpj.2017.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/12/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022] Open
Abstract
Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding it is necessary to define at a microscopic level the structural and thermodynamic consequences of binding of each ligand to its allosterically coupled site(s). However, dynamic sampling of alternative conformations (microstates) in allosteric molecules complicates interpretation of both structural and thermodynamic data. Isothermal titration calorimetry has the potential to directly quantify the thermodynamics of allosteric interactions, but usually falls short of enabling mechanistic insight. This is because 1) its measurements reflect the sum of overlapping caloric processes involving binding-linked population shifts within and between microstates, and 2) data are generally fit with phenomenological binding polynomials that are underdetermined. Nevertheless, temperature-dependent binding data have the potential to resolve overlapping thermodynamic processes, while mechanistically constrained models enable hypothesis testing and identification of informative parameters. We globally fit temperature-dependent isothermal titration calorimetry data for binding of 11 tryptophan ligands to the homo-undecameric trp RNA-binding Attenuation Protein from Bacillus stearothermophilus using nearest-neighbor statistical thermodynamic models. This approach allowed us to distinguish alternative nearest-neighbor interaction models, and quantifies the thermodynamic contribution of neighboring ligands to individual binding sites. We also perform conventional Hill equation modeling and illustrate how comparatively limited it is in quantitative or mechanistic value. This work illustrates the potential of mechanistically constrained global fitting of binding data to yield the microscopic thermodynamic parameters essential for deciphering mechanisms of cooperativity in a wide range of ligand-regulated homo-oligomeric assemblies.
Collapse
Affiliation(s)
- Elihu C Ihms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Ian R Kleckner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Paul Gollnick
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
30
|
Heddle JG, Chakraborti S, Iwasaki K. Natural and artificial protein cages: design, structure and therapeutic applications. Curr Opin Struct Biol 2017; 43:148-155. [DOI: 10.1016/j.sbi.2017.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 01/28/2023]
|
31
|
Jones CP, Ferré-D'Amaré AR. Long-Range Interactions in Riboswitch Control of Gene Expression. Annu Rev Biophys 2017; 46:455-481. [PMID: 28375729 DOI: 10.1146/annurev-biophys-070816-034042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Riboswitches are widespread RNA motifs that regulate gene expression in response to fluctuating metabolite concentrations. Known primarily from bacteria, riboswitches couple specific ligand binding and changes in RNA structure to mRNA expression in cis. Crystal structures of the ligand binding domains of most of the phylogenetically widespread classes of riboswitches, each specific to a particular metabolite or ion, are now available. Thus, the bound states-one end point-have been thoroughly characterized, but the unbound states have been more elusive. Consequently, it is less clear how the unbound, sensing riboswitch refolds into the ligand binding-induced output state. The ligand recognition mechanisms of riboswitches are diverse, but we find that they share a common structural strategy in positioning their binding sites at the point of the RNA three-dimensional fold where the residues farthest from one another in sequence meet. We review how riboswitch folds adhere to this fundamental strategy and propose future research directions for understanding and harnessing their ability to specifically control gene expression.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824;
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824;
| |
Collapse
|
32
|
Maunder HE, Wright J, Kolli BR, Vieira CR, Mkandawire TT, Tatoris S, Kennedy V, Iqball S, Devarajan G, Ellis S, Lad Y, Clarkson NG, Mitrophanous KA, Farley DC. Enhancing titres of therapeutic viral vectors using the transgene repression in vector production (TRiP) system. Nat Commun 2017; 8:14834. [PMID: 28345582 PMCID: PMC5378976 DOI: 10.1038/ncomms14834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
A key challenge in the field of therapeutic viral vector/vaccine manufacturing is maximizing production. For most vector platforms, the ‘benchmark' vector titres are achieved with inert reporter genes. However, expression of therapeutic transgenes can often adversely affect vector titres due to biological effects on cell metabolism and/or on the vector virion itself. Here, we exemplify the novel ‘Transgene Repression In vector Production' (TRiP) system for the production of both RNA- and DNA-based viral vectors. The TRiP system utilizes a translational block of one or more transgenes by employing the bacterial tryptophan RNA-binding attenuation protein (TRAP), which binds its target RNA sequence close to the transgene initiation codon. We report enhancement of titres of lentiviral vectors expressing Cyclo-oxygenase-2 by 600-fold, and adenoviral vectors expressing the pro-apoptotic gene Bax by >150,000-fold. The TRiP system is transgene-independent and will be a particularly useful platform in the clinical development of viral vectors expressing problematic transgenes. The maximum titre of therapeutic viral vectors can be adversely affected by the encoded transgene. Here the authors repress transgene expression in producing cells by employing the tryptophan RNA-binding attenuation protein and show that it improves titre of RNA- and DNA-based viral vectors expressing toxic transgenes.
Collapse
Affiliation(s)
- H E Maunder
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - J Wright
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - B R Kolli
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - C R Vieira
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - T T Mkandawire
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Tatoris
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - V Kennedy
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Iqball
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - G Devarajan
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Ellis
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Y Lad
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - N G Clarkson
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - K A Mitrophanous
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - D C Farley
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| |
Collapse
|
33
|
Naghdi MR, Smail K, Wang JX, Wade F, Breaker RR, Perreault J. Search for 5'-leader regulatory RNA structures based on gene annotation aided by the RiboGap database. Methods 2017; 117:3-13. [PMID: 28279853 DOI: 10.1016/j.ymeth.2017.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 01/20/2023] Open
Abstract
The discovery of noncoding RNAs (ncRNAs) and their importance for gene regulation led us to develop bioinformatics tools to pursue the discovery of novel ncRNAs. Finding ncRNAs de novo is challenging, first due to the difficulty of retrieving large numbers of sequences for given gene activities, and second due to exponential demands on calculation needed for comparative genomics on a large scale. Recently, several tools for the prediction of conserved RNA secondary structure were developed, but many of them are not designed to uncover new ncRNAs, or are too slow for conducting analyses on a large scale. Here we present various approaches using the database RiboGap as a primary tool for finding known ncRNAs and for uncovering simple sequence motifs with regulatory roles. This database also can be used to easily extract intergenic sequences of eubacteria and archaea to find conserved RNA structures upstream of given genes. We also show how to extend analysis further to choose the best candidate ncRNAs for experimental validation.
Collapse
Affiliation(s)
- Mohammad Reza Naghdi
- INRS - Institut Armand-Frappier, 531 boul des Prairies, Laval (Québec) H7V1B7, Canada
| | - Katia Smail
- INRS - Institut Armand-Frappier, 531 boul des Prairies, Laval (Québec) H7V1B7, Canada
| | - Joy X Wang
- Department of Molecular, Cellular and Developmental Biology and the Howard Hughes Medical Institute, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, United States
| | - Fallou Wade
- INRS - Institut Armand-Frappier, 531 boul des Prairies, Laval (Québec) H7V1B7, Canada
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology and the Howard Hughes Medical Institute, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, United States
| | - Jonathan Perreault
- INRS - Institut Armand-Frappier, 531 boul des Prairies, Laval (Québec) H7V1B7, Canada.
| |
Collapse
|
34
|
Identification of a Residue (Glu60) in TRAP Required for Inducing Efficient Transcription Termination at the trp Attenuator Independent of Binding Tryptophan and RNA. J Bacteriol 2017; 199:JB.00710-16. [PMID: 28069823 DOI: 10.1128/jb.00710-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/31/2016] [Indexed: 11/20/2022] Open
Abstract
Transcription of the tryptophan (trp) operon in Bacillus subtilis is regulated by an attenuation mechanism. Attenuation is controlled by the trpRNA-binding attenuation protein (TRAP). TRAP binds to a site in the 5' leader region of the nascent trp transcript in response to the presence of excess intracellular tryptophan. This binding induces transcription termination upstream of the structural genes of the operon. In prior attenuation models, the role of TRAP was only to alter the secondary structure of the leader region RNA so as to promote formation of the trp attenuator, which was presumed to function as an intrinsic terminator. However, formation of the attenuator alone has been shown to be insufficient to induce efficient termination, indicating that TRAP plays an additional role in this process. To further examine the function of TRAP, we performed a genetic selection for mutant TRAPs that bind tryptophan and RNA but show diminished termination at the trp attenuator. Five such TRAP mutants were obtained. Four of these have substitutions at Glu60, three of which are Lys (E60K) substitutions and the fourth of which is a Val (E60V) substitution. The fifth mutant obtained contains a substitution at Ile63, which is on the same β-strand of TRAP as Glu60. Purified E60K TRAP binds tryptophan and RNA with properties similar to those of the wild type but is defective at inducing termination at the trp attenuator in vitroIMPORTANCE Prior models for attenuation control of the B. subtilis trp operon suggested that the only role for TRAP is to bind to the leader region RNA and alter its folding to induce formation of an intrinsic terminator. However, several recent studies suggested that TRAP plays an additional role in the termination mechanism. We hypothesized that this function could involve residues in TRAP other than those required to bind tryptophan and RNA. Here we obtained TRAP mutants with alterations at Glu60 that are deficient at inducing termination in the leader region while maintaining tryptophan and RNA binding properties similar to those of the WT protein. These studies provide additional evidence that TRAP-mediated transcription termination at the trp attenuator is neither intrinsic nor Rho dependent.
Collapse
|
35
|
Yakhnin AV, Murakami KS, Babitzke P. NusG Is a Sequence-specific RNA Polymerase Pause Factor That Binds to the Non-template DNA within the Paused Transcription Bubble. J Biol Chem 2016; 291:5299-308. [PMID: 26742846 DOI: 10.1074/jbc.m115.704189] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 11/06/2022] Open
Abstract
NusG, referred to as Spt5 in archaeal and eukaryotic organisms, is the only transcription factor conserved in all three domains of life. This general transcription elongation factor binds to RNA polymerase (RNAP) soon after transcription initiation and dissociation of the RNA polymerase σ factor. Escherichia coli NusG increases transcription processivity by suppressing RNAP pausing, whereas Bacillus subtilis NusG dramatically stimulates pausing at two sites in the untranslated leader of the trpEDCFBA operon. These two regulatory pause sites participate in transcription attenuation and translational control mechanisms, respectively. Here we report that B. subtilis NusG makes sequence-specific contacts with a T-rich sequence in the non-template DNA (ntDNA) strand within the paused transcription bubble. NusG protects T residues of the recognition sequence from permanganate oxidation, and these T residues increase the affinity of NusG to the elongation complex. Binding of NusG to RNAP does not require interaction with RNA. These results indicate that bound NusG prevents forward movement of RNA polymerase by simultaneously contacting RNAP and the ntDNA strand. Mutational studies indicate that amino acid residues of two short regions within the NusG N-terminal domain are primarily responsible for recognition of the trp operon pause signals. Structural modeling indicates that these two regions are adjacent to each another in the protein. We propose that recognition of specific sequences in the ntDNA and stimulation of RNAP pausing is a conserved function of NusG-like transcription factors.
Collapse
Affiliation(s)
- Alexander V Yakhnin
- From the Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Katsuhiko S Murakami
- From the Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Paul Babitzke
- From the Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
36
|
Wang Y, Zhao M, Zhang Q, Zhu GF, Li FF, Du LF. Genomic distribution and possible functional roles of putative G-quadruplex motifs in two subspecies of Oryza sativa. Comput Biol Chem 2015; 56:122-30. [DOI: 10.1016/j.compbiolchem.2015.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/13/2022]
|
37
|
Nikolić D. Practopoiesis: or how life fosters a mind. J Theor Biol 2015; 373:40-61. [PMID: 25791287 DOI: 10.1016/j.jtbi.2015.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 12/16/2014] [Accepted: 03/03/2015] [Indexed: 12/25/2022]
Abstract
The mind is a biological phenomenon. Thus, biological principles of organization should also be the principles underlying mental operations. Practopoiesis states that the key for achieving intelligence through adaptation is an arrangement in which mechanisms laying at a lower level of organization, by their operations and interaction with the environment, enable creation of mechanisms laying at a higher level of organization. When such an organizational advance of a system occurs, it is called a traverse. A case of traverse is when plasticity mechanisms (at a lower level of organization), by their operations, create a neural network anatomy (at a higher level of organization). Another case is the actual production of behavior by that network, whereby the mechanisms of neuronal activity operate to create motor actions. Practopoietic theory explains why the adaptability of a system increases with each increase in the number of traverses. With a larger number of traverses, a system can be relatively small and yet, produce a higher degree of adaptive/intelligent behavior than a system with a lower number of traverses. The present analyses indicate that the two well-known traverses - neural plasticity and neural activity - are not sufficient to explain human mental capabilities. At least one additional traverse is needed, which is named anapoiesis for its contribution in reconstructing knowledge e.g., from long-term memory into working memory. The conclusions bear implications for brain theory, the mind-body explanatory gap, and developments of artificial intelligence technologies.
Collapse
Affiliation(s)
- Danko Nikolić
- Department of Neurophysiology, Max Planck Institute for Brain Research, Deutschordenstraße 46, D-60528 Frankfurt/M, Germany; Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Straße 1, D-60438 Frankfurt/M, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, D-60528 Frankfurt/M, Germany; Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
38
|
Liu J, Hu L, Xu Z, Tan C, Yuan F, Fu S, Cheng H, Chen H, Bei W. Actinobacillus pleuropneumoniae two-component system QseB/QseC regulates the transcription of PilM, an important determinant of bacterial adherence and virulence. Vet Microbiol 2015; 177:184-92. [PMID: 25796134 DOI: 10.1016/j.vetmic.2015.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 01/01/2023]
Abstract
QseB/QseC is one of the five predicted two-component systems (TCSs) in Actinobacillus pleuropneumoniae. To understand the roles of this TCS in A. pleuropneumoniae, a markerless gene-deletion mutant ΔqseBC was constructed. Differentially expressed (DE) genes in ΔqseBC were filtered by microarray analysis. A total of 44 DE genes were found to be regulated by QseB/QseC system. The transcriptional profile of A. pleuropneumoniae ΔqseBC was compared with that of ΔluxS and catecholamine (CA) stimulations, 13 genes regulated by QseB/QseC were found also regulated by LuxS, and 3 Qse-regulons were co-regulated by CA stimulations, respectively. Binding of QseB to the promoters of three regulons (pilM, glpK and hugZ), which were co-regulated by QseB/QseC and LuxS, was evaluated by electrophoretic mobility-shift assay. Results indicated that pilM was directly regulated by phosphorylated-QseB. Then the pilM deletion mutant ΔpilM was constructed and characterized. Data presented here revealed that adherence ability of ΔpilM to St. Jude porcine lung cells was significantly decreased, and ΔpilM exhibited reduced virulence in pigs, suggesting PilM contributes to the process of A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Jinlin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fangyan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shulin Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
39
|
Van Assche E, Van Puyvelde S, Vanderleyden J, Steenackers HP. RNA-binding proteins involved in post-transcriptional regulation in bacteria. Front Microbiol 2015; 6:141. [PMID: 25784899 PMCID: PMC4347634 DOI: 10.3389/fmicb.2015.00141] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022] Open
Abstract
Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed toward the role of small RNAs (sRNAs) in bacterial post-transcriptional regulation. However, sRNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins (RBPs) play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RBPs, which include (i) adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii) modulating the accessibility of the ribosome binding site of mRNAs, (iii) recruiting and assisting in the interaction of mRNAs with other molecules and (iv) regulating transcription terminator/antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future.
Collapse
Affiliation(s)
- Elke Van Assche
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Sandra Van Puyvelde
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| |
Collapse
|
40
|
Imamura M, Uchihashi T, Ando T, Leifert A, Simon U, Malay AD, Heddle JG. Probing structural dynamics of an artificial protein cage using high-speed atomic force microscopy. NANO LETTERS 2015; 15:1331-5. [PMID: 25559993 DOI: 10.1021/nl5045617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A cysteine-substituted mutant of the ring-shaped protein TRAP (trp-RNA binding attenuation protein) can be induced to self-assemble into large, monodisperse hollow spherical cages in the presence of 1.4 nm diameter gold nanoparticles. In this study we use high-speed atomic force microscopy (HS-AFM) to probe the dynamics of the structural changes related to TRAP interactions with the gold nanoparticle as well as the disassembly of the cage structure. The dynamic aggregation of TRAP protein in the presence of gold nanoparticles was observed, including oligomeric rearrangements, consistent with a role for gold in mediating intermolecular disulfide bond formation. We were also able to observe that the TRAP-cage is composed of multiple, closely packed TRAP rings in an apparently regular arrangement. A potential role for inter-ring disulfide bonds in forming the TRAP-cage was shown by the fact that ring-ring interactions were reversed upon the addition of reducing agent dithiothreitol. A dramatic disassembly of TRAP-cages was observed using HS-AFM after the addition of dithiothreitol. To the best of our knowledge, this is the first report to show direct high-resolution imaging of the disassembly process of a large protein complex in real time.
Collapse
Affiliation(s)
- Motonori Imamura
- Heddle Initiative Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Sarma RK, Gogoi A, Dehury B, Debnath R, Bora TC, Saikia R. Community profiling of culturable fluorescent pseudomonads in the rhizosphere of green gram (Vigna radiata L.). PLoS One 2014; 9:e108378. [PMID: 25279790 PMCID: PMC4184808 DOI: 10.1371/journal.pone.0108378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022] Open
Abstract
Study on microbial diversity in the unexplored rhizosphere is important to understand their community structure, biology and ecological interaction with the host plant. This research assessed the genetic and functional diversity of fluorescent pseudomonads [FP] in the green gram rhizophere. One hundred and twenty types of morphologically distinct fluorescent pseudomonads were isolated during vegetative as well as reproductive growth phase of green gram. Rep PCR, ARDRA and RISA revealed two distinct clusters in each case at 75, 61 and 70% similarity coefficient index respectively. 16S rRNA partial sequencing analysis of 85 distantly related fluorescent pseudomonads depicted Pseudomonas aeruginosa as the dominant group. Out of 120 isolates, 23 (19%) showed antagonistic activity towards phytopathogenic fungi. These bacterial isolates showed varied production of salicylic acid, HCN and chitinase, 2, 4-diacetylphloroglucinol (DAPG), phenazine-1-carboxylic acid (PCA) and pyoluteorin (PLT). Production efficiency of inherent level of plant growth promoting (PGP) traits among the 120 isolates demonstrated that 10 (8%) solubilised inorganic phosphates, 25 (20%) produced indoles and 5 (4%) retained ACC deaminase activity. Pseudomonas aeruginosa GGRJ21 showed the highest production of all antagonistic and plant growth promoting (PGP) traits. In a greenhouse experiment, GGRJ21 suppressed root rot disease of green gram by 28-93% (p = 0.05). Consistent up regulation of three important stress responsive genes, i.e., acdS, KatA and gbsA and elevated production efficiency of different PGP traits could promote GGRJ21 as a potent plant growth regulator.
Collapse
Affiliation(s)
- Rupak K Sarma
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Animesh Gogoi
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Budheswar Dehury
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Rajal Debnath
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Tarun C Bora
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Ratul Saikia
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
42
|
Reilman E, Mars RAT, van Dijl JM, Denham EL. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism. Nucleic Acids Res 2014; 42:11393-407. [PMID: 25217586 PMCID: PMC4191407 DOI: 10.1093/nar/gku832] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter.
Collapse
Affiliation(s)
- Ewoud Reilman
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. box 30001, 9700 RB Groningen, the Netherlands
| | - Ruben A T Mars
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. box 30001, 9700 RB Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. box 30001, 9700 RB Groningen, the Netherlands
| | - Emma L Denham
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. box 30001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
43
|
Neshat A, Mentz A, Rückert C, Kalinowski J. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. J Biotechnol 2014; 190:55-63. [PMID: 24910972 DOI: 10.1016/j.jbiotec.2014.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/02/2014] [Accepted: 05/14/2014] [Indexed: 11/27/2022]
Abstract
The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts.
Collapse
Affiliation(s)
- Armin Neshat
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Almut Mentz
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
| |
Collapse
|
44
|
Kingston AW, Zhao H, Cook GM, Helmann JD. Accumulation of heptaprenyl diphosphate sensitizes Bacillus subtilis to bacitracin: implications for the mechanism of resistance mediated by the BceAB transporter. Mol Microbiol 2014; 93:37-49. [PMID: 24806199 DOI: 10.1111/mmi.12637] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
Abstract
Heptaprenyl diphosphate (C35 -PP) is an isoprenoid intermediate in the synthesis of both menaquinone and the sesquarterpenoids. We demonstrate that inactivation of ytpB, encoding a C35 -PP utilizing enzyme required for sesquarterpenoid synthesis, leads to an increased sensitivity to bacitracin, an antibiotic that binds undecaprenyl pyrophosphate (C55 -PP), a key intermediate in cell wall synthesis. Genetic studies indicate that bacitracin sensitivity is due to accumulation of C35 -PP, rather than the absence of sesquarterpenoids. Sensitivity is accentuated in a ytpB menA double mutant, lacking both known C35 -PP consuming enzymes, and in a ytpB strain overexpressing the HepST enzyme that synthesizes C35 -PP. Conversely, sensitivity in the ytpB background is suppressed by mutation of hepT or by supplementation with 1,4-dihydroxy-2-naphthoate, a co-substrate with C35 -PP for MenA. Bacitracin sensitivity results from impairment of the BceAB and BcrC resistance mechanisms by C35 -PP: in a bceAB bcrC double mutant disruption of ytpB no longer increases bacitracin sensitivity. These results suggest that C35 -PP inhibits both BcrC (a C55 -PP phosphatase) and BceAB (an ABC transporter that confers bacitracin resistance). These findings lead to a model in which BceAB protects against bacitracin by transfer of the target, C55 -PP, rather than the antibiotic across the membrane.
Collapse
Affiliation(s)
- Anthony W Kingston
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | | | | | | |
Collapse
|
45
|
Wachter A. Gene regulation by structured mRNA elements. Trends Genet 2014; 30:172-81. [PMID: 24780087 DOI: 10.1016/j.tig.2014.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/20/2014] [Indexed: 01/19/2023]
Abstract
The precise temporal and spatial coordination of gene activity, based on the integration of internal and external signals, is crucial for the accurate functioning of all biological processes. Although the basic principles of gene expression were established some 60 years ago, recent research has revealed a surprising complexity in the control of gene activity. Many of these gene regulatory mechanisms occur at the level of the mRNA, including sophisticated gene control tasks mediated by structured mRNA elements. We now know that mRNA folds can serve as highly specific receptors for various types of molecules, as exemplified by metabolite-binding riboswitches, and interfere with pro- and eukaryotic gene expression at the level of transcription, translation, and RNA processing. Gene regulation by structured mRNA elements comprises versatile strategies including self-cleaving ribozymes, RNA-folding-mediated occlusion or presentation of cis-regulatory sequences, and sequestration of trans-acting factors including other RNAs and proteins.
Collapse
Affiliation(s)
- Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
46
|
Méndez-Hurtado J, Isabel Menéndez M, López R, Ruiz-López MF. An ab initio analysis of the structure of l-tryptophan tautomers in microhydrated environments, in water and in hydrophobic solvents. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Sharma S, Gollnick P. Modulating TRAP-mediated transcription termination by AT during transcription of the leader region of the Bacillus subtilis trp operon. Nucleic Acids Res 2014; 42:5543-55. [PMID: 24682818 PMCID: PMC4027176 DOI: 10.1093/nar/gku211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An 11-subunit protein called trpRNA binding Attenuation Protein (TRAP) controls attenuation of the tryptophan biosynthetic (trpEDCFBA) operon in Bacillus subtilis. Tryptophan-activated TRAP binds to 11 (G/U)AG repeats in the 5′ leader region of trp mRNAs, and downregulates expression of the operon by promoting transcription termination prior to the structural genes. Anti-TRAP (AT) is an antagonist that binds to tryptophan-activated TRAP and prevents TRAP from binding to RNA, thereby upregulating expression of the trp genes. AT forms trimers, and multiple trimers bind to a TRAP 11mer. It is not known how many trimers must bind to TRAP in order to interfere with RNA binding. Studies of isolated TRAP and AT showed that AT can prevent TRAP from binding to the trp leader RNA but cannot dissociate a pre-formed TRAP-RNA complex. Here, we show that AT can prevent TRAP-mediated termination of transcription by inducing dissociation of TRAP from the nascent RNA when it has bound to fewer than all 11 (G/U)AG repeats. The 5′-most region of the TRAP binding site in the nascent transcript is most susceptible to dissociation from TRAP. We also show that one AT trimer bound to TRAP 11mer reduces the affinity of TRAP for RNA and eliminates TRAP-mediated transcription termination in vitro.
Collapse
Affiliation(s)
- Shraddha Sharma
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Paul Gollnick
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
48
|
Bacillus subtilis
Systems Biology: Applications of -Omics Techniques to the Study of Endospore Formation. Microbiol Spectr 2014; 2. [DOI: 10.1128/microbiolspec.tbs-0019-2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Endospore-forming bacteria, with
Bacillus subtilis
being the prevalent model organism, belong to the phylum Firmicutes. Although the last common ancestor of all
Firmicutes
is likely to have been an endospore-forming species, not every lineage in the phylum has maintained the ability to produce endospores (hereafter, spores). In 1997, the release of the full genome sequence for
B. subtilis
strain 168 marked the beginning of the genomic era for the study of spore formation (sporulation). In this original genome sequence, 139 of the 4,100 protein-coding genes were annotated as sporulation genes. By the time a revised genome sequence with updated annotations was published in 2009, that number had increased significantly, especially since transcriptional profiling studies (transcriptomics) led to the identification of several genes expressed under the control of known sporulation transcription factors. Over the past decade, genome sequences for multiple spore-forming species have been released (including several strains in the
Bacillus anthracis
/
Bacillus cereus
group and many
Clostridium
species), and phylogenomic analyses have revealed many conserved sporulation genes. Parallel advances in transcriptomics led to the identification of small untranslated regulatory RNAs (sRNAs), including some that are expressed during sporulation. An extended array of -omics techniques, i.e., techniques designed to probe gene function on a genome-wide scale, such as proteomics, metabolomics, and high-throughput protein localization studies, have been implemented in microbiology. Combined with the use of new computational methods for predicting gene function and inferring regulatory relationships on a global scale, these -omics approaches are uncovering novel information about sporulation and a variety of other bacterial cell processes.
Collapse
|
49
|
Kubota T, Tanaka Y, Takemoto N, Watanabe A, Hiraga K, Inui M, Yukawa H. Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR inCorynebacterium glutamicum: carbon flow control at metabolic branch point. Mol Microbiol 2014; 92:356-68. [DOI: 10.1111/mmi.12560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Takeshi Kubota
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Yuya Tanaka
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Norihiko Takemoto
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Akira Watanabe
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Kazumi Hiraga
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| |
Collapse
|
50
|
Antelmann H, Hecker M, Zuber P. Proteomic signatures uncover thiol-specific electrophile resistance mechanisms inBacillus subtilis. Expert Rev Proteomics 2014; 5:77-90. [DOI: 10.1586/14789450.5.1.77] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|