1
|
Magalhães Gimenez T, Peralta VP, Giorgi RR, Morikawa K, Vince CC, Halley N, Siqueira SA, Bendit I, Cristofani LM, Filho VO, Novak EM. Novel variants of the ATRX gene identified in MYCN non-amplified Neuroblastoma in Brazilian patients. Clinics (Sao Paulo) 2025; 80:100652. [PMID: 40286729 PMCID: PMC12060459 DOI: 10.1016/j.clinsp.2025.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/14/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Neuroblastoma is one of the most common extracranial solid tumors in children and it frequently displays high heterogeneity throughout the course of the disease. It has previously been described those changes in the ATRX gene (Alpha Thalassemia/Mental Retardation, X-linked) are the most common recurring events in the indolent clinical subtype (∼30 %) of MYCN amplified neuroblastoma. There is no effective treatment for this type of neuroblastoma, which is associated with overall poor survival. On the other hand, few studies have detected an association between high-risk (stage IV) non-amplified MYCN neuroblastoma patients and mutant ATRX. METHODS In this study, 37 tumor samples from Brazilian patients with stages I to IV MYCN non-amplified neuroblastoma, according to the International Neuroblastoma Staging System (INSS), were analyzed using the panel Oncomine™ Childhood Cancer Research Assay. RESULTS The authors found two older children (NB1 and NB2) with advanced MYCN non-amplified neuroblastoma carried each one of the two following novel nonsense ATRX variants (p.Gln1670* or p.Glu1984*). These variants created a stop codon in the helicase domain of the ATRX gene, leading to ATRX loss-of-function. These mutations were confirmed by Sanger sequencing and the protein loss-of-function was confirmed by immunohistochemistry. The finding of these heterozygous mutations in two patients with MYCN non-amplified neuroblastoma deserves further investigation. Thus, the authors analyzed each of these cases to better understand how these mutations may be related to disease severity and prognosis. CONCLUSION ATRX loss-of-function from p.Gln1670* or p.Glu1984* mutations turn MYCN non-amplified neuroblastoma more aggressive and similar to what is seen in MYCN amplified neuroblastoma. This information may help clinical decision-making and facilitate establishing an accurate prognosis for patients with MYCN non-amplified neuroblastoma.
Collapse
Affiliation(s)
| | - Vanessa Pretes Peralta
- Laboratório de Investigação Médica em Pediatria Clínica -Lim-36.Instituto da Criança. Hospital de Clínicas, Faculdade de Medicina, Universidade de São Paulo (HC/FMUSP), São Paulo, Brazil
| | - Ricardo Rodrigues Giorgi
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (Lim 31). Departamento de Hematologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP). São Paulo, São Paulo, Brazil
| | - Karina Morikawa
- Instituto do Cancer do Estado de Sao Paulo (ICESP/ITACI), São Paulo, Brazil
| | | | - Nathalia Halley
- Hospital Israelita Albert Einstein (HIAE). São Paulo, Brazil
| | - Sheila Aparecida Siqueira
- Divisão de Patologia, Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Israel Bendit
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (Lim 31). Departamento de Hematologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP). São Paulo, São Paulo, Brazil
| | | | - Vicente Odone Filho
- Departamento de Pediatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Estela Maria Novak
- Fundação Pró-Sangue Hemocentro de São Paulo, Departamento de Genética Molecular e Biotecnologia. São Paulo, Brazil.
| |
Collapse
|
2
|
Maki K, Fukute J, Adachi T. Super-resolution imaging reveals nucleolar encapsulation by single-stranded DNA. J Cell Sci 2024; 137:jcs262039. [PMID: 39206638 PMCID: PMC11463959 DOI: 10.1242/jcs.262039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
In eukaryotic cell nuclei, specific sets of proteins gather in nuclear bodies and facilitate distinct genomic processes. The nucleolus, a nuclear body, functions as a factory for ribosome biogenesis by accumulating constitutive proteins, such as RNA polymerase I and nucleophosmin 1 (NPM1). Although in vitro assays have suggested the importance of liquid-liquid phase separation (LLPS) of constitutive proteins in nucleolar formation, how the nucleolus is structurally maintained with the intranuclear architecture remains unknown. This study revealed that the nucleolus is encapsulated by a single-stranded (ss)DNA-based molecular complex inside the cell nucleus. Super-resolution lattice-structured illumination microscopy (lattice-SIM) showed that there was a high abundance of ssDNA beyond the 'outer shell' of the nucleolus. Nucleolar disruption and the release of NPM1 were caused by in situ digestion of ssDNA, suggesting that ssDNA has a structural role in nucleolar encapsulation. Furthermore, we identified that ssDNA forms a molecular complex with histone H1 for nucleolar encapsulation. Thus, this study illustrates how an ssDNA-based molecular complex upholds the structural integrity of nuclear bodies to coordinate genomic processes such as gene transcription and replication.
Collapse
Affiliation(s)
- Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Jumpei Fukute
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Mondal S, Mukherjee S, Bagchi B. Melting and Bubble Formation in a Double-Stranded DNA: Microscopic Aspects of Early Base-Pair Opening Events and the Role of Water. J Phys Chem B 2024; 128:2076-2086. [PMID: 38389118 DOI: 10.1021/acs.jpcb.3c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Despite its rigid structure, DNA is a remarkably flexible molecule. Flexibility is essential for biological functions (such as transcription and gene repair), which require large-amplitude structural changes such as bubble formation. The bubbles thus formed are required to have a certain stability of their own and survive long on the time scale of molecular motions. A molecular understanding of fluctuations leading to quasi-stable structures is not available. Through extensive atomistic molecular dynamics simulations, we identify a sequence of microscopic events that culminate in local bubble formation, which is initiated by base-pair (BP) opening, resulting from the cleavage of native BP hydrogen bonds (HBs). This is followed by the formation of mismatched BPs with non-native contacts. These metastable structures can either revert to their original forms or undergo a flipping transition to form a local bubble that can span across 3-4 BPs. A substantial distortion of the DNA backbone and a disruption of BP stacking are observed because of the structural changes induced by these local perturbations. We also explored how water helps in the entire process. A small number of water molecules undergo rearrangement to stabilize the intermediate states by forming HBs with DNA bases. Water thus acts as a lubricant that counteracts the enthalpic penalty suffered from the loss of native BP contacts. Although the process of bubble formation is reversible, the sequence of steps involved poses an entropic barrier, preventing it from easily retracing the path to the native state.
Collapse
Affiliation(s)
- Sayantan Mondal
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Saumyak Mukherjee
- Center for Theoretical Chemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum D-44780, Germany
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
4
|
Becker RA, Hub JS. Molecular simulations of DEAH-box helicases reveal control of domain flexibility by ligands: RNA, ATP, ADP, and G-patch proteins. Biol Chem 2023; 404:867-879. [PMID: 37253384 DOI: 10.1515/hsz-2023-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
DEAH-box helicases use the energy from ATP hydrolysis to translocate along RNA strands. They are composed of tandem RecA-like domains and a C-terminal domain connected by flexible linkers, and the activity of several DEAH-box helicases is regulated by cofactors called G-patch proteins. We used all-atom molecular dynamics simulations of the helicases Prp43, Prp22, and DHX15 in various liganded states to investigate how RNA, ADP, ATP, or G-patch proteins influence their conformational dynamics. The simulations suggest that apo helicases are highly flexible, whereas binding of RNA renders the helicases more rigid. ATP and ADP control the stability of the RecA1-RecA2 interface, but they have only a smaller effect on domain flexibility in absence of a RecA1-RecA2 interface. Binding of a G-patch protein to DHX15 imposes a more structured conformational ensemble, characterized by more defined relative domain arrangements and by an increased conformational stability of the RNA tunnel. However, the effect of the G-patch protein on domain dynamics is far more subtle as compared to the effects of RNA or ATP/ADP. The simulations characterize DEAH-box helicase as dynamic machines whose conformational ensembles are strongly defined by the presence of RNA, ATP, or ADP and only fine-tuned by the presence of G-patch proteins.
Collapse
Affiliation(s)
- Robert A Becker
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6, 66123 Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6, 66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Becker RA, Hub JS. Continuous millisecond conformational cycle of a DEAH box helicase reveals control of domain motions by atomic-scale transitions. Commun Biol 2023; 6:379. [PMID: 37029280 PMCID: PMC10082070 DOI: 10.1038/s42003-023-04751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Helicases are motor enzymes found in every living organism and viruses, where they maintain the stability of the genome and control against false recombination. The DEAH-box helicase Prp43 plays a crucial role in pre-mRNA splicing in unicellular organisms by translocating single-stranded RNA. The molecular mechanisms and conformational transitions of helicases are not understood at the atomic level. We present a complete conformational cycle of RNA translocation by Prp43 in atomic detail based on molecular dynamics simulations. To enable the sampling of such complex transition on the millisecond timescale, we combined two enhanced sampling techniques, namely simulated tempering and adaptive sampling guided by crystallographic data. During RNA translocation, the center-of-mass motions of the RecA-like domains followed the established inchworm model, whereas the domains crawled along the RNA in a caterpillar-like movement, suggesting an inchworm/caterpillar model. However, this crawling required a complex sequence of atomic-scale transitions involving the release of an arginine finger from the ATP pocket, stepping of the hook-loop and hook-turn motifs along the RNA backbone, and several others. These findings highlight that large-scale domain dynamics may be controlled by complex sequences of atomic-scale transitions.
Collapse
Affiliation(s)
- Robert A Becker
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
6
|
Xu L, Halma MTJ, Wuite GJL. Unravelling How Single-Stranded DNA Binding Protein Coordinates DNA Metabolism Using Single-Molecule Approaches. Int J Mol Sci 2023; 24:ijms24032806. [PMID: 36769124 PMCID: PMC9917605 DOI: 10.3390/ijms24032806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.
Collapse
|
7
|
Broman E, Izabel-Shen D, Rodríguez-Gijón A, Bonaglia S, Garcia SL, Nascimento FJA. Microbial functional genes are driven by gradients in sediment stoichiometry, oxygen, and salinity across the Baltic benthic ecosystem. MICROBIOME 2022; 10:126. [PMID: 35965333 PMCID: PMC9377124 DOI: 10.1186/s40168-022-01321-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized by natural physiochemical gradients that structure these microbial communities potentially changing the diversity of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, measured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the Baltic Sea. RESULTS The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabolism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene composition when compared to oxic sediments. CONCLUSIONS This study highlights how benthic functional genes are structured over spatial distances and by environmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon plus nitrogen content will influence functional metabolic pathways in benthic habitats. Video Abstract.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Yang ZQ, Zhang P, Shi M, Al Julaih A, Mishra H, Di Fabrizio E, Thoroddsen ST. Direct imaging of polymer filaments pulled from rebounding drops. SOFT MATTER 2022; 18:5097-5105. [PMID: 35766131 DOI: 10.1039/d2sm00599a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer filaments form the foundation of biology from cell scaffolding to DNA. Their study and fabrication play an important role in a wide range of processes from tissue engineering to molecular machines. We present a simple method to deposit stretched polymer fibers between micro-pillars. This occurs when a polymeric drop impacts on and rebounds from an inclined superhydrophobic substrate. It wets the top of the pillars and pulls out liquid filaments which are stretched and can attach to adjacent pillars leaving minuscule threads, with the solvent evaporating to leave the exposed polymers. We use high-speed video at the microscale to characterize the most robust filament-forming configurations, by varying the impact velocity, substrate structure and inclination angle, as well as the PEO-polymer concentration. Impacts onto plant leaves or a randomized nano-structured surface leads to the formation of a branched structure, through filament mergers at the free surface of the drop. SEM shows the deposition of filament bundles which are thinner than those formed by evaporation or rolling drops. Raman spectroscopy identifies the native mode B stretched DNA filaments from aqueous-solution droplets.
Collapse
Affiliation(s)
- Zi Qiang Yang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Peng Zhang
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Meng Shi
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Ali Al Julaih
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Himanshu Mishra
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Enzo Di Fabrizio
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Sigurdur T Thoroddsen
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
9
|
Gniadecki R, Iyer A, Hennessey D, Khan L, O'Keefe S, Redmond D, Storek J, Durand C, Cohen-Tervaert JW, Osman M. Genomic instability in early systemic sclerosis. J Autoimmun 2022; 131:102847. [PMID: 35803104 DOI: 10.1016/j.jaut.2022.102847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is associated with secondary malignancies. Previous studies have suggested that mutated cancer proteins, such as RNA polymerase III, are autoantigens promoting an inflammatory response in SSc. However, it has never been previously investigated whether non-neoplastic tissue in SSc harbors mutations which may play a role in SSc pathogenesis. METHODS Skin biopsies were obtained from 8 sequential patients with a progressive form of early stage SSc (with severe skin and/or lung involvement). Areas of dermal fibrosis were microdissected and analyzed with deep, whole exome sequencing. Gene mutation patterns were compared to autologous buccal mucosal cells as a control. RESULTS SSc skin biopsies were hypermutated with an average of 58 mutations/106 base pairs. The mutational pattern in all samples exhibited a clock-like signature, which is ubiquitous in cancers and in senescent cells. Of the 1997 genes we identified which were mutated in at least two SSc patients, 39 genes represented cancer drivers (i.e. tumor suppressor genes or oncogenes) which are commonly found in gynecological, squamous and gastrointestinal cancer signatures. Of all the mutations, the most common mutated genes were important in regulating pathways related to epigenetic histone modifications, DNA repair and genome integrity. CONCLUSIONS Somatic hypermutation occurs in fibrotic skin in patients with early progressive SSc. Cancer driver gene mutations may potentially play a fundamental role in the pathogenesis of SSc.
Collapse
Affiliation(s)
| | | | | | - Lamia Khan
- Division of Rheumatology, University of Alberta, Edmonton, Canada
| | | | - Desiree Redmond
- Division of Rheumatology, University of Alberta, Edmonton, Canada
| | - Jan Storek
- Division of Hematology, University of Calgary, Canada
| | - Caylib Durand
- Division of Rheumatology, University of Calgary, Canada
| | | | - Mohammed Osman
- Division of Rheumatology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
10
|
Balbo Pogliano C, Ceppi I, Giovannini S, Petroulaki V, Palmer N, Uliana F, Gatti M, Kasaciunaite K, Freire R, Seidel R, Altmeyer M, Cejka P, Matos J. The CDK1-TOPBP1-PLK1 axis regulates the Bloom's syndrome helicase BLM to suppress crossover recombination in somatic cells. SCIENCE ADVANCES 2022; 8:eabk0221. [PMID: 35119917 PMCID: PMC8816346 DOI: 10.1126/sciadv.abk0221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Bloom's syndrome is caused by inactivation of the BLM helicase, which functions with TOP3A and RMI1-2 (BTR complex) to dissolve recombination intermediates and avoid somatic crossing-over. We show here that crossover avoidance by BTR further requires the activity of cyclin-dependent kinase-1 (CDK1), Polo-like kinase-1 (PLK1), and the DDR mediator protein TOPBP1, which act in the same pathway. Mechanistically, CDK1 phosphorylates BLM and TOPBP1 and promotes the interaction of both proteins with PLK1. This is amplified by the ability of TOPBP1 to facilitate phosphorylation of BLM at sites that stimulate both BLM-PLK1 and BLM-TOPBP1 binding, creating a positive feedback loop that drives rapid BLM phosphorylation at the G2-M transition. In vitro, BLM phosphorylation by CDK/PLK1/TOPBP1 stimulates the dissolution of topologically linked DNA intermediates by BLM-TOP3A. Thus, we propose that the CDK1-TOPBP1-PLK1 axis enhances BTR-mediated dissolution of recombination intermediates late in the cell cycle to suppress crossover recombination and curtail genomic instability.
Collapse
Affiliation(s)
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Sara Giovannini
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Vasiliki Petroulaki
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Nathan Palmer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Federico Uliana
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias–FIISC, Ofra s/n, 38320 La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
- Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Petr Cejka
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Joao Matos
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
11
|
Bi L, Qin Z, Hou XM, Modesti M, Sun B. Simultaneous Mechanical and Fluorescence Detection of Helicase-Catalyzed DNA Unwinding. Methods Mol Biol 2022; 2478:329-347. [PMID: 36063326 DOI: 10.1007/978-1-0716-2229-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Helicases are ubiquitous molecular motor proteins that utilize the energy derived from the hydrolysis of nucleoside triphosphates (NTPs) to transiently convert the duplex form of nucleic acids to single-stranded intermediates for many biological processes. These enzymes play vital roles in nearly all aspects of nucleic acid metabolism, such as DNA repair and RNA splicing. Understanding helicase's functional roles requires methods to dissect the mechanisms of motor proteins at the molecular level. In the past three decades, there has been a large increase in the application of single-molecule approaches to investigate helicases. These techniques, such as optical tweezers and single-molecule fluorescence, offer capabilities to monitor helicase motions with unprecedented spatiotemporal resolution, to apply quantitative forces to probe the chemo-mechanical activities of these motors and to resolve helicase heterogeneity at the single-molecule level. In this chapter, we describe a single-molecule method that combines optical tweezers with confocal fluorescence microscopy to study helicase-catalyzed DNA unwinding. Using Bloom syndrome protein (BLM), a multifunctional helicase that maintains genome stability, as an example, we show that this method allows for the simultaneous detection of displacement, force and fluorescence signals of a single DNA molecule during unwinding in real time, leading to the discovery of a distinct bidirectional unwinding mode of BLM that is activated by a single-stranded DNA binding protein called replication protein A (RPA). We provide detailed instructions on how to prepare two DNA templates to be used in the assays, purify the BLM and RPA proteins, perform single-molecule experiments, and acquire and analyse the data.
Collapse
Affiliation(s)
- Lulu Bi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhenheng Qin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Mauro Modesti
- Cancer Research Center of Marseille, Marseille, France
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
12
|
Huang Q, Qin D, Pei D, Vermeulen M, Zhang X. UBE2O and USP7 co-regulate RECQL4 ubiquitinylation and homologous recombination-mediated DNA repair. FASEB J 2021; 36:e22112. [PMID: 34921745 DOI: 10.1096/fj.202100974rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The human RecQ DNA helicase, RECQL4, plays a pivotal role in maintaining genomic stability by regulating the DNA double-strand breaks (DSBs) repair pathway, and is, thus, involved in the regulation of aging and cancer onset. However, the regulatory mechanisms of RECQL4, especially its post-translational modifications, have not been fully illustrated. Here, we report that the E2/E3 hybrid ubiquitin-conjugating enzyme, UBE2O, physically interacts with RECQL4, and mediates the multi-monoubiquitinylation of RECQL4, subsequently leading to its proteasomal degradation. Functionally, we showed that UBE2O inhibits homologous recombination (HR)-mediated DSBs repair, and this inhibition depends on its E2 catalytic activity and RECQL4 expression. Mechanistically, we showed that UBE2O attenuates the interaction of RECQL4 and DNA damage repair proteins, the MRE11-RAD50-NBS1 complex and CtIP. Furthermore, we show that deubiquitinylase USP7 interacts with both UBE2O and RECQL4, and in that it antagonizes UBE2O-mediated regulation of RECQL4 stability and function. Collectively, we found a novel regulatory mechanism of ubiquitin-mediated regulation of RECQL4 in HR-mediated DSBs repair process.
Collapse
Affiliation(s)
- Qiuling Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Dajiang Qin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Laboratory of Cell fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
13
|
Simmons RH, Rogers CM, Bochman ML. A deep dive into the RecQ interactome: something old and something new. Curr Genet 2021; 67:761-767. [PMID: 33961099 DOI: 10.1007/s00294-021-01190-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
RecQ family helicases are found in all domains of life and play roles in multiple processes that underpin genomic integrity. As such, they are often referred to as guardians or caretakers of the genome. Despite their importance, however, there is still much we do not know about their basic functions in vivo, nor do we fully understand how they interact in organisms that encode more than one RecQ family member. We recently took a multi-omics approach to better understand the Saccharomyces cerevisiae Hrq1 helicase and its interaction with Sgs1, with these enzymes being the functional homologs of the disease-linked RECQL4 and BLM helicases, respectively. Using synthetic genetic array analyses, immuno-precipitation coupled to mass spectrometry, and RNA-seq, we found that Hrq1 and Sgs1 likely participate in many pathways outside of the canonical DNA recombination and repair functions for which they are already known. For instance, connections to transcription, ribosome biogenesis, and chromatin/chromosome organization were uncovered. These recent results are briefly detailed with respect to current knowledge in the field, and possible follow-up experiments are suggested. In this way, we hope to gain a wholistic understanding of these RecQ helicases and how their mutation leads to genomic instability.
Collapse
Affiliation(s)
- Robert H Simmons
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
14
|
Barve A, Galande AA, Ghaskadbi SS, Ghaskadbi S. DNA Repair Repertoire of the Enigmatic Hydra. Front Genet 2021; 12:670695. [PMID: 33995496 PMCID: PMC8117345 DOI: 10.3389/fgene.2021.670695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since its discovery by Abraham Trembley in 1744, hydra has been a popular research organism. Features like spectacular regeneration capacity, peculiar tissue dynamics, continuous pattern formation, unique evolutionary position, and an apparent lack of organismal senescence make hydra an intriguing animal to study. While a large body of work has taken place, particularly in the domain of evolutionary developmental biology of hydra, in recent years, the focus has shifted to molecular mechanisms underlying various phenomena. DNA repair is a fundamental cellular process that helps to maintain integrity of the genome through multiple repair pathways found across taxa, from archaea to higher animals. DNA repair capacity and senescence are known to be closely associated, with mutations in several repair pathways leading to premature ageing phenotypes. Analysis of DNA repair in an animal like hydra could offer clues into several aspects including hydra’s purported lack of organismal ageing, evolution of DNA repair systems in metazoa, and alternative functions of repair proteins. We review here the different DNA repair mechanisms known so far in hydra. Hydra genes from various DNA repair pathways show very high similarity with their vertebrate orthologues, indicating conservation at the level of sequence, structure, and function. Notably, most hydra repair genes are more similar to deuterostome counterparts than to common model invertebrates, hinting at ancient evolutionary origins of repair pathways and further highlighting the relevance of organisms like hydra as model systems. It appears that hydra has the full repertoire of DNA repair pathways, which are employed in stress as well as normal physiological conditions and may have a link with its observed lack of senescence. The close correspondence of hydra repair genes with higher vertebrates further demonstrates the need for deeper studies of various repair components, their interconnections, and functions in this early metazoan.
Collapse
Affiliation(s)
- Apurva Barve
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India.,Centre of Excellence in Science and Mathematics Education, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Alisha A Galande
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| |
Collapse
|
15
|
Yu S, Zhu L, Xie P, Jiang S, Wang K, Liu Y, He J, Ren Y. Mining the prognostic significance of the GINS2 gene in human breast cancer using bioinformatics analysis. Oncol Lett 2020; 20:1300-1310. [PMID: 32724372 PMCID: PMC7377083 DOI: 10.3892/ol.2020.11651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
A number of studies have demonstrated the crucial functions of GINS2 within the GINS complex in various types of cancer. However, the molecular mechanisms and prognostic value of GINS2 in breast cancer remain unknown. The present study used; BC-GenExMiner, COSMIC, UCSC Xena, The Human Protein Atlas, GEPIA, cBioPortal, GeneMANIA, TIMER and Oncomine, in order to investigate gene expression, co-expression, clinical parameters and mutations in GINS2 in patients with breast cancer. Furthermore, the present study assessed the prognostic value of GINS2 in patients with breast cancer via the Kaplan-Meier plotter database. The results of the present study demonstrated that the mRNA levels of GINS2 were significantly higher in breast cancer tissue compared with normal tissue. In addition, high mRNA expression levels of GINS2 were associated with high Scarff-Bloom-Richardson status grades, a basal-like status and age (≤51 years); however, it was not associated with lymph node metastasis. The survival analysis revealed that increased GINS2 mRNA levels were associated with a worse prognosis for relapse-free survival in all patients with breast cancer, particularly in those with estrogen receptor-positive and progesterone receptor-positive subtypes. In addition, a positive association between the GINS2, CENPM and MCM4 genes was confirmed. The results of the present study suggest that GINS2 could be used as a potential prognostic biomarker for breast cancer. Nevertheless, further studies are necessary to confirm the effects of GINS2 on the pathogenesis and development of patients with breast cancer.
Collapse
Affiliation(s)
- Shibo Yu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lizhe Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peiling Xie
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Siyuan Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yu Ren
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Werner Syndrome Protein Expression in Breast Cancer. Clin Breast Cancer 2020; 21:57-73.e7. [PMID: 32919863 DOI: 10.1016/j.clbc.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Werner protein (WRN) plays an important role in DNA repair, replication, transcription, and consequently genomic stability via its DNA-helicase and exonuclease activity. Loss of function of WRN is associated with Werner syndrome (WS), which is characterized by premature aging and cancer predisposition. Malignancies that are commonly linked to WS are thyroid carcinoma, melanoma, breast cancer, meningioma, and soft tissue and bone sarcomas. Currently, the clinicopathologic significance of WRN in breast cancer is largely unknown. PATIENTS AND METHODS We investigated the clinicopathologic and prognostic significance of WRN protein expression in a cohort of clinically annotated series of sporadic (n = 1650) and BRCA-mutated (n = 75) invasive breast cancers. We correlated WRN protein expression to clinicopathologic characteristics, DNA repair protein expression, and survival outcomes. RESULTS There is strong evidence of association between low nuclear and cytoplasmic WRN co-expression and low levels of KU70/KU80, DNA-PK, DNA Pol-B, CKD18, cytoplasmic RECQL4, and nuclear BLM protein expression (adjusted P-values < .05). Tumors with low nuclear or cytoplasmic WRN expression have worse overall breast cancer-specific survival (BCSS) (adjusted P-values < .05). In topoisomerase I overexpressed tumors, low WRN nuclear expression was associated with poor BCSS (P-value < .05). In BRCA-mutated tumors, low WRN cytoplasmic expression conferred shortest BCSS (P < .05). CONCLUSIONS Low WRN protein expression is associated with poor BCSS in patients with breast cancer. This can be used to optimize the risk stratification for personalized treatment.
Collapse
|
17
|
Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther 2020; 208:107492. [PMID: 32001312 DOI: 10.1016/j.pharmthera.2020.107492] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.
Collapse
|
18
|
Makurath MA, Whitley KD, Nguyen B, Lohman TM, Chemla YR. Regulation of Rep helicase unwinding by an auto-inhibitory subdomain. Nucleic Acids Res 2019; 47:2523-2532. [PMID: 30690484 PMCID: PMC6412110 DOI: 10.1093/nar/gkz023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
Abstract
Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by ‘strand-switching’—during which the helicases alternate between strands of the duplex—which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases.
Collapse
Affiliation(s)
- Monika A Makurath
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kevin D Whitley
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yann R Chemla
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Wegner M, Diehl V, Bittl V, de Bruyn R, Wiechmann S, Matthess Y, Hebel M, Hayes MGB, Schaubeck S, Benner C, Heinz S, Bremm A, Dikic I, Ernst A, Kaulich M. Circular synthesized CRISPR/Cas gRNAs for functional interrogations in the coding and noncoding genome. eLife 2019; 8:e42549. [PMID: 30838976 PMCID: PMC6424562 DOI: 10.7554/elife.42549] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Current technologies used to generate CRISPR/Cas gene perturbation reagents are labor intense and require multiple ligation and cloning steps. Furthermore, increasing gRNA sequence diversity negatively affects gRNA distribution, leading to libraries of heterogeneous quality. Here, we present a rapid and cloning-free mutagenesis technology that can efficiently generate covalently-closed-circular-synthesized (3Cs) CRISPR/Cas gRNA reagents and that uncouples sequence diversity from sequence distribution. We demonstrate the fidelity and performance of 3Cs reagents by tailored targeting of all human deubiquitinating enzymes (DUBs) and identify their essentiality for cell fitness. To explore high-content screening, we aimed to generate the largest up-to-date gRNA library that can be used to interrogate the coding and noncoding human genome and simultaneously to identify genes, predicted promoter flanking regions, transcription factors and CTCF binding sites that are linked to doxorubicin resistance. Our 3Cs technology enables fast and robust generation of bias-free gene perturbation libraries with yet unmatched diversities and should be considered an alternative to established technologies.
Collapse
Affiliation(s)
- Martin Wegner
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
| | - Valentina Diehl
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
| | - Verena Bittl
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurtGermany
| | - Rahel de Bruyn
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
| | - Svenja Wiechmann
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
- Project Group Translational Medicine & Pharmacology TMPFraunhofer Institute for Molecular Biology and Applied Ecology IMEFrankfurtGermany
| | - Yves Matthess
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
| | - Marie Hebel
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
| | - Michael GB Hayes
- Department of MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Simone Schaubeck
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
| | - Christopher Benner
- Department of MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Sven Heinz
- Department of MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Anja Bremm
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurtGermany
| | - Ivan Dikic
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurtGermany
- Frankfurt Cancer InstituteFrankfurt am MainGermany
- Cardio-Pulmonary InstituteFrankfurt am MainGermany
| | - Andreas Ernst
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
- Project Group Translational Medicine & Pharmacology TMPFraunhofer Institute for Molecular Biology and Applied Ecology IMEFrankfurtGermany
| | - Manuel Kaulich
- Institute of Biochemistry IIGoethe University Frankfurt - Medical Faculty, University HospitalFrankfurtGermany
- Frankfurt Cancer InstituteFrankfurt am MainGermany
- Cardio-Pulmonary InstituteFrankfurt am MainGermany
| |
Collapse
|
20
|
Awate S, Dhar S, Sommers JA, Brosh RM. Cellular Assays to Study the Functional Importance of Human DNA Repair Helicases. Methods Mol Biol 2019; 1999:185-207. [PMID: 31127577 PMCID: PMC9123881 DOI: 10.1007/978-1-4939-9500-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA helicases represent a specialized class of enzymes that play crucial roles in the DNA damage response. Using the energy of nucleoside triphosphate binding and hydrolysis, helicases behave as molecular motors capable of efficiently disrupting the many noncovalent hydrogen bonds that stabilize DNA molecules with secondary structure. In addition to their importance in DNA damage sensing and signaling, DNA helicases facilitate specific steps in DNA repair mechanisms that require polynucleotide tract unwinding or resolution. Because they play fundamental roles in the DNA damage response and DNA repair, defects in helicases disrupt cellular homeostasis. Thus, helicase deficiency or inhibition may result in reduced cell proliferation and survival, apoptosis, DNA damage induction, defective localization of repair proteins to sites of genomic DNA damage, chromosomal instability, and defective DNA repair pathways such as homologous recombination of double-strand breaks. In this chapter, we will describe step-by-step protocols to assay the functional importance of human DNA repair helicases in genome stability and cellular homeostasis.
Collapse
Affiliation(s)
- Sanket Awate
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA
| | - Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA.
| |
Collapse
|
21
|
Abstract
Timely recruitment of DNA damage response proteins to sites of genomic structural lesions is very important for signaling mechanisms to activate appropriate cell cycle checkpoints but also repair the altered DNA sequence to suppress mutagenesis. The eukaryotic cell is characterized by a complex cadre of players and pathways to ensure genomic stability in the face of replication stress or outright genomic insult by endogenous metabolites or environmental agents. Among the key performers are molecular motor DNA unwinding enzymes known as helicases that sense genomic perturbations and separate structured DNA strands so that replacement of a damaged base or sugar-phosphate backbone lesion can occur efficiently. Mutations in the BLM gene encoding the DNA helicase BLM leads to a rare chromosomal instability disorder known as Bloom's syndrome. In a recent paper by the Sengupta lab, BLM's role in the correction of double-strand breaks (DSB), a particularly dangerous form of DNA damage, was investigated. Adding to the complexity, BLM appears to be a key ringmaster of DSB repair as it acts both positively and negatively to regulate correction pathways of high or low fidelity. The FANCJ DNA helicase, mutated in another chromosomal instability disorder known as Fanconi Anemia, is an important player that likely coordinates with BLM in the balancing act. Further studies to dissect the roles of DNA helicases like FANCJ and BLM in DSB repair are warranted.
Collapse
Affiliation(s)
- Srijita Dhar
- a Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , NIH Biomedical Research Center , Baltimore , MD , USA
| | - Robert M Brosh
- a Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , NIH Biomedical Research Center , Baltimore , MD , USA
| |
Collapse
|
22
|
Analysis of the conserved NER helicases (XPB and XPD) and UV-induced DNA damage in Hydra. Biochim Biophys Acta Gen Subj 2018; 1862:2031-2042. [PMID: 29959982 DOI: 10.1016/j.bbagen.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleotide excision repair (NER) pathway is an evolutionarily conserved mechanism of genome maintenance. It detects and repairs distortions in DNA double helix. Xeroderma Pigmentosum group B (XPB) and group D (XPD) are important helicases in NER and are also critical subunits of TFIIH complex. We have studied XPB and XPD for the first time from the basal metazoan Hydra which exhibits lack of organismal senescence. METHODS In silico analysis of proteins was performed using MEGA 6.0, Clustal Omega, Swiss Model, etc. Gene expression was studied by in situ hybridization and qRT-PCR. Repair of CPDs was studied by DNA blot assay. Interactions between proteins were determined by co- immunoprecipitation. HyXPB and HyXPD were cloned in pET28b, overexpressed and helicase activity of purified proteins was checked. RESULTS In silico analysis revealed presence of seven classical helicase motifs in HyXPB and HyXPD. Both proteins revealed polarity-dependent helicase activity. Hydra repairs most of the thymine dimers induced by UVC (500 J/m2) by 72 h post-UV exposure. HyXPB and HyXPD transcripts, localized all over the body column, remained unaltered post-UV exposure indicating their constitutive expression. In spite of high levels of sequence conservation, XPB and XPD failed to rescue defects in human XPB- and XPD-deficient cell lines. This was due to their inability to get incorporated into the TFIIH multiprotein complex. CONCLUSIONS Present results along with our earlier work on DNA repair proteins in Hydra bring out the utility of Hydra as model system to study evolution of DNA repair mechanisms in metazoans.
Collapse
|
23
|
Ma W, Whitley KD, Chemla YR, Luthey-Schulten Z, Schulten K. Free-energy simulations reveal molecular mechanism for functional switch of a DNA helicase. eLife 2018; 7:34186. [PMID: 29664402 PMCID: PMC5973834 DOI: 10.7554/elife.34186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the Escherichia coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines.
Collapse
Affiliation(s)
- Wen Ma
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.,Beckman Institute for Advanced Science and Technology, Champaign, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Kevin D Whitley
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Yann R Chemla
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Champaign, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Zaida Luthey-Schulten
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Champaign, United States.,Beckman Institute for Advanced Science and Technology, Champaign, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Klaus Schulten
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Champaign, United States.,Beckman Institute for Advanced Science and Technology, Champaign, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| |
Collapse
|
24
|
Cao F, Lu L, Abrams SA, Hawthorne KM, Tam A, Jin W, Dawson B, Shypailo R, Liu H, Lee B, Nagamani SCS, Wang LL. Generalized metabolic bone disease and fracture risk in Rothmund-Thomson syndrome. Hum Mol Genet 2018; 26:3046-3055. [PMID: 28486640 DOI: 10.1093/hmg/ddx178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/03/2017] [Indexed: 01/05/2023] Open
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by poikiloderma, small stature, sparse hair, skeletal abnormalities, increased risk of osteosarcoma, and decreased bone mass. To date, there has not been a comprehensive evaluation of the prevalence and extent of metabolic bone disease in RTS. Furthermore, the mechanisms that result in this phenotype are largely unknown. In this report, we provide a detailed evaluation of 29 individuals with RTS with respect to their metabolic bone status including bone mineral density, calcium kinetics studies, and markers of bone remodeling. We show that individuals with RTS have decreased areal bone mineral density. Additionally, we demonstrate that the presence of pathogenic variants in RECQL4 and low bone mineral density correlate with the history of increased risk of fractures. Using a RECQL4-deficient mouse model that recapitulates skeletal abnormalities seen in individuals with RTS, we demonstrate that generalized skeletal involvement is likely due to decreased osteogenesis. Our findings are clinically relevant as they may help in the risk stratification of patients with RTS and also in the identification of individuals who may benefit from additional surveillance and management of metabolic bone disease.
Collapse
Affiliation(s)
- Felicia Cao
- Interdepartmental Program in Translational Biology and Molecular Medicine.,Medical Scientist Training Program
| | - Linchao Lu
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven A Abrams
- Department of Pediatrics, Dell Medical School at the University of Texas at Austin, Austin, TX 78712, USA
| | - Keli M Hawthorne
- Department of Pediatrics, Dell Medical School at the University of Texas at Austin, Austin, TX 78712, USA
| | | | - Weidong Jin
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Roman Shypailo
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics
| | - Hao Liu
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics.,Texas Children's Hospital, Houston, TX 77030, USA
| | - Lisa L Wang
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
25
|
Single-molecule studies reveal reciprocating of WRN helicase core along ssDNA during DNA unwinding. Sci Rep 2017; 7:43954. [PMID: 28266653 PMCID: PMC5339710 DOI: 10.1038/srep43954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Werner syndrome is caused by mutations in the WRN gene encoding WRN helicase. A knowledge of WRN helicase's DNA unwinding mechanism in vitro is helpful for predicting its behaviors in vivo, and then understanding their biological functions. In the present study, for deeply understanding the DNA unwinding mechanism of WRN, we comprehensively characterized the DNA unwinding properties of chicken WRN helicase core in details, by taking advantages of single-molecule fluorescence resonance energy transfer (smFRET) method. We showed that WRN exhibits repetitive DNA unwinding and translocation behaviors on different DNA structures, including forked, overhanging and G-quadruplex-containing DNAs with an apparently limited unwinding processivity. It was further revealed that the repetitive behaviors were caused by reciprocating of WRN along the same ssDNA, rather than by complete dissociation from and rebinding to substrates or by strand switching. The present study sheds new light on the mechanism for WRN functioning.
Collapse
|
26
|
Wang Y, Luo J. Acetylation of BLM protein regulates its function in response to DNA damage. RSC Adv 2017. [DOI: 10.1039/c7ra06666j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study first revealed the acetylation of the BLM protein and studied this regulatory process in the DNA damage response.
Collapse
Affiliation(s)
- Yankun Wang
- Department of Medical Genetics
- Peking University Health Science Center
- Beijing
- China
| | - Jianyuan Luo
- Department of Medical Genetics
- Peking University Health Science Center
- Beijing
- China
| |
Collapse
|
27
|
Moukhtar M, Chaar W, Abdel-Razzak Z, Khalil M, Taha S, Chamieh H. ARCPHdb: A comprehensive protein database for SF1 and SF2 helicase from archaea. Comput Biol Med 2017; 80:185-189. [DOI: 10.1016/j.compbiomed.2016.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 11/25/2022]
|
28
|
The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype. PLoS Genet 2016; 12:e1006208. [PMID: 27513445 PMCID: PMC4981402 DOI: 10.1371/journal.pgen.1006208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
The RAD51 protein plays a key role in the homology-directed repair of DNA double-strand breaks and is important for maintaining genome stability. Here we report on a novel human RAD51 variant found in an aggressive and therapy-refractive breast carcinoma. Expression of the RAD51 G151D variant in human breast epithelial cells increases the levels of homology-directed repair. Expression of RAD51 G151D in cells also promotes high levels of chromosomal aberrations and sister chromatid exchanges. In vitro, the purified RAD51 G151D protein directly and significantly enhances DNA strand exchange activity in the presence of RPA. In concordance with this result, co-incubation of G151D with BRCA2 resulted in a much higher level of strand-exchange activity compared to WT RAD51. Strikingly, the RAD51 G151D variant confers resistance to multiple DNA damaging agents, including ionizing radiation, mitomycin C, and doxorubicin. Our findings demonstrate that the RAD51 G151D somatic variant has a novel hyper-recombination phenotype and suggest that this property of the protein is important for the repair of DNA damage, leading to drug resistance. Therapeutic resistance is a major hurdle for the treatment and eradication of cancer. Furthermore, the development of therapeutic resistance significantly decreases patient survival and negatively impacts the quality of life of patients battling cancer. Cancer cells utilize a number of previously described mechanisms in order to overcome sensitivity to cancer therapeutics, including overexpression of RAD51. However, in this study we report a novel gain-of-function heterozygous somatic variant, RAD51 G151D, identified in a highly refractory and aggressive breast adenocarcinoma. RAD51 G151D induces a hyper-recombination phenotype in human cells resulting in increased resistance to therapeutics via enhanced HDR of DSBs. We further demonstrate enhanced DNA strand exchange activity in the presence of RPA, providing a possible mechanism for the hyper-recombination phenotype observed in cells. Our study presents a novel hyper-recombinant RAD51 tumor-associated variant (RAD51 G151D), providing the first evidence that links altered RAD51 function with therapeutic resistance as well as a novel genetic marker to identify patients at high risk for aggressive and refractory disease.
Collapse
|
29
|
Abstract
Antineoplastons work as molecular switches, which regulate expression of genes p53 and p21 through demethylation of promoter sequences and acetylation of histones. They also inhibit the uptake of growth-critical amino acids, such as 1- glutamine and 1-leucine in neoplastic cells. Phase II trials indicate efficacy of antineoplastons in low-grade glioma, brain stem glioma, high-grade glioma, adenocarcinoma of the colon, and hepatocellular carcinoma. The best results were observed in children with low-grade glioma, where 74% of patients obtained objective response, and in patients with adenocarcinoma of the colon with liver metastases whose survival rate of more than 5 years is 91% versus 39% in controls on chemotherapy. Gene array studies will explain antineoplaston-induced changes in gene expression.
Collapse
|
30
|
Bogen KT, Heilman JM. Reassessment of MTBE cancer potency considering modes of action for MTBE and its metabolites. Crit Rev Toxicol 2016; 45 Suppl 1:1-56. [PMID: 26414780 DOI: 10.3109/10408444.2015.1052367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A 1999 California state agency cancer potency (CP) evaluation of methyl tert-butyl ether (MTBE) assumed linear risk extrapolations from tumor data were plausible because of limited evidence that MTBE or its metabolites could damage DNA, and based such extrapolations on data from rat gavage and rat and mouse inhalation studies indicating elevated tumor rates in male rat kidney, male rat Leydig interstitial cells, and female rat leukemia/lymphomas. More recent data bearing on MTBE cancer potency include a rodent cancer bioassay of MTBE in drinking water; several new studies of MTBE genotoxicity; several similar evaluations of MTBE metabolites, formaldehyde, and tert-butyl alcohol or TBA; and updated evaluations of carcinogenic mode(s) of action (MOAs) of MTBE and MTBE metabolite's. The lymphoma/leukemia data used in the California assessment were recently declared unreliable by the U.S. Environmental Protection Agency (EPA). Updated characterizations of MTBE CP, and its uncertainty, are currently needed to address a variety of decision goals concerning historical and current MTBE contamination. To this end, an extensive review of data sets bearing on MTBE and metabolite genotoxicity, cytotoxicity, and tumorigenicity was applied to reassess MTBE CP and related uncertainty in view of MOA considerations. Adopting the traditional approach that cytotoxicity-driven cancer MOAs are inoperative at very low, non-cytotoxic dose levels, it was determined that MTBE most likely does not increase cancer risk unless chronic exposures induce target-tissue toxicity, including in sensitive individuals. However, the corresponding expected (or plausible upper bound) CP for MTBE conditional on a hypothetical linear (e.g., genotoxic) MOA was estimated to be ∼2 × 10(-5) (or 0.003) per mg MTBE per kg body weight per day for adults exposed chronically over a lifetime. Based on this conservative estimate of CP, if MTBE is carcinogenic to humans, it is among the weakest 10% of chemical carcinogens evaluated by EPA.
Collapse
|
31
|
Sun B, Wang MD. Single-molecule perspectives on helicase mechanisms and functions. Crit Rev Biochem Mol Biol 2015; 51:15-25. [DOI: 10.3109/10409238.2015.1102195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Zhang C. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana. Genome Integr 2015; 6:2. [PMID: 27330736 PMCID: PMC4911903 DOI: 10.4103/2041-9414.155953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 01/03/2023] Open
Abstract
The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
33
|
Leung KH, He HZ, He B, Zhong HJ, Lin S, Wang YT, Ma DL, Leung CH. Label-free luminescence switch-on detection of hepatitis C virus NS3 helicase activity using a G-quadruplex-selective probe. Chem Sci 2015; 6:2166-2171. [PMID: 28808523 PMCID: PMC5539802 DOI: 10.1039/c4sc03319a] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/16/2014] [Indexed: 12/16/2022] Open
Abstract
A series of luminescent Ir(iii) complexes were synthesised and evaluated for their ability to act as luminescent G-quadruplex-selective probes. The Ir(iii) complex 9, [Ir(phq)2(phen)]PF6 (where phq = 2-phenylquinoline; phen = 1,10-phenanthroline), exhibited high luminescence in the presence of G-quadruplex DNA compared to dsDNA and ssDNA, and was employed to construct a label-free G-quadruplex-based assay for hepatitis C virus NS3 helicase activity in aqueous solution. Moreover, the application of the assay for screening potential helicase inhibitors was demonstrated. To our knowledge, this is the first G-quadruplex-based assay for helicase activity.
Collapse
Affiliation(s)
- Ka-Ho Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Hong-Zhang He
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Bingyong He
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Sheng Lin
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| |
Collapse
|
34
|
Proteomic-coupled-network analysis of T877A-androgen receptor interactomes can predict clinical prostate cancer outcomes between White (non-Hispanic) and African-American groups. PLoS One 2014; 9:e113190. [PMID: 25409505 PMCID: PMC4237393 DOI: 10.1371/journal.pone.0113190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) remains an important contributor to the neoplastic evolution of prostate cancer (CaP). CaP progression is linked to several somatic AR mutational changes that endow upon the AR dramatic gain-of-function properties. One of the most common somatic mutations identified is Thr877-to-Ala (T877A), located in the ligand-binding domain, that results in a receptor capable of promiscuous binding and activation by a variety of steroid hormones and ligands including estrogens, progestins, glucocorticoids, and several anti-androgens. In an attempt to further define somatic mutated AR gain-of-function properties, as a consequence of its promiscuous ligand binding, we undertook a proteomic/network analysis approach to characterize the protein interactome of the mutant T877A-AR in LNCaP cells under eight different ligand-specific treatments (dihydrotestosterone, mibolerone, R1881, testosterone, estradiol, progesterone, dexamethasone, and cyproterone acetate). In extending the analysis of our multi-ligand complexes of the mutant T877A-AR we observed significant enrichment of specific complexes between normal and primary prostatic tumors, which were furthermore correlated with known clinical outcomes. Further analysis of certain mutant T877A-AR complexes showed specific population preferences distinguishing primary prostatic disease between white (non-Hispanic) vs. African-American males. Moreover, these cancer-related AR-protein complexes demonstrated predictive survival outcomes specific to CaP, and not for breast, lung, lymphoma or medulloblastoma cancers. Our study, by coupling data generated by our proteomics to network analysis of clinical samples, has helped to define real and novel biological pathways in complicated gain-of-function AR complex systems.
Collapse
|
35
|
Bochman ML. Roles of DNA helicases in the maintenance of genome integrity. Mol Cell Oncol 2014; 1:e963429. [PMID: 27308340 PMCID: PMC4905024 DOI: 10.4161/23723548.2014.963429] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/25/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022]
Abstract
Genome integrity is achieved and maintained by the sum of all of the processes in the cell that ensure the faithful duplication and repair of DNA, as well as its genetic transmission from one cell division to the next. As central players in virtually all of the DNA transactions that occur in vivo, DNA helicases (molecular motors that unwind double-stranded DNA to produce single-stranded substrates) represent a crucial enzyme family that is necessary for genomic stability. Indeed, mutations in many human helicase genes are linked to a variety of diseases with symptoms that can be generally described as genomic instability, such as predispositions to cancers. This review focuses on the roles of both DNA replication helicases and recombination/repair helicases in maintaining genome integrity and provides a brief overview of the diseases related to defects in these enzymes.
Collapse
Affiliation(s)
- Matthew L Bochman
- Molecular and Cellular Biochemistry Department; Indiana University ; Bloomington, IN USA
| |
Collapse
|
36
|
Harteis S, Schneider S. Making the bend: DNA tertiary structure and protein-DNA interactions. Int J Mol Sci 2014; 15:12335-63. [PMID: 25026169 PMCID: PMC4139847 DOI: 10.3390/ijms150712335] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence ("base readout") as well as the intrinsic DNA structure ("shape recognition"). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics.
Collapse
Affiliation(s)
- Sabrina Harteis
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Sabine Schneider
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
37
|
Yu J. Coordination and control inside simple biomolecular machines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 805:353-84. [PMID: 24446369 DOI: 10.1007/978-3-319-02970-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biomolecular machines can achieve physiological functions precisely and efficiently, though they always operate under fluctuations and noises. We review two types of simple machinery that we have recently studied. The machinery can be regarded as molecular motors. They transform chemical free energy from NTP hydrolysis to mechanical work. One type belongs to small monomeric helicases that move directionally along single-stranded nucleic acid, and may further unwind the duplex part for gene replication or repair. The other type belongs to ring-shaped NTPase motors that also move or transport nucleic acid or protein substrate in a directional manner, such as for genome packaging or protein degradation. The central issue in this review is on how the machinery coordinates essential degrees of freedom during the mechanochemical coupling process. Further concerns include how the coordination and control are manifested in experiments, and how they can be captured well in modeling and computational research. We employed atomistic molecular dynamics simulations, coarse-grained analyses, and stochastic modeling techniques to examine the molecular machines at multiple resolutions and timescales. Detailed descriptions on how the protein interacts with its substrate at interface, as well as how multiple protein subunits are coordinated are summarized.
Collapse
Affiliation(s)
- Jin Yu
- Beijing Computational Science Research Center, No 3 Heqing Road, Haidian District, Beijing, 100084, China,
| |
Collapse
|
38
|
Spies M. Two steps forward, one step back: determining XPD helicase mechanism by single-molecule fluorescence and high-resolution optical tweezers. DNA Repair (Amst) 2014; 20:58-70. [PMID: 24560558 DOI: 10.1016/j.dnarep.2014.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/31/2013] [Accepted: 01/13/2014] [Indexed: 11/17/2022]
Abstract
XPD-like helicases constitute a prominent DNA helicase family critical for many aspects of genome maintenance. These enzymes share a unique structural feature, an auxiliary domain stabilized by an iron-sulphur (FeS) cluster, and a 5'-3' polarity of DNA translocation and duplex unwinding. Biochemical analyses alongside two single-molecule approaches, total internal reflection fluorescence microscopy and high-resolution optical tweezers, have shown how the unique structural features of XPD helicase and its specific patterns of substrate interactions tune the helicase for its specific cellular function and shape its molecular mechanism. The FeS domain forms a duplex separation wedge and contributes to an extended DNA binding site. Interactions within this site position the helicase in an orientation to unwind the duplex, control the helicase rate, and verify the integrity of the translocating strand. Consistent with its cellular role, processivity of XPD is limited and is defined by an idiosyncratic stepping kinetics. DNA duplex separation occurs in single base pair steps punctuated by frequent backward steps and conformational rearrangements of the protein-DNA complex. As such, the helicase in isolation mainly stabilizes spontaneous base pair opening and exhibits a limited ability to unwind stable DNA duplexes. The presence of a cognate ssDNA binding protein converts XPD into a vigorous helicase by destabilizing the upstream dsDNA as well as by trapping the unwound strands. Remarkably, the two proteins can co-exist on the same DNA strand without competing for binding. The current model of the XPD unwinding mechanism will be discussed along with possible modifications to this mechanism by the helicase interacting partners and unique features of such bio-medically important XPD-like helicases as FANCJ (BACH1), RTEL1 and CHLR1 (DDX11).
Collapse
Affiliation(s)
- Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, IA 52242, United States.
| |
Collapse
|
39
|
Kaneko H, Kondo N. Clinical features of Bloom syndrome and function of the causative gene, BLM helicase. Expert Rev Mol Diagn 2014; 4:393-401. [PMID: 15137905 DOI: 10.1586/14737159.4.3.393] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bloom syndrome is a rare autosomal recessive genetic disorder characterized by growth deficiency, unusual facies, sun-sensitive telangiectatic erythema, immunodeficiency and predisposition to cancer. The causative gene for Bloom syndrome is BLM, which encodes the BLM RecQ helicase homolog protein. The first part of this review describes a long-term follow-up study of two Bloom syndrome siblings. Subsequently, the focus is placed on the functional domains of BLM. Laboratory diagnosis of Bloom syndrome by detecting mutations in BLM is laborious and impractical, unless there are common mutations in a population. Immunoblot and immunohistochemical analyses for the detection of the BLM protein using a polyclonal BLM antibody, which are useful approaches for clinical diagnosis of Bloom syndrome, are also described. In addition, a useful adjunct for the diagnosis of Bloom syndrome in terms of the BLM function is investigated, since disease cells must have the defective BLM helicase function. This review also discusses the nuclear localization signal of BLM, the proteins that interact with BLM and tumors originating from Bloom syndrome.
Collapse
Affiliation(s)
- Hideo Kaneko
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanaido,Gifu 501-1194, Japan.
| | | |
Collapse
|
40
|
Goto M, Okawa-Takatsuji M, Aotsuka S, Nakai H, Shimizu M, Goto H, Shimamoto A, Furuichi Y. Significant elevation of IgG anti-WRN (RecQ3 RNA/DNA helicase) antibody in systemic sclerosis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-006-0496-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Jang H, Lee J, Min DH. Graphene oxide for fluorescence-mediated enzymatic activity assays. J Mater Chem B 2014; 2:2452-2460. [DOI: 10.1039/c4tb00199k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Werner syndrome: association of premature aging and cancer predisposition. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
43
|
Abstract
Most currently available small molecule inhibitors of DNA replication lack enzymatic specificity, resulting in deleterious side effects during use in cancer chemotherapy and limited experimental usefulness as mechanistic tools to study DNA replication. Towards development of targeted replication inhibitors, we have focused on Mcm2-7 (minichromosome maintenance protein 2-7), a highly conserved helicase and key regulatory component of eukaryotic DNA replication. Unexpectedly we found that the fluoroquinolone antibiotic ciprofloxacin preferentially inhibits Mcm2-7. Ciprofloxacin blocks the DNA helicase activity of Mcm2-7 at concentrations that have little effect on other tested helicases and prevents the proliferation of both yeast and human cells at concentrations similar to those that inhibit DNA unwinding. Moreover, a previously characterized mcm mutant (mcm4chaos3) exhibits increased ciprofloxacin resistance. To identify more potent Mcm2-7 inhibitors, we screened molecules that are structurally related to ciprofloxacin and identified several that compromise the Mcm2-7 helicase activity at lower concentrations. Our results indicate that ciprofloxacin targets Mcm2-7 in vitro, and support the feasibility of developing specific quinolone-based inhibitors of Mcm2-7 for therapeutic and experimental applications.
Collapse
|
44
|
The study of interactions between DNA and PcrA DNA helicase by using targeted molecular dynamic simulations. J Mol Model 2013; 19:4997-5006. [PMID: 24068309 DOI: 10.1007/s00894-013-2008-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/08/2013] [Indexed: 10/26/2022]
Abstract
DNA helicases are important enzymes involved in all aspects of nucleic acid metabolism, ranging from DNA replication and repair to recombination, rescue of stalled replication and translation. DNA helicases are molecular motors. Through conformational changes caused by ATP hydrolysis and binding, they move along the template double helix, break the hydrogen bonds between the two strands and separate the template chains, so that the genetic information can be accessed. In this paper, targeted molecular dynamic simulations were performed to study the important interactions between DNA and PcrA DNA helicase, which can not be observed from the crystal structures. The key residues on PcrA DNA helicase that have strong interactions with both double stranded DNA (ds-DNA) and single stranded DNA (ss-DNA) have been identified, and it was found that such interactions mostly exist between the protein and DNA backbone, which indicates that the translocation of PcrA is independent of the DNA sequence. The simulations indicate that the ds-DNA is separated upon ATP rebinding, rather than ATP hydrolysis, which suggests that the two strokes in the mechanism have two different major roles. Firstly, in the power stroke (ATP hydrolysis), most of the translocations of the bases from one pocket to the next occur. In the relaxation stroke (ATP binding), most of the 'work' is being done to 'melt' the DNA at the separation fork. Therefore, we propose a mechanism whereby the translocation of the ss-DNA is powered by ATP hydrolysis and the separation of the ds-DNA is powered by ATP binding.
Collapse
|
45
|
Jensen MB, Dunn CA, Keijzers G, Kulikowicz T, Rasmussen LJ, Croteau DL, Bohr VA. The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients. Aging (Albany NY) 2013; 4:790-802. [PMID: 23238538 PMCID: PMC3560432 DOI: 10.18632/aging.100506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RECQL4 is one of five members of the human RecQ helicase family, and is implicated in three syndromes displaying accelerating aging, developmental abnormalities and a predisposition to cancer. In this study, we purified three variants of RECQL4 carrying previously reported patient mutations. These three mutant proteins were analyzed for the known biochemical activities of RECQL4: DNA binding, unwinding of duplex DNA, ATP hydrolysis and annealing of simplex DNA. Further, the mutant proteins were evaluated for stability and recruitment to sites of laser-induced DNA damage. One mutant was helicase-dead, had marginal ATPase activity and may be structurally compromised, while the other two showed greatly reduced helicase and ATPase activities. The remaining biochemical activities and ability to recruit to damage sites were not significantly impaired for any of the mutants. Our findings demonstrate a consistent pattern of functional deficiency and provide further support for a helicase-dependent cellular function of RECQL4 in addition to its Nterminus-dependent role in initiation of replication, a function that may underlie the phenotype of RECQL4-linked disease.
Collapse
Affiliation(s)
- Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
46
|
Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. Discovering new medicines targeting helicases: challenges and recent progress. ACTA ACUST UNITED AC 2013; 18:761-81. [PMID: 23536547 PMCID: PMC4427233 DOI: 10.1177/1087057113482586] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases are ubiquitous motor proteins that separate and/or rearrange nucleic acid duplexes in reactions fueled by adenosine triphosphate (ATP) hydrolysis. Helicases encoded by bacteria, viruses, and human cells are widely studied targets for new antiviral, antibiotic, and anticancer drugs. This review summarizes the biochemistry of frequently targeted helicases. These proteins include viral enzymes from herpes simplex virus, papillomaviruses, polyomaviruses, coronaviruses, the hepatitis C virus, and various flaviviruses. Bacterial targets examined include DnaB-like and RecBCD-like helicases. The human DEAD-box protein DDX3 is the cellular antiviral target discussed, and cellular anticancer drug targets discussed are the human RecQ-like helicases and eIF4A. We also review assays used for helicase inhibitor discovery and the most promising and common helicase inhibitor chemotypes, such as nucleotide analogues, polyphenyls, metal ion chelators, flavones, polycyclic aromatic polymers, coumarins, and various DNA binding pharmacophores. Also discussed are common complications encountered while searching for potent helicase inhibitors and possible solutions for these problems.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kitagishi Y, Matsuda S. Redox regulation of tumor suppressor PTEN in cancer and aging (Review). Int J Mol Med 2013; 31:511-5. [PMID: 23313933 DOI: 10.3892/ijmm.2013.1235] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/18/2012] [Indexed: 11/05/2022] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has been shown to act as a tumor suppressor whose function includes important roles in regulating oxidative stress, indicating a potential role in oxidative damage-associated cancer. Accumulating evidence has revealed that PTEN also acts as a pivotal determinant of cell fate, regarding senescence and apoptosis, which is mediated by intracellular reactive oxygen species (ROS) generation. Cells are continuously exposed to ROS, which represent mutagens and are thought to be a major contributor to cancer and the aging process. Therefore, cellular ROS sensing and metabolism are firmly regulated by a variety of proteins involved in the redox mechanism. In this review, PTEN and the roles of oxidative stress in phosphoinositide-3 kinase/AKT signaling are summarized with a focus on the links between the pathways and ROS in cancer and aging.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Environmental Health Science, Nara Women's University, Nara 630-8506, Japan
| | | |
Collapse
|
48
|
Murfuni I, De Santis A, Federico M, Bignami M, Pichierri P, Franchitto A. Perturbed replication induced genome wide or at common fragile sites is differently managed in the absence of WRN. Carcinogenesis 2012; 33:1655-63. [PMID: 22689923 DOI: 10.1093/carcin/bgs206] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Werner syndrome protein (WRN) is a member of the RecQ helicase family. Loss of WRN results in a human disease, the Werner syndrome (WS), characterized by high genomic instability, elevated cancer risk and premature aging. WRN is crucial for the recovery of stalled replication forks and possesses both helicase and exonuclease enzymatic activities of uncertain biological significance. Previous work revealed that WRN promotes formation of MUS81-dependent double strand breaks (DSBs) at HU-induced stalled forks, allowing replication restart at the expense of chromosome stability. Here, using cells expressing the helicase- or exonuclease-dead WRN mutant, we show that both activities of WRN are required to prevent MUS81-dependent breakage after HU-induced replication arrest. Moreover, we provide evidence that, in WS cells, DSBs generated by MUS81 do not require RAD51 activity for their formation. Surprisingly, when replication is specifically perturbed at common fragile sites (CFS) by aphidicolin, WRN limits accumulation of ssDNA gaps and no MUS81-dependent DSBs are detected. However, in both cases, RAD51 is essential to ensure viability of WS cells, although by different mechanisms. Thus, the role of WRN in response to perturbation of replication along CFS is functionally distinct from that carried out at stalled forks genome wide. Our results contribute to unveil two different mechanisms used by the cell to overcome the absence of WRN.
Collapse
Affiliation(s)
- Ivana Murfuni
- Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Superfamily 2 helicases are involved in all aspects of RNA metabolism, and many steps in DNA metabolism. This review focuses on the basic mechanistic, structural and biological properties of each of the families of helicases within superfamily 2. There are ten separate families of helicases within superfamily 2, each playing specific roles in nucleic acid metabolism. The mechanisms of action are diverse, as well as the effect on the nucleic acid. Some families translocate on single-stranded nucleic acid and unwind duplexes, some unwind double-stranded nucleic acids without translocation, and some translocate on double-stranded or single-stranded nucleic acids without unwinding.
Collapse
Affiliation(s)
- Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
50
|
Hyun M, Park S, Kim E, Kim DH, Lee SJ, Koo HS, Seo YS, Ahn B. Physical and functional interactions of Caenorhabditis elegans WRN-1 helicase with RPA-1. Biochemistry 2012; 51:1336-45. [PMID: 22257160 DOI: 10.1021/bi200791p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Caenorhabditis elegans Werner syndrome protein, WRN-1, a member of the RecQ helicase family, has a 3'-5' DNA helicase activity. Worms with defective wrn-1 exhibit premature aging phenotypes and an increased level of genome instability. In response to DNA damage, WRN-1 participates in the initial stages of checkpoint activation in concert with C. elegans replication protein A (RPA-1). WRN-1 helicase is stimulated by RPA-1 on long DNA duplex substrates. However, the mechanism by which RPA-1 stimulates DNA unwinding and the function of the WRN-1-RPA-1 interaction are not clearly understood. We have found that WRN-1 physically interacts with two RPA-1 subunits, CeRPA73 and CeRPA32; however, full-length WRN-1 helicase activity is stimulated by only the CeRPA73 subunit, while the WRN-1(162-1056) fragment that harbors the helicase activity requires both the CeRPA73 and CeRPA32 subunits for the stimulation. We also found that the CeRPA73(1-464) fragment can stimulate WRN-1 helicase activity and that residues 335-464 of CeRPA73 are important for physical interaction with WRN-1. Because CeRPA73 and the CeRPA73(1-464) fragment are able to bind single-stranded DNA (ssDNA), the stimulation of WRN-1 helicase by RPA-1 is most likely due to the ssDNA binding activity of CeRPA73 and the direct interaction of WRN-1 and CeRPA73.
Collapse
Affiliation(s)
- Moonjung Hyun
- Department of Life Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|