1
|
Rajan KS, Aryal S, Hiregange DG, Bashan A, Madmoni H, Olami M, Doniger T, Cohen-Chalamish S, Pescher P, Taoka M, Nobe Y, Fedorenko A, Bose T, Zimermann E, Prina E, Aharon-Hefetz N, Pilpel Y, Isobe T, Unger R, Späth GF, Yonath A, Michaeli S. Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification. Cell Rep 2024; 43:114203. [PMID: 38722744 PMCID: PMC11156624 DOI: 10.1016/j.celrep.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4-3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel; The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mika Olami
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Pascal Pescher
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Aliza Fedorenko
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Ella Zimermann
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Eric Prina
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Noa Aharon-Hefetz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Gerald F Späth
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Ada Yonath
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
2
|
Bose T, Fridkin G, Davidovich C, Krupkin M, Dinger N, Falkovich A, Peleg Y, Agmon I, Bashan A, Yonath A. Origin of life: protoribosome forms peptide bonds and links RNA and protein dominated worlds. Nucleic Acids Res 2022; 50:1815-1828. [PMID: 35137169 PMCID: PMC8886871 DOI: 10.1093/nar/gkac052] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Although the mode of action of the ribosomes, the multi-component universal effective protein-synthesis organelles, has been thoroughly explored, their mere appearance remained elusive. Our earlier comparative structural studies suggested that a universal internal small RNA pocket-like segment called by us the protoribosome, which is still embedded in the contemporary ribosome, is a vestige of the primordial ribosome. Herein, after constructing such pockets, we show using the "fragment reaction" and its analyses by MALDI-TOF and LC-MS mass spectrometry techniques, that several protoribosome constructs are indeed capable of mediating peptide-bond formation. These findings present strong evidence supporting our hypothesis on origin of life and on ribosome's construction, thus suggesting that the protoribosome may be the missing link between the RNA dominated world and the contemporary nucleic acids/proteins life.
Collapse
Affiliation(s)
- Tanaya Bose
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Gil Fridkin
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
- Department of Organic Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel
| | - Chen Davidovich
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Miri Krupkin
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Nikita Dinger
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Alla H Falkovich
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Yoav Peleg
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Agmon
- Institute for Advanced Studies in Theoretical Chemistry, Schulich Faculty of Chemistry-Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 9190401, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science 7610001 Rehovot, Israel
| |
Collapse
|
3
|
Baral B, Mozafari MR. Strategic Moves of "Superbugs" Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges. ACS Pharmacol Transl Sci 2020; 3:373-400. [PMID: 32566906 PMCID: PMC7296549 DOI: 10.1021/acsptsci.0c00005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Superbugs' resistivity against available natural products has become an alarming global threat, causing a rapid deterioration in public health and claiming tens of thousands of lives yearly. Although the rapid discovery of small molecules from plant and microbial origin with enhanced bioactivity has provided us with some hope, a rapid hike in the resistivity of superbugs has proven to be the biggest therapeutic hurdle of all times. Moreover, several distinct mechanisms endowed by these notorious superbugs make them immune to these antibiotics subsequently causing our antibiotic wardrobe to be obsolete. In this unfortunate situation, though the time frame for discovering novel "hit molecules" down the line remains largely unknown, our small hope and untiring efforts injected in hunting novel chemical scaffolds with unique molecular targets using high-throughput technologies may safeguard us against these life-threatening challenges to some extent. Amid this crisis, the current comprehensive review highlights the present status of knowledge, our search for bacteria Achilles' heel, distinct molecular signaling that an opportunistic pathogen bestows to trespass the toxicity of antibiotics, and facile strategies and appealing therapeutic targets of novel drugs. Herein, we also discuss multidimensional strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bikash Baral
- Department
of Biochemistry, University of Turku, Tykistökatu 6, Turku, Finland
| | - M. R. Mozafari
- Australasian
Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia
| |
Collapse
|
4
|
von Loeffelholz O, Natchiar SK, Djabeur N, Myasnikov AG, Kratzat H, Ménétret JF, Hazemann I, Klaholz BP. Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes. Curr Opin Struct Biol 2017; 46:140-148. [PMID: 28850874 DOI: 10.1016/j.sbi.2017.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/23/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022]
Abstract
Cryo electron microscopy (cryo-EM) historically has had a strong impact on the structural and mechanistic analysis of protein synthesis by the prokaryotic and eukaryotic ribosomes. Vice versa, studying ribosomes has helped moving forwards many methodological aspects in single particle cryo-EM, at the level of automated data collection and image processing including advanced techniques for particle sorting to address structural and compositional heterogeneity. Here we review some of the latest ribosome structures, where cryo-EM allowed gaining unprecedented insights based on 3D structure sorting with focused classification and refinement methods helping to reach local resolution levels better than 3Å. Such high-resolution features now enable the analysis of drug interactions with RNA and protein side-chains including even the visualization of chemical modifications of the ribosomal RNA. These advances represent a major breakthrough in structural biology and show the strong potential of cryo-EM beyond the ribosome field including for structure-based drug design.
Collapse
Affiliation(s)
- Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Nadia Djabeur
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Alexander G Myasnikov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Hanna Kratzat
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Jean-François Ménétret
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France. mailto:
| |
Collapse
|
5
|
Beyar R, Zeevi B, Rechavi G. Israel: a start-up life science nation. Lancet 2017; 389:2563-2569. [PMID: 28495116 DOI: 10.1016/s0140-6736(17)30704-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 11/22/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Rafael Beyar
- Rambam Health Care Campus, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Benny Zeevi
- Tel Aviv Venture Partners, Tel Aviv, Israel; Israel Advanced Technology Industries, Hertzliya Pituach, Israel
| | - Gideon Rechavi
- Cancer Research Center and Wohl Institute for Translational Research, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Stokowa-Sołtys K, Barbosa NA, Kasprowicz A, Wieczorek R, Gaggelli N, Gaggelli E, Valensin G, Wrzesiński J, Ciesiołka J, Kuliński T, Szczepanik W, Jeżowska-Bojczuk M. Studies of viomycin, an anti-tuberculosis antibiotic: copper(ii) coordination, DNA degradation and the impact on delta ribozyme cleavage activity. Dalton Trans 2016; 45:8645-58. [DOI: 10.1039/c6dt00245e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Viomycin is a basic peptide antibiotic, which is among the most effective agents against multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
| | - N. A. Barbosa
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - A. Kasprowicz
- Institute of Bioorganic Chemistry
- Polish Academy of Sciences
- 61-704 Poznań
- Poland
| | - R. Wieczorek
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - N. Gaggelli
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena Via Aldo Moro
- 2-53100 Siena
- Italy
| | - E. Gaggelli
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena Via Aldo Moro
- 2-53100 Siena
- Italy
| | - G. Valensin
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena Via Aldo Moro
- 2-53100 Siena
- Italy
| | - J. Wrzesiński
- Institute of Bioorganic Chemistry
- Polish Academy of Sciences
- 61-704 Poznań
- Poland
| | - J. Ciesiołka
- Institute of Bioorganic Chemistry
- Polish Academy of Sciences
- 61-704 Poznań
- Poland
| | - T. Kuliński
- Institute of Bioorganic Chemistry
- Polish Academy of Sciences
- 61-704 Poznań
- Poland
| | - W. Szczepanik
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | |
Collapse
|
7
|
Childs-Disney JL, Disney MD. Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells. Annu Rev Pharmacol Toxicol 2015; 56:123-40. [PMID: 26514201 DOI: 10.1146/annurev-pharmtox-010715-103910] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.
Collapse
Affiliation(s)
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458; ,
| |
Collapse
|
8
|
Velagapudi SP, Vummidi BR, Disney MD. Small molecule chemical probes of microRNA function. Curr Opin Chem Biol 2014; 24:97-103. [PMID: 25500006 DOI: 10.1016/j.cbpa.2014.10.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/27/2014] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as progress is made in understanding small molecule recognition of RNA.
Collapse
Affiliation(s)
- Sai Pradeep Velagapudi
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, #3A1, Jupiter, FL 33458, United States
| | - Balayeshwanth R Vummidi
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, #3A1, Jupiter, FL 33458, United States
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, #3A1, Jupiter, FL 33458, United States.
| |
Collapse
|
9
|
Heo A, Jang HJ, Sung JS, Park W. Global transcriptome and physiological responses of Acinetobacter oleivorans DR1 exposed to distinct classes of antibiotics. PLoS One 2014; 9:e110215. [PMID: 25330344 PMCID: PMC4201530 DOI: 10.1371/journal.pone.0110215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
The effects of antibiotics on environment-originated nonpathogenic Acinetobacter species have been poorly explored. To understand the antibiotic-resistance mechanisms that function in nonpathogenic Acinetobacter species, we used an RNA-sequencing (RNA-seq) technique to perform global gene-expression profiling of soil-borne Acinetobacter oleivorans DR1 after exposing the bacteria to 4 classes of antibiotics (ampicillin, Amp; kanamycin, Km; tetracycline, Tc; norfloxacin, Nor). Interestingly, the well-known two global regulators, the soxR and the rpoE genes are present among 41 commonly upregulated genes under all 4 antibiotic-treatment conditions. We speculate that these common genes are essential for antibiotic resistance in DR1. Treatment with the 4 antibiotics produced diverse physiological and phenotypic changes. Km treatment induced the most dramatic phenotypic changes. Examination of mutation frequency and DNA-repair capability demonstrated the induction of the SOS response in Acinetobacter especially under Nor treatment. Based on the RNA-seq analysis, the glyoxylate-bypass genes of the citrate cycle were specifically upregulated under Amp treatment. We also identified newly recognized non-coding small RNAs of the DR1 strain, which were also confirmed by Northern blot analysis. These results reveal that treatment with antibiotics of distinct classes differentially affected the gene expression and physiology of DR1 cells. This study expands our understanding of the molecular mechanisms of antibiotic-stress response of environment-originated bacteria and provides a basis for future investigations.
Collapse
Affiliation(s)
- Aram Heo
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Hyun-Jin Jang
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Velagapudi SP, Gallo SM, Disney MD. Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol 2014; 10:291-7. [PMID: 24509821 PMCID: PMC3962094 DOI: 10.1038/nchembio.1452] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022]
Abstract
Oligonucleotides are designed to target RNA using base pairing rules, but they can be hampered by poor cellular delivery and nonspecific stimulation of the immune system. Small molecules are preferred as lead drugs or probes but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA hairpin precursors, and it identified bioactive small molecules that inhibit biogenesis by binding nuclease-processing sites (44% hit rate). Among 27 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Markedly, microRNA profiling shows that 1 only affects microRNA-96 biogenesis and is at least as selective as an oligonucleotide.
Collapse
Affiliation(s)
- Sai Pradeep Velagapudi
- 1] Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA. [2] The Department of Chemistry, The University at Buffalo, Buffalo, New York, USA
| | - Steven M Gallo
- The New York State Center of Excellence in Bioinformatics and Life Sciences, The University at Buffalo, Buffalo, New York, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA
| |
Collapse
|
11
|
Saini JS, Homeyer N, Fulle S, Gohlke H. Determinants of the species selectivity of oxazolidinone antibiotics targeting the large ribosomal subunit. Biol Chem 2014; 394:1529-41. [PMID: 24006327 DOI: 10.1515/hsz-2013-0188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/01/2013] [Indexed: 01/18/2023]
Abstract
Oxazolidinone antibiotics bind to the highly conserved peptidyl transferase center in the ribosome. For developing selective antibiotics, a profound understanding of the selectivity determinants is required. We have performed for the first time technically challenging molecular dynamics simulations in combination with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculations of the oxazolidinones linezolid and radezolid bound to the large ribosomal subunits of the eubacterium Deinococcus radiodurans and the archaeon Haloarcula marismortui. A remarkably good agreement of the computed relative binding free energy with selectivity data available from experiment for linezolid is found. On an atomic level, the analyses reveal an intricate interplay of structural, energetic, and dynamic determinants of the species selectivity of oxazolidinone antibiotics: A structural decomposition of free energy components identifies influences that originate from first and second shell nucleotides of the binding sites and lead to (opposing) contributions from interaction energies, solvation, and entropic factors. These findings add another layer of complexity to the current knowledge on structure-activity relationships of oxazolidinones binding to the ribosome and suggest that selectivity analyses solely based on structural information and qualitative arguments on interactions may not reach far enough. The computational analyses presented here should be of sufficient accuracy to fill this gap.
Collapse
|
12
|
Abstract
The crystal structures of ribosomes that have been obtained since 2000 have transformed our understanding of protein synthesis. In addition to proving that RNA is responsible for catalyzing peptide bond formation, these structures have provided important insights into the mechanistic details of how the ribosome functions. This review emphasizes what has been learned about the mechanism of peptide bond formation, the antibiotics that inhibit ribosome function, and the fidelity of decoding.
Collapse
Affiliation(s)
- Peter B Moore
- Department of Molecular Biophysics, Yale University, New Haven, Connecticut 208114, USA.
| | | |
Collapse
|
13
|
Yonath A. Winterschlafende Bären, Antibiotika und die Evolution des Ribosoms (Nobel-Aufsatz). Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Yonath A. Hibernating Bears, Antibiotics, and the Evolving Ribosome (Nobel Lecture). Angew Chem Int Ed Engl 2010; 49:4341-54. [DOI: 10.1002/anie.201001297] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Yonath A. Large facilities and the evolving ribosome, the cellular machine for genetic-code translation. J R Soc Interface 2009; 6 Suppl 5:S575-85. [PMID: 19656820 DOI: 10.1098/rsif.2009.0167.focus] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Well-focused X-ray beams, generated by advanced synchrotron radiation facilities, yielded high-resolution diffraction data from crystals of ribosomes, the cellular nano-machines that translate the genetic code into proteins. These structures revealed the decoding mechanism, localized the mRNA path and the positions of the tRNA molecules in the ribosome and illuminated the interactions of the ribosome with initiation, release and recycling factors. They also showed that the ribosome is a ribozyme whose active site is situated within a universal symmetrical region that is embedded in the otherwise asymmetric ribosome structure. As this highly conserved region provides the machinery required for peptide bond formation and for ribosome polymerase activity, it may be the remnant of the proto-ribosome, a dimeric pre-biotic machine that formed peptide bonds and non-coded polypeptide chains. Synchrotron radiation also enabled the determination of structures of complexes of ribosomes with antibiotics targeting them, which revealed the principles allowing for their clinical use, revealed resistance mechanisms and showed the bases for discriminating pathogens from hosts, hence providing valuable structural information for antibiotics improvement.
Collapse
Affiliation(s)
- Ada Yonath
- Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel.
| |
Collapse
|
16
|
Nanduri B, Shack LA, Burgess SC, Lawrence ML. The transcriptional response of Pasteurella multocida to three classes of antibiotics. BMC Genomics 2009; 10 Suppl 2:S4. [PMID: 19607655 PMCID: PMC2966327 DOI: 10.1186/1471-2164-10-s2-s4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pasteurella multocida is a gram-negative bacterial pathogen that has a broad host range. One of the diseases it causes is fowl cholera in poultry. The availability of the genome sequence of avian P. multocida isolate Pm70 enables the application of functional genomics for observing global gene expression in response to a given stimulus. We studied the effects of three classes of antibiotics on the P. multocida transcriptome using custom oligonucleotide microarrays from NimbleGen Systems. Hybridizations were conducted with RNA isolated from three independent cultures of Pm70 grown in the presence or absence of sub-minimum inhibitory concentration (sub-MIC) of antibiotics. Differentially expressed (DE) genes were identified by ANOVA and Dunnett's test. Biological modeling of the differentially expressed genes (DE) was conducted based on Clusters of Orthologous (COG) groups and network analysis in Pathway Studio. RESULTS The three antibiotics used in this study, amoxicillin, chlortetracycline, and enrofloxacin, collectively influenced transcription of 25% of the P. multocida Pm70 genome. Some DE genes identified were common to more than one antibiotic. The overall transcription signatures of the three antibiotics differed at the COG level of the analysis. Network analysis identified differences in the SOS response of P. multocida in response to the antibiotics. CONCLUSION This is the first report of the transcriptional response of an avian strain of P. multocida to sub-lethal concentrations of three different classes of antibiotics. We identified common adaptive responses of P. multocida to antibiotic stress. The observed changes in gene expression of known and putative P. multocida virulence factors establish the molecular basis for the therapeutic efficacy of sub-MICs. Our network analysis demonstrates the feasibility and limitations of applying systems modeling to high throughput datasets in 'non-model' bacteria.
Collapse
Affiliation(s)
- Bindu Nanduri
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | |
Collapse
|
17
|
Constraint counting on RNA structures: linking flexibility and function. Methods 2009; 49:181-8. [PMID: 19398009 DOI: 10.1016/j.ymeth.2009.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 01/10/2023] Open
Abstract
RNA structures are highly flexible biomolecules that can undergo dramatic conformational changes required to fulfill their diverse functional roles. Constraint counting on a topological network representation of an RNA structure can provide very efficiently detailed insights into the intrinsic flexibility characteristics of the biomolecule. In the network, vertices represent atoms and edges represent covalent and strong non-covalent bonds and angle constraints. Initially, the method has been successfully applied to identify rigid and flexible regions in proteins. Here, we present recent progress in extending the approach to RNA structures. As a case study, we analyze stability characteristics of the ribosomal exit tunnel and relate these findings to the tunnel's active role in co-translational processes.
Collapse
|
18
|
Wekselman I, Davidovich C, Agmon I, Zimmerman E, Rozenberg H, Bashan A, Berisio R, Yonath A. Ribosome's mode of function: myths, facts and recent results. J Pept Sci 2009; 15:122-30. [DOI: 10.1002/psc.1077] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Zimmerman E, Yonath A. Biological implications of the ribosome's stunning stereochemistry. Chembiochem 2009; 10:63-72. [PMID: 19089882 DOI: 10.1002/cbic.200800554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ribosome's striking architecture is ingeniously designed for its efficient polymerase activity in the biosynthesis of proteins, which is a prerequisite for cell vitality. This elaborate architecture is comprised of a universal symmetrical region that connects all of the ribosomal functional centers involved in protein biosynthesis. Assisted by the mobility of selected ribosomal nucleotides, the symmetrical region provides the structural tools that are required not only for peptide bond formation, but also for fast and smooth successive elongation of nascent proteins. It confines the path along which the A-tRNA 3'-end is rotated into the P-site in concert with the overall tRNA/mRNA sideways movement, thus providing the required stereochemistry for peptide bond formation and substrate-mediated catalysis. The extreme flexibility of the nucleotides that facilitate peptide bond formation is being exploited to promote antibiotic selectivity and synergism, as well as to combat antibiotic resistance.
Collapse
Affiliation(s)
- Ella Zimmerman
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
20
|
Fulle S, Gohlke H. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding. J Mol Biol 2009; 387:502-17. [PMID: 19356596 DOI: 10.1016/j.jmb.2009.01.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/18/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
A sophisticated interplay between the static properties of the ribosomal exit tunnel and its functional role in cotranslational processes is revealed by constraint counting on topological network representations of large ribosomal subunits from four different organisms. As for the global flexibility characteristics of the subunit, the results demonstrate a conserved stable structural environment of the tunnel. The findings render unlikely that deformations of the tunnel move peptides down the tunnel in an active manner. Furthermore, the stable environment rules out that the tunnel can adapt widely so as to allow tertiary folding of nascent chains. Nevertheless, there are local zones of flexible nucleotides within the tunnel, between the peptidyl transferase center and the tunnel constriction, and at the tunnel exit. These flexible zones strikingly agree with previously identified folding zones. As for cotranslational elongation regulation, flexible residues in the beta-hairpin of the ribosomal L22 protein were verified, as suggested previously based on structural results. These results support the hypothesis that L22 can undergo conformational changes that regulate the tunnel voyage of nascent polypeptides. Furthermore, rRNA elements, for which conformational changes have been observed upon interaction of the tunnel wall with a nascent SecM peptide, are less strongly coupled to the subunit core. Sequences of coupled rigid clusters are identified between the tunnel and some of these elements, suggesting signal transmission by a domino-like mechanical coupling. Finally, differences in the flexibility of the glycosidic bonds of bases that form antibiotics-binding crevices within the peptidyl transferase center and the tunnel region are revealed for ribosomal structures from different kingdoms. In order to explain antibiotics selectivity, action, and resistance, according to these results, differences in the degrees of freedom of the binding regions may need to be considered.
Collapse
Affiliation(s)
- Simone Fulle
- Department of Biological Sciences, Molecular Bioinformatics Group, Goethe University, Frankfurt, Germany
| | | |
Collapse
|
21
|
Ribosome: an Ancient Cellular Nano-Machine for Genetic Code Translation. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2009. [DOI: 10.1007/978-90-481-2368-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Structural basis for cross-resistance to ribosomal PTC antibiotics. Proc Natl Acad Sci U S A 2008; 105:20665-70. [PMID: 19098107 DOI: 10.1073/pnas.0810826105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clinically relevant antibiotics that target the ribosomal peptidyl transferase center (PTC), a highly conserved ribosomal region, exert their inhibitory action by exploiting the flexibility of PTC nucleotides, which trigger modulations of the shape of the antibiotic binding pocket. Resistance to these antibiotics was observed clinically and in vitro. Based on the crystal structures of the large ribosomal subunit from eubacterium suitable to represent pathogens in complex with these antibiotics, it was found that all nucleotides mediating resistance to PTC antibiotics cluster on one side of the PTC. Over half of the nucleotides affecting resistance reside in regions of lower sequence conservation, and are too distal to make Van der Waals interactions with the bound drugs. Alterations of the identity of these nucleotides may not lethally affect ribosome function, but can hamper antibiotic binding through changes in the conformation and flexibility of specific PTC nucleotides. Comparative analysis revealed properties likely to lead to cross-resistance and enabled their parameterization. As the same nucleotides are frequently involved in resistance to more than a single family of antibiotics, the common pattern explains medically observed cross-resistance to PTC antibiotics and suggests the potential for a wider clinical threat.
Collapse
|
23
|
Abstract
Decades of studies have established translation as a multistep, multicomponent process that requires intricate communication to achieve high levels of speed, accuracy, and regulation. A crucial next step in understanding translation is to reveal the functional significance of the large-scale motions implied by static ribosome structures. This requires determining the trajectories, timescales, forces, and biochemical signals that underlie these dynamic conformational changes. Single-molecule methods have emerged as important tools for the characterization of motion in complex systems, including translation. In this review, we chronicle the key discoveries in this nascent field, which have demonstrated the power and promise of single-molecule techniques in the study of translation.
Collapse
Affiliation(s)
- R Andrew Marshall
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
24
|
Bashan A, Yonath A. Correlating ribosome function with high-resolution structures. Trends Microbiol 2008; 16:326-35. [PMID: 18547810 DOI: 10.1016/j.tim.2008.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 05/03/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
Ribosome research has undergone astonishing progress in recent years. Crystal structures have shed light on the functional properties of the translation machinery and revealed how the striking architecture of the ribosome is ingeniously designed as the framework for its unique capabilities: precise decoding, substrate-mediated peptide-bond formation and efficient polymerase activity. New findings include the two concerted elements of tRNA translocation: sideways shift and a ribosomal-navigated rotatory motion; the dynamics of the nascent-chain exit tunnel and the shelter formed by the ribosome-bound trigger-factor, which acts as a chaperone to prevent nascent-chain aggregation and misfolding. The availability of these structures has also illuminated the action, selectivity, resistance and synergism of antibiotics that target ribosomes.
Collapse
Affiliation(s)
- Anat Bashan
- Department of Structural Biology, Weizmann Institute, Rehovot, 76100, Israel
| | | |
Collapse
|
25
|
Ashby CR, Jodlowski TZ, Sym D. Medications for Extensively Drug-Resistant Tuberculosis: Back to the Future? J Pharm Technol 2008. [DOI: 10.1177/875512250802400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: To reexamine the existing medications for the potential treatment of extensively drug-resistant tuberculosis (XDR-TB), based on susceptibility data, and to identify potential future medications from the literature. Data Sources: Relevant information was identified through a search of MEDLINE (1966–November 2007), PubMed (1955–November 2007), American Search Premier (1975–November 2007), International Pharmaceutical Abstracts (1960–November 2007), Science Citation Index Expanded (1996–November 2007), Cochrane Databases (publications archived until November 2007), and various tertiary sources as listed in the references, using the terms extensively drug-resistant tuberculosis (XDR-TB), ethambutol, pyrazinamide, para-aminosalicylic acid, cycloserine, linezolid, diarylquinoline, nitroimidazopyran, fluoroquinolones, β-lactams, new treatments, and ethionamide alone or in combination regimens. Study Selection and Data Extraction: After identification of the relevant information, the data presented in this article were selected based on clinical relevance and value of information. Data Synthesis: Based on susceptibility data, pyrazinamide, ethambutol, para-aminosalicylic acid, cycloserine, and ethionamide may be used for the treatment of tuberculosis. However, due to the emergence of XDR-TB, many of these agents are no longer successful treatment regimens. We have found limited data supporting potential future use of β-lactams, clarithromycin, and linezolid in resistant TB infections. TMC207, nitroimidazopyran, and SQ109 compounds may also prove to be viable options in the near future for treatment of tuberculosis, especially in cases with resistance to mainstay medications. Conclusions: Extensively resistant tuberculosis appears to be a potentially catastrophic disease if allowed to spread. Due to its resistance profile, very few potentially effective agents are available, calling attention to this growing problem.
Collapse
Affiliation(s)
- Charles R Ashby
- CHARLES R ASHBY JR PhD, Professor, St. John's University College of Pharmacy and Allied Health Professions, Queens, NY
| | - Tomasz Z Jodlowski
- TOMASZ Z JODLOWSKI PharmD BCPS, Assistant Clinical Professor, St. John's University College of Pharmacy and Allied Health Professions, Queens, NY; Infectious Diseases Clinical Pharmacist, Beth Israel Medical Center, New York, NY
| | - Donna Sym
- DONNA SYM BS PharmD, Assistant Clinical Professor, St. John's University College of Pharmacy and Allied Health Professions; Clinical Preceptor, North Shore University Hospital, Manhasset, NY
| |
Collapse
|
26
|
Sun T, Zhang Y. Pentamidine binds to tRNA through non-specific hydrophobic interactions and inhibits aminoacylation and translation. Nucleic Acids Res 2008; 36:1654-64. [PMID: 18263620 PMCID: PMC2275129 DOI: 10.1093/nar/gkm1180] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The selective and potent inhibition of mitochondrial translation in Saccharomyces cerevisiae by pentamidine suggests a novel antimicrobial action for this drug. Electrophoresis mobility shift assay, T1 ribonuclease footprinting, hydroxyl radical footprinting and isothermal titration calorimetry collectively demonstrated that pentamidine non-specifically binds to two distinct classes of sites on tRNA. The binding was driven by favorable entropy changes indicative of a large hydrophobic interaction, suggesting that the aromatic rings of pentamidine are inserted into the stacked base pairs of tRNA helices. Pentamidine binding disrupts the tRNA secondary structure and masks the anticodon loop in the tertiary structure. Consistently, we showed that pentamidine specifically inhibits tRNA aminoacylation but not the cognate amino acid adenylation. Pentamidine inhibited protein translation in vitro with an EC(50) equivalent to that binds to tRNA and inhibits tRNA aminoacylation in vitro, but drastically higher than that inhibits translation in vivo, supporting the established notion that the antimicrobial activity of pentamidine is largely due to its selective accumulation by the pathogen rather than by the host cell. Therefore, interrupting tRNA aminoacylation by the entropy-driven non-specific binding is an important mechanism of pentamidine in inhibiting protein translation, providing new insights into the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | |
Collapse
|
27
|
Galkin O, Bentley AA, Gupta S, Compton BA, Mazumder B, Kinzy TG, Merrick WC, Hatzoglou M, Pestova TV, Hellen CUT, Komar AA. Roles of the negatively charged N-terminal extension of Saccharomyces cerevisiae ribosomal protein S5 revealed by characterization of a yeast strain containing human ribosomal protein S5. RNA (NEW YORK, N.Y.) 2007; 13:2116-28. [PMID: 17901157 PMCID: PMC2080588 DOI: 10.1261/rna.688207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 08/22/2007] [Indexed: 05/17/2023]
Abstract
Ribosomal protein (rp) S5 belongs to a family of ribosomal proteins that includes bacterial rpS7. rpS5 forms part of the exit (E) site on the 40S ribosomal subunit and is essential for yeast viability. Human rpS5 is 67% identical and 79% similar to Saccharomyces cerevisiae rpS5 but lacks a negatively charged (pI approximately 3.27) 21 amino acid long N-terminal extension that is present in fungi. Here we report that replacement of yeast rpS5 with its human homolog yielded a viable yeast strain with a 20%-25% decrease in growth rate. This replacement also resulted in a moderate increase in the heavy polyribosomal components in the mutant strain, suggesting either translation elongation or termination defects, and in a reduction in the polyribosomal association of the elongation factors eEF3 and eEF1A. In addition, the mutant strain was characterized by moderate increases in +1 and -1 programmed frameshifting and hyperaccurate recognition of the UAA stop codon. The activities of the cricket paralysis virus (CrPV) IRES and two mammalian cellular IRESs (CAT-1 and SNAT-2) were also increased in the mutant strain. Consistently, the rpS5 replacement led to enhanced direct interaction between the CrPV IRES and the mutant yeast ribosomes. Taken together, these data indicate that rpS5 plays an important role in maintaining the accuracy of translation in eukaryotes and suggest that the negatively charged N-terminal extension of yeast rpS5 might affect the ribosomal recruitment of specific mRNAs.
Collapse
Affiliation(s)
- Oleksandr Galkin
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nanduri B, Lawrence ML, Boyle CR, Ramkumar M, Burgess SC. Effects of subminimum inhibitory concentrations of antibiotics on the Pasteurella multocida proteome. J Proteome Res 2007; 5:572-80. [PMID: 16512672 DOI: 10.1021/pr050360r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subminimum inhibitory concentrations (sub-MICs) of antibiotics can be therapeutically effective, but the underlying molecular mechanisms are not well-characterized. We analyzed the Pasteurella multocida proteome response to sub-MICs of amoxicillin, chlortetracycline, and enrofloxacin using isotope-coded affinity tags (ICAT). There were parallel effects on inhibition of growth kinetics and suppression of protein expression by clusters of orthologous groups (COG) categories. Potential compensatory mechanisms enabling antibiotic adaptation were identified, including increased RecA expression caused by enrofloxacin.
Collapse
Affiliation(s)
- Bindu Nanduri
- College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | | | | | | | | |
Collapse
|
29
|
Pyetan E, Baram D, Auerbach-Nevo T, Yonath A. Chemical parameters influencing fine-tuning in the binding of macrolide antibiotics to the ribosomal tunnel. PURE APPL CHEM 2007. [DOI: 10.1351/pac200779060955] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In comparison to existing structural, biochemical, and therapeutical data, the crystal structures of large ribosomal subunit from the eubacterial pathogen model Deinococcus radiodurans in complex with the 14-membered macrolides erythromycylamine, RU69874, and the 16-membered macrolide josamycin, highlighted the similarities and differences in macrolides binding to the ribosomal tunnel. The three compounds occupy the macrolide binding pocket with their desosamine or mycaminose aminosugar, the C4-C7 edge of the macrolactone ring and the cladinose sugar sharing similar positions and orientations, although the latter, known to be unnecessary for antibiotic activity, displays fewer contacts. The macrolactone ring displays altogether few contacts with the ribosome and can, therefore, tilt in order to optimize its interaction with the 23S rRNA. In addition to their contacts with nucleotides of domain V of the 23S RNA, erythromycylamine and RU69874 interact with domain II nucleotide U790, and RU69874 also reaches van der Waals distance from A752, in a fashion similar to that observed for the ketolides telithromycin and cethromycin. The variability in the sequences and consequently the diversity of the conformations of macrolide binding pockets in various bacterial species can explain the drug's altered level of effectiveness on different organisms and is thus an important factor in structure-based drug design.
Collapse
Affiliation(s)
- Erez Pyetan
- 1Department of Structural Biology, the Weizmann Institute of Science, 76100 Rehovot, Israel
| | - David Baram
- 1Department of Structural Biology, the Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tamar Auerbach-Nevo
- 1Department of Structural Biology, the Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ada Yonath
- 1Department of Structural Biology, the Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
30
|
Ali IK, Lancaster L, Feinberg J, Joseph S, Noller HF. Deletion of a Conserved, Central Ribosomal Intersubunit RNA Bridge. Mol Cell 2006; 23:865-74. [PMID: 16973438 DOI: 10.1016/j.molcel.2006.08.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/05/2006] [Accepted: 08/17/2006] [Indexed: 11/25/2022]
Abstract
Elucidation of the structure of the ribosome has stimulated numerous proposals for the roles of specific rRNA elements, including the universally conserved helix 69 (H69) of 23S rRNA, which forms intersubunit bridge B2a and contacts the D stems of A- and P-site tRNAs. H69 has been proposed to be involved not only in subunit association and tRNA binding but also in initiation, translocation, translational accuracy, the peptidyl transferase reaction, and ribosome recycling. Consistent with such proposals, deletion of H69 confers a dominant lethal phenotype. Remarkably, in vitro assays show that affinity-purified Deltah69 ribosomes have normal translational accuracy, synthesize a full-length protein from a natural mRNA template, and support EF-G-dependent translocation at wild-type rates. However, Deltah69 50S subunits are unable to associate with 30S subunits in the absence of tRNA, are defective in RF1-catalyzed peptide release, and can be recycled in the absence of RRF.
Collapse
Affiliation(s)
- Iraj K Ali
- Center for Molecular Biology of RNA, Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
31
|
Xu J, Kiel MC, Golshani A, Chosay JG, Aoki H, Ganoza MC. Molecular localization of a ribosome-dependent ATPase on Escherichia coli ribosomes. Nucleic Acids Res 2006; 34:1158-65. [PMID: 16495476 PMCID: PMC1383619 DOI: 10.1093/nar/gkj508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have previously isolated and described an Escherichia coli ribosome-bound ATPase, RbbA, that is required for protein synthesis in the presence of ATP, GTP and the elongation factors, EF-Tu and EF-G. The gene encoding RbbA, yhih, has been cloned and the deduced protein sequence harbors two ATP-motifs and one RNA-binding motif and is homologous to the fungal EF-3. Here, we describe the isolation and assay of a truncated form of the RbbA protein that is stable to overproduction and purification. Chemical protection results show that the truncated RbbA specifically protects nucleotide A937 on the 30S subunit of ribosomes, and the protected site occurs at the E-site where the tRNA is ejected upon A-site occupation. Other weakly protected bases in the region occur at or near the mRNA binding site. Using radiolabeled tRNAs, we study the stimulating effect of this truncated RbbA on the binding and release of different tRNAs bound to the (aminoacyl) A-, (peptidyl) P- and (exit) E-sites of 70S ribosomes. The combined data suggest plausible mechanisms for the function of RbbA in translation.
Collapse
Affiliation(s)
| | - M. C. Kiel
- Science Department, Marywood University2300 Adams Avenue, Scranton, PA 18509, USA
| | - A. Golshani
- Department of Science, Carleton University1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - J. G. Chosay
- Pfizer Pharmaceuticals5/MS-1, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | | | - M. C. Ganoza
- To whom correspondence should be addressed. Tel: +1 416 978 8918; Fax: +1 416 978 8528;
| |
Collapse
|
32
|
Abstract
One of the major challenges in medicine today is the development of new antibiotics as well as effective antiviral agents. The well-known aminoglycosides interact and interfere with the function of several noncoding RNAs, among which ribosomal RNAs (rRNAs) are the best studied. Aminoglycosides are also known to interact with proteins such as ribonucleases. Here we review our current understanding of the interaction between aminoglycosides and RNA. Moreover, we discuss briefly mechanisms behind the inactivation of aminoglycosides, a major concern due to the increasing appearance of multiresistant bacterial strains. Taken together, the general knowledge about aminoglycoside and RNA interaction is of utmost importance in the process of identifying/developing the next generation or new classes of antibiotics. In this perspective, previously unrecognized as well as known noncoding RNAs, apart from rRNA, are promising targets to explore.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
33
|
Abstract
Many clinically useful antibiotics exert their antimicrobial effects by blocking protein synthesis on the bacterial ribosome. The structure of the ribosome has recently been determined by X-ray crystallography, revealing the molecular details of the antibiotic-binding sites. The crystal data explain many earlier biochemical and genetic observations, including how drugs exercise their inhibitory effects, how some drugs in combination enhance or impede each other's binding, and how alterations to ribosomal components confer resistance. The crystal structures also provide insight as to how existing drugs might be derivatized (or novel drugs created) to improve binding and circumvent resistance.
Collapse
Affiliation(s)
- Jacob Poehlsgaard
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
34
|
Gutgsell NS, Deutscher MP, Ofengand J. The pseudouridine synthase RluD is required for normal ribosome assembly and function in Escherichia coli. RNA (NEW YORK, N.Y.) 2005; 11:1141-52. [PMID: 15928344 PMCID: PMC1370798 DOI: 10.1261/rna.2550105] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
RluD is the pseudouridine synthase responsible for the formation of Psi1911, Psi1915, and Psi1917 in Escherichia coli 23S rRNA. Previous work from our laboratory demonstrated that disruption of the rluD gene and/or loss of the pseudouridine residues for which it is responsible resulted in a severe growth phenotype. In the current work we have examined further the effect of the loss of the RluD protein and its product pseudouridine residues in a deletion strain lacking the rluD gene. This strain exhibits defects in ribosome assembly, biogenesis, and function. Specifically, there is a deficit of 70S ribosomes, an increase in 50S and 30S subunits, and the appearance of new 62S and 39S particles. Analysis of the 39S particles indicates that they are immature precursors of the 50S subunits, whereas the 62S particles are derived from the breakdown of unstable 70S ribosomes. In addition, purified mutant 70S ribosomes were found to be somewhat less efficient than wild type in protein synthesis. The defect in ribosome assembly and resulting growth phenotype of the mutant could be restored by expression of wild-type RluD and synthesis of Psi1911, Psi1915, and Psi1917 residues, but not by catalytically inactive mutant RluD proteins, incapable of pseudouridine formation. The data suggest that the loss of the pseudouridine residues can account for all aspects of the mutant phenotype; however, a possible second function of the RluD synthase is also discussed.
Collapse
Affiliation(s)
- Nancy S Gutgsell
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Gautier Bldg., 1011 NW 15th St., Miami, FL 33136, USA.
| | | | | |
Collapse
|
35
|
Abstract
Antibiotics target ribosomes at distinct locations within functionally relevant sites. They exert their inhibitory action by diverse modes, including competing with substrate binding, interfering with ribosomal dynamics, minimizing ribosomal mobility, facilitating miscoding, hampering the progression of the mRNA chain, and blocking the nascent protein exit tunnel. Although the ribosomes are highly conserved organelles, they possess subtle sequence and/or conformational variations. These enable drug selectivity, thus facilitating clinical usage. The structural implications of these differences were deciphered by comparisons of high-resolution structures of complexes of antibiotics with ribosomal particles from eubacteria resembling pathogens and from an archaeon that shares properties with eukaryotes. The various antibiotic-binding modes detected in these structures demonstrate that members of antibiotic families possessing common chemical elements with minute differences might bind to ribosomal pockets in significantly different modes, governed by their chemical properties. Similarly, the nature of seemingly identical mechanisms of drug resistance is dominated, directly or via cellular effects, by the antibiotics' chemical properties. The observed variability in antibiotic binding and inhibitory modes justifies expectations for structurally based improved properties of existing compounds as well as for the discovery of novel drug classes.
Collapse
Affiliation(s)
- Ada Yonath
- Department of Structural Biology, Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
36
|
Baram D, Yonath A. From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects. FEBS Lett 2005; 579:948-54. [PMID: 15680980 DOI: 10.1016/j.febslet.2004.11.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 10/25/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
Ribosomes are ribozymes exerting substrate positioning and promoting substrate-mediated catalysis. Peptide-bonds are formed within a symmetrical region, thus suggesting that ribosomes evolved by gene-fusion. Remote interactions dominate substrate positioning at stereochemistry suitable for peptide-bond formation and elaborate architectural-design guides the processivity of the reaction by rotatory motion. Nascent proteins are directed into the exit tunnel at extended conformation, complying with the tunnel's narrow entrance. Tunnel dynamics facilitate its interactive participation in elongation, discrimination, cellular signaling and nascent-protein trafficking into the chaperon-aided folding site. Conformational alterations, induced by ribosomal-recycling factor, facilitate subunit dissociation. Remarkably, although antibiotics discrimination is determined by the identity of a single nucleotide, involved also in resistance, additional nucleotides dictate antibiotics effectiveness.
Collapse
Affiliation(s)
- David Baram
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | | |
Collapse
|