1
|
Orsi E, Schulz-Mirbach H, Cotton CAR, Satanowski A, Petri HM, Arnold SL, Grabarczyk N, Verbakel R, Jensen KS, Donati S, Paczia N, Glatter T, Küffner AM, Chotel T, Schillmüller F, De Maria A, He H, Lindner SN, Noor E, Bar-Even A, Erb TJ, Nikel PI. Computation-aided designs enable developing auxotrophic metabolic sensors for wide-range glyoxylate and glycolate detection. Nat Commun 2025; 16:2168. [PMID: 40038270 PMCID: PMC11880463 DOI: 10.1038/s41467-025-57407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
Auxotrophic metabolic sensors (AMS) are microbial strains modified so that biomass formation correlates with the availability of specific metabolites. These sensors are essential for bioengineering (e.g., in growth-coupled designs) but creating them is often a time-consuming and low-throughput process that can be streamlined by in silico analysis. Here, we present a systematic workflow for designing, implementing, and testing versatile AMS based on Escherichia coli. Glyoxylate, a key metabolite in (synthetic) CO2 fixation and carbon-conserving pathways, served as the test analyte. Through iterative screening of a compact metabolic model, we identify non-trivial growth-coupled designs that result in six AMS with a wide sensitivity range for glyoxylate, spanning three orders of magnitude in the detected analyte concentration. We further adapt these E. coli AMS for sensing glycolate and demonstrate their utility in both pathway engineering (testing a key metabolic module for carbon assimilation via glyoxylate) and environmental monitoring (quantifying glycolate produced by photosynthetic microalgae). Adapting this workflow to the sensing of different metabolites could facilitate the design and implementation of AMS for diverse biotechnological applications.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | | | - Ari Satanowski
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Henrik M Petri
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Susanne L Arnold
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Natalia Grabarczyk
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rutger Verbakel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karsten S Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Tanguy Chotel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Alberto De Maria
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hai He
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Shi J, Lei Y, Li Z, Jia L, He P, Cheng Q, Zhang Z, Lei Z. Alteration of Cecal Microbiota by Antimicrobial Peptides Enhances the Rational and Efficient Utilization of Nutrients in Holstein Bulls. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10379-0. [PMID: 39441337 DOI: 10.1007/s12602-024-10379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
We previously observed that supplementation with antimicrobial peptides facilitated the average daily weight gain, net meat, and carcass weights of Holstein bulls. To expand our knowledge of the possible impact of antimicrobial peptides on cecum microbiota, further investigations were conducted. In this study, 18 castrated Holstein bulls with insignificant weight differences and 10 months of age were split randomly into two groups. The control group (CK) was fed a basic diet, whereas the antimicrobial peptide group (AP) was supplemented with 8 g of antimicrobial peptides for 270 days. After slaughter, metagenomic and metabolomic sequencing analyses were performed on the cecum contents. The results showed significantly higher levels of amylase, cellulase, protease, and lipase in the CK than in the AP group (P ≤ 0.05). The levels of β-glucosidase and xylanase (P ≤ 0.05), and acetic and propionic acids (P ≤ 0.01), were considerably elevated in the AP than in the CK group. The metagenome showed variations between the two groups only at the bacterial level, and 3258 bacteria with differences were annotated. A total of 138 differential abundant genes (P < 0.05) were identified in the CAZyme map, with 65 genes more abundant in the cecum of the AP group and 48 genes more abundant in the cecum of the CK group. Metabolomic analysis identified 68 differentially expressed metabolites. Conjoint analysis of microorganisms and metabolites revealed that Lactobacillus had the greatest impact on metabolites in the AP group and Brumimicrobium in the CK group. The advantageous strains of the AP group Firmicutes bacterium CAG:110 exhibited a strong symbiotic relationship with urodeoxycholic acid and hyodeoxycholic acid. This study identified the classification characteristics, functions, metabolites, and interactions of cecal microbiota with metabolites that contribute to host growth performance. Antimicrobial peptides affect the cecal microorganisms, making the use of nutrients more efficient. The utilization of hemicellulose in the cecum of ruminants may contribute more than cellulose to their production performance.
Collapse
Affiliation(s)
- Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yu Lei
- Northwest A&F University, College of Animal Science and Technology, Yangling, 712100, China
| | - Zemin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Shandong Agricultural University, College of Animal Science and Technology, Taian, 271000, China
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Forestry Voctech university, College of Environmental Engineering, Tianshui, 741000, China
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiang Cheng
- Jingchuan Xukang Food Co., Ltd, Pingliang, 744300, China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd, Zhangye, 734500, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Chen K, Liu L, Li J, Tian Z, Jin H, Zhang D. Engineering and finetuning expression of SerC for balanced metabolic flux in vitamin B 6 production. Synth Syst Biotechnol 2024; 9:388-398. [PMID: 38572022 PMCID: PMC10987848 DOI: 10.1016/j.synbio.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Vitamin B6 plays a crucial role in cellular metabolism and stress response, making it an essential component for growth in all known organisms. However, achieving efficient biosynthesis of vitamin B6 faces the challenge of maintaining a balanced distribution of metabolic flux between growth and production. In this study, our focus is on addressing this challenge through the engineering of phosphoserine aminotransferase (SerC) to resolve its redundancy and promiscuity. The enzyme SerC was semi-designed and screened based on sequences and predicted kcat values, respectively. Mutants and heterologous proteins showing potential were then fine-tuned to optimize the production of vitamin B6. The resulting strain enhances the production of vitamin B6, indicating that different fluxes are distributed to the biosynthesis pathway of serine and vitamin B6. This study presents a promising strategy to address the challenge posed by multifunctional enzymes, with significant implications for enhancing biochemical production through engineering processes.
Collapse
Affiliation(s)
- Kai Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jinlong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhizhong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongxing Jin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Ebenhöh O, Ebeling J, Meyer R, Pohlkotte F, Nies T. Microbial Pathway Thermodynamics: Stoichiometric Models Unveil Anabolic and Catabolic Processes. Life (Basel) 2024; 14:247. [PMID: 38398756 PMCID: PMC10890395 DOI: 10.3390/life14020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The biotechnological exploitation of microorganisms enables the use of metabolism for the production of economically valuable substances, such as drugs or food. It is, thus, unsurprising that the investigation of microbial metabolism and its regulation has been an active research field for many decades. As a result, several theories and techniques were developed that allow for the prediction of metabolic fluxes and yields as biotechnologically relevant output parameters. One important approach is to derive macrochemical equations that describe the overall metabolic conversion of an organism and basically treat microbial metabolism as a black box. The opposite approach is to include all known metabolic reactions of an organism to assemble a genome-scale metabolic model. Interestingly, both approaches are rather successful at characterizing and predicting the expected product yield. Over the years, macrochemical equations especially have been extensively characterized in terms of their thermodynamic properties. However, a common challenge when characterizing microbial metabolism by a single equation is to split this equation into two, describing the two modes of metabolism, anabolism and catabolism. Here, we present strategies to systematically identify separate equations for anabolism and catabolism. Based on metabolic models, we systematically identify all theoretically possible catabolic routes and determine their thermodynamic efficiency. We then show how anabolic routes can be derived, and we use these to approximate biomass yield. Finally, we challenge the view of metabolism as a linear energy converter, in which the free energy gradient of catabolism drives the anabolic reactions.
Collapse
Affiliation(s)
- Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Josha Ebeling
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ronja Meyer
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Fabian Pohlkotte
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tim Nies
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Losol P, Wolska M, Wypych TP, Yao L, O'Mahony L, Sokolowska M. A cross talk between microbial metabolites and host immunity: Its relevance for allergic diseases. Clin Transl Allergy 2024; 14:e12339. [PMID: 38342758 PMCID: PMC10859320 DOI: 10.1002/clt2.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Allergic diseases, including respiratory and food allergies, as well as allergic skin conditions have surged in prevalence in recent decades. In allergic diseases, the gut microbiome is dysbiotic, with reduced diversity of beneficial bacteria and increased abundance of potential pathogens. Research findings suggest that the microbiome, which is highly influenced by environmental and dietary factors, plays a central role in the development, progression, and severity of allergic diseases. The microbiome generates metabolites, which can regulate many of the host's cellular metabolic processes and host immune responses. AIMS AND METHODS Our goal is to provide a narrative and comprehensive literature review of the mechanisms through which microbial metabolites regulate host immune function and immune metabolism both in homeostasis and in the context of allergic diseases. RESULTS AND DISCUSSION We describe key microbial metabolites such as short-chain fatty acids, amino acids, bile acids and polyamines, elucidating their mechanisms of action, cellular targets and their roles in regulating metabolism within innate and adaptive immune cells. Furthermore, we characterize the role of bacterial metabolites in the pathogenesis of allergic diseases including allergic asthma, atopic dermatitis and food allergy. CONCLUSION Future research efforts should focus on investigating the physiological functions of microbiota-derived metabolites to help develop new diagnostic and therapeutic interventions for allergic diseases.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
- Department of Molecular Biology and GeneticsSchool of BiomedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Magdalena Wolska
- Laboratory of Host‐Microbiota InteractionsNencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Tomasz P. Wypych
- Laboratory of Host‐Microbiota InteractionsNencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Lu Yao
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Liam O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| |
Collapse
|
6
|
Krüger-Haker H, Ji X, Bartel A, Feßler AT, Hanke D, Jiang N, Tedin K, Maurischat S, Wang Y, Wu C, Schwarz S. Metabolic Characteristics of Porcine LA-MRSA CC398 and CC9 Isolates from Germany and China via Biolog Phenotype MicroArray TM. Microorganisms 2022; 10:2116. [PMID: 36363707 PMCID: PMC9693340 DOI: 10.3390/microorganisms10112116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 10/02/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is an important zoonotic pathogen, often multi-resistant to antimicrobial agents. Among swine, LA-MRSA of clonal complex (CC) 398 dominates in Europe, Australia and the Americas, while LA-MRSA-CC9 is the main epidemic lineage in Asia. Here, we comparatively investigated the metabolic properties of rare and widespread porcine LA-MRSA isolates from Germany and China using Biolog Phenotype MicroArray technology to evaluate if metabolic variations could have played a role in the development of two different epidemic LA-MRSA clones in swine. Overall, we were able to characterize the isolates' metabolic profiles and show their tolerance to varying environmental conditions. Sparse partial least squares discriminant analysis (sPLS-DA) supported the detection of the most informative substrates and/or conditions that revealed metabolic differences between the LA-MRSA lineages. The Chinese LA-MRSA-CC9 isolates displayed unique characteristics, such as a consistently delayed onset of cellular respiration, and increased, reduced or absent usage of several nutrients. These possibly unfavorable metabolic properties might promote the ongoing gradual replacement of the current epidemic LA-MRSA-CC9 clone in China with the emerging LA-MRSA-CC398 lineage through livestock trade and occupational exposure. Due to the enhanced pathogenicity of the LA-MRSA-CC398 clone, the public health risk posed by LA-MRSA from swine might increase further.
Collapse
Affiliation(s)
- Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Xing Ji
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory, Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Alexander Bartel
- Institute for Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Nansong Jiang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Sven Maurischat
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Congming Wu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Pyridoxal and α-ketoglutarate independently improve function of Saccharomyces cerevisiae Thi5 in the metabolic network of Salmonella enterica. J Bacteriol 2021; 204:e0045021. [PMID: 34662241 DOI: 10.1128/jb.00450-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial metabolism is often considered modular, but metabolic engineering studies have shown that transferring pathways, or modules, between organisms is not always straightforward. The Thi5-dependent pathway(s) for synthesis of the pyrimidine moiety of thiamine from Saccharomyces cerevisiae and Legionella pneumophila functioned differently when incorporated into the metabolic network of Salmonella enterica. Function of Thi5 from Saccharomyces cerevisiae (ScThi5) required modification of the underlying metabolic network, while LpThi5 functioned with the native network. Here we probe the metabolic requirements for heterologous function of ScThi5 and report a strong genetic and physiological evidence for a connection between alpha-ketoglutarate (αKG) levels and ScThi5 function. The connection was built with two classes of genetic suppressors linked to metabolic flux or metabolite pool changes. Further, direct modulation of nitrogen assimilation through nutritional or genetic modification implicated αKG levels in Thi5 function. Exogenous pyridoxal similarly improved ScThi5 function in S. enterica. Finally, directly increasing αKG and PLP with supplementation improved function of both ScThi5 and relevant variants of Thi5 from Legionella pneumophila (LpThi5). The data herein suggest structural differences between ScThi5 and LpThi5 impact their level of function in vivo and implicate αKG in supporting function of the Thi5 pathway when placed in the heterologous metabolic network of S. enterica. IMPORTANCE Thiamine biosynthesis is a model metabolic node that has been used to extend our understanding of metabolic network structure and individual enzyme function. The requirements for in vivo function of the Thi5-dependent pathway found in Legionella and yeast are poorly characterized. Here we suggest that αKG modulates function of the Thi5 pathway in S. enterica and provide evidence that structural variation between ScThi5 and LpThi5 contribute to their functional differences in a Salmonella enterica host.
Collapse
|
8
|
Li J, Rumancev C, Lutze HV, Schmidt TC, Rosenhahn A, Schmitz OJ. Effect of ozone stress on the intracellular metabolites from Cobetia marina. Anal Bioanal Chem 2020; 412:5853-5861. [PMID: 32676676 PMCID: PMC7413921 DOI: 10.1007/s00216-020-02810-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023]
Abstract
A GCxGC-MS system was employed with a non-polar × mid-polar column set for the metabolic non-target analysis of Cobetia marina, the model bacteria for marine biofouling. C. marina was treated with ozone to investigate the intracellular metabolic state change under oxidative stress. A minimal inhibitory concentration test was involved to guarantee that the applied ozone dosages were not lethal for the cells. In this study, non-target analyses were performed to identify the metabolites according to the NIST database. As a result, over 170 signals were detected under normal living conditions including 35 potential metabolites. By the comparison of ozone-treated and non-treated samples, five compounds were selected to describe observed trends of signals in the contour plots. Oleic acid exhibited a slight growth by increasing ozone dosage. In contrast, other metabolites such as the amino acid L-proline showed less abundance after ozone treatment, which was more evident once ozone dosage was raised. Thus, this work could provide a hint for searching for up/downregulating factors in such environmental stress conditions for C. marina. Graphical abstract.
Collapse
Affiliation(s)
- Junjie Li
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Christoph Rumancev
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitaetsstr. 150, 44780, Bochum, Germany
| | - Holger V Lutze
- Instrumental Analytical Chemistry and Centre for Environmental and Water Research (ZWU), University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.,Technical University of Darmstadt, Department of Civil and Environmental Engineering, Institut IWAR, Franziska Braun Str. 7, 64287, Darmstadt, Germany.,IWW Water Centre, Moritzstr. 26, 45476, Mülheim an der Ruhr, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Environmental and Water Research (ZWU), University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.,IWW Water Centre, Moritzstr. 26, 45476, Mülheim an der Ruhr, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitaetsstr. 150, 44780, Bochum, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.
| |
Collapse
|
9
|
Warsi O, Lundin E, Lustig U, Näsvall J, Andersson DI. Selection for novel metabolic capabilities in Salmonella enterica. Evolution 2019; 73:990-1000. [PMID: 30848832 PMCID: PMC6593847 DOI: 10.1111/evo.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 11/29/2022]
Abstract
Bacteria are known to display extensive metabolic diversity and many studies have shown that they can use an extensive repertoire of small molecules as carbon‐ and energy sources. However, it is less clear to what extent a bacterium can expand its existing metabolic capabilities by acquiring mutations that, for example, rewire its metabolic pathways. To investigate this capability and potential for evolution of novel phenotypes, we sampled large populations of mutagenized Salmonella enterica to select very rare mutants that can grow on minimal media containing 124 low molecular weight compounds as sole carbon sources. We found mutants growing on 18 of these novel carbon sources, and identified the causal mutations that allowed growth for four of them. Mutations that relieve physiological constraints or increase expression of existing pathways were found to be important contributors to the novel phenotypes. For the remaining 14 novel phenotypes, whole genome sequencing of independent mutants and genetic analysis suggested that these novel metabolic phenotypes result from a combination of multiple mutations. This work, by virtue of identifying the genetic and mechanistic basis for new metabolic capabilities, sheds light on the properties of adaptive landscapes underlying the evolution of novel phenotypes.
Collapse
Affiliation(s)
- Omar Warsi
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, S-751 23, Uppsala, Sweden
| | - Erik Lundin
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, S-751 23, Uppsala, Sweden
| | - Ulrika Lustig
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, S-751 23, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, S-751 23, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, S-751 23, Uppsala, Sweden
| |
Collapse
|
10
|
SNZ3 Encodes a PLP Synthase Involved in Thiamine Synthesis in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:335-344. [PMID: 30498136 PMCID: PMC6385983 DOI: 10.1534/g3.118.200831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyridoxal 5′-phosphate (the active form of vitamin B6) is a cofactor that is important for a broad number of biochemical reactions and is essential for all forms of life. Organisms that can synthesize pyridoxal 5′-phosphate use either the deoxyxylulose phosphate-dependent or -independent pathway, the latter is encoded by a two-component pyridoxal 5′-phosphate synthase. Saccharomyces cerevisiae contains three paralogs of the two-component SNZ/SNO pyridoxal 5′-phosphate synthase. Past work identified the biochemical activity of Snz1p, Sno1p and provided in vivo data that SNZ1 was involved in pyridoxal 5′-phosphate biosynthesis. Snz2p and Snz3p were considered redundant isozymes and no growth condition requiring their activity was reported. Genetic data herein showed that either SNZ2 or SNZ3 are required for efficient thiamine biosynthesis in Saccharomyces cerevisiae. Further, SNZ2 or SNZ3 alone could satisfy the cellular requirement for pyridoxal 5′-phosphate (and thiamine), while SNZ1 was sufficient for pyridoxal 5′-phosphate synthesis only if thiamine was provided. qRT-PCR analysis determined that SNZ2,3 are repressed ten-fold by the presence thiamine. In total, the data were consistent with a requirement for PLP in thiamine synthesis, perhaps in the Thi5p enzyme, that could only be satisfied by SNZ2 or SNZ3. Additional data showed that Snz3p is a pyridoxal 5′-phosphate synthase in vitro and is sufficient to satisfy the pyridoxal 5′-phosphate requirement in Salmonella enterica when the medium has excess ammonia.
Collapse
|
11
|
A quantitative metabolomics study of bacterial metabolites in different domains. Anal Chim Acta 2018; 1037:237-244. [DOI: 10.1016/j.aca.2018.02.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/29/2023]
|
12
|
Jerlström Hultqvist J, Warsi O, Söderholm A, Knopp M, Eckhard U, Vorontsov E, Selmer M, Andersson DI. A bacteriophage enzyme induces bacterial metabolic perturbation that confers a novel promiscuous function. Nat Ecol Evol 2018; 2:1321-1330. [PMID: 29807996 DOI: 10.1038/s41559-018-0568-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 05/02/2018] [Indexed: 11/09/2022]
Abstract
One key concept in the evolution of new functions is the ability of enzymes to perform promiscuous side-reactions that serve as a source of novelty that may become beneficial under certain conditions. Here, we identify a mechanism where a bacteriophage-encoded enzyme introduces novelty by inducing expression of a promiscuous bacterial enzyme. By screening for bacteriophage DNA that rescued an auxotrophic Escherichia coli mutant carrying a deletion of the ilvA gene, we show that bacteriophage-encoded S-adenosylmethionine (SAM) hydrolases reduce SAM levels. Through this perturbation of bacterial metabolism, expression of the promiscuous bacterial enzyme MetB is increased, which in turn complements the absence of IlvA. These results demonstrate how foreign DNA can increase the metabolic capacity of bacteria, not only by transfer of bona fide new genes, but also by bringing cryptic bacterial functions to light via perturbations of cellular physiology.
Collapse
Affiliation(s)
- Jon Jerlström Hultqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. .,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Omar Warsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Annika Söderholm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Michael Knopp
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ulrich Eckhard
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility at Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Ernst DC, Borchert AJ, Downs DM. Perturbation of the metabolic network in Salmonella enterica reveals cross-talk between coenzyme A and thiamine pathways. PLoS One 2018; 13:e0197703. [PMID: 29791499 PMCID: PMC5965847 DOI: 10.1371/journal.pone.0197703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022] Open
Abstract
Microorganisms respond to a variety of metabolic perturbations by repurposing or recruiting pathways to reroute metabolic flux and overcome the perturbation. Elimination of the 2-dehydropantoate 2-reductase, PanE, both reduces total coenzyme A (CoA) levels and causes a conditional HMP-P auxotrophy in Salmonella enterica. CoA or acetyl-CoA has no demonstrable effect on the HMP-P synthase, ThiC, in vitro. Suppressors aimed at probing the connection between the biosynthesis of thiamine and CoA contained mutations in the gene encoding the ilvC transcriptional regulator, ilvY. These mutations may help inform the structure and mechanism of action for the effector-binding domain, as they represent the first sequenced substitutions in the effector-binding domain of IlvY that cause constitutive expression of ilvC. Since IlvC moonlights as a 2-dehydropantoate 2-reductase, the resultant increase in ilvC transcription increased synthesis of CoA. This study failed to identify mutations overcoming the need for CoA for thiamine synthesis in S. enterica panE mutants, suggesting that a more integrated approach may be necessary to uncover the mechanism connecting CoA and ThiC activity in vivo.
Collapse
Affiliation(s)
- Dustin C. Ernst
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Andrew J. Borchert
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Bazurto JV, Dearth SP, Tague ED, Campagna SR, Downs DM. Untargeted metabolomics confirms and extends the understanding of the impact of aminoimidazole carboxamide ribotide (AICAR) in the metabolic network of Salmonella enterica. MICROBIAL CELL 2017; 5:74-87. [PMID: 29417056 PMCID: PMC5798407 DOI: 10.15698/mic2018.02.613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Salmonella enterica, aminoimidazole carboxamide ribotide (AICAR) is a purine biosynthetic intermediate and a substrate of the AICAR transformylase/IMP cyclohydrolase (PurH) enzyme. When purH is eliminated in an otherwise wild-type strain, AICAR accumulates and indirectly inhibits synthesis of the essential coenzyme thiamine pyrophosphate (TPP). In this study, untargeted metabolomics approaches were used to i) corroborate previously defined metabolite changes, ii) define the global consequences of AICAR accumulation and iii) investigate the metabolic effects of mutations that restore thiamine prototrophy to a purH mutant. The data showed that AICAR accumulation led to an increase in the global regulator cyclic AMP (cAMP) and that disrupting central carbon metabolism could decrease AICAR and/or cAMP to restore thiamine synthesis. A mutant (icc) blocked in cAMP degradation that accumulated cAMP but had wild-type levels of AICAR was used to identify changes in the purH metabolome that were a direct result of elevated cAMP. Data herein describe the use of metabolomics to identify the metabolic state of mutant strains and probe the underlying mechanisms used by AICAR to inhibit thiamine synthesis. The results obtained provide a cautionary tale of using metabolite concentrations as the only data to define the physiological state of a bacterial cell.
Collapse
Affiliation(s)
| | - Stephen P Dearth
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
15
|
Mashruwala AA, Roberts CA, Bhatt S, May KL, Carroll RK, Shaw LN, Boyd JM. Staphylococcus aureus SufT: an essential iron-sulphur cluster assembly factor in cells experiencing a high-demand for lipoic acid. Mol Microbiol 2016; 102:1099-1119. [PMID: 27671355 PMCID: PMC5161685 DOI: 10.1111/mmi.13539] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus SufT is composed solely of the domain of unknown function 59 (DUF59) and has a role in the maturation of iron-sulphur (Fe-S) proteins. We report that SufT is essential for S. aureus when growth is heavily reliant upon lipoamide-utilizing enzymes, but dispensable when this reliance is decreased. LipA requires Fe-S clusters for lipoic acid (LA) synthesis and a ΔsufT strain had phenotypes suggestive of decreased LA production and decreased activities of lipoamide-requiring enzymes. Fermentative growth, a null clpC allele, or decreased flux through the TCA cycle diminished the demand for LA and rendered SufT non-essential. Abundance of the Fe-S cluster carrier Nfu was increased in a ΔclpC strain and a null clpC allele was unable to suppress the LA requirement of a ΔsufT Δnfu strain. Over-expression of nfu suppressed the LA requirement of the ΔsufT strain. We propose a model wherein SufT, and by extension the DUF59, is essential for the maturation of holo-LipA in S. aureus cells experiencing a high demand for lipoamide-dependent enzymes. The findings presented suggest that the demand for products of Fe-S enzymes is a factor governing the usage of one Fe-S cluster assembly factor over another in the maturation of apo-proteins.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Christina A. Roberts
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Shiven Bhatt
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Kerrie L. May
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Ronan K. Carroll
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FA 33620
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FA 33620
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
16
|
Zhang K, Bian J, Deng Y, Smith A, Nunez RE, Li MB, Pal U, Yu AM, Qiu W, Ealick SE, Li C. Lyme disease spirochaete Borrelia burgdorferi does not require thiamin. Nat Microbiol 2016; 2:16213. [PMID: 27869793 DOI: 10.1038/nmicrobiol.2016.213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022]
Abstract
Thiamin pyrophosphate (ThDP), the active form of thiamin (vitamin B1), is believed to be an essential cofactor for all living organisms1,2. Here, we report the unprecedented result that thiamin is dispensable for the growth of the Lyme disease pathogen Borrelia burgdorferi (Bb)3. Bb lacks genes for thiamin biosynthesis and transport as well as known ThDP-dependent enzymes4, and we were unable to detect thiamin or its derivatives in Bb cells. We showed that eliminating thiamin in vitro and in vivo using BcmE, an enzyme that degrades thiamin, has no impact on Bb growth and survival during its enzootic infectious cycle. Finally, high-performance liquid chromatography analysis reveals that the level of thiamin and its derivatives in Ixodes scapularis ticks, the enzootic vector of Bb, is extremely low. These results suggest that by dispensing with use of thiamin, Borrelia, and perhaps other tick-transmitted bacterial pathogens, are uniquely adapted to survive in tick vectors before transmitting to mammalian hosts. To our knowledge, such a mechanism has not been reported previously in any living organisms.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Jiang Bian
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Yijie Deng
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Alexis Smith
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland 20742, USA
| | - Roy E Nunez
- Department of Biological Sciences, The City University of New York, New York, New York 10021, USA
| | - Michael B Li
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland 20742, USA
| | - Ai-Ming Yu
- Department of Biochemistry &Molecular Medicine, UC Davis School of Medicine, Sacramento, California 95817, USA
| | - Weigang Qiu
- Department of Biological Sciences, The City University of New York, New York, New York 10021, USA
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Chunhao Li
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York 14214, USA.,Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York 14214, USA
| |
Collapse
|
17
|
Markov GV, Meyer JM, Panda O, Artyukhin AB, Claaßen M, Witte H, Schroeder FC, Sommer RJ. Functional Conservation and Divergence of daf-22 Paralogs in Pristionchus pacificus Dauer Development. Mol Biol Evol 2016; 33:2506-14. [PMID: 27189572 DOI: 10.1093/molbev/msw090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Small-molecule signaling in nematode dauer formation has emerged as a major model to study chemical communication in development and evolution. Developmental arrest as nonfeeding and stress-resistant dauer larvae represents the major survival and dispersal strategy. Detailed studies in Caenorhabditis elegans and Pristionchus pacificus revealed that small-molecule communication changes rapidly in evolution resulting in extreme structural diversity of small-molecule compounds. In C. elegans, a blend of ascarosides constitutes the dauer pheromone, whereas the P. pacificus dauer pheromone includes additional paratosides and integrates building blocks from diverse primary metabolic pathways. Despite this complexity of small-molecule structures and functions, little is known about the biosynthesis of small molecules in nematodes outside C. elegans Here, we show that the genes encoding enzymes of the peroxisomal β-oxidation pathway involved in small-molecule biosynthesis evolve rapidly, including gene duplications and domain switching. The thiolase daf-22, the most downstream factor in C. elegans peroxisomal β-oxidation, has duplicated in P. pacificus, resulting in Ppa-daf-22.1, which still contains the sterol-carrier-protein (SCP) domain that was lost in C. elegans daf-22, and Ppa-daf-22.2. Using the CRISPR/Cas9 system, we induced mutations in both P. pacificus daf-22 genes and identified an unexpected complexity of functional conservation and divergence. Under well-fed conditions, ascaroside biosynthesis proceeds exclusively via Ppa-daf-22.1 In contrast, starvation conditions induce Ppa-daf-22.2 activity, resulting in the production of a specific subset of ascarosides. Gene expression studies indicate a reciprocal up-regulation of both Ppa-daf-22 genes, which is, however, independent of starvation. Thus, our study reveals an unexpected functional complexity of dauer development and evolution.
Collapse
Affiliation(s)
- Gabriel V Markov
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Jan M Meyer
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Oishika Panda
- Boyce Thompson Institute, Cornell University Department of Chemistry and Chemical Biology, Cornell University
| | | | - Marc Claaßen
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Hanh Witte
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University Department of Chemistry and Chemical Biology, Cornell University
| | - Ralf J Sommer
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| |
Collapse
|
18
|
|
19
|
Assessing the Metabolic Diversity of Streptococcus from a Protein Domain Point of View. PLoS One 2015; 10:e0137908. [PMID: 26366735 PMCID: PMC4569324 DOI: 10.1371/journal.pone.0137908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/22/2015] [Indexed: 01/17/2023] Open
Abstract
Understanding the diversity and robustness of the metabolism of bacteria is fundamental for understanding how bacteria evolve and adapt to different environments. In this study, we characterised 121 Streptococcus strains and studied metabolic diversity from a protein domain perspective. Metabolic pathways were described in terms of the promiscuity of domains participating in metabolic pathways that were inferred to be functional. Promiscuity was defined by adapting existing measures based on domain abundance and versatility. The approach proved to be successful in capturing bacterial metabolic flexibility and species diversity, indicating that it can be described in terms of reuse and sharing functional domains in different proteins involved in metabolic activity. Additionally, we showed striking differences among metabolic organisation of the pathogenic serotype 2 Streptococcus suis and other strains.
Collapse
|
20
|
Aminoimidazole Carboxamide Ribotide Exerts Opposing Effects on Thiamine Synthesis in Salmonella enterica. J Bacteriol 2015; 197:2821-30. [PMID: 26100042 DOI: 10.1128/jb.00282-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In Salmonella enterica, the thiamine biosynthetic intermediate 5-aminoimidazole ribotide (AIR) can be synthesized de novo independently of the early purine biosynthetic reactions. This secondary route to AIR synthesis is dependent on (i) 5-amino-4-imidazolecarboxamide ribotide (AICAR) accumulation, (ii) a functional phosphoribosylaminoimidazole-succinocarboxamide (SAICAR) synthetase (PurC; EC 6.3.2.6), and (iii) methionine and lysine in the growth medium. Studies presented here show that AICAR is a direct precursor to AIR in vivo. PurC-dependent conversion of AICAR to AIR was recreated in vitro. Physiological studies showed that exogenous nutrients (e.g., methionine and lysine) antagonize the inhibitory effects of AICAR on the ThiC reaction and decreased the cellular thiamine requirement. Finally, genetic results identified multiple loci that impacted the effect of AICAR on thiamine synthesis and implicated cellular aspartate levels in AICAR-dependent AIR synthesis. Together, the data here clarify the mechanism that allows conditional growth of a strain lacking the first five biosynthetic enzymes, and they provide additional insights into the complexity of the metabolic network and its plasticity. IMPORTANCE In bacteria, the pyrimidine moiety of thiamine is derived from aminoimidazole ribotide (AIR), an intermediate in purine biosynthesis. A previous study described conditions under which AIR synthesis is independent of purine biosynthesis. This work is an extension of that previous study and describes a new synthetic pathway to thiamine that depends on a novel thiamine precursor and a secondary activity of the biosynthetic enzyme PurC. These findings provide mechanistic details of redundancy in the synthesis of a metabolite that is essential for nucleotide and coenzyme biosynthesis. Metabolic modifications that allow the new pathway to function or enhance it are also described.
Collapse
|
21
|
Downs DM, Ernst DC. From microbiology to cancer biology: the Rid protein family prevents cellular damage caused by endogenously generated reactive nitrogen species. Mol Microbiol 2015; 96:211-9. [PMID: 25620221 DOI: 10.1111/mmi.12945] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 01/03/2023]
Abstract
The Rid family of proteins is highly conserved and broadly distributed throughout the domains of life. Genetic and biochemical studies, primarily in Salmonella enterica, have defined a role for RidA in responding to endogenously generated reactive metabolites. The data show that 2-aminoacrylate (2AA), a reactive enamine intermediate generated by some pyridoxal 5'-phosphate-dependent enzymes, accumulates in the absence of RidA. The accumulation of 2AA leads to covalent modification and inactivation of several enzymes involved in essential metabolic processes. This review describes the 2AA hydrolyzing activity of RidA and the effect of this biochemical activity on the metabolic network, which impacts organism fitness. The reported activity of RidA and the consequences encountered in vivo when RidA is absent have challenged fundamental assumptions in enzymology, biochemistry and cell metabolism regarding the fate of transiently generated reactive enamine intermediates. The current understanding of RidA in Salmonella and the broad distribution of Rid family proteins provide exciting opportunities for future studies to define metabolic roles of Rid family members from microbes to man.
Collapse
Affiliation(s)
- Diana M Downs
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602-2605, USA
| | | |
Collapse
|
22
|
Abstract
Thiamine pyrophosphate (TPP), the biologically active form of thiamine (also known as vitamin B1), is an essential cofactor for several important enzymes involved in carbohydrate metabolism, and therefore, it is required for all living organisms. We recently found that a thiamine-binding protein (TDE_0143) is essential for the survival of Treponema denticola, an important bacterial pathogen that is associated with human periodontitis. In this report, we provide experimental evidence showing that TP_0144, a homolog of TDE_0143 from the syphilis spirochete Treponema pallidum, is a thiamine-binding protein that has biochemical features and functions that are similar to those of TDE_0143. First, structural modeling analysis reveal that both TDE_0143 and TP_0144 contain a conserved TPP-binding site and share similar structures to the thiamine-binding protein of Escherichia coli. Second, biochemical analysis shows that these two proteins bind to TPP with similar dissociation constant (Kd) values (TDE_0143, Kd of 36.50 nM; TP_0144, Kd of 32.62 nM). Finally, heterologous expression of TP_0144 in a ΔTDE_0143 strain, a previously constructed TDE_0143 mutant of T. denticola, fully restores its growth and TPP uptake when exogenous thiamine is limited. Collectively, these results indicate that TP_0144 is a thiamine-binding protein that is indispensable for T. pallidum to acquire exogenous thiamine, a key nutrient for bacterial survival. In addition, the studies shown in this report further underscore the feasibility of using T. denticola as a platform to study the biology and pathogenicity of T. pallidum and probably other uncultivable treponemal species as well.
Collapse
|
23
|
Nikel PI, Chavarría M. Quantitative Physiology Approaches to Understand and Optimize Reducing Power Availability in Environmental Bacteria. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_84] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Amino-4-imidazolecarboxamide ribotide directly inhibits coenzyme A biosynthesis in Salmonella enterica. J Bacteriol 2013; 196:772-9. [PMID: 24296672 DOI: 10.1128/jb.01087-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aminoimidazole carboxamide ribotide (AICAR) is a purine biosynthetic intermediate and a by-product of histidine biosynthesis. In bacteria, yeast, and humans, accumulation of AICAR has been shown to affect an array of cellular processes by both direct and indirect mechanisms. In purine biosynthesis, AICAR is the substrate of the bifunctional protein phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase (PurH, EC 2.1.2.3/3.5.4.10). Strains lacking PurH accumulate AICAR and have a defect in the synthesis of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) moiety of thiamine. The formation of HMP is also compromised in vivo when coenzyme A (CoA) levels are reduced. Our results show that the in vivo accumulation of AICAR decreased total CoA pools and, further, that AICAR inhibited the activity of pantoate β-alanine ligase in vitro (PanC, EC 6.3.2.1). These results demonstrated a mechanism of AICAR action and provide new insights into the metabolic consequences of disrupting purine metabolism.
Collapse
|
25
|
Abstract
Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var. uvarum (henceforth referred to as S. bayanus), allowing us to map changes over the 20 million years that separate this organism from S. cerevisiae. We first created a suite of genetic tools to facilitate work in S. bayanus. Next, we measured the gene-expression response of S. bayanus to a diverse set of perturbations optimized using a computational approach to cover a diverse array of functionally relevant biological responses. The resulting data set reveals that gene-expression patterns are largely conserved, but significant changes may exist in regulatory networks such as carbohydrate utilization and meiosis. In addition to regulatory changes, our approach identified gene functions that have diverged. The functions of genes in core pathways are highly conserved, but we observed many changes in which genes are involved in osmotic stress, peroxisome biogenesis, and autophagy. A surprising number of genes specific to S. bayanus respond to oxidative stress, suggesting the organism may have evolved under different selection pressures than S. cerevisiae. This work expands the scope of genome-scale evolutionary studies from sequence-based analysis to rapid experimental characterization and could be adopted for functional mapping in any lineage of interest. Furthermore, our detailed characterization of S. bayanus provides a valuable resource for comparative functional genomics studies in yeast.
Collapse
|
26
|
Abstract
Based on our experience in kinetic modeling of coupled multiple metabolic pathways, we propose a generic rate equation for the dynamical modeling of metabolic kinetics. It is symmetric for forward and backward reactions. Its Michaelis-Menten-King-Altman form makes the kinetic parameters (or functions) easy to relate to experimental values in the database and to use in computation. In addition, such a uniform form is ready to arbitrary number of substrates and products with different stiochiometry. We explicitly show how to obtain such rate equations rigorously for three well-known binding mechanisms. Hence, the proposed rate equation is formally exact under the quasi-steady state condition. Various features of this generic rate equation are discussed. In particular, for irreversible reactions, the product inhibition which directly arises from enzymatic reaction is eliminated in a natural way. We also discuss how to include the effects of modifiers and cooperativity.
Collapse
Affiliation(s)
- L. W. LEE
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - L. YIN
- School of Physics, Peking University, 100871 Beijing, P. R. China
| | - X. M. ZHU
- GeneMath, 5525 27th Avenue N.E., Seattle, WA 98105, USA
| | - P. AO
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
27
|
The riboswitch regulates a thiamine pyrophosphate ABC transporter of the oral spirochete Treponema denticola. J Bacteriol 2011; 193:3912-22. [PMID: 21622748 DOI: 10.1128/jb.00386-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thiamine pyrophosphate (TPP), a biologically active form of thiamine (vitamin B₁), is an essential cofactor in all living systems. Microorganisms either synthesize TPP via de novo biosynthesis pathways or uptake exogenous thiamine from the environment via specific transporters. The oral spirochete Treponema denticola is an important pathogen that is associated with human periodontal diseases. It lacks a de novo TPP biosynthesis pathway and needs exogenous TPP for growth, suggesting that it may obtain exogenous TPP via a thiamine transporter. In this study, we identified a gene cluster that encodes a TPP ABC transporter which consists of a TPP-binding protein (TDE0143), a transmembrane permease (TDE0144), and a cytosolic ATPase (TDE0145). Transcriptional and translational analyses showed that the genes encoding these three proteins are cotranscribed and form an operon (tbpABC(Td)) that is initiated by a σ⁷⁰-like promoter. The expression level of this operon is negatively regulated by exogenous TPP and is mediated by a TPP-sensing riboswitch (Td(thi-)(box)). Genetic and biochemical studies revealed that the TDE0143 deletion mutant (T. denticola ΔtbpA) had a decreased ability to transport exogenous TPP, and the mutant failed to grow when exogenous TPP was insufficient. These results taken together indicate that the tbpABC(Td) operon encodes an ABC transporter that is required for the uptake of exogenous TPP and that the expression of this operon is regulated by a TPP-binding riboswitch via a feedback inhibition mechanism.
Collapse
|
28
|
Chavarría M, Santiago C, Platero R, Krell T, Casasnovas JM, de Lorenzo V. Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida. J Biol Chem 2011; 286:9351-9. [PMID: 21239488 DOI: 10.1074/jbc.m110.187583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5'-TTAAACGTTTCA-3' (K(D) = 26.3 ± 3.1 nM) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a K(D) of 209 ± 20 nM. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida.
Collapse
Affiliation(s)
- Max Chavarría
- Systems Biology Program, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco-Madrid, Spain
| | | | | | | | | | | |
Collapse
|
29
|
In silico subtractive genomics for target identification in human bacterial pathogens. Drug Dev Res 2010. [DOI: 10.1002/ddr.20413] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Abstract
In Salmonella enterica, 5-aminoimidazole ribonucleotide (AIR) is the precursor of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) pyrophosphate moiety of thiamine and the last intermediate in the common HMP/purine biosynthetic pathway. AIR is synthesized de novo via five reactions catalyzed by the purF, -D, -T, -G, and -I gene products. In vivo genetic analysis demonstrated that in the absence of these gene products AIR can be generated if (i) methionine and lysine are in the growth medium, (ii) PurC is functional, and (iii) 5-amino-4-imidazolecarboxamide ribotide (AICAR) has accumulated. This study provides evidence that the five steps of the common HMP/purine biosynthetic pathway can be bypassed in the synthesis of AIR and thus demonstrates that thiamine synthesis can be uncoupled from the early purine biosynthetic pathway in bacteria.
Collapse
|
31
|
Murarka A, Clomburg JM, Moran S, Shanks JV, Gonzalez R. Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose. J Biol Chem 2010; 285:31548-58. [PMID: 20667837 DOI: 10.1074/jbc.m110.121095] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyruvate is located at a metabolic junction of assimilatory and dissimilatory pathways and represents a switch point between respiratory and fermentative metabolism. In Escherichia coli, the pyruvate dehydrogenase complex (PDHC) and pyruvate formate-lyase are considered the primary routes of pyruvate conversion to acetyl-CoA for aerobic respiration and anaerobic fermentation, respectively. During glucose fermentation, the in vivo activity of PDHC has been reported as either very low or undetectable, and the role of this enzyme remains unknown. In this study, a comprehensive characterization of wild-type E. coli MG1655 and a PDHC-deficient derivative (Pdh) led to the identification of the role of PDHC in the anaerobic fermentation of glucose. The metabolism of these strains was investigated by using a mixture of (13)C-labeled and -unlabeled glucose followed by the analysis of the labeling pattern in protein-bound amino acids via two-dimensional (13)C,(1)H NMR spectroscopy. Metabolite balancing, biosynthetic (13)C labeling of proteinogenic amino acids, and isotopomer balancing all indicated a large increase in the flux of the oxidative branch of the pentose phosphate pathway (ox-PPP) in response to the PDHC deficiency. Because both ox-PPP and PDHC generate CO(2) and the calculated CO(2) evolution rate was significantly reduced in Pdh, it was hypothesized that the role of PDHC is to provide CO(2) for cell growth. The similarly negative impact of either PDHC or ox-PPP deficiencies, and an even more pronounced impairment of cell growth in a strain lacking both ox-PPP and PDHC, provided further support for this hypothesis. The three strains exhibited similar phenotypes in the presence of an external source of CO(2), thus confirming the role of PDHC. Activation of formate hydrogen-lyase (which converts formate to CO(2) and H(2)) rendered the PDHC deficiency silent, but its negative impact reappeared in a strain lacking both PDHC and formate hydrogen-lyase. A stoichiometric analysis of CO(2) generation via PDHC and ox-PPP revealed that the PDHC route is more carbon- and energy-efficient, in agreement with its beneficial role in cell growth.
Collapse
Affiliation(s)
- Abhishek Murarka
- Department of Chemical and Biomolecular Engineering, RiceUniversity, Houston, Texas 77005, USA
| | | | | | | | | |
Collapse
|
32
|
Koenigsknecht MJ, Downs DM. Thiamine biosynthesis can be used to dissect metabolic integration. Trends Microbiol 2010; 18:240-7. [PMID: 20382023 PMCID: PMC2906612 DOI: 10.1016/j.tim.2010.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 02/19/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
The emergence of systems biology has re-emphasized the advantages of understanding biological processes with a global perspective. One biological process amenable to global approaches is microbial metabolism. This review describes a model system that contributes to the goals of systems biology by experimentally defining metabolic integration found in a bacterial cell and thus providing data needed for implementation and interpretation of systems approaches. We have taken a largely unbiased in vivo approach centered on thiamine biosynthesis to identify new metabolic components and connections, and to explore uncharacterized paradigms of the integration between them. This article summarizes recent results from this approach that include the identification of the function of unknown genes, connections between cofactors biosynthesis and thiamine biosynthesis, and how metabolites from one biosynthetic pathway can be used in thiamine biosynthesis.
Collapse
Affiliation(s)
| | - Diana M. Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
33
|
Cohesion group approach for evolutionary analysis of aspartokinase, an enzyme that feeds a branched network of many biochemical pathways. Microbiol Mol Biol Rev 2010; 73:594-651. [PMID: 19946135 DOI: 10.1128/mmbr.00024-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspartokinase (Ask) exists within a variable network that supports the synthesis of 9 amino acids and a number of other important metabolites. Lysine, isoleucine, aromatic amino acids, and dipicolinate may arise from the ASK network or from alternative pathways. Ask proteins were subjected to cohesion group analysis, a methodology that sorts a given protein assemblage into groups in which evolutionary continuity is assured. Two subhomology divisions, ASK(alpha) and ASK(beta), have been recognized. The ASK(alpha) subhomology division is the most ancient, being widely distributed throughout the Archaea and Eukarya and in some Bacteria. Within an indel region of about 75 amino acids near the N terminus, ASK(beta) sequences differ from ASK(alpha) sequences by the possession of a proposed ancient deletion. ASK(beta) sequences are present in most Bacteria and usually exhibit an in-frame internal translational start site that can generate a small Ask subunit that is identical to the C-terminal portion of the larger subunit of a heterodimeric unit. Particularly novel are ask genes embedded in gene contexts that imply specialization for ectoine (osmotic agent) or aromatic amino acids. The cohesion group approach is well suited for the easy recognition of relatively recent lateral gene transfer (LGT) events, and many examples of these are described. Given the current density of genome representation for Proteobacteria, it is possible to reconstruct more ancient landmark LGT events. Thus, a plausible scenario in which the three well-studied and iconic Ask homologs of Escherichia coli are not within the vertical genealogy of Gammaproteobacteria, but rather originated via LGT from a Bacteroidetes donor, is supported.
Collapse
|
34
|
Murarka A, Clomburg JM, Gonzalez R. Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate-dissimilating enzymes during the fermentative metabolism of glucuronate. MICROBIOLOGY-SGM 2010; 156:1860-1872. [PMID: 20167619 DOI: 10.1099/mic.0.036251-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The fermentative metabolism of d-glucuronic acid (glucuronate) in Escherichia coli was investigated with emphasis on the dissimilation of pyruvate via pyruvate formate-lyase (PFL) and pyruvate dehydrogenase (PDH). In silico and in vivo metabolic flux analysis (MFA) revealed that PFL and PDH share the dissimilation of pyruvate in wild-type MG1655. Surprisingly, it was found that PDH supports fermentative growth on glucuronate in the absence of PFL. The PDH-deficient strain (Pdh-) exhibited a slower transition into the exponential phase and a decrease in specific rates of growth and glucuronate utilization. Moreover, a significant redistribution of metabolic fluxes was found in PDH- and PFL-deficient strains. Since no role had been proposed for PDH in the fermentative metabolism of E. coli, the metabolic differences between MG1655 and Pdh- were further investigated. An increase in the oxidative pentose phosphate pathway (ox-PPP) flux was observed in response to PDH deficiency. A comparison of the ox-PPP and PDH pathways led to the hypothesis that the role of PDH is the supply of reducing equivalents. The finding that a PDH deficiency lowers the NADH : NAD(+) ratio supported the proposed role of PDH. Moreover, the NADH : NAD(+) ratio in a strain deficient in both PDH and the ox-PPP (Pdh-Zwf-) was even lower than that observed for Pdh-. Strain Pdh-Zwf- also exhibited a slower transition into the exponential phase and a lower growth rate than Pdh-. Finally, a transhydrogenase-deficient strain grew more slowly than wild-type but did not show the slower transition into the exponential phase characteristic of Pdh- mutants. It is proposed that PDH fulfils two metabolic functions. First, by creating the appropriate internal redox state (i.e. appropriate NADH : NAD(+) ratio), PDH ensures the functioning of the glucuronate utilization pathway. Secondly, the NADH generated by PDH can be converted to NADPH by the action of transhydrogenases, thus serving as biosynthetic reducing power in the synthesis of building blocks and macromolecules.
Collapse
Affiliation(s)
- Abhishek Murarka
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - James M Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Ramon Gonzalez
- Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
35
|
The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels. PLoS One 2009; 4:e7656. [PMID: 19888457 PMCID: PMC2766623 DOI: 10.1371/journal.pone.0007656] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/07/2009] [Indexed: 12/03/2022] Open
Abstract
Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium Staphylococcus aureus, two operons were identified which are involved in vitamin B1 metabolism. The first operon encodes for the thiaminase type II (TenA), 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (ThiD), 5-(2-hydroxyethyl)-4-methylthiazole kinase (ThiM) and thiamine phosphate synthase (ThiE). The second operon encodes a phosphatase, an epimerase and the thiamine pyrophosphokinase (TPK). The open reading frames of the individual operons were cloned, their corresponding proteins were recombinantly expressed and biochemically analysed. The kinetic properties of the enzymes as well as the binding of TPP to the in vitro transcribed RNA of the proposed operons suggest that the vitamin B1 homeostasis in S. aureus is strongly regulated at transcriptional as well as enzymatic levels.
Collapse
|
36
|
Hofreuter D, Novik V, Galán JE. Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 2008; 4:425-33. [PMID: 18996343 DOI: 10.1016/j.chom.2008.10.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/15/2008] [Accepted: 10/02/2008] [Indexed: 11/19/2022]
Abstract
Campylobacter jejuni is a leading cause of foodborne illness in industrialized countries. This pathogen exhibits significant strain-to-strain variability, which results in differences in virulence potential and clinical presentations. Here, we report that acquisition of the capacity to utilize specific nutrients enhanced the ability of a highly pathogenic strain of C. jejuni to colonize specific tissues. The acquisition of a gene encoding a gamma-glutamyltranspeptidase enabled this strain to utilize glutamine and glutathione and enhanced its ability to colonize the intestine. Furthermore, the acquisition of a DNA segment, which added a sec-dependent secretion signal to an otherwise cytoplasmic asparaginase, allowed this pathogen to utilize asparagine and to more efficiently colonize the liver. Our results reveal that subtle genetic changes in a bacterial pathogen result in significant changes in its ability to colonize specific tissues. In addition, these studies revealed remarkably specific nutritional requirements for a pathogen to effectively colonize different tissues.
Collapse
Affiliation(s)
- Dirk Hofreuter
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | |
Collapse
|
37
|
Koenigsknecht MJ, Ramos I, Downs DM. Glutamine Phosphoribosylpyrophosphate Amidotransferase-independent Phosphoribosyl Amine Synthesis from Ribose 5-Phosphate and Glutamine or Asparagine. J Biol Chem 2007; 282:28379-28384. [PMID: 17686772 DOI: 10.1074/jbc.m704024200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoribosylamine (PRA) is the first intermediate in the common pathway to purines and thiamine and is generated in bacteria by glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase (EC 2.4.2.14) from PRPP and glutamine. Genetic data have indicated that multiple, non-PRPP amidotransferase mechanisms exist to generate PRA sufficient for thiamine but not purine synthesis. Here we describe the purification and identification of an activity (present in both Escherichia coli and Salmonella enterica) that synthesizes PRA from ribose 5-phosphate and glutamine/asparagine. A purification resulting in greater than a 625-fold increase in specific activity identified 8 candidate proteins. Of the candidates, overexpression of AphA (EC 3.1.3.2), a periplasmic class B nonspecific acid phosphatase, significantly increased activity in partially purified extracts. Native purification of AphA to >95% homogeneity determined that the periplasmic l-asparaginase II, AnsB (EC 3.5.1.1), co-purified with AphA and was also necessary for PRA formation. The potential physiological relevance of AphA and AnsB in contributing to thiamine biosynthesis in vivo is discussed.
Collapse
Affiliation(s)
| | - Itzel Ramos
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|