1
|
Tanaka M, Sotta N, Duncan S, Chiba Y, Onouchi H, Marée AM, Naito S, Grieneisen V, Fujiwara T. Ribosome stalling-induced NIP5;1 mRNA decay triggers ARGONAUTE1-dependent transcription downregulation. Nucleic Acids Res 2025; 53:gkaf159. [PMID: 40107731 PMCID: PMC11915504 DOI: 10.1093/nar/gkaf159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
In eukaryotes, messenger RNA (mRNA) accumulation is regulated through the levels of transcription, processing, and degradation. Here, we uncover the multi-level regulatory mechanism governing the expression of NIP5;1, a boron (B) diffusion facilitator in Arabidopsis. B-dependent NIP5;1 mRNA degradation is triggered by ribosome stalling at an AUGUAA sequence in its 5'-untranslated region. We showed that deletion of ATGTAA also abolishes B-dependent transcriptional downregulation, revealing a dual role of this sequence in both mRNA degradation and transcriptional control. Small RNAs (sRNAs) and ARGONAUTE1 (AGO1) are implicated in mRNA-degradation-mediated B-dependent transcriptional downregulation: a 5'-3' exonuclease mutant, xrn4, presents both elevated levels of NIP5;1 mRNA degradation intermediates and transcriptional downregulation; AGO1-associated sRNA-sequencing reveals the presence of sRNAs with sequences upstream of NIP5;1 AUGUAA; and nascent mRNA profiling by global run-on sequencing demonstrates RNA polymerase II pausing at ATGTAA, a phenomenon diminished in the ago1 mutant that lacks B-dependent transcriptional downregulation. These findings point to multi-level coordination of NIP5;1 expression with the AUGUAA sequence at its core: ribosome stalling orchestrates translational inhibition, mRNA degradation and transcriptional downregulation in response to B. The fast response resulting from this synergy suggests that similar mechanisms may exist in other eukaryotic systems for efficient and rapid regulation of gene expression.
Collapse
Affiliation(s)
- Mayuki Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka 599-8531, Japan
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Susan Duncan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Bondhus L, Nava AA, Liu IS, Arboleda VA. Epigene functional diversity: isoform usage, disordered domain content, and variable binding partners. Epigenetics Chromatin 2025; 18:8. [PMID: 39893491 PMCID: PMC11786378 DOI: 10.1186/s13072-025-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Epigenes are defined as proteins that perform post-translational modification of histones or DNA, reading of post-translational modifications, form complexes with epigenetic factors or changing the general structure of chromatin. This specialized group of proteins is responsible for controlling the organization of genomic DNA in a cell-type specific fashion, controlling normal development in a spatial and temporal fashion. Moreover, mutations in epigenes have been implicated as causal in germline pediatric disorders and as driver mutations in cancer. Despite their importance to human disease, to date, there has not been a systematic analysis of the sources of functional diversity for epigenes at large. Epigenes' unique functions that require the assembly of pools within the nucleus suggest that their structure and amino acid composition would have been enriched for features that enable efficient assembly of chromatin and DNA for transcription, splicing, and post-translational modifications. RESULTS In this study, we assess the functional diversity stemming from gene structure, isoforms, protein domains, and multiprotein complex formation that drive the functions of established epigenes. We found that there are specific structural features that enable epigenes to perform their variable roles depending on the cellular and environmental context. First, epigenes are significantly larger and have more exons compared with non-epigenes which contributes to increased isoform diversity. Second epigenes participate in more multimeric complexes than non-epigenes. Thirdly, given their proposed importance in membraneless organelles, we show epigenes are enriched for substantially larger intrinsically disordered regions (IDRs). Additionally, we assessed the specificity of their expression profiles and showed epigenes are more ubiquitously expressed consistent with their enrichment in pediatric syndromes with intellectual disability, multiorgan dysfunction, and developmental delay. Finally, in the L1000 dataset, we identify drugs that can potentially be used to modulate expression of these genes. CONCLUSIONS Here we identify significant differences in isoform usage, disordered domain content, and variable binding partners between human epigenes and non-epigenes using various functional genomics datasets from Ensembl, ENCODE, GTEx, HPO, LINCS L1000, and BrainSpan. Our results contribute new knowledge to the growing field focused on developing targeted therapies for diseases caused by epigene mutations, such as chromatinopathies and cancers.
Collapse
Affiliation(s)
- Leroy Bondhus
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Isabelle S Liu
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Schalamun M, Hinterdobler W, Schinnerl J, Brecker L, Schmoll M. The transcription factor STE12 influences growth on several carbon sources and production of dehydroacetic acid (DHAA) in Trichoderma reesei. Sci Rep 2024; 14:9625. [PMID: 38671155 PMCID: PMC11053031 DOI: 10.1038/s41598-024-59511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The filamentous ascomycete Trichoderma reesei, known for its prolific cellulolytic enzyme production, recently also gained attention for its secondary metabolite synthesis. Both processes are intricately influenced by environmental factors like carbon source availability and light exposure. Here, we explore the role of the transcription factor STE12 in regulating metabolic pathways in T. reesei in terms of gene regulation, carbon source utilization and biosynthesis of secondary metabolites. We show that STE12 is involved in regulating cellulase gene expression and growth on carbon sources associated with iron homeostasis. STE12 impacts gene regulation in a light dependent manner on cellulose with modulation of several CAZyme encoding genes as well as genes involved in secondary metabolism. STE12 selectively influences the biosynthesis of the sorbicillinoid trichodimerol, while not affecting the biosynthesis of bisorbibutenolide, which was recently shown to be regulated by the MAPkinase pathway upstream of STE12 in the signaling cascade. We further report on the biosynthesis of dehydroacetic acid (DHAA) in T. reesei, a compound known for its antimicrobial properties, which is subject to regulation by STE12. We conclude, that STE12 exerts functions beyond development and hence contributes to balance the energy distribution between substrate consumption, reproduction and defense.
Collapse
Affiliation(s)
- Miriam Schalamun
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Hinterdobler
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
- MyPilz GmbH, Wienerbergstrasse 55/13-15, 1120, Vienna, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria.
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
4
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
5
|
Hiragori Y, Takahashi H, Karino T, Kaido A, Hayashi N, Sasaki S, Nakao K, Motomura T, Yamashita Y, Naito S, Onouchi H. Genome-wide identification of Arabidopsis non-AUG-initiated upstream ORFs with evolutionarily conserved regulatory sequences that control protein expression levels. PLANT MOLECULAR BIOLOGY 2023; 111:37-55. [PMID: 36044152 DOI: 10.1007/s11103-022-01309-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This study identified four novel regulatory non-AUG-initiated upstream ORFs (uORFs) with evolutionarily conserved sequences in Arabidopsis and elucidated the mechanism by which a non-AUG-initiated uORF promotes main ORF translation. Upstream open reading frames (uORFs) are short ORFs found in the 5'-untranslated regions (5'-UTRs) of eukaryotic transcripts and can influence the translation of protein-coding main ORFs (mORFs). Recent genome-wide ribosome profiling studies have revealed that hundreds or thousands of uORFs initiate translation at non-AUG start codons. However, the physiological significance of these non-AUG uORFs has so far been demonstrated for only a few of them. In this study, to identify physiologically important regulatory non-AUG uORFs in Arabidopsis, we took an approach that combined bioinformatics and experimental analysis. Since physiologically important non-AUG uORFs are likely to be conserved across species, we first searched the Arabidopsis genome for non-AUG-initiated uORFs with evolutionarily conserved sequences. Then, we examined the effects of the conserved non-AUG uORFs on the expression of the downstream mORFs using transient expression assays. As a result, three inhibitory and one promotive non-AUG uORFs were identified. Among the inhibitory non-AUG uORFs, two exerted repressive effects on mORF expression in an amino acid sequence-dependent manner. These two non-AUG uORFs are likely to encode regulatory peptides that cause ribosome stalling, thereby enhancing their repressive effects. In contrast, one of the identified regulatory non-AUG uORFs promoted mORF expression by alleviating the inhibitory effect of a downstream AUG-initiated uORF. These findings provide insights into the mechanisms that enable non-AUG uORFs to play regulatory roles despite their low translation initiation efficiencies.
Collapse
Affiliation(s)
- Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Taihei Karino
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Kaido
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kodai Nakao
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
6
|
Lelandais G, Remy D, Malagnac F, Grognet P. New insights into genome annotation in Podospora anserina through re-exploiting multiple RNA-seq data. BMC Genomics 2022; 23:859. [PMID: 36581831 PMCID: PMC9801653 DOI: 10.1186/s12864-022-09085-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Publicly available RNA-seq datasets are often underused although being helpful to improve functional annotation of eukaryotic genomes. This is especially true for filamentous fungi genomes which structure differs from most well annotated yeast genomes. Podospora anserina is a filamentous fungal model, which genome has been sequenced and annotated in 2008. Still, the current annotation lacks information about cis-regulatory elements, including promoters, transcription starting sites and terminators, which are instrumental to integrate epigenomic features into global gene regulation strategies. RESULTS Here we took advantage of 37 RNA-seq experiments that were obtained in contrasted developmental and physiological conditions, to complete the functional annotation of P. anserina genome. Out of the 10,800 previously annotated genes, 5'UTR and 3'UTR were defined for 7554, among which, 3328 showed differential transcriptional signal starts and/or transcriptional end sites. In addition, alternative splicing events were detected for 2350 genes, mostly due alternative 3'splice sites and 1732 novel transcriptionally active regions (nTARs) in unannotated regions were identified. CONCLUSIONS Our study provides a comprehensive genome-wide functional annotation of P. anserina genome, including chromatin features, cis-acting elements such as UTRs, alternative splicing events and transcription of non-coding regions. These new findings will likely improve our understanding of gene regulation strategies in compact genomes, such as those of filamentous fungi. Characterization of alternative transcripts and nTARs paves the way to the discovery of putative new genes, alternative peptides or regulatory non-coding RNAs.
Collapse
Affiliation(s)
- Gaëlle Lelandais
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Damien Remy
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabienne Malagnac
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Grognet
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Lee HC, Hsieh CC, Tsai HJ. KEPI plays a negative role in the repression that accompanies translational inhibition guided by the uORF element of human CHOP transcript during stress response. Gene X 2022; 817:146160. [PMID: 35031423 DOI: 10.1016/j.gene.2021.146160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022] Open
Abstract
Translation of the downstream coding sequence of some mRNAs may be repressed by the upstream open reading frame (uORF) at their 5'-end. The mechanism underlying this uORF-mediated translational inhibition (uORF-MTI) is not fully understood in vivo. Recently, it was found that zebrafish Endouc or its human orthologue ENDOU (Endouc/ENDOU) plays a positive role in repressing the uORF-MTI of human CHOP (uORFchop-MTI) during stress by blocking its activity However, the repression of uORFchop-MTI assisted by an as-yet unidentified negative effector remains to be elucidated. Compared to the upregulated CHOP transcript, we herein report that the kepi (kinase-enhanced PP1 inhibitor) transcript was downregulated in the zebrafish embryos treated with both heat shock and hypoxia. Quantitative RT-PCR also revealed that the level of kepi mRNA was noticeably decreased in both heat-shock-treated and hypoxia-exposed embryos. When kepi mRNA was microinjected into the one-celled embryos from transgenic line huORFZ, the translation of downstream GFP reporter controlled by the uORFchop-MTI was reduced in the hypoxia-exposed embryos. In contrast, when kepi was knocked down by injection of antisense Morpholino oligonucleotide, the translation of downstream GFP reporter was induced and expressed in the brain and spinal cord of injected embryos in the absence of stress. During normal condition, overexpression of KEPI increased eIF2α phosphorylation, resulting in inducing the translation of uORF-tag mRNA, such as ATF4 and CHOP mRNAs. However, during stress condition, overexpression of KEPI decreased eIF2α phosphorylation, resulting in reducing the GFP reporter and CHOP proteins. This is the first report to demonstrate that KEPI plays a negative role in uORFchop - mediated translation during ER stress.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chi-Cheng Hsieh
- The Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Huai-Jen Tsai
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
8
|
Egorov AA, Alexandrov AI, Urakov VN, Makeeva DS, Edakin RO, Kushchenko AS, Gladyshev VN, Kulakovskiy IV, Dmitriev SE. A standard knockout procedure alters expression of adjacent loci at the translational level. Nucleic Acids Res 2021; 49:11134-11144. [PMID: 34606617 PMCID: PMC8565318 DOI: 10.1093/nar/gkab872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The Saccharomyces cerevisiae gene deletion collection is widely used for functional gene annotation and genetic interaction analyses. However, the standard G418-resistance cassette used to produce knockout mutants delivers strong regulatory elements into the target genetic loci. To date, its side effects on the expression of neighboring genes have never been systematically assessed. Here, using ribosome profiling data, RT-qPCR, and reporter expression, we investigated perturbations induced by the KanMX module. Our analysis revealed significant alterations in the transcription efficiency of neighboring genes and, more importantly, severe impairment of their mRNA translation, leading to changes in protein abundance. In the ‘head-to-head’ orientation of the deleted and neighboring genes, knockout often led to a shift of the transcription start site of the latter, introducing new uAUG codon(s) into the expanded 5′ untranslated region (5′ UTR). In the ‘tail-to-tail’ arrangement, knockout led to activation of alternative polyadenylation signals in the neighboring gene, thus altering its 3′ UTR. These events may explain the so-called neighboring gene effect (NGE), i.e. false genetic interactions of the deleted genes. We estimate that in as much as ∼1/5 of knockout strains the expression of neighboring genes may be substantially (>2-fold) deregulated at the level of translation.
Collapse
Affiliation(s)
- Artyom A Egorov
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,FRC of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow 119071, Russia
| | - Valery N Urakov
- FRC of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow 119071, Russia
| | - Desislava S Makeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia
| | - Roman O Edakin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Artem S Kushchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan V Kulakovskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
9
|
Lyu X, Yang Q, Zhao F, Liu Y. Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed. Nucleic Acids Res 2021; 49:9404-9423. [PMID: 34417614 PMCID: PMC8450115 DOI: 10.1093/nar/gkab729] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Essential cellular functions require efficient production of many large proteins but synthesis of large proteins encounters many obstacles in cells. Translational control is mostly known to be regulated at the initiation step. Whether translation elongation process can feedback to regulate initiation efficiency is unclear. Codon usage bias, a universal feature of all genomes, plays an important role in determining gene expression levels. Here, we discovered that there is a conserved but codon usage-dependent genome-wide negative correlation between protein abundance and CDS length. The codon usage effects on protein expression and ribosome flux on mRNAs are influenced by CDS length; optimal codon usage preferentially promotes production of large proteins. Translation of mRNAs with long CDS and non-optimal codon usage preferentially induces phosphorylation of initiation factor eIF2α, which inhibits translation initiation efficiency. Deletion of the eIF2α kinase CPC-3 (GCN2 homolog) in Neurospora preferentially up-regulates large proteins encoded by non-optimal codons. Surprisingly, CPC-3 also inhibits translation elongation rate in a codon usage and CDS length-dependent manner, resulting in slow elongation rates for long CDS mRNAs. Together, these results revealed a codon usage and CDS length-dependent feedback mechanism from translation elongation to regulate both translation initiation and elongation kinetics.
Collapse
Affiliation(s)
- Xueliang Lyu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.,State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
10
|
Guerra-Almeida D, Tschoeke DA, da-Fonseca RN. Understanding small ORF diversity through a comprehensive transcription feature classification. DNA Res 2021; 28:6317669. [PMID: 34240112 PMCID: PMC8435553 DOI: 10.1093/dnares/dsab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Small open reading frames (small ORFs/sORFs/smORFs) are potentially coding sequences smaller than 100 codons that have historically been considered junk DNA by gene prediction software and in annotation screening; however, the advent of next-generation sequencing has contributed to the deeper investigation of junk DNA regions and their transcription products, resulting in the emergence of smORFs as a new focus of interest in systems biology. Several smORF peptides were recently reported in noncanonical mRNAs as new players in numerous biological contexts; however, their relevance is still overlooked in coding potential analysis. Hence, this review proposes a smORF classification based on transcriptional features, discussing the most promising approaches to investigate smORFs based on their different characteristics. First, smORFs were divided into nonexpressed (intergenic) and expressed (genic) smORFs. Second, genic smORFs were classified as smORFs located in noncoding RNAs (ncRNAs) or canonical mRNAs. Finally, smORFs in ncRNAs were further subdivided into sequences located in small or long RNAs, whereas smORFs located in canonical mRNAs were subdivided into several specific classes depending on their localization along the gene. We hope that this review provides new insights into large-scale annotations and reinforces the role of smORFs as essential components of a hidden coding DNA world.
Collapse
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Antonio Tschoeke
- Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes- da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Asano K. Origin of translational control by eIF2α phosphorylation: insights from genome-wide translational profiling studies in fission yeast. Curr Genet 2021; 67:359-368. [PMID: 33420908 PMCID: PMC8140999 DOI: 10.1007/s00294-020-01149-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/14/2023]
Abstract
During amino acid limitation, the protein kinase Gcn2 phosphorylates the α subunit of eIF2, thereby regulating mRNA translation. In yeast Saccharomyces cerevisiae and mammals, eIF2α phosphorylation regulates translation of related transcription factors Gcn4 and Atf4 through upstream open reading frames (uORFs) to activate transcription genome wide. However, mammals encode three more eIF2α kinases activated by distinct stimuli. Did the translational control system involving eIF2α phosphorylation evolve from so simple (as found in yeast S. cerevisiae) to complex (as found in humans)? Recent genome-wide translational profiling studies of amino acid starvation response in the fission yeast Schizosaccharomyces pombe provide an unexpected answer to this question.
Collapse
Affiliation(s)
- Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.
- Hiroshima Research Center for Healthy Aging, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
12
|
Takahashi H, Miyaki S, Onouchi H, Motomura T, Idesako N, Takahashi A, Murase M, Fukuyoshi S, Endo T, Satou K, Naito S, Itoh M. Exhaustive identification of conserved upstream open reading frames with potential translational regulatory functions from animal genomes. Sci Rep 2020; 10:16289. [PMID: 33004976 PMCID: PMC7530721 DOI: 10.1038/s41598-020-73307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
Upstream open reading frames (uORFs) are present in the 5′-untranslated regions of many eukaryotic mRNAs, and some peptides encoded by these regions play important regulatory roles in controlling main ORF (mORF) translation. We previously developed a novel pipeline, ESUCA, to comprehensively identify plant uORFs encoding functional peptides, based on genome-wide identification of uORFs with conserved peptide sequences (CPuORFs). Here, we applied ESUCA to diverse animal genomes, because animal CPuORFs have been identified only by comparing uORF sequences between a limited number of species, and how many previously identified CPuORFs encode regulatory peptides is unclear. By using ESUCA, 1517 (1373 novel and 144 known) CPuORFs were extracted from four evolutionarily divergent animal genomes. We examined the effects of 17 human CPuORFs on mORF translation using transient expression assays. Through these analyses, we identified seven novel regulatory CPuORFs that repressed mORF translation in a sequence-dependent manner, including one conserved only among Eutheria. We discovered a much higher number of animal CPuORFs than previously identified. Since most human CPuORFs identified in this study are conserved across a wide range of Eutheria or a wider taxonomic range, many CPuORFs encoding regulatory peptides are expected to be found in the identified CPuORFs.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan. .,Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan. .,Fundamental Innovative Oncology Core Center, National Cancer Center, Tokyo, 104-0045, Japan.
| | - Shido Miyaki
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Nobuo Idesako
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Anna Takahashi
- Faculty of Information Technologies and Control, Belarusian State University of Informatics and Radio Electronics, 220013, Minsk, Belarus.,College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Masataka Murase
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Toshinori Endo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| | - Kenji Satou
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
13
|
Chikashige Y, Kato H, Thornton M, Pepper W, Hilgers M, Cecil A, Asano I, Yamada H, Mori C, Brunkow C, Moravek C, Urano T, Singh CR, Asano K. Gcn2 eIF2α kinase mediates combinatorial translational regulation through nucleotide motifs and uORFs in target mRNAs. Nucleic Acids Res 2020; 48:8977-8992. [PMID: 32710633 PMCID: PMC7498311 DOI: 10.1093/nar/gkaa608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
The protein kinase Gcn2 is a central transducer of nutritional stress signaling important for stress adaptation by normal cells and the survival of cancer cells. In response to nutrient deprivation, Gcn2 phosphorylates eIF2α, thereby repressing general translation while enhancing translation of specific mRNAs with upstream ORFs (uORFs) situated in their 5'-leader regions. Here we performed genome-wide measurements of mRNA translation during histidine starvation in fission yeast Schizosaccharomyces pombe. Polysome analyses were combined with microarray measurements to identify gene transcripts whose translation was up-regulated in response to the stress in a Gcn2-dependent manner. We determined that translation is reprogrammed to enhance RNA metabolism and chromatin regulation and repress ribosome synthesis. Interestingly, translation of intron-containing mRNAs was up-regulated. The products of the regulated genes include additional eIF2α kinase Hri2 amplifying the stress signaling and Gcn5 histone acetyl transferase and transcription factors, together altering genome-wide transcription. Unique dipeptide-coding uORFs and nucleotide motifs, such as '5'-UGA(C/G)GG-3', are found in 5' leader regions of regulated genes and shown to be responsible for translational control.
Collapse
Affiliation(s)
- Yuji Chikashige
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Mackenzie Thornton
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Whitney Pepper
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Madelyn Hilgers
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ariana Cecil
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Izumi Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Haana Yamada
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Chie Mori
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Cheyenne Brunkow
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Carter Moravek
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
14
|
Eisenberg AR, Higdon AL, Hollerer I, Fields AP, Jungreis I, Diamond PD, Kellis M, Jovanovic M, Brar GA. Translation Initiation Site Profiling Reveals Widespread Synthesis of Non-AUG-Initiated Protein Isoforms in Yeast. Cell Syst 2020; 11:145-160.e5. [PMID: 32710835 PMCID: PMC7508262 DOI: 10.1016/j.cels.2020.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Genomic analyses in budding yeast have helped define the foundational principles of eukaryotic gene expression. However, in the absence of empirical methods for defining coding regions, these analyses have historically excluded specific classes of possible coding regions, such as those initiating at non-AUG start codons. Here, we applied an experimental approach to globally annotate translation initiation sites in yeast and identified 149 genes with alternative N-terminally extended protein isoforms initiating from near-cognate codons upstream of annotated AUG start codons. These isoforms are produced in concert with canonical isoforms and translated with high specificity, resulting from initiation at only a small subset of possible start codons. The non-AUG initiation driving their production is enriched during meiosis and induced by low eIF5A, which is seen in this context. These findings reveal widespread production of non-canonical protein isoforms and unexpected complexity to the rules by which even a simple eukaryotic genome is decoded.
Collapse
Affiliation(s)
- Amy R Eisenberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrea L Higdon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ina Hollerer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexander P Fields
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paige D Diamond
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
15
|
Lyu X, Yang Q, Li L, Dang Y, Zhou Z, Chen S, Liu Y. Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape. PLoS Genet 2020; 16:e1008836. [PMID: 32479508 PMCID: PMC7289440 DOI: 10.1371/journal.pgen.1008836] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/11/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Codon usage bias is a universal feature of all genomes and plays an important role in regulating protein expression levels. Modification of adenosine to inosine at the tRNA anticodon wobble position (I34) by adenosine deaminases (ADATs) is observed in all eukaryotes and has been proposed to explain the correlation between codon usage and tRNA pool. However, how the tRNA pool is affected by I34 modification to influence codon usage-dependent gene expression is unclear. Using Neurospora crassa as a model system, by combining molecular, biochemical and bioinformatics analyses, we show that silencing of adat2 expression severely impaired the I34 modification levels for the ADAT-related tRNAs, resulting in major ADAT-related tRNA profile changes and reprogramming of translation elongation kinetics on ADAT-related codons. adat2 silencing also caused genome-wide codon usage-biased ribosome pausing on mRNAs and proteome landscape changes, leading to selective translational repression or induction of different mRNAs. The induced expression of CPC-1, the Neurospora ortholog of yeast GCN4p, mediates the transcriptional response after adat2 silencing and amino acid starvation. Together, our results demonstrate that the tRNA I34 modification by ADAT plays a major role in driving codon usage-biased translation to shape proteome landscape. Modification of transfer RNA (tRNA) can have profound impacts on gene expression by shaping cellular tRNA pool. How codon usage bias and tRNA profiles synergistically regulate gene expression is unclear. By combining molecular, biochemical and bioinformatics analyses, we showed that the correlation between genome codon usage and tRNA I34 (inosine 34) modification modulates translation elongation kinetics and proteome landscape. Inhibition of tRNA I34 modification causes codon usage-dependent ribosome pausing on mRNAs during translation and changes cellular protein contents in a codon usage biased manner. Together, our results demonstrate that the tRNA I34 modification plays a major role in driving codon usage-dependent translation to determine proteome landscape in a eukaryotic organism.
Collapse
Affiliation(s)
- Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Lin Li
- National Institute of Biological Sciences, Changping District, Beijing, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhipeng Zhou
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - She Chen
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Messenger RNAs with large numbers of upstream open reading frames are translated via leaky scanning and reinitiation in the asexual stages of Plasmodium falciparum. Parasitology 2020; 147:1100-1113. [DOI: 10.1017/s0031182020000840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe genome of Plasmodium falciparum has one of the most skewed base-pair compositions of any eukaryote, with an AT content of 80–90%. As start and stop codons are AT-rich, the probability of finding upstream open reading frames (uORFs) in messenger RNAs (mRNAs) is high and parasite mRNAs have an average of 11 uORFs in their leader sequences. Similar to other eukaryotes, uORFs repress the translation of the downstream open reading frame (dORF) in P. falciparum, yet the parasite translation machinery is able to bypass these uORFs and reach the dORF to initiate translation. This can happen by leaky scanning and/or reinitiation.In this report, we assessed leaky scanning and reinitiation by studying the effect of uORFs on the translation of a dORF, in this case, the luciferase reporter gene, and showed that both mechanisms are employed in the asexual blood stages of P. falciparum. Furthermore, in addition to the codon usage of the uORF, translation of the dORF is governed by the Kozak sequence and length of the uORF, and inter-cistronic distance between the uORF and dORF. Based on these features whole-genome data was analysed to uncover classes of genes that might be regulated by uORFs. This study indicates that leaky scanning and reinitiation appear to be widespread in asexual stages of P. falciparum, which may require modifications of existing factors that are involved in translation initiation in addition to novel, parasite-specific proteins.
Collapse
|
17
|
Xing Y, Gong R, Xu Y, Liu K, Zhou M. Codon usage bias affects α-amylase mRNA level by altering RNA stability and cytosine methylation patterns in Escherichia coli. Can J Microbiol 2020; 66:521-528. [PMID: 32259457 DOI: 10.1139/cjm-2019-0624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Codon usage bias exists in almost every organism and is reported to regulate protein translation efficiency and folding. Besides translation, the preliminary role of codon usage bias on gene transcription has also been revealed in some eukaryotes such as Neurospora crassa. In this study, we took as an example the α-amylase-coding gene (amyA) and examined the role of codon usage bias in regulating gene expression in the typical prokaryote Escherichia coli. We confirmed the higher translation efficiency on codon-optimized amyA RNAs and found that the RNA level itself was also affected by codon optimization. The decreased RNA level was caused at least in part by altered mRNA stability at the post-transcriptional level. Codon optimization also altered the number of cytosine methylation sites. Examination on dcm knockouts suggested that cytosine methylation may be a minor mechanism adopted by codon bias to regulate gene RNA levels. More studies are required to verify the global effect of codon usage and to reveal its detailed mechanism on transcription.
Collapse
Affiliation(s)
- Yanzi Xing
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Ruiqing Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yichun Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Kunshan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
18
|
Chu Y, Huang J, Ma G, Cui T, Yan X, Li H, Wang N. An Upstream Open Reading Frame Represses Translation of Chicken PPARγ Transcript Variant 1. Front Genet 2020; 11:165. [PMID: 32184808 PMCID: PMC7058706 DOI: 10.3389/fgene.2020.00165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipogenesis. The PPARγ gene produces various transcripts with different 5'-untranslated regions (5' UTRs) because of alternative promoter usage and splicing. The 5' UTR plays important roles in posttranscriptional gene regulation. However, to date, the regulatory role and underlying mechanism of 5' UTRs in the posttranscriptional regulation of PPARγ expression remain largely unclear. In this study, we investigated the effects of 5' UTRs on posttranscriptional regulation using reporter assays. Our results showed that the five PPARγ 5' UTRs exerted different effects on reporter gene activity. Bioinformatics analysis showed that chicken PPARγ transcript 1 (PPARγ1) possessed an upstream open reading frame (uORF) in its 5' UTR. Mutation analysis showed that a mutation in the uORF led to increased Renilla luciferase activity and PPARγ protein expression, but decreased Renilla luciferase and PPARγ1 mRNA expression. mRNA stability analysis using real-time RT-PCR showed that the uORF mutation did not interfere with mRNA stability, but promoter activity analysis of the cloned 5' UTR showed that the uORF mutation reduced promoter activity. Furthermore, in vitro transcription/translation assays demonstrated that the uORF mutation markedly increased the translation of PPARγ1 mRNA. Collectively, our results indicate that the uORF represses the translation of chicken PPARγ1 mRNA.
Collapse
Affiliation(s)
- Yankai Chu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiaxin Huang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guangwei Ma
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Tingting Cui
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaohong Yan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
De Nijs Y, De Maeseneire SL, Soetaert WK. 5' untranslated regions: the next regulatory sequence in yeast synthetic biology. Biol Rev Camb Philos Soc 2019; 95:517-529. [PMID: 31863552 DOI: 10.1111/brv.12575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 01/10/2023]
Abstract
When developing industrial biotechnology processes, Saccharomyces cerevisiae (baker's yeast or brewer's yeast) is a popular choice as a microbial host. Many tools have been developed in the fields of synthetic biology and metabolic engineering to introduce heterologous pathways and tune their expression in yeast. Such tools mainly focus on controlling transcription, whereas post-transcriptional regulation is often overlooked. Herein we discuss regulatory elements found in the 5' untranslated region (UTR) and their influence on protein synthesis. We provide not only an overall picture, but also a set of design rules on how to engineer a 5' UTR. The reader is also referred to currently available models that allow gene expression to be tuned predictably using different 5' UTRs.
Collapse
Affiliation(s)
- Yatti De Nijs
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sofie L De Maeseneire
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim K Soetaert
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
20
|
Yang Q, Yu CH, Zhao F, Dang Y, Wu C, Xie P, Sachs MS, Liu Y. eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. Nucleic Acids Res 2019; 47:9243-9258. [PMID: 31410471 PMCID: PMC6755126 DOI: 10.1093/nar/gkz710] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and plays an important role in regulating gene expression levels. A major role of codon usage is thought to regulate protein expression levels by affecting mRNA translation efficiency, but the underlying mechanism is unclear. By analyzing ribosome profiling results, here we showed that codon usage regulates translation elongation rate and that rare codons are decoded more slowly than common codons in all codon families in Neurospora. Rare codons resulted in ribosome stalling in manners both dependent and independent of protein sequence context and caused premature translation termination. This mechanism was shown to be conserved in Drosophila cells. In both Neurospora and Drosophila cells, codon usage plays an important role in regulating mRNA translation efficiency. We found that the rare codon-dependent premature termination is mediated by the translation termination factor eRF1, which recognizes ribosomes stalled on rare sense codons. Silencing of eRF1 expression resulted in codon usage-dependent changes in protein expression. Together, these results establish a mechanism for how codon usage regulates mRNA translation efficiency.
Collapse
Affiliation(s)
- Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chien-Hung Yu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 701, Taiwan
| | - Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yunkun Dang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Pancheng Xie
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Bennink S, Pradel G. The molecular machinery of translational control in malaria parasites. Mol Microbiol 2019; 112:1658-1673. [PMID: 31531994 DOI: 10.1111/mmi.14388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 12/30/2022]
Abstract
Translational control regulates the levels of protein synthesized from its transcript and is key for the rapid adjustment of gene expression in response to environmental stimuli. The regulation of translation is of special importance for malaria parasites, which pass through a complex life cycle that includes various replication phases in the different organs of the human and mosquito hosts and a sexual reproduction phase in the mosquito midgut. In particular, the quiescent transmission stages rely on translational control to rapidly adapt to the new environment, once they switch over from the human to the mosquito and vice versa. Three control mechanisms are currently proposed in Plasmodium, (1) global regulation that acts on the translation initiation complex; (2) mRNA-specific regulation, involving cis control elements, mRNA-binding proteins and translational repressors; and (3) induced mRNA decay by the Ccr4-Not and the RNA exosome complex. The main molecules controlling translation are highly conserved in malaria parasites and an increasing number of studies shed light on the interwoven pathways leading to the up or downregulation of protein synthesis in the diverse plasmodial stages. We here highlight recent findings on translational control during life cycle progression of Plasmodium and discuss the molecules involved in regulating protein synthesis.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
22
|
Mäkinen M, Kuuskeri J, Laine P, Smolander OP, Kovalchuk A, Zeng Z, Asiegbu FO, Paulin L, Auvinen P, Lundell T. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. BMC Genomics 2019; 20:430. [PMID: 31138126 PMCID: PMC6540522 DOI: 10.1186/s12864-019-5817-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white rot fungus Phlebia radiata, a type species of the genus Phlebia, is an efficient decomposer of plant cell wall polysaccharides, modifier of softwood and hardwood lignin, and is able to produce ethanol from various waste lignocellulose substrates. Thus, P. radiata is a promising organism for biotechnological applications aiming at sustainable utilization of plant biomass. Here we report the genome sequence of P. radiata isolate 79 originally isolated from decayed alder wood in South Finland. To better understand the evolution of wood decay mechanisms in this fungus and the Polyporales phlebioid clade, gene content and clustering of genes encoding specific carbohydrate-active enzymes (CAZymes) in seven closely related fungal species was investigated. In addition, other genes encoding proteins reflecting the fungal lifestyle including peptidases, transporters, small secreted proteins and genes involved in secondary metabolism were identified in the genome assembly of P. radiata. RESULTS The PACBio sequenced nuclear genome of P. radiata was assembled to 93 contigs with 72X sequencing coverage and annotated, revealing a dense genome of 40.4 Mbp with approximately 14 082 predicted protein-coding genes. According to functional annotation, the genome harbors 209 glycoside hydrolase, 27 carbohydrate esterase, 8 polysaccharide lyase, and over 70 auxiliary redox enzyme-encoding genes. Comparisons with the genomes of other phlebioid fungi revealed shared and specific properties among the species with seemingly similar saprobic wood-decay lifestyles. Clustering of especially GH10 and AA9 enzyme-encoding genes according to genomic localization was discovered to be conserved among the phlebioid species. In P. radiata genome, a rich repertoire of genes involved in the production of secondary metabolites was recognized. In addition, 49 genes encoding predicted ABC proteins were identified in P. radiata genome together with 336 genes encoding peptidases, and 430 genes encoding small secreted proteins. CONCLUSIONS The genome assembly of P. radiata contains wide array of carbohydrate polymer attacking CAZyme and oxidoreductase genes in a composition identifiable for phlebioid white rot lifestyle in wood decomposition, and may thus serve as reference for further studies. Comparative genomics also contributed to enlightening fungal decay mechanisms in conversion and cycling of recalcitrant organic carbon in the forest ecosystems.
Collapse
Affiliation(s)
- Mari Mäkinen
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, FI-00014, Helsinki, Finland.,Present address: VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Jaana Kuuskeri
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, FI-00014, Helsinki, Finland
| | - Pia Laine
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland
| | - Olli-Pekka Smolander
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland.,Present address: Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Zhen Zeng
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Lars Paulin
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland
| | - Petri Auvinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland
| | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
23
|
Sharma AK, Sormanni P, Ahmed N, Ciryam P, Friedrich UA, Kramer G, O’Brien EP. A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data. PLoS Comput Biol 2019; 15:e1007070. [PMID: 31120880 PMCID: PMC6559674 DOI: 10.1371/journal.pcbi.1007070] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/11/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Analysis methods based on simulations and optimization have been previously developed to estimate relative translation rates from next-generation sequencing data. Translation involves molecules and chemical reactions, hence bioinformatics methods consistent with the laws of chemistry and physics are more likely to produce accurate results. Here, we derive simple equations based on chemical kinetic principles to measure the translation-initiation rate, transcriptome-wide elongation rate, and individual codon translation rates from ribosome profiling experiments. Our methods reproduce the known rates from ribosome profiles generated from detailed simulations of translation. By applying our methods to data from S. cerevisiae and mouse embryonic stem cells, we find that the extracted rates reproduce expected correlations with various molecular properties, and we also find that mouse embryonic stem cells have a global translation speed of 5.2 AA/s, in agreement with previous reports that used other approaches. Our analysis further reveals that a codon can exhibit up to 26-fold variability in its translation rate depending upon its context within a transcript. This broad distribution means that the average translation rate of a codon is not representative of the rate at which most instances of that codon are translated, and it suggests that translational regulation might be used by cells to a greater degree than previously thought.
Collapse
Affiliation(s)
- Ajeet K. Sharma
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nabeel Ahmed
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Prajwal Ciryam
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ulrike A. Friedrich
- Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Edward P. O’Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Institute for CyberScience, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
24
|
Hitzenhammer E, Büschl C, Sulyok M, Schuhmacher R, Kluger B, Wischnitzki E, Schmoll M. YPR2 is a regulator of light modulated carbon and secondary metabolism in Trichoderma reesei. BMC Genomics 2019; 20:211. [PMID: 30866811 PMCID: PMC6417087 DOI: 10.1186/s12864-019-5574-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Filamentous fungi have evolved to succeed in nature by efficient growth and degradation of substrates, but also due to the production of secondary metabolites including mycotoxins. For Trichoderma reesei, as a biotechnological workhorse for homologous and heterologous protein production, secondary metabolite secretion is of particular importance for industrial application. Recent studies revealed an interconnected regulation of enzyme gene expression and carbon metabolism with secondary metabolism. RESULTS Here, we investigated gene regulation by YPR2, one out of two transcription factors located within the SOR cluster of T. reesei, which is involved in biosynthesis of sorbicillinoids. Transcriptome analysis showed that YPR2 exerts its major function in constant darkness upon growth on cellulose. Targets (direct and indirect) of YPR2 overlap with induction specific genes as well as with targets of the carbon catabolite repressor CRE1 and a considerable proportion is regulated by photoreceptors as well. Functional category analysis revealed both effects on carbon metabolism and secondary metabolism. Further, we found indications for an involvement of YPR2 in regulation of siderophores. In agreement with transcriptome data, mass spectrometric analyses revealed a broad alteration in metabolite patterns in ∆ypr2. Additionally, YPR2 positively influenced alamethicin levels along with transcript levels of the alamethicin synthase tex1 and is essential for production of orsellinic acid in darkness. CONCLUSIONS YPR2 is an important regulator balancing secondary metabolism with carbon metabolism in darkness and depending on the carbon source. The function of YPR2 reaches beyond the SOR cluster in which ypr2 is located and happens downstream of carbon catabolite repression mediated by CRE1.
Collapse
Affiliation(s)
- Eva Hitzenhammer
- AIT - Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Christoph Büschl
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Bernhard Kluger
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Elisabeth Wischnitzki
- AIT - Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Monika Schmoll
- AIT - Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
25
|
Rodríguez-Romero J, Marconi M, Ortega-Campayo V, Demuez M, Wilkinson MD, Sesma A. Virulence- and signaling-associated genes display a preference for long 3'UTRs during rice infection and metabolic stress in the rice blast fungus. THE NEW PHYTOLOGIST 2019; 221:399-414. [PMID: 30169888 DOI: 10.1111/nph.15405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Generation of mRNA isoforms by alternative polyadenylation (APA) and their involvement in regulation of fungal cellular processes, including virulence, remains elusive. Here, we investigated genome-wide polyadenylation site (PAS) selection in the rice blast fungus to understand how APA regulates pathogenicity. More than half of Magnaporthe oryzae transcripts undergo APA and show novel motifs in their PAS region. Transcripts with shorter 3'UTRs are more stable and abundant in polysomal fractions, suggesting they are being translated more efficiently. Importantly, rice colonization increases the use of distal PASs of pathogenicity genes, especially those participating in signalling pathways like 14-3-3B, whose long 3'UTR is required for infection. Cleavage factor I (CFI) Rbp35 regulates expression and distal PAS selection of virulence and signalling-associated genes, tRNAs and transposable elements, pointing its potential to drive genomic rearrangements and pathogen evolution. We propose a noncanonical PAS selection mechanism for Rbp35 that recognizes UGUAH, unlike humans, without CFI25. Our results showed that APA controls turnover and translation of transcripts involved in fungal growth and environmental adaptation. Furthermore, these data provide useful information for enhancing genome annotations and for cross-species comparisons of PASs and PAS usage within the fungal kingdom and the tree of life.
Collapse
Affiliation(s)
- Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Marco Marconi
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Víctor Ortega-Campayo
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Marie Demuez
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Mark D Wilkinson
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Ane Sesma
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
26
|
Zhang H, Dou S, He F, Luo J, Wei L, Lu J. Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biol 2018; 16:e2003903. [PMID: 30028832 PMCID: PMC6070289 DOI: 10.1371/journal.pbio.2003903] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/01/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022] Open
Abstract
Upstream open reading frames (uORFs) play important roles in regulating the main coding DNA sequences (CDSs) via translational repression. Despite their prevalence in the genomes, uORFs are overall discriminated against by natural selection. However, it remains unclear why in the genomes there are so many uORFs more conserved than expected under the assumption of neutral evolution. Here, we generated genome-wide maps of translational efficiency (TE) at the codon level throughout the life cycle of Drosophila melanogaster. We identified 35,735 uORFs that were expressed, and 32,224 (90.2%) of them showed evidence of ribosome occupancy during Drosophila development. The ribosome occupancy of uORFs is determined by genomic features, such as optimized sequence contexts around their start codons, a shorter distance to CDSs, and higher coding potentials. Our population genomic analysis suggests the segregating mutations that create or disrupt uORFs are overall deleterious in D. melanogaster. However, we found for the first time that many (68.3% of) newly fixed uORFs that are associated with ribosomes in D. melanogaster are driven by positive Darwinian selection. Our findings also suggest that uORFs play a vital role in controlling the translational program in Drosophila. Moreover, we found that many uORFs are transcribed or translated in a developmental stage-, sex-, or tissue-specific manner, suggesting that selective transcription or translation of uORFs could potentially modulate the TE of the downstream CDSs during Drosophila development. Upstream open reading frames (uORFs) in the 5′ untranslated regions (UTRs) of messenger RNAs can potentially inhibit translation of the downstream regions that encode proteins by sequestering protein-making machinery the ribosome. Moreover, mutations that destroy existing uORFs or create new ones are known to cause human disease. Although mutations that create new uORFs are generally deleterious and are selected against, many uORFs are evolutionarily conserved across eukaryotic species. To resolve this dilemma, we used extensive mRNA-Seq and ribosome profiling to generate high-resolution genome-wide maps of ribosome occupancy and translational efficiency (TE) during the life cycle of the fruit fly D. melanogaster. This allowed us to identify the sequence features of uORFs that influence their ability to associate with ribosomes. We demonstrate for the first time that the majority of the newly fixed uORFs in D. melanogaster, especially the translated ones, are under positive Darwinian selection. We also show that uORFs exert widespread repressive effects on the translation of the downstream protein-coding region. We find that many uORFs are transcribed or translated in a developmental stage-, sex-, or tissue-specific manner. Our results suggest that during Drosophila development, changes in the TE of uORFs, as well as the inclusion/exclusion of uORFs, are frequently exploited to inversely influence the translation of the downstream protein-coding regions. Our study provides novel insights into the molecular mechanisms and functional consequences of uORF-mediated regulation.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Feng He
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Junjie Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Liping Wei
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
27
|
Lu TC, Leu JY, Lin WC. A Comprehensive Analysis of Transcript-Supported De Novo Genes in Saccharomyces sensu stricto Yeasts. Mol Biol Evol 2018; 34:2823-2838. [PMID: 28981695 PMCID: PMC5850716 DOI: 10.1093/molbev/msx210] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Novel genes arising from random DNA sequences (de novo genes) have been suggested to be widespread in the genomes of different organisms. However, our knowledge about the origin and evolution of de novo genes is still limited. To systematically understand the general features of de novo genes, we established a robust pipeline to analyze >20,000 transcript-supported coding sequences (CDSs) from the budding yeast Saccharomyces cerevisiae. Our analysis pipeline combined phylogeny, synteny, and sequence alignment information to identify possible orthologs across 20 Saccharomycetaceae yeasts and discovered 4,340 S. cerevisiae-specific de novo genes and 8,871 S. sensu stricto-specific de novo genes. We further combine information on CDS positions and transcript structures to show that >65% of de novo genes arose from transcript isoforms of ancient genes, especially in the upstream and internal regions of ancient genes. Fourteen identified de novo genes with high transcript levels were chosen to verify their protein expressions. Ten of them, including eight transcript isoform-associated CDSs, showed translation signals and five proteins exhibited specific cytosolic localizations. Our results suggest that de novo genes frequently arise in the S. sensu stricto complex and have the potential to be quickly integrated into ancient cellular network.
Collapse
Affiliation(s)
- Tzu-Chiao Lu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Chang Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
28
|
Spealman P, Naik AW, May GE, Kuersten S, Freeberg L, Murphy RF, McManus J. Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Genome Res 2017; 28:214-222. [PMID: 29254944 PMCID: PMC5793785 DOI: 10.1101/gr.221507.117] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
Upstream open reading frames (uORFs), located in transcript leaders (5' UTRs), are potent cis-acting regulators of translation and mRNA turnover. Recent genome-wide ribosome profiling studies suggest that thousands of uORFs initiate with non-AUG start codons. Although intriguing, these non-AUG uORF predictions have been made without statistical control or validation; thus, the importance of these elements remains to be demonstrated. To address this, we took a comparative genomics approach to study AUG and non-AUG uORFs. We mapped transcription leaders in multiple Saccharomyces yeast species and applied a novel machine learning algorithm (uORF-seqr) to ribosome profiling data to identify statistically significant uORFs. We found that AUG and non-AUG uORFs are both frequently found in Saccharomyces yeasts. Although most non-AUG uORFs are found in only one species, hundreds have either conserved sequence or position within Saccharomyces uORFs initiating with UUG are particularly common and are shared between species at rates similar to that of AUG uORFs. However, non-AUG uORFs are translated less efficiently than AUG-uORFs and are less subject to removal via alternative transcription initiation under normal growth conditions. These results suggest that a subset of non-AUG uORFs may play important roles in regulating gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Armaghan W Naik
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Gemma E May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | - Robert F Murphy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
29
|
Komar AA. Unraveling co-translational protein folding: Concepts and methods. Methods 2017; 137:71-81. [PMID: 29221924 DOI: 10.1016/j.ymeth.2017.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Advances in techniques such as nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and single-molecule and time-resolved fluorescent approaches are transforming our ability to study co-translational protein folding both in vivo in living cells and in vitro in reconstituted cell-free translation systems. These approaches provide comprehensive information on the spatial organization and dynamics of nascent polypeptide chains and the kinetics of co-translational protein folding. This information has led to an improved understanding of the process of protein folding in living cells and should allow remaining key questions in the field, such as what structures are formed within nascent chains during protein synthesis and when, to be answered. Ultimately, studies using these techniques will facilitate development of a unified concept of protein folding, a process that is essential for proper cell function and organism viability. This review describes current methods for analysis of co-translational protein folding with an emphasis on some of the recently developed techniques that allow monitoring of co-translational protein folding in real-time.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA; Department of Biochemistry and the Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
30
|
Bird AJ, Labbé S. The Zap1 transcriptional activator negatively regulates translation of the RTC4 mRNA through the use of alternative 5' transcript leaders. Mol Microbiol 2017; 106:673-677. [PMID: 28971534 PMCID: PMC5705029 DOI: 10.1111/mmi.13856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022]
Abstract
The zinc-responsive transcription activator Zap1 plays a central role in zinc homeostasis in the budding yeast Saccharomyces cerevisiae. In zinc-deficient cells, Zap1 binds to zinc responsive elements in target gene promoters and activates gene expression. In most cases, Zap1-dependent gene activation results in increased levels of mRNAs and proteins. However, Zap1-dependent activation of RTC4 results in increased levels of the RTC4 mRNA and decreased levels of the Rtc4 protein. This atypical regulation results from Zap1-mediated changes in the transcriptional start site for RTC4 and the production of a RTC4 transcript with a longer 5' leader. This long RTC4 transcript contains small upstream open reading frames that prevent translation of the downstream RTC4 ORF. The new studies with Zap1 highlight how a transcriptional activator can facilitate decreased protein expression.
Collapse
Affiliation(s)
- Amanda J. Bird
- Departments of Human Nutrition and Molecular Genetics, The Ohio State University, 1787 Neil Avenue, Columbus, OH, 43210, United States
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Pavillon Z-8, 3201, Jean Mignault, Sherbrooke (QC) J1E 4K8 Canada
| |
Collapse
|
31
|
Taggart J, MacDiarmid CW, Haws S, Eide DJ. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae. Mol Microbiol 2017; 106:678-689. [PMID: 28963784 DOI: 10.1111/mmi.13851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
Maintaining zinc homeostasis is an important property of all organisms. In the yeast Saccharomyces cerevisiae, the Zap1 transcriptional activator is a central player in this process. In response to zinc deficiency, Zap1 activates transcription of many genes and consequently increases accumulation of their encoded proteins. In this report, we describe a new mechanism of Zap1-mediated regulation whereby increased transcription of certain target genes results in reduced protein expression. Transcription of the Zap1-responsive genes RTC4 and RAD27 increases markedly in zinc-deficient cells but, surprisingly, their protein levels decrease. We examined the underlying mechanism further for RTC4 and found that this unusual regulation results from altered transcription start site selection. In zinc-replete cells, RTC4 transcription begins near the protein-coding region and the resulting short transcript leader allows for efficient translation. In zinc-deficient cells, RTC4 RNA with longer transcript leaders are expressed that are not efficiently translated due to the presence of multiple small open reading frames upstream of the coding region. This regulation requires a potential Zap1 binding site located farther upstream of the promoter. Thus, we present evidence for a new mechanism of Zap1-mediated gene regulation and another way that this activator protein can repress protein expression.
Collapse
Affiliation(s)
- Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer Haws
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
32
|
Chen Z, Mashburn-Warren L, Merritt J, Federle MJ, Kreth J. Interference of a speB 5' untranslated region partial deletion with mRNA degradation in Streptococcus pyogenes. Mol Oral Microbiol 2017; 32:390-403. [PMID: 28371435 PMCID: PMC10030001 DOI: 10.1111/omi.12181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 01/28/2023]
Abstract
The 5' untranslated region (5' UTR) of an mRNA molecule embeds important determinants that modify its stability and translation efficiency. In Streptococcus pyogenes, a strict human pathogen, a gene encoding a secreted protease (speB) has a large 5' UTR with unknown functions. Here we describe that a partial deletion of the speB 5' UTR caused a general accumulation of mRNA in the stationary phase, and that the mRNA accumulation was due to retarded mRNA degradation. The phenotype was observed in several M serotypes harboring the partial deletion of the speB 5' UTR. The phenotype was triggered by the production of the truncated speB 5' UTR, but not by the disruption of the intact speB 5' UTR. RNase Y, a major endoribonuclease, was previously shown to play a central role in bulk mRNA turnover in stationary phase. However, in contrast to our expectations, we observed a weaker interaction between the truncated speB 5' UTR and RNase Y compared with the wild-type, which suggests that other unidentified RNA degrading components are required for the pleiotropic effects observed from the speB UTR truncation. Our study demonstrates how S. pyogenes uses distinct mRNA degradation schemes in exponential and stationary growth phases.
Collapse
Affiliation(s)
- Z Chen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - L Mashburn-Warren
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - J Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - M J Federle
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - J Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
33
|
Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation. Dev Biol 2017. [PMID: 28648842 DOI: 10.1016/j.ydbio.2017.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay.
Collapse
|
34
|
Sesma A. RNA metabolism and regulation of virulence programs in fungi. Semin Cell Dev Biol 2016; 57:120-127. [DOI: 10.1016/j.semcdb.2016.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/16/2023]
|
35
|
Georis I, Isabelle G, Tate JJ, Vierendeels F, Cooper TG, Dubois E. Premature termination of GAT1 transcription explains paradoxical negative correlation between nitrogen-responsive mRNA, but constitutive low-level protein production. RNA Biol 2016; 12:824-37. [PMID: 26259534 PMCID: PMC4615157 DOI: 10.1080/15476286.2015.1058476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The first step in executing the genetic program of a cell is production of mRNA. In yeast, almost every gene is transcribed as multiple distinct isoforms, differing at their 5′ and/or 3′ termini. However, the implications and functional significance of the transcriptome-wide diversity of mRNA termini remains largely unexplored. In this paper, we show that the GAT1 gene, encoding a transcriptional activator of nitrogen-responsive catabolic genes, produces a variety of mRNAs differing in their 5′ and 3′ termini. Alternative transcription initiation leads to the constitutive, low level production of 2 full length proteins differing in their N-termini, whereas premature transcriptional termination generates a short, highly nitrogen catabolite repression- (NCR-) sensitive transcript that, as far as we can determine, is not translated under the growth conditions we used, but rather likely protects the cell from excess Gat1.
Collapse
Affiliation(s)
| | - Georis Isabelle
- a Yeast Physiology ; Institut de Recherches Microbiologiques J. M. Wiame ; Laboratoire de Microbiologie Université Libre de Bruxelles ; Brussels , Belgium
| | | | | | | | | |
Collapse
|
36
|
Chew GL, Pauli A, Schier AF. Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nat Commun 2016; 7:11663. [PMID: 27216465 PMCID: PMC4890304 DOI: 10.1038/ncomms11663] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Upstream open reading frames (uORFs) are ubiquitous repressive genetic elements in vertebrate mRNAs. While much is known about the regulation of individual genes by their uORFs, the range of uORF-mediated translational repression in vertebrate genomes is largely unexplored. Moreover, it is unclear whether the repressive effects of uORFs are conserved across species. To address these questions, we analyse transcript sequences and ribosome profiling data from human, mouse and zebrafish. We find that uORFs are depleted near coding sequences (CDSes) and have initiation contexts that diminish their translation. Linear modelling reveals that sequence features at both uORFs and CDSes modulate the translation of CDSes. Moreover, the ratio of translation over 5′ leaders and CDSes is conserved between human and mouse, and correlates with the number of uORFs. These observations suggest that the prevalence of vertebrate uORFs may be explained by their conserved role in repressing CDS translation. Upstream open reading frames (uORFs) can repress gene expression. Here, Guo-Liang Chew and colleagues use bioinformatics approaches to show that conservation of uORF-mediated translational repression is mediated by sequence features in human, mouse and zebrafish genomes.
Collapse
Affiliation(s)
- Guo-Liang Chew
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA.,FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
37
|
Gunišová S, Beznosková P, Mohammad MP, Vlčková V, Valášek LS. In-depth analysis of cis-determinants that either promote or inhibit reinitiation on GCN4 mRNA after translation of its four short uORFs. RNA (NEW YORK, N.Y.) 2016; 22:542-558. [PMID: 26822200 PMCID: PMC4793210 DOI: 10.1261/rna.055046.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/18/2015] [Indexed: 05/29/2023]
Abstract
Translational control in eukaryotes is exerted by many means, one of which involves a ribosome translating multiple cistrons per mRNA as in bacteria. It is called reinitiation (REI) and occurs on mRNAs where the main ORF is preceded by a short upstream uORF(s). Some uORFs support efficient REI on downstream cistrons, whereas some others do not. The mRNA of yeast transcriptional activator GCN4 contains four uORFs of both types that together compose an intriguing regulatory mechanism of its expression responding to nutrients' availability and various stresses. Here we subjected all GCN4 uORFs to a comprehensive analysis to identify all REI-promoting and inhibiting cis-determinants that contribute either autonomously or in synergy to the overall efficiency of REI on GCN4. We found that the 3' sequences of uORFs 1-3 contain a conserved AU1-2A/UUAU2 motif that promotes REI in position-specific, autonomous fashion such as the REI-promoting elements occurring in 5' sequences of uORF1 and uORF2. We also identified autonomous and transferable REI-inhibiting elements in the 3' sequences of uORF2 and uORF3, immediately following their AU-rich motif. Furthermore, we analyzed contributions of coding triplets and terminating stop codon tetranucleotides of GCN4 uORFs showing a negative correlation between the efficiency of reinitiation and efficiency of translation termination. Together we provide a complex overview of all cis-determinants of REI with their effects set in the context of the overall GCN4 translational control.
Collapse
Affiliation(s)
- Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Vladislava Vlčková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| |
Collapse
|
38
|
Gan R, Jewett MC. Evolution of translation initiation sequences using in vitro yeast ribosome display. Biotechnol Bioeng 2016; 113:1777-86. [PMID: 26757179 DOI: 10.1002/bit.25933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/13/2015] [Accepted: 01/07/2016] [Indexed: 11/08/2022]
Abstract
We report a novel in vitro yeast ribosome display method based on cell-free protein synthesis (CFPS) using linear DNA templates. We demonstrate that our platform can enrich a target gene from a model library by 100-fold per round of selection. We demonstrate the utility of our approach by evolving cap-independent translation initiation (CITI) sequences, which result in a 13-fold increase in CFPS yields after four rounds of selection, and a threefold further increase by placing the beneficial short sequences in tandem. We also show that 12 of the selected CITI sequences permit precise control of gene expression in vitro over a range of up to 80-fold by enhancing translation (and not as cryptic promoters). These 12 sequences are then shown to tune protein expression in vivo, though likely due to a different mechanism. Looking forward, yeast ribosome display holds promise for evolving libraries of proteins and DNA regulatory parts for protein engineering and synthetic biology. Biotechnol. Bioeng. 2016;113: 1777-1786. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Gan
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois. .,Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois. .,Simpson Querrey Institute, Northwestern University, Evanston, Illinois.
| |
Collapse
|
39
|
Kumar M, Srinivas V, Patankar S. Upstream AUGs and upstream ORFs can regulate the downstream ORF in Plasmodium falciparum. Malar J 2015; 14:512. [PMID: 26692187 PMCID: PMC4687322 DOI: 10.1186/s12936-015-1040-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Upstream open reading frames (uORFs) and upstream AUGs (uAUGs) can regulate the translation of downstream ORFs. The AT rich genome of Plasmodium falciparum, due to the higher AT content of start and stop codons, has the potential to give rise to a large number of uORFs and uAUGs that may affect expression of their flanking ORFs. Methods A bioinformatics approach was used to detect uATGs associated with different genes in the parasite. To study the effect of some of these uAUGs on the expression of the downstream ORF, promoters and 5′ leaders containing uAUGs and uORFs were cloned upstream of a luciferase reporter gene. Luciferase assays were carried out in transient transfection experiments to assess the effects of uAUGs and mutations on reporter expression. Results The average number of uATGs and uORFs seen in P. falciparum coding sequences (CDS) is expectedly high compared to other less biased genomes. Certain genes, including the var gene family contain the maximum number of uATGs and uORFs in the parasite. They possess ~5 times more uORFs and ~4.5 times more uAUGs within 100 bases upstream of the start codons than other CDS of the parasite. A 60 bp upstream region containing three ORFs and five ATGs from var gene PF3D7_0400100 and a gene of unknown function (PF3D7_0517100) when cloned upstream of the luciferase start codon, driven by the hsp86 promoter, resulted in loss of luciferase activity. This was restored when all the ATGs present in the −60 bp were mutated to TTGs. Point mutations in the ATGs showed that even one AUG was sufficient to repress the luciferase gene. Conclusions Overall, this work indicates that the P. falciparum genome has a large number of uATGs and uORFs that can repress the expression of flanking ORFs. The role of AUGs in translation initiation suggests that this repression is mediated by preventing the translation initiation complex from reaching the main AUG of the downstream ORF. How the P. falciparum ribosome is able to bypass these uAUGs and uORFs for highly expressed genes remains a question for future research. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1040-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayank Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Vivek Srinivas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
40
|
Mendoza-Mendoza A, Steyaert J, Nieto-Jacobo MF, Holyoake A, Braithwaite M, Stewart A. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil. MICROBIOLOGY-SGM 2015; 161:2110-26. [PMID: 26341342 DOI: 10.1099/mic.0.000167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.
Collapse
Affiliation(s)
- Artemio Mendoza-Mendoza
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Johanna Steyaert
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | | | - Andrew Holyoake
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Mark Braithwaite
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Alison Stewart
- 1 Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand 2 Marrone Bio Innovations, 1540 Drew Avenue, Davis, California 95618, USA
| |
Collapse
|
41
|
Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol Cell 2015; 59:744-54. [PMID: 26321254 DOI: 10.1016/j.molcel.2015.07.018] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/08/2015] [Accepted: 07/20/2015] [Indexed: 12/20/2022]
Abstract
Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and has been proposed to regulate translation efficiency, accuracy, and protein folding based on the assumption that codon usage affects translation dynamics. The roles of codon usage in translation, however, are not clear and have been challenged by recent ribosome profiling studies. Here we used a Neurospora cell-free translation system to directly monitor the velocity of mRNA translation. We demonstrated that the preferred codons enhance the rate of translation elongation, whereas non-optimal codons slow elongation. Codon usage also controls ribosome traffic on mRNA. These conclusions were supported by ribosome profiling results in vitro and in vivo with template mRNAs designed to increase the signal-to-noise ratio. Finally, we demonstrate that codon usage regulates protein function by affecting co-translational protein folding. These results resolve a long-standing fundamental question and suggest the existence of a codon usage code for protein folding.
Collapse
|
42
|
Gilmore SA, Voorhies M, Gebhart D, Sil A. Genome-Wide Reprogramming of Transcript Architecture by Temperature Specifies the Developmental States of the Human Pathogen Histoplasma. PLoS Genet 2015; 11:e1005395. [PMID: 26177267 PMCID: PMC4503680 DOI: 10.1371/journal.pgen.1005395] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/26/2015] [Indexed: 11/28/2022] Open
Abstract
Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5’ leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature. Eukaryotic cells alter their developmental programs in response to environmental signals. Histoplasma capsulatum (Hc), a ubiquitous fungal pathogen of humans, establishes unique transcriptional programs to specify growth in either a multicellular hyphal form or unicellular yeast form in response to temperature. Since hyphae and yeast are specialized to function in infectivity or pathogenesis, respectively, Hc provides a clinically relevant system in which to query eukaryotic regulatory processes. Here we used next-generation sequencing approaches to annotate the transcriptomes of four distinct Hc strains in response to temperature. We found that a fraction of Hc transcripts have differential transcript architecture in hyphae and yeast, exhibiting 5’ leader sequences that differ markedly in length between morphogenetic states. To begin to understand the effect of these differential leader sequences on expression, we performed the first ribosome density and mRNA abundance measurements in Hc, thereby uncovering transcriptional and translational control that contribute to cell-type regulation.
Collapse
Affiliation(s)
- Sarah A. Gilmore
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Mark Voorhies
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Dana Gebhart
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Anita Sil
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Bahrami-Samani E, Vo DT, de Araujo PR, Vogel C, Smith AD, Penalva LOF, Uren PJ. Computational challenges, tools, and resources for analyzing co- and post-transcriptional events in high throughput. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:291-310. [PMID: 25515586 PMCID: PMC4397117 DOI: 10.1002/wrna.1274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
Co- and post-transcriptional regulation of gene expression is complex and multifaceted, spanning the complete RNA lifecycle from genesis to decay. High-throughput profiling of the constituent events and processes is achieved through a range of technologies that continue to expand and evolve. Fully leveraging the resulting data is nontrivial, and requires the use of computational methods and tools carefully crafted for specific data sources and often intended to probe particular biological processes. Drawing upon databases of information pre-compiled by other researchers can further elevate analyses. Within this review, we describe the major co- and post-transcriptional events in the RNA lifecycle that are amenable to high-throughput profiling. We place specific emphasis on the analysis of the resulting data, in particular the computational tools and resources available, as well as looking toward future challenges that remain to be addressed.
Collapse
Affiliation(s)
- Emad Bahrami-Samani
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Dat T. Vo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Patricia Rosa de Araujo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Andrew D. Smith
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Philip J. Uren
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
44
|
Abstract
Ethylene is a hormone involved in numerous aspects of growth, development, and responses to biotic and abiotic stresses in plants. Ethylene is perceived through its binding to endoplasmic reticulum-localized receptors that function as negative regulators of ethylene signaling in the absence of the hormone. In Arabidopsis thaliana, five structurally and functionally different ethylene receptors are present. These differ in their primary sequence, in the domains present, and in the type of kinase activity exhibited, which may suggest functional differences among the receptors. Whereas ethylene receptors functionally overlap to suppress ethylene signaling, certain other responses are controlled by specific receptors. In this review, I examine the nature of these receptor differences, how the evolution of the ethylene receptor gene family may provide insight into their differences, and how expression of receptors or their accessory proteins may underlie receptor-specific responses.
Collapse
|
45
|
Polymenis M, Aramayo R. Translate to divide: сontrol of the cell cycle by protein synthesis. MICROBIAL CELL 2015; 2:94-104. [PMID: 28357283 PMCID: PMC5348972 DOI: 10.15698/mic2015.04.198] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein synthesis underpins much of cell growth and, consequently, cell multiplication. Understanding how proliferating cells commit and progress into the cell cycle requires knowing not only which proteins need to be synthesized, but also what determines their rate of synthesis during cell division.
Collapse
Affiliation(s)
- Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
46
|
The histone deacetylase Rpd3/Sin3/Ume6 complex represses an acetate-inducible isoform of VTH2 in fermenting budding yeast cells. FEBS Lett 2015; 589:924-32. [PMID: 25728275 DOI: 10.1016/j.febslet.2015.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/30/2015] [Accepted: 02/12/2015] [Indexed: 11/21/2022]
Abstract
The tripartite Rpd3/Sin3/Ume6 complex represses meiotic isoforms during mitosis. We asked if it also controls starvation-induced isoforms. We report that VTH1/VTH2 encode acetate-inducible isoforms with extended 5'-regions overlapping antisense long non-coding RNAs. Rpd3 and Ume6 repress the long isoform of VTH2 during fermentation. Cells metabolising glucose contain Vth2, while the protein is undetectable in acetate and during sporulation. VTH2 is a useful model locus to study mechanisms implicating promoter directionality, lncRNA transcription and post-transcriptional control of gene expression via 5'-UTRs. Since mammalian genes encode transcript isoforms and Rpd3 is conserved, our findings are relevant for gene expression in higher eukaryotes.
Collapse
|
47
|
Eggert M, Pfob M, Jurinovic V, Schelling G, Steinlein OK. Upstream open reading frames regulate cannabinoid receptor 1 expression under baseline conditions and during cellular stress. Mol Cell Endocrinol 2015; 399:103-9. [PMID: 25258300 DOI: 10.1016/j.mce.2014.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/27/2014] [Accepted: 09/17/2014] [Indexed: 11/25/2022]
Abstract
The cannabinoid receptor subtype 1 gene CNR1 is not only associated with phenotypes such as cognitive performance, addiction and anxiety, but is also known to be crucially involved in responses to acute and chronic psychological and cellular stress conditions. Functional analysis of the 5' untranslated regions of the five known mRNA variants of the human CNR1 gene revealed that two of these variants contain upstream open reading frames that are able to modulate gene expression both under baseline condition and conditions of cellular stress including hypoxia, glucose restriction and hyperthermia. The upstream open reading frames might provide a mechanism that enables the cannabinoid 1 receptor to escape the general repression of protein synthesis that is typical for conditions of cellular stress.
Collapse
Affiliation(s)
- M Eggert
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Germany.
| | - M Pfob
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Germany
| | - V Jurinovic
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - G Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - O K Steinlein
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
48
|
Rodríguez-Romero J, Franceschetti M, Bueno E, Sesma A. Multilayer regulatory mechanisms control cleavage factor I proteins in filamentous fungi. Nucleic Acids Res 2014; 43:179-95. [PMID: 25514925 PMCID: PMC4288187 DOI: 10.1093/nar/gku1297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cleavage factor I (CFI) proteins are core components of the polyadenylation machinery that can regulate several steps of mRNA life cycle, including alternative polyadenylation, splicing, export and decay. Here, we describe the regulatory mechanisms that control two fungal CFI protein classes in Magnaporthe oryzae: Rbp35/CfI25 complex and Hrp1. Using mutational, genetic and biochemical studies we demonstrate that cellular concentration of CFI mRNAs is a limited indicator of their protein abundance. Our results suggest that several post-transcriptional mechanisms regulate Rbp35/CfI25 complex and Hrp1 in the rice blast fungus, some of which are also conserved in other ascomycetes. With respect to Rbp35, these include C-terminal processing, RGG-dependent localization and cleavage, C-terminal autoregulatory domain and regulation by an upstream open reading frame of Rbp35-dependent TOR signalling pathway. Our proteomic analyses suggest that Rbp35 regulates the levels of proteins involved in melanin and phenylpropanoids synthesis, among others. The drastic reduction of fungal CFI proteins in carbon-starved cells suggests that the pre-mRNA processing pathway is altered. Our findings uncover broad and multilayer regulatory mechanisms controlling fungal polyadenylation factors, which have profound implications in pre-mRNA maturation. This area of research offers new avenues for fungicide design by targeting fungal-specific proteins that globally affect thousands of mRNAs.
Collapse
Affiliation(s)
- J Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - M Franceschetti
- Disease & Stress Biology Department, John Innes Centre, Colney lane, Norwich NR4 7UH, UK
| | - E Bueno
- Disease & Stress Biology Department, John Innes Centre, Colney lane, Norwich NR4 7UH, UK
| | - A Sesma
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
49
|
Schleich S, Strassburger K, Janiesch PC, Koledachkina T, Miller KK, Haneke K, Cheng YS, Kuechler K, Stoecklin G, Duncan KE, Teleman AA. DENR-MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth. Nature 2014; 512:208-212. [PMID: 25043021 PMCID: PMC4134322 DOI: 10.1038/nature13401] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 04/23/2014] [Indexed: 01/01/2023]
Abstract
During cap-dependent eukaryotic translation initiation, ribosomes scan messenger RNA from the 5' end to the first AUG start codon with favourable sequence context. For many mRNAs this AUG belongs to a short upstream open reading frame (uORF), and translation of the main downstream ORF requires re-initiation, an incompletely understood process. Re-initiation is thought to involve the same factors as standard initiation. It is unknown whether any factors specifically affect translation re-initiation without affecting standard cap-dependent translation. Here we uncover the non-canonical initiation factors density regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT-1; also called MCTS1 in humans) as the first selective regulators of eukaryotic re-initiation. mRNAs containing upstream ORFs with strong Kozak sequences selectively require DENR-MCT-1 for their proper translation, yielding a novel class of mRNAs that can be co-regulated and that is enriched for regulatory proteins such as oncogenic kinases. Collectively, our data reveal that cells have a previously unappreciated translational control system with a key role in supporting proliferation and tissue growth.
Collapse
Affiliation(s)
- Sibylle Schleich
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | | | - Philipp Christoph Janiesch
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Tatyana Koledachkina
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Katharine K Miller
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Katharina Haneke
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Katrin Kuechler
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Georg Stoecklin
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kent E Duncan
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | | |
Collapse
|
50
|
Reid I, O’Toole N, Zabaneh O, Nourzadeh R, Dahdouli M, Abdellateef M, Gordon PMK, Soh J, Butler G, Sensen CW, Tsang A. SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models. BMC Bioinformatics 2014; 15:229. [PMID: 24980894 PMCID: PMC4084796 DOI: 10.1186/1471-2105-15-229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 06/17/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. RESULTS SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. CONCLUSIONS SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/.
Collapse
Affiliation(s)
- Ian Reid
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H4B 1R6, Canada
| | - Nicholas O’Toole
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H4B 1R6, Canada
| | - Omar Zabaneh
- Faculty of Medicine, Visual Genomics Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Reza Nourzadeh
- Faculty of Medicine, Visual Genomics Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Mahmoud Dahdouli
- Faculty of Medicine, Visual Genomics Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Mostafa Abdellateef
- Faculty of Medicine, Visual Genomics Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Paul MK Gordon
- Faculty of Medicine, Visual Genomics Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jung Soh
- Faculty of Medicine, Visual Genomics Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Gregory Butler
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H4B 1R6, Canada
| | - Christoph W Sensen
- Faculty of Medicine, Visual Genomics Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H4B 1R6, Canada
| |
Collapse
|