1
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 PMCID: PMC11759015 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/23/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S. Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Shi X, Zheng WA, Hou XL, Chen Y, Chen HF, Yao WN, Lv TY, Bai F. Differential effects of 2 and 4 weeks repetitive transcranial magnetic stimulation inducing neuroplasticity on cognitive improvement. J Alzheimers Dis 2025; 104:808-822. [PMID: 40123238 DOI: 10.1177/13872877251320124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
BackgroundRepetitive transcranial magnetic stimulation (rTMS) is an efficient intervention for alleviating cognitive symptoms in Alzheimer's disease (AD), but the optimal treatment duration for high efficacy remains unclear.ObjectiveThis study investigates the effects of 2-week and 4-week rTMS on neural network plasticity and cognitive improvement, aiming to identify the optimal treatment duration for cognitive impairment.MethodsrTMS was administered to cognitively impaired patients over 2-week and 4-week periods, exploring its effects on cognitive improvement and induced neural circuits. The study also examines the predictive value of these neural circuits for individual treatment responses.ResultsThe 4-week rTMS treatment significantly outperformed the 2-week course in improving cognitive function. Neural activity analysis identified the precuneus as a key region for episodic memory. Changes in brain regions, particularly within the default mode network (DMN), visual network (VN), and motor network (MN), were associated with cognitive improvements. Baseline functional connectivity in these regions predicted changes in general cognition (r = 0.724, p < 0.001) and episodic memory (r = 0.447, p = 0.022) after rTMS.ConclusionsExtended rTMS treatment enhances cognitive performance in cognitive impairment patients, with the 4-week course showing superior effects. Reduced connectivity in the DMN following rTMS was linked to cognitive improvements. The neural network baseline can predict patients' treatment responses.
Collapse
Affiliation(s)
- Xian Shi
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Wen-Ao Zheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin-Le Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Feng Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei-Na Yao
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ting-Yu Lv
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Geriatric Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Di Chiano M, Milior P, Poulot-Becq-Giraudon Y, Lanfredini R, Milior G. The Role of Complexity Theory in Understanding Brain's Neuron-Glia Interactions. Eur J Neurosci 2025; 61:e70050. [PMID: 40074717 PMCID: PMC11903385 DOI: 10.1111/ejn.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/05/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Brain information processing complexity is conventionally recognized as derived from neuronal activity, with neurons and their dynamic signalling responsible for the transfer and processing of information. However, the brain also contains other non-neuronal cells, glial cells, which exceed the number of neurons and are involved in the processes related with information coding by neural networks and underlying brain functions. Decisive advances in the characterization of the molecular and physiological properties of glial cells shed light on their active roles in neurotransmission and neuronal physiopathology. This expanded relationship between neurons and glia challenges traditional neurobiology by highlighting their reciprocal influence, where it is difficult to determine whether neuronal or glial processes initiate and drive the interactions. This interplay creates a dilemma, where the causal hierarchy between these two cell types remains unresolved. A philosophical tool, the 'Theory of Complexity' of Edgard Morin can help to better explain and study the complexity of neuron-glia interactions. Morin's proposal on complexity is useful to transform brain knowledge, in order to review the brain molecular functions in antireductionist pattern. In this manuscript, we will discuss how to use the 'retroactive loop' principle from Morin's 'Theory of Complexity' at the brain molecular level, proposing a new philosophical-experimental grid that can help neuroscientists for a better understanding of the glia-neuron interactions in the brain.
Collapse
Affiliation(s)
- M Di Chiano
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - P Milior
- Philosophy Coaching, Department of Humanities, University of Florence, Florence, Italy
| | - Y Poulot-Becq-Giraudon
- Laboratory of Neurodegenerative Diseases, CNRS, Molecular Imaging Center (MIRcen), Paris-Saclay University, French Alternative Energies and Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
| | - R Lanfredini
- Theoretical Philosophy, Department of Humanities, University of Florence, Florence, Italy
| | - G Milior
- Laboratory of Neurodegenerative Diseases, CNRS, Molecular Imaging Center (MIRcen), Paris-Saclay University, French Alternative Energies and Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
4
|
Cardellicchio P, Borgomaneri S. Level of M1 GABAB predicts micro offline consolidation of motor learning during wakefulness. NPJ SCIENCE OF LEARNING 2025; 10:10. [PMID: 39988595 PMCID: PMC11847931 DOI: 10.1038/s41539-025-00299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025]
Abstract
The consolidation process stabilizes a new initially labile memory. This consolidation could operate on a shorter timescale during wakefulness after initial motor learning. Within micro-offline learning states, sequences of simple individual actions learned through interleaved practice are condensed into a unified skill through a time-dependent consolidation process occurring during wakeful periods. While emerging evidence links Glutamate and GABA modulations in the primary motor cortex (M1) to motor learning, its relationship with micro-offline consolidation processes in brief resting states during motor learning is unclear. To investigate this issue, we employed Transcranial magnetic stimulation (TMS) to evaluate whether interindividual variation of different neurotransmitters at rest influences motor learning consolidation in humans. Our results point to the role of GABAB in micro-offline motor consolidation processes during motor learning in M1. This finding could have an important impact on planning neuropharmacology or non-invasive brain stimulation approaches in clinical domains, such as post-stroke rehabilitation.
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy.
| | - Sara Borgomaneri
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| |
Collapse
|
5
|
Stogios N, Wu S, Hahn M, Emami Z, Navagnanavel J, Korann V, PrasannaKumar A, Remington G, Graff-Guerrero A, Agarwal SM. Exploring the effects of an insulin challenge on neuroimaging outcomes: A scoping review. Front Neuroendocrinol 2025; 77:101187. [PMID: 39971163 DOI: 10.1016/j.yfrne.2025.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Emerging evidence demonstrates that insulin has a modulating effect on metabolic and cognitive function in the brain, highlighting the potential role of aberrant brain insulin signaling in the pathogenesis of various neuropsychiatric illnesses. Neuroimaging paradigms using intranasal insulin (INI) as a pharmacological challenge have allowed us to study the effects of insulin in the human brain. In this scoping review, we conducted a systematic database search to identify relevant research studies that employed an INI-based neuroimaging assay of brain insulin signaling. Thirty-six studies met inclusion criteria for this review. INI was found to significantly modulate activity and cerebral blood flow in brain regions related to homeostatic/hedonic control of food intake, as well as cognition. This review highlights the putative role of insulin signaling in the brain and the potential therapeutic value of INI in patients with mental health, addiction, and co-morbid metabolic disorders.
Collapse
Affiliation(s)
- Nicolette Stogios
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda
| | - Sally Wu
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda
| | - Margaret Hahn
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda; Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, ON, Cananda
| | - Zahra Emami
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Cananda
| | - Janani Navagnanavel
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Cananda
| | - Vittal Korann
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda
| | | | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda
| | - Ariel Graff-Guerrero
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda
| | - Sri Mahavir Agarwal
- Institute of Medical Science, University of Toronto, Toronto, ON, Cananda; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Cananda; Department of Psychiatry, University of Toronto, Toronto, ON, Cananda; Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, ON, Cananda.
| |
Collapse
|
6
|
Williams LE, Küffer L, Bawa T, Husi E, Pagès S, Holtmaat A. Repetitive Sensory Stimulation Potentiates and Recruits Sensory-Evoked Cortical Population Activity. J Neurosci 2025; 45:e2189232024. [PMID: 39510832 PMCID: PMC11756624 DOI: 10.1523/jneurosci.2189-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Sensory experience and learning are thought to be associated with plasticity of neocortical circuits. Repetitive sensory stimulation can induce long-term potentiation (LTP) of cortical excitatory synapses in anesthetized mice; however, it is unclear if these phenomena are associated with sustained changes in activity during wakefulness. Here we used time-lapse, calcium imaging of layer (L) 2/3 neurons in the primary somatosensory cortex (S1), in awake male mice, to assess the effects of a bout of rhythmic whisker stimulation (RWS) at a frequency by which rodents sample objects. We found that RWS induced a 1 h increase in whisker-evoked L2/3 neuronal activity in most cells. This was not observed for whiskers functionally connected to distant cortical columns. We also found that RWS could heterogeneously recruit or suppress whisker-evoked activity in different populations of neurons. Vasoactive intestinal-peptide-expressing (VIP) interneurons, which promote plasticity through disinhibition of pyramidal neurons, were found to exclusively elevate activity during RWS. These findings indicate that cortical neurons' representation of sensory input can be modulated over hours through repetitive sensory stimulation, which may be gated by activation of disinhibitory circuits.
Collapse
Affiliation(s)
- Leena Eve Williams
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Laura Küffer
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Tanika Bawa
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
- Lemanic Neuroscience Doctoral School, University of Geneva, Geneva 1211, Switzerland
| | - Elodie Husi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Stéphane Pagès
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
7
|
Shen YY, Jethe JV, Reid AP, Hehir J, Amaral MM, Ren C, Hao S, Zhou C, Fisher JAN. Label free, capillary-scale blood flow mapping in vivo reveals that low-intensity focused ultrasound evokes persistent dilation in cortical microvasculature. Commun Biol 2025; 8:12. [PMID: 39762513 PMCID: PMC11704147 DOI: 10.1038/s42003-024-07356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Non-invasive, low intensity focused ultrasound is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported. The brain's ability to provide blood flow to electrically active regions involves a multitude of non-neuronal cell types and signaling pathways in the cerebral vasculature; an open question is whether persistent effects can be attributed, at least partly, to vascular mechanisms. Using an in vivo optical approach, we found that microvasculature, and not larger vessels, exhibit significant persistent dilation following sonication without the use of microbubbles. This finding reveals a heretofore unseen aspect of the effects of FUS in vivo and indicates that concurrent changes in neurovascular function may partially underly persistent neuromodulatory effects.
Collapse
Affiliation(s)
- YuBing Y Shen
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Jyoti V Jethe
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Ashlan P Reid
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Jacob Hehir
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Marcello Magri Amaral
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Biomedical Engineering, Universidade Brasil, San Paulo, SP, Brazil
| | - Chao Ren
- Imaging Science Ph.D. Program, Washington University in St Louis, St. Louis, MO, USA
| | - Senyue Hao
- Department of Electrical & Systems Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Imaging Science Ph.D. Program, Washington University in St Louis, St. Louis, MO, USA
- Department of Electrical & Systems Engineering, Washington University in St Louis, St. Louis, MO, USA
| | | |
Collapse
|
8
|
Carrión RE, Auther AM, McLaughlin D, John M, Cornblatt BA. Improving processing speed in adolescents at clinical high risk for psychosis with the Specific COgnitive REmediation plus Surround (SCORES) intervention: Study protocol. Early Interv Psychiatry 2025; 19:e13587. [PMID: 38951112 PMCID: PMC11905519 DOI: 10.1111/eip.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/05/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
AIM Recent preventative approaches with young people at clinical high risk for psychosis (CHR-P) have focused on the remediation of the cognitive deficits that are readily apparent and predictive of future illness. However, the small number of trials using cognitive remediation with CHR-P individuals have reported mixed results. The proposed 2-phased study will test an innovative internet-based and remotely-delivered Specific COgnitive REmediation plus Surround (or SCORES) intervention that targets early processing speed deficits in CHR-P adolescents aged 14-20 years old. METHODS In the first R61 phase, a single-arm 2-year proof of concept study, 30 CHR-P individuals will receive SCORES for 10 weeks (4 h per week/40 h total) with a midpoint assessment at 20 h (5 weeks) to demonstrate target engagement and identify the optimal dose needed to engage the target. The Go/No-Go criteria to move to the R33 phase will be processing speed scores improving by a medium effect size (Cohen's d ≥ .6). The proposed package includes a set of complimentary support surround procedures to increase enjoyment and ensure that participants will complete the home-based training. In the second R33 phase, a 3-year pilot study, we will replicate target engagement in a new and larger sample of 54 CHR-P individuals randomized to SCORES (optimized dose) or to a video game playing control condition. In addition, the R33 phase will determine if changes in processing speed are associated with improved social functioning and decreasing attenuated positive symptoms. The support surround components of the intervention will remain constant across phases and conditions in the R33 phase to firmly establish the centrality of processing speed training for successful remediation. CONCLUSIONS The SCORES study is a completely virtual intervention that targets a core cognitive mechanism, processing speed, which is a rate-limiting factor to higher order behaviours and clinical outcomes in CHR-P adolescents. The virtual nature of this study should increase feasibility as well improve the future scalability of the intervention with considerable potential for future dissemination as a complete treatment package.
Collapse
Affiliation(s)
- Ricardo E. Carrión
- Northwell, New Hyde Park, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Institute of Behavioral Science, Feinstein Institutes of Medical Research, Manhasset, New York, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - Andrea M. Auther
- Northwell, New Hyde Park, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Danielle McLaughlin
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - Majnu John
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - Barbara A. Cornblatt
- Northwell, New Hyde Park, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Institute of Behavioral Science, Feinstein Institutes of Medical Research, Manhasset, New York, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| |
Collapse
|
9
|
Saccenti D, Lauro LJR, Crespi SA, Moro AS, Vergallito A, Grgič RG, Pretti N, Lamanna J, Ferro M. Boosting Psychotherapy With Noninvasive Brain Stimulation: The Whys and Wherefores of Modulating Neural Plasticity to Promote Therapeutic Change. Neural Plast 2024; 2024:7853199. [PMID: 39723244 PMCID: PMC11669434 DOI: 10.1155/np/7853199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The phenomenon of neural plasticity pertains to the intrinsic capacity of neurons to undergo structural and functional reconfiguration through learning and experiential interaction with the environment. These changes could manifest themselves not only as a consequence of various life experiences but also following therapeutic interventions, including the application of noninvasive brain stimulation (NIBS) and psychotherapy. As standalone therapies, both NIBS and psychotherapy have demonstrated their efficacy in the amelioration of psychiatric disorders' symptoms, with a certain variability in terms of effect sizes and duration. Consequently, scholars suggested the convenience of integrating the two interventions into a multimodal treatment to boost and prolong the therapeutic outcomes. Such an approach is still in its infancy, and the physiological underpinnings substantiating the effectiveness and utility of combined interventions are still to be clarified. Therefore, this opinion paper aims to provide a theoretical framework consisting of compelling arguments as to why adding NIBS to psychotherapy can promote therapeutic change. Namely, we will discuss the physiological effects of the two interventions, thus providing a rationale to explain the potential advantages of a combined approach.
Collapse
Affiliation(s)
- Daniele Saccenti
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Leonor J. Romero Lauro
- Department of Psychology and NeuroMi, University of Milano-Bicocca, Milan, Italy
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
| | - Sofia A. Crespi
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea S. Moro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Novella Pretti
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Clinical Psychology Center, Division of Neurology, Galliera Hospital, Genoa, Italy
| | - Jacopo Lamanna
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Riggins T, Ratliff EL, Horger MN, Spencer RMC. The importance of sleep for the developing brain. CURRENT SLEEP MEDICINE REPORTS 2024; 10:437-446. [PMID: 40123674 PMCID: PMC11928160 DOI: 10.1007/s40675-024-00307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 03/25/2025]
Abstract
Purpose of review This paper summarizes recent research regarding the possible contribution of sleep to brain development. Major milestones in brain development and the methods used to track these changes are reviewed. Changes in sleep, at both behavioral and neural levels, that take place during the same developmental periods are discussed. Finally, a few empirical examples that have contributed new knowledge regarding how sleep contributes to brain development are highlighted. Recent findings Empirical examples demonstrating associations between development of sleep and the brain include: predictive associations between SWA topography and myelin development, associations between SWS and hippocampal development, and links between sleep duration and both white matter volume and whole-brain functional connectivity in developing populations. Summary There is evidence that sleep is important for the developing brain. However, studies utilizing longitudinal, objective measures of sleep, high-resolution brain imaging, and behavioral measures across developmental are critical for understanding sleep function.
Collapse
|
11
|
Liu Y, Xiao T, Zhang W, Xu L, Zhang T. The relationship between physical activity and Internet addiction among adolescents in western China: a chain mediating model of anxiety and inhibitory control. PSYCHOL HEALTH MED 2024; 29:1602-1618. [DOI: 3 liu, y., xiao, t., zhang, w., xu, l., & zhang, t.(2024).the relationship between physical activity and internet addiction among adolescents in western china: a chain mediating model of anxiety and inhibitory control.psychology, health & medicine, 29(9), 1602–1618.https:/doi.org/10.1080/13548506.2024.2357694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/15/2024] [Indexed: 03/28/2025]
Affiliation(s)
- Yang Liu
- School of Sports Science, Jishou University, Jishou, China
| | - Ting Xiao
- School of Sports Science, Jishou University, Jishou, China
| | - Wei Zhang
- School of Kinesiology and Health Promotion, Dalian University of Technology, Dalian, China
| | - Lei Xu
- School of Sports Science, Jishou University, Jishou, China
- Institute of Physical Education, Shanxi University of Finance and Economics, Taiyuan, China
| | | |
Collapse
|
12
|
Butrus S, Monday HR, Yoo CJ, Feldman DE, Shekhar K. Molecular states underlying neuronal cell type development and plasticity in the whisker cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617106. [PMID: 39416021 PMCID: PMC11482765 DOI: 10.1101/2024.10.07.617106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mouse whisker somatosensory cortex (wS1) is a major model system to study the experience-dependent plasticity of cortical neuron physiology, morphology, and sensory coding. However, the role of sensory experience in regulating neuronal cell type development and gene expression in wS1 remains poorly understood. We assembled and annotated a transcriptomic atlas of wS1 during postnatal development comprising 45 molecularly distinct neuronal types that can be grouped into eight excitatory and four inhibitory neuron subclasses. Using this atlas, we examined the influence of whisker experience from postnatal day (P) 12, the onset of active whisking, to P22, on the maturation of molecularly distinct cell types. During this developmental period, when whisker experience was normal, ~250 genes were regulated in a neuronal subclass-specific fashion. At the resolution of neuronal types, we found that only the composition of layer (L) 2/3 glutamatergic neuronal types, but not other neuronal types, changed substantially between P12 and P22. These compositional changes resemble those observed previously in the primary visual cortex (V1), and the temporal gene expression changes were also highly conserved between the two regions. In contrast to V1, however, cell type maturation in wS1 is not substantially dependent on sensory experience, as 10-day full-face whisker deprivation did not influence the transcriptomic identity and composition of L2/3 neuronal types. A one-day competitive whisker deprivation protocol also did not affect cell type identity but induced moderate changes in plasticity-related gene expression. Thus, developmental maturation of cell types is similar in V1 and wS1, but sensory deprivation minimally affects cell type development in wS1.
Collapse
Affiliation(s)
- Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hannah R. Monday
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J. Yoo
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E. Feldman
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology; Vision Sciences and Optometry; University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Zhu Q, Han F, Yuan Y, Shen L. A TAN-dopamine interaction mechanism based computational model of basal ganglia in action selection. Cogn Neurodyn 2024; 18:2127-2144. [PMID: 39555280 PMCID: PMC11564715 DOI: 10.1007/s11571-023-10046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 10/14/2023] [Accepted: 11/26/2023] [Indexed: 11/19/2024] Open
Abstract
The basal ganglia (BG) plays a key role in action selection. Physiological experiments have suggested that the reciprocal interaction between tonically active neurons (TANs) and dopamine (DA) is closely related to reward-based behaviors. However, the functional role of TAN-DA interaction in action selection remains unclear. In this study, a cortico-BG model including TAN-DA interaction mechanism is developed to explore the action selection mechanism of BG. The results show that in the default case, direct, indirect, and hyperdirect pathways are responsible for promoting, suppressing, and stopping the formation of stimulus-action associations, respectively. In the case of reinforcement learning, a single rewarded action is selected according to the combination of the TAN-DA dependent reinforcement mechanism and Hebbian mechanism with a gradual transfer from the former to the latter. Besides, a longer exploratory phase occurs when switching the reward to a new action because additional trials are required to overcome the habituation previously induced by the Hebbian mechanism. In the Parkinsonian state, the reinforcement mechanism is disrupted, and the resting tremor occurs due to dopamine deficiency. Although the model's performance significantly improves due to the levodopa treatment, it is still inferior to the healthy state. This phenomenon is consistent with the experimental results and is explained theoretically via the TAN pause duration and phasic DA release. Furthermore, the model's performances in multi-action selection further verify the rationality of the TAN-DA-dependent reinforcement mechanism. Our work provides a more complete framework for studying the action selection mechanism of basal ganglia.
Collapse
Affiliation(s)
- Qinghua Zhu
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| | - Yuanyuan Yuan
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| | - Luyi Shen
- College of Science, Donghua University, Shanghai, 201620 China
| |
Collapse
|
14
|
Mekki SA, Sehlo MG, Youssef UM, Ibraheem OA, Ghazaly MR. The Effectiveness of Cognitive Behavioral Therapy versus Notched Sound Therapy in Adults with Chronic Subjective Tinnitus and Normal Hearing. Int Arch Otorhinolaryngol 2024; 28:e634-e642. [PMID: 39464350 PMCID: PMC11511275 DOI: 10.1055/s-0044-1788000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/01/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Tinnitus can be distressing, and it affects the quality of life (QoL) through psychological and cognitive impairments. Cognitive behavioral therapy (CBT) and notched sound therapy (NST) are tinnitus management approaches aiming to reduce symptoms and improve QoL via two different mechanisms. The CBT attains the cognitive principle, whereas the NST initiates tinnitus habituation. Objective To evaluate the effect of CBT and NST and compare their results in the management of chronic subjective tinnitus. Methods The present prospective study involved 64 adults with normal hearing and chronic subjective tinnitus. They were subjected to history taking, basic audiological evaluation, and extended high-frequency audiometry at 10 and 12.5 kHz. The participants were divided into two equal groups, the first treated with CBT and the second treated with NST. The psychoacoustic measures of tinnitus and the Arabic Questionnaire for Tinnitus Reaction (Arabic-QTR) were used to monitor the outcomes of both therapies. Results Both groups showed significant reduction in tinnitus severity according to the Arabic-QTR and tinnitus loudness matching. Improvement in the Arabic-QTR was better in the CBT group, while tinnitus loudness improvement was better in the NST group. Conclusion Both CBT and NST are effective in the management of chronic subjective tinnitus. In a comparison of the effect of the two therapies, CBT was found to be more effective in decreasing tinnitus-related distress, whereas SNT was found to be more helpful in reducing tinnitus loudness.
Collapse
Affiliation(s)
- Soha Abdelraouf Mekki
- Department of Otorhinolaryngology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed Gamal Sehlo
- Department of Psychiatry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ola Abdallah Ibraheem
- Department of Otorhinolaryngology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mai Ragab Ghazaly
- Department of Otorhinolaryngology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Liu Y, Xiao T, Zhang W, Xu L, Zhang T. The relationship between physical activity and Internet addiction among adolescents in western China: a chain mediating model of anxiety and inhibitory control. PSYCHOL HEALTH MED 2024; 29:1602-1618. [PMID: 38770920 DOI: 10.1080/13548506.2024.2357694] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
This study aims to investigate the mediating effect of anxiety and inhibitory control in the relationship between physical activity and Internet addiction (IA) among adolescents. A total of 951 adolescents from western China completed a self-report survey assessing physical activity, anxiety, inhibitory control, and IA. Descriptive analysis, correlation analysis, and mediation analysis were conducted using SPSS software and the Process plug-in. Controlling for age, gender, and only child status, the findings revealed a negative association between physical activity and anxiety, inhibitory control, and IA. Moreover, anxiety were positively correlated with inhibitory control and IA. Additionally, anxiety exhibited a positive association with inhibitory control. Notably, physical activity directly and negatively predicted IA in adolescents, while also indirectly predicting it through anxiety and inhibitory control. This study contributes to a deeper understanding of the mechanisms that underlie the complex effects of physical activity on IA among adolescents.
Collapse
Affiliation(s)
- Yang Liu
- School of Sports Science, Jishou University, Jishou, China
| | - Ting Xiao
- School of Sports Science, Jishou University, Jishou, China
| | - Wei Zhang
- School of Kinesiology and Health Promotion, Dalian University of Technology, Dalian, China
| | - Lei Xu
- School of Sports Science, Jishou University, Jishou, China
- Institute of Physical Education, Shanxi University of Finance and Economics, Taiyuan, China
| | | |
Collapse
|
16
|
Tavanai E, Rahimi V, Bandad M, Khalili ME, Fallahnezhad T. Efficacy of tailor-made notched music training (TMNMT) in the treatment of tinnitus: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2024; 281:5033-5049. [PMID: 38847844 DOI: 10.1007/s00405-024-08732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/12/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Numerous treatment modalities have been suggested for managing tinnitus. Tailor-Made Notched Music Training (TMNMT) is a viable strategy in music therapy for tinnitus management. Many research studies have examined the effectiveness and potential benefits of this intervention. This study aims to assess the effectiveness of TMNMT in treating chronic tinnitus. METHODS This systematic review and meta-analysis study used a research methodology that covered up until February 2023. The search was conducted across academic databases including Google Scholar, PubMed, Scopus, and Web of Science. A total of 234 papers were evaluated, and seven relevant clinical trials were included. RESULTS The meta-analysis, which included five studies using the tinnitus handicap inventory (THI), showed no statistically significant effect of TMNMT on tinnitus handicap after 3 and 6 months of intervention (dppc2: - 0.99, 95%CI - 2.94 to 0.96; I2 = 79.96%, p = 0.00), (dppc2 - 1.81, 95%CI - 5.63 to 2.01; I2 = 79.96%, p = 0.00). However, four out of five studies using the total Visual Analogue Scale (VAS) or its subscale showed positive effects of TMNMT on chronic tinnitus. Unfortunately, there were not enough articles to conduct a meta-analysis on this outcome. CONCLUSION Although the meta-analysis did not show a statistically significant effect of TMNMT on tinnitus handicap, the large effect size observed after at least 3 months of intervention suggests that this method may potentially decrease tinnitus handicap if more studies are conducted. Due to the limited number of studies, subgroup analysis could not be performed to analyze potential causes of heterogeneity. Therefore, further high-quality clinical trials are necessary to draw a definitive conclusion and evaluate the impact of different variables, techniques, and outcomes.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Enghelab Street, Pich-E-Shemiran, Tehran, Iran
| | - Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Enghelab Street, Pich-E-Shemiran, Tehran, Iran.
| | - Mina Bandad
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Enghelab Street, Pich-E-Shemiran, Tehran, Iran
| | | | - Tayyebe Fallahnezhad
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Enghelab Street, Pich-E-Shemiran, Tehran, Iran
| |
Collapse
|
17
|
Abellaneda-Pérez K, Delgado-Martínez I, Salgado P, Ginés JM, Guardiola R, Vaqué-Alcázar L, Roca-Ventura A, Molist-Puigdomènech R, Manero RM, Viles-Garcia M, Medrano-Martorell S, Bartrés-Faz D, Pascual-Leone A, Pérez-Solà V, Villalba-Martínez G. Structural connectivity modifications following deep brain stimulation of the subcallosal cingulate and nucleus accumbens in severe anorexia nervosa. Acta Neurochir (Wien) 2024; 166:364. [PMID: 39261306 DOI: 10.1007/s00701-024-06258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Anorexia nervosa (AN) is a mental health disorder characterized by significant weight loss and associated medical and psychological comorbidities. Conventional treatments for severe AN have shown limited effectiveness, leading to the exploration of novel interventional strategies, including deep brain stimulation (DBS). However, the neural mechanisms driving DBS interventions, particularly in psychiatric conditions, remain uncertain. This study aims to address this knowledge gap by examining changes in structural connectivity in patients with severe AN before and after DBS. METHODS Sixteen participants, including eight patients with AN and eight controls, underwent baseline T1-weigthed and diffusion tensor imaging (DTI) acquisitions. Patients received DBS targeting either the subcallosal cingulate (DBS-SCC, N = 4) or the nucleus accumbens (DBS-NAcc, N = 4) based on psychiatric comorbidities and AN subtype. Post-DBS neuroimaging evaluation was conducted in four patients. Data analyses were performed to compare structural connectivity between patients and controls and to assess connectivity changes after DBS intervention. RESULTS Baseline findings revealed that structural connectivity is significantly reduced in patients with AN compared to controls, mainly regarding callosal and subcallosal white matter (WM) tracts. Furthermore, pre- vs. post-DBS analyses in AN identified a specific increase after the intervention in two WM tracts: the anterior thalamic radiation and the superior longitudinal fasciculus-parietal bundle. CONCLUSIONS This study supports that structural connectivity is highly compromised in severe AN. Moreover, this investigation preliminarily reveals that after DBS of the SCC and NAcc in severe AN, there are WM modifications. These microstructural plasticity adaptations may signify a mechanistic underpinning of DBS in this psychiatric disorder.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Ignacio Delgado-Martínez
- Human Anatomy and Embryology Unit, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Purificación Salgado
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - José María Ginés
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - Rocío Guardiola
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | | | | | | | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Víctor Pérez-Solà
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
- Grupo de Investigación en Salud Mental del Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Gloria Villalba-Martínez
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain.
- Systems Neurologic and Neurotherapeutic Group at Research Institute Hospital del Mar, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
18
|
Shen Y, Jethe JV, Reid AP, Hehir J, Amaral MM, Ren C, Hao S, Zhou C, Fisher JAN. Label free, capillary-scale blood flow mapping in vivo reveals that low intensity focused ultrasound evokes persistent dilation in cortical microvasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579513. [PMID: 38370686 PMCID: PMC10871316 DOI: 10.1101/2024.02.08.579513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Non-invasive, low intensity focused ultrasound (FUS) is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported. The brain's ability to provide targeted blood flow to electrically active regions involve a multitude of non-neuronal cell types and signaling pathways in the cerebral vasculature; an open question is whether persistent effects can be attributed, at least partly, to vascular mechanisms. Using a novel in vivo optical approach, we found that microvascular responses, unlike larger vessels which prior investigations have explored, exhibit persistent dilation following sonication without the use of microbubbles. This finding and approach offers a heretofore unseen aspect of the effects of FUS in vivo and indicate that concurrent changes in neurovascular function may partially underly persistent neuromodulatory effects.
Collapse
|
19
|
Mangos N, Forgaard CJ, Gribble PL. Durability of motor learning by observing. J Neurophysiol 2024; 132:1025-1037. [PMID: 39163022 DOI: 10.1152/jn.00425.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Information about another person's movement kinematics obtained through visual observation activates brain regions involved in motor learning. Observation-related changes in these brain areas are associated with adaptive changes to feedforward neural control of muscle activation and behavioral improvements in limb movement control. However, little is known about the stability of these observation-related effects over time. Here, we used force channel trials to probe changes in lateral force production at various time points (1 min, 10 min, 30 min, 60 min, 24 h) after participants either physically performed, or observed another individual performing upper limb reaching movements that were perturbed by novel, robot-generated forces (a velocity-dependent force-field). Observers learned to predictively generate directionally and temporally specific compensatory forces during reaching, consistent with the idea that they acquired an internal representation of the novel dynamics. Participants who physically practiced in the force-field showed adaptation that was detectable at all time points, with some decay detected after 24 h. Observation-related adaptation was less temporally stable in comparison, decaying slightly after 1 h and undetectable at 24 h. Observation induced less adaptation overall than physical practice, which could explain differences in temporal stability. Visually acquired representations of movement dynamics are retained and continue to influence behavior for at least 1 h after observation.NEW & NOTEWORTHY We used force channel probes in an upper limb force-field reaching task in humans to compare the durability of learning-related changes that occurred through visual observation to those after physical movement practice. Visually acquired representations of movement dynamics continued to influence behavior for at least 1 h after observation. Our findings point to a 1-h window during which visual observation of another person could play a role in motor learning.
Collapse
Affiliation(s)
- Natalia Mangos
- Department of Psychology, Faculty of Social Science, Western University, London, Ontario, Canada
| | - Christopher J Forgaard
- Department of Psychology, Faculty of Social Science, Western University, London, Ontario, Canada
| | - Paul L Gribble
- Department of Psychology, Faculty of Social Science, Western University, London, Ontario, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
20
|
Yaeger CE, Vardalaki D, Zhang Q, Pham TLD, Brown NJ, Ji N, Harnett MT. A dendritic mechanism for balancing synaptic flexibility and stability. Cell Rep 2024; 43:114638. [PMID: 39167486 PMCID: PMC11403626 DOI: 10.1016/j.celrep.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Biological and artificial neural networks learn by modifying synaptic weights, but it is unclear how these systems retain previous knowledge and also acquire new information. Here, we show that cortical pyramidal neurons can solve this plasticity-versus-stability dilemma by differentially regulating synaptic plasticity at distinct dendritic compartments. Oblique dendrites of adult mouse layer 5 cortical pyramidal neurons selectively receive monosynaptic thalamic input, integrate linearly, and lack burst-timing synaptic potentiation. In contrast, basal dendrites, which do not receive thalamic input, exhibit conventional NMDA receptor (NMDAR)-mediated supralinear integration and synaptic potentiation. Congruently, spiny synapses on oblique branches show decreased structural plasticity in vivo. The selective decline in NMDAR activity and expression at synapses on oblique dendrites is controlled by a critical period of visual experience. Our results demonstrate a biological mechanism for how single neurons can safeguard a set of inputs from ongoing plasticity by altering synaptic properties at distinct dendritic domains.
Collapse
Affiliation(s)
- Courtney E Yaeger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dimitra Vardalaki
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Trang L D Pham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norma J Brown
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark T Harnett
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Xie L, Hu P, Guo Z, Chen M, Wang X, Du X, Li Y, Chen B, Zhang J, Zhao W, Liu S. Immediate and long-term efficacy of transcranial direct current stimulation (tCDS) in obsessive-compulsive disorder, posttraumatic stress disorder and anxiety disorders: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:343. [PMID: 39183315 PMCID: PMC11345433 DOI: 10.1038/s41398-024-03053-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Currently, there is still debate over the effectiveness of transcranial direct current stimulation (tDCS) in treating obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD) and anxiety disorders (ADs). To investigate the immediate and long-term effectiveness of tDCS in these diseases, we conducted a systematic review and quantitative analysis of existing literature on the treatment of OCD, PTSD, and ADs with tDCS. Following the PRISMA guidelines, we searched seven electronic databases and systematically retrieved articles published from May 2012 to June 2024 that compared the effects of active tDCS with sham stimulation in the treatment of these disorders. We included primary outcome measures such as the change scores in disorder-specific and general anxiety symptoms before and after treatment, as well as secondary outcomes such as changes in disorder-specific and general anxiety symptoms at follow-up. We also assessed the impact of tDCS on depressive symptoms. Fifteen papers met the eligibility criteria. Overall, the results of meta-analysis indicated that tDCS had a high effect in improving specific symptoms (SMD = -0.73, 95% CI: -1.09 to -0.37) and general anxiety symptoms (SMD = -0.75; 95% CI: -1.23 to -0.26) in OCD, PTSD and ADs, with effects lasting up to 1 month and showing a moderate effect size. Furthermore, tDCS demonstrated immediate and significant alleviation of depressive symptoms in these diseases. This study concludes that tDCS can serve as a non-invasive brain stimulation technology for treating these disorders, and the therapeutic effects can be maintained for a period of time.
Collapse
Affiliation(s)
- Luxin Xie
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
- School of Humanities and Social Sciences, Shanxi Medical University, Jinzhong, China
| | - Peina Hu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
- School of Humanities and Social Sciences, Shanxi Medical University, Jinzhong, China
| | - Zhenglong Guo
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Miao Chen
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao Wang
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Li
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Chen
- Department of Mental Health, Sinopharm North Hospital, Baotou, China
| | - Jihui Zhang
- Department of Mental Health, Sinopharm North Hospital, Baotou, China
| | - Wentao Zhao
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Sha Liu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
22
|
Wang Y, Yang H, Li N, Wang L, Guo C, Ma W, Liu S, Peng C, Chen J, Song H, Chen H, Ma X, Yi J, Lian J, Kong W, Dong J, Tu X, Shah M, Tian X, Huang Z. A Novel Ubiquitin Ligase Adaptor PTPRN Suppresses Seizure Susceptibility through Endocytosis of Na V1.2 Sodium Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400560. [PMID: 38874331 PMCID: PMC11304301 DOI: 10.1002/advs.202400560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy. PTPRN recruits the NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L) to NaV1.2 sodium channels, facilitating NEDD4L-mediated ubiquitination, and endocytosis of NaV1.2. Knockout of PTPRN in hippocampal granule cells leads to augmented NaV1.2-mediated sodium currents and higher intrinsic excitability, resulting in increased seizure susceptibility in transgenic mice. Conversely, adeno-associated virus-mediated delivery of PTPRN in the dentate gyrus region decreases intrinsic excitability and reduces seizure susceptibility. Moreover, the present findings indicate that PTPRN exerts a selective modulation effect on voltage-gated sodium channels. Collectively, PTPRN plays a significant role in regulating intrinsic excitability and seizure susceptibility, suggesting a potential strategy for precise modulation of NaV1.2 channels' function.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hui Yang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lili Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chang Guo
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weining Ma
- Department of NeurologyShengjing Hospital Affiliated to China Medical UniversityShenyang110022China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jiexin Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hedan Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingyun Yi
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingjing Lian
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weikaixin Kong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Mala Shah
- UCL School of PharmacyUniversity College LondonLondonWC1N 1AXUK
| | - Xin Tian
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
23
|
Naveed K, Rashidi-Ranjbar N, Kumar S, Zomorrodi R, Blumberger DM, Fischer CE, Sanches M, Mulsant BH, Pollock BG, Voineskos AN, Rajji TK. Effect of dorsolateral prefrontal cortex structural measures on neuroplasticity and response to paired-associative stimulation in Alzheimer's dementia. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230233. [PMID: 38853564 PMCID: PMC11343312 DOI: 10.1098/rstb.2023.0233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 06/11/2024] Open
Abstract
Long-term potentiation (LTP)-like activity can be induced by stimulation protocols such as paired associative stimulation (PAS). We aimed to determine whether PAS-induced LTP-like activity (PAS-LTP) of the dorsolateral prefrontal cortex (DLPFC) is associated with cortical thickness and other structural measures impaired in Alzheimer's dementia (AD). We also explored longitudinal relationships between these brain structures and PAS-LTP response after a repetitive PAS (rPAS) intervention. Mediation and regression analyses were conducted using data from randomized controlled trials with AD and healthy control participants. PAS-electroencephalography assessed DLPFC PAS-LTP. DLPFC thickness and surface area were acquired from T1-weighted magnetic resonance imaging. Fractional anisotropy and mean diffusivity (MD) of the superior longitudinal fasciculus (SLF)-a tract important to induce PAS-LTP-were measured with diffusion-weighted imaging. AD participants exhibited reduced DLPFC thickness and increased SLF MD. There was also some evidence that reduction in DLPFC thickness mediates DLPFC PAS-LTP impairment. Longitudinal analyses showed preliminary evidence that SLF MD, and to a lesser extent DLPFC thickness, is associated with DLPFC PAS-LTP response to active rPAS. This study expands our understanding of the relationships between brain structural changes and neuroplasticity. It provides promising evidence for a structural predictor to improving neuroplasticity in AD with neurostimulation. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- K. Naveed
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - N. Rashidi-Ranjbar
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, OntarioM5B 1T8, Canada
| | - S. Kumar
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - R. Zomorrodi
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
| | - D. M. Blumberger
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - C. E. Fischer
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, OntarioM5B 1T8, Canada
| | - M. Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, 60 White Squirrel Way, Toronto, OntarioM6J 1H4, Canada
| | - B. H. Mulsant
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - B. G. Pollock
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - A. N. Voineskos
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - T. K. Rajji
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| |
Collapse
|
24
|
Swissa E, Monsonego U, Yang LT, Schori L, Kamintsky L, Mirloo S, Burger I, Uzzan S, Patel R, Sudmant PH, Prager O, Kaufer D, Friedman A. Cortical plasticity is associated with blood-brain barrier modulation. eLife 2024; 12:RP89611. [PMID: 39024007 PMCID: PMC11257677 DOI: 10.7554/elife.89611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Brain microvessels possess the unique properties of a blood-brain barrier (BBB), tightly regulating the passage of molecules from the blood to the brain neuropil and vice versa. In models of brain injury, BBB dysfunction and the associated leakage of serum albumin to the neuropil have been shown to induce pathological plasticity, neuronal hyper-excitability, and seizures. The effect of neuronal activity on BBB function and whether it plays a role in plasticity in the healthy brain remain unclear. Here we show that neuronal activity induces modulation of microvascular permeability in the healthy brain and that it has a role in local network reorganization. Combining simultaneous electrophysiological recording and vascular imaging with transcriptomic analysis in rats, and functional and BBB-mapping MRI in human subjects, we show that prolonged stimulation of the limb induces a focal increase in BBB permeability in the corresponding somatosensory cortex that is associated with long-term synaptic plasticity. We further show that the increased microvascular permeability depends on neuronal activity and involves caveolae-mediated transcytosis and transforming growth factor β signaling. Our results reveal a role of BBB modulation in cortical plasticity in the healthy brain, highlighting the importance of neurovascular interactions for sensory experience and learning.
Collapse
Affiliation(s)
- Evyatar Swissa
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Uri Monsonego
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lynn T Yang
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Lior Schori
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Sheida Mirloo
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Itamar Burger
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Rishi Patel
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ofer Prager
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| |
Collapse
|
25
|
Wang Z, Hu Q, Tian C, Wang R, Jiao Q, Chen F, Wu T, Wang J, Zhu Y, Liu A, Zhang W, Li J, Shen H. Prophylactic Effects of n-Acethylcysteine on Inflammation-induced Depression-like Behaviors in Mice. Neuroscience 2024; 549:42-54. [PMID: 38729599 DOI: 10.1016/j.neuroscience.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Depression, affecting individuals worldwide, is a prevalent mental disease, with an increasing incidence. Numerous studies have been conducted on depression, yet its pathogenesis remains elusive. Recent advancements in research indicate that disturbances in synaptic transmission, synaptic plasticity, and reduced neurotrophic factor expression significantly contribute to depression's pathogenesis. In our study, we utilized adult male C57BL/6J mice. Lipopolysaccharide (LPS) can induce both chronic and acute depression-like symptoms in mice, a widely used model for studying depression associated with inflammation. N-acetylcysteine (NAC) exhibits anti-inflammatory and ameliorative effects on depressive symptoms. This study sought to determine whether NAC use could mitigate inflammatory depressive behavior through the enhancement of synaptic transmission, synaptic plasticity, and increasing levels of brain-derived neurotrophic factor (BDNF). In this study, we discovered that in mice modeled with depression-like symptoms, the expression levels of dendrites, BDNF, and miniature excitatory postsynaptic potential (mEPSC) in glutamatergic neurons, as well as the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPARs) GluA1 and GluA2 subunits, were significantly decreased. These findings suggest an impairment in the synaptic transmission of glutamatergic neurons. Following treatment with NAC, the previously mentioned levels improved, indicating an enhancement in both synaptic transmission and synaptic plasticity. Our results suggest that NAC exerts a protective effect on mouse models of inflammatory depression, potentially through the enhancement of synaptic transmission and plasticity, as well as the restoration of neurotrophic factor expression. These findings offer vital animal experimental evidence supporting NAC's role in mitigating inflammatory depressive behaviors.
Collapse
Affiliation(s)
- Zhenhuan Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China; Comprehensive Development Service Center, Tianjin Baodi District Health Commission, Tianjin, China
| | - Chao Tian
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ruipeng Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qingyan Jiao
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Feng Chen
- Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jialiang Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yuxuan Zhu
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China.
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China.
| | - Hui Shen
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
26
|
Yamaguchi M. Connectivity of the olfactory tubercle: inputs, outputs, and their plasticity. Front Neural Circuits 2024; 18:1423505. [PMID: 38841557 PMCID: PMC11150588 DOI: 10.3389/fncir.2024.1423505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The olfactory tubercle (OT) is a unique part of the olfactory cortex of the mammal brain in that it is also a component of the ventral striatum. It is crucially involved in motivational behaviors, particularly in adaptive olfactory learning. This review introduces the basic properties of the OT, its synaptic connectivity with other brain areas, and the plasticity of the connectivity associated with learning behavior. The adaptive properties of olfactory behavior are discussed further based on the characteristics of OT neuronal circuits.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
27
|
Dutta P, Baishya R. Pupillary dynamics, accommodation and vergence in concussion. Clin Exp Optom 2024; 107:385-394. [PMID: 38325849 DOI: 10.1080/08164622.2024.2311692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Concussion, which is usually associated with head injuries, has received considerable attention in recent years because of its possible long-term cognitive and visual consequences. The review summarised the mild traumatic brain injury literature. Pupillary dynamics, which are primarily mediated by the autonomic nervous system, play an important function in regulating the amount of light entering the eye, but they can be dramatically impacted after a concussion. This can result in aberrant pupillary responses, which may have ramifications for light sensitivity, a common post-concussion symptom. In concussed individuals, accommodation and vergence - the visual processes responsible for focusing on near and distant objects - might be interrupted, potentially leading to fuzzy vision, eyestrain, and difficulty with tasks that require precise visual coordination. Understanding the delicate interplay between these three components of vision in the setting of concussions is critical for creating more targeted diagnostic and rehabilitative techniques, ultimately enhancing the quality of life for those who have had head injuries.
Collapse
Affiliation(s)
- Pritam Dutta
- Department of Optometry, Ridley College of Optometry, a unit of Chandraprabha Eye Hospital, Assam, India
| | - Reeta Baishya
- Department of Physiology, Gauhati Medical College, Gauhati, India
| |
Collapse
|
28
|
Smirnov IV, Osipova AA, Smirnova MP, Borodinova AA, Volgushev MA, Malyshev AY. Plasticity of Response Properties of Mouse Visual Cortex Neurons Induced by Optogenetic Tetanization In Vivo. Curr Issues Mol Biol 2024; 46:3294-3312. [PMID: 38666936 PMCID: PMC11049003 DOI: 10.3390/cimb46040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Heterosynaptic plasticity, along with Hebbian homosynaptic plasticity, is an important mechanism ensuring the stable operation of learning neuronal networks. However, whether heterosynaptic plasticity occurs in the whole brain in vivo, and what role(s) in brain function in vivo it could play, remains unclear. Here, we used an optogenetics approach to apply a model of intracellular tetanization, which was established and employed to study heterosynaptic plasticity in brain slices, to study the plasticity of response properties of neurons in the mouse visual cortex in vivo. We show that optogenetically evoked high-frequency bursts of action potentials (optogenetic tetanization) in the principal neurons of the visual cortex induce long-term changes in the responses to visual stimuli. Optogenetic tetanization had distinct effects on responses to different stimuli, as follows: responses to optimal and orthogonal orientations decreased, responses to null direction did not change, and responses to oblique orientations increased. As a result, direction selectivity of the neurons decreased and orientation tuning became broader. Since optogenetic tetanization was a postsynaptic protocol, applied in the absence of sensory stimulation, and, thus, without association of presynaptic activity with bursts of action potentials, the observed changes were mediated by mechanisms of heterosynaptic plasticity. We conclude that heterosynaptic plasticity can be induced in vivo and propose that it may play important homeostatic roles in operation of neural networks by helping to prevent runaway dynamics of responses to visual stimuli and to keep the tuning of neuronal responses within the range optimized for the encoding of multiple features in population activity.
Collapse
Affiliation(s)
- Ivan V. Smirnov
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia; (I.V.S.); (A.A.O.); (M.P.S.); (A.A.B.)
| | - Aksiniya A. Osipova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia; (I.V.S.); (A.A.O.); (M.P.S.); (A.A.B.)
| | - Maria P. Smirnova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia; (I.V.S.); (A.A.O.); (M.P.S.); (A.A.B.)
| | - Anastasia A. Borodinova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia; (I.V.S.); (A.A.O.); (M.P.S.); (A.A.B.)
| | - Maxim A. Volgushev
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Alexey Y. Malyshev
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia; (I.V.S.); (A.A.O.); (M.P.S.); (A.A.B.)
| |
Collapse
|
29
|
Orellana V. D, Donoghue JP, Vargas-Irwin CE. Low frequency independent components: Internal neuromarkers linking cortical LFPs to behavior. iScience 2024; 27:108310. [PMID: 38303697 PMCID: PMC10831875 DOI: 10.1016/j.isci.2023.108310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 02/03/2024] Open
Abstract
Local field potentials (LFPs) in the primate motor cortex have been shown to reflect information related to volitional movements. However, LFPs are composite signals that receive contributions from multiple neural sources, producing a complex mix of component signals. Using a blind source separation approach, we examined the components of neural activity recorded using multielectrode arrays in motor areas of macaque monkeys during a grasping and lifting task. We found a set of independent components in the low-frequency LFP with high temporal and spatial consistency associated with each task stage. We observed that ICs often arise from electrodes distributed across multiple cortical areas and provide complementary information to external behavioral markers, specifically in task stage detection and trial alignment. Taken together, our results show that it is possible to separate useful independent components of the LFP associated with specific task-related events, potentially representing internal markers of transition between cortical network states.
Collapse
Affiliation(s)
- Diego Orellana V.
- Engineering Faculty, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Faculty of Energy, Universidad Nacional de Loja, Loja 110101, Ecuador
| | - John P. Donoghue
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Robert J and Nancy D Carney Institute for Brain Science, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, Department of Veterans Affairs Medical Center, Providence, RI 02908, USA
| | - Carlos E. Vargas-Irwin
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Robert J and Nancy D Carney Institute for Brain Science, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, Department of Veterans Affairs Medical Center, Providence, RI 02908, USA
| |
Collapse
|
30
|
Huang L, Hardyman F, Edwards M, Galliano E. Deprivation-Induced Plasticity in the Early Central Circuits of the Rodent Visual, Auditory, and Olfactory Systems. eNeuro 2024; 11:ENEURO.0435-23.2023. [PMID: 38195533 PMCID: PMC11059429 DOI: 10.1523/eneuro.0435-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Activity-dependent neuronal plasticity is crucial for animals to adapt to dynamic sensory environments. Traditionally, it has been investigated using deprivation approaches in animal models primarily in sensory cortices. Nevertheless, emerging evidence emphasizes its significance in sensory organs and in subcortical regions where cranial nerves relay information to the brain. Additionally, critical questions started to arise. Do different sensory modalities share common cellular mechanisms for deprivation-induced plasticity at these central entry points? Does the deprivation duration correlate with specific plasticity mechanisms? This study systematically reviews and meta-analyzes research papers that investigated visual, auditory, or olfactory deprivation in rodents of both sexes. It examines the consequences of sensory deprivation in homologous regions at the first central synapse following cranial nerve transmission (vision - lateral geniculate nucleus and superior colliculus; audition - ventral and dorsal cochlear nucleus; olfaction - olfactory bulb). The systematic search yielded 91 papers (39 vision, 22 audition, 30 olfaction), revealing substantial heterogeneity in publication trends, experimental methods, measures of plasticity, and reporting across the sensory modalities. Despite these differences, commonalities emerged when correlating plasticity mechanisms with the duration of sensory deprivation. Short-term deprivation (up to 1 d) reduced activity and increased disinhibition, medium-term deprivation (1 d to a week) involved glial changes and synaptic remodeling, and long-term deprivation (over a week) primarily led to structural alterations. These findings underscore the importance of standardizing methodologies and reporting practices. Additionally, they highlight the value of cross-modal synthesis for understanding how the nervous system, including peripheral, precortical, and cortical areas, respond to and compensate for sensory inputs loss.
Collapse
Affiliation(s)
- Li Huang
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Francesca Hardyman
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Megan Edwards
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Elisa Galliano
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| |
Collapse
|
31
|
Parameshwarappa V, Norena AJ. The effects of acute and chronic noise trauma on stimulus-evoked activity across primary auditory cortex layers. J Neurophysiol 2024; 131:225-240. [PMID: 38198658 DOI: 10.1152/jn.00427.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Exposure to intense noise environments is a major cause of sensorineural hearing loss and auditory perception disorders, such as tinnitus and hyperacusis, which may have a central origin. The effects of noise-induced hearing loss on the auditory cortex have been documented in many studies. One limitation of these studies, however, is that the effects of noise trauma have been mostly studied at the granular layer (i.e, the main cortical recipient of thalamic input), while the cortex is a very complex structure, with six different layers each having its own pattern of connectivity and role in sensory processing. The present study aims to investigate the effects of acute and chronic noise trauma on the laminar pattern of stimulus-evoked activity in the primary auditory cortex of the anesthetized guinea pig. We show that acute and chronic noise trauma are both followed by an increase in stimulus-evoked cortical responses, mostly in the granular and supragranular layers. The cortical responses are more monotonic as a function of the intensity level after noise trauma. There was minimal change, if any, in local field potential (LFP) amplitude after acute noise trauma, while LFP amplitude was enhanced after chronic noise trauma. Finally, LFP and the current source density analysis suggest that acute but more specifically chronic noise trauma is associated with the emergence of a new sink in the supragranular layer. This result suggests that supragranular layers become a major input recipient. We discuss the possible mechanisms and functional implications of these changes.NEW & NOTEWORTHY Our study shows that cortical activity is enhanced after trauma and that the sequence of cortical column activation during stimulus-evoked response is altered, i.e. the supragranular layer becomes a major input recipient. We speculate that these large cortical changes may play a key role in the auditory hypersensitivity (hyperacusis) that can be triggered after noise trauma in human subjects.
Collapse
Affiliation(s)
- Vinay Parameshwarappa
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Arnaud J Norena
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| |
Collapse
|
32
|
Eisenstein T, Furman-Haran E, Tal A. Early excitatory-inhibitory cortical modifications following skill learning are associated with motor memory consolidation and plasticity overnight. Nat Commun 2024; 15:906. [PMID: 38291029 PMCID: PMC10828487 DOI: 10.1038/s41467-024-44979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Consolidation of motor memories is vital to offline enhancement of new motor skills and involves short and longer-term offline processes following learning. While emerging evidence link glutamate and GABA dynamics in the primary motor cortex (M1) to online motor skill practice, its relationship with offline consolidation processes in humans is unclear. Using two-day repeated measures of behavioral and multimodal neuroimaging data before and following motor sequence learning, we show that short-term glutamatergic and GABAergic responses in M1 within minutes after learning were associated with longer-term learning-induced functional, structural, and behavioral modifications overnight. Furthermore, Glutamatergic and GABAergic modifications were differentially associated with different facets of motor memory consolidation. Our results point to unique and distinct roles of Glutamate and GABA in motor memory consolidation processes in the human brain across timescales and mechanistic levels, tying short-term changes on the neurochemical level to overnight changes in macroscale structure, function, and behavior.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Eisenstein T, Furman-Haran E, Tal A. Increased cortical inhibition following brief motor memory reactivation supports reconsolidation and overnight offline learning gains. Proc Natl Acad Sci U S A 2023; 120:e2303985120. [PMID: 38113264 PMCID: PMC10756311 DOI: 10.1073/pnas.2303985120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/16/2023] [Indexed: 12/21/2023] Open
Abstract
Practicing motor skills stabilizes and strengthens motor memories by repeatedly reactivating and reconsolidating them. The conventional view, by which a repetitive practice is required for substantially improving skill performance, has been recently challenged by behavioral experiments, in which even brief reactivations of the motor memory have led to significant improvements in skill performance. However, the mechanisms which facilitate brief reactivation-induced skill improvements remain elusive. While initial memory consolidation has been repeatedly associated with increased neural excitation and disinhibition, reconsolidation has been shown to involve a poorly understood mixture of both excitatory and inhibitory alterations. Here, we followed a 3-d reactivation-reconsolidation framework to examine whether the excitatory/inhibitory mechanisms which underlie brief reactivation and repetitive practice differ. Healthy volunteers practiced a motor sequence learning task using either brief reactivation or repetitive practice and were assessed using ultrahigh field (7T) magnetic resonance spectroscopy at the primary motor cortex (M1). We found that increased inhibition (GABA concentrations) and decreased excitation/inhibition (glutamate/GABA ratios) immediately following the brief reactivation were associated with overnight offline performance gains. These gains were on par with those exhibited following repetitive practice, where no correlations with inhibitory or excitatory changes were observed. Our findings suggest that brief reactivation and repetitive practice depend on fundamentally different neural mechanisms and that early inhibition-and not excitation-is particularly important in supporting the learning gains exhibited by brief reactivation.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
34
|
Kourosh-Arami M, Komaki A, Gholami M, Marashi SH, Hejazi S. Heterosynaptic plasticity-induced modulation of synapses. J Physiol Sci 2023; 73:33. [PMID: 38057729 PMCID: PMC10717068 DOI: 10.1186/s12576-023-00893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Plasticity is a common feature of synapses that is stated in different ways and occurs through several mechanisms. The regular action of the brain needs to be balanced in several neuronal and synaptic features, one of which is synaptic plasticity. The different homeostatic processes, including the balance between excitation/inhibition or homeostasis of synaptic weights at the single-neuron level, may obtain this. Homosynaptic Hebbian-type plasticity causes associative alterations of synapses. Both homosynaptic and heterosynaptic plasticity characterize the corresponding aspects of adjustable synapses, and both are essential for the regular action of neural systems and their plastic synapses.In this review, we will compare homo- and heterosynaptic plasticity and the main factors affecting the direction of plastic changes. This review paper will also discuss the diverse functions of the different kinds of heterosynaptic plasticity and their properties. We argue that a complementary system of heterosynaptic plasticity demonstrates an essential cellular constituent for homeostatic modulation of synaptic weights and neuronal activity.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Gholami
- Department of Physiology, Medical College, Arak University of Medical Sciences, Arak, Iran
| | | | - Sara Hejazi
- Department of Industrial Engineering & Management Systems, University of Central Florida, Orlando, USA
| |
Collapse
|
35
|
Pak S, Lee M, Lee S, Zhao H, Baeg E, Yang S, Yang S. Cortical surface plasticity promotes map remodeling and alleviates tinnitus in adult mice. Prog Neurobiol 2023; 231:102543. [PMID: 37924858 DOI: 10.1016/j.pneurobio.2023.102543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Tinnitus induced by hearing loss is caused primarily by irreversible damage to the peripheral auditory system, which results in abnormal neural responses and frequency map disruption in the central auditory system. It remains unclear whether and how electrical rehabilitation of the auditory cortex can alleviate tinnitus. We hypothesize that stimulation of the cortical surface can alleviate tinnitus by enhancing neural responses and promoting frequency map reorganization. To test this hypothesis, we assessed and activated cortical maps using our newly designed graphene-based electrode array with a noise-induced tinnitus animal model. We found that cortical surface stimulation increased cortical activity, reshaped sensory maps, and alleviated hearing loss-induced tinnitus behavior in adult mice. These effects were likely due to retained long-term synaptic potentiation capabilities, as shown in cortical slices from the mice model. These findings suggest that cortical surface activation can be used to facilitate practical functional recovery from phantom percepts induced by sensory deprivation. They also provide a working principle for various treatment methods that involve electrical rehabilitation of the cortex.
Collapse
Affiliation(s)
- Sojeong Pak
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Minseok Lee
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong; Department of Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sangwon Lee
- Department of Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea; gBrain Inc., Incheon 21984, Republic of Korea
| | - Huilin Zhao
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sunggu Yang
- Department of Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon 22012, Republic of Korea; gBrain Inc., Incheon 21984, Republic of Korea.
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
36
|
de Souza DLS, Costa HMGES, Neta FI, Morais PLADG, Guerra LMDM, Guzen FP, de Oliveira LC, Cavalcanti JRLDP, de Albuquerque CC, de Vasconcelos CL. Brain Neuroplasticity after Treatment with Antiseizure: A Review. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:665-675. [PMID: 37859439 PMCID: PMC10591163 DOI: 10.9758/cpn.23.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 10/21/2023]
Abstract
Epilepsy is a disease characterized by the periodic occurrence of seizures. Seizures can be controlled by antiseizure medications, which can improve the lives of individuals with epilepsy when given proper treatment. Therefore, this study aimed to review the scientific literature on brain neuroplasticity after treatment with antiseizure drugs in different regions of the brain. According to the findings, that several antiseizure, such as lamotrigine, diazepam, levetiracetam, and valproic acid, in addition to controlling seizures, can also act on neuroplasticity in different brain regions. The study of this topic becomes important, as it will help to understand the neuroplastic mechanisms of these drugs, in addition to helping to improve the effectiveness of these drugs in controlling the disease.
Collapse
Affiliation(s)
- Débora Lopes Silva de Souza
- Faculty of Health Sciences, Department of Biomedical Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| | | | - Francisca Idalina Neta
- Faculty of Health Sciences, Department of Biomedical Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| | | | - Luís Marcos de Medeiros Guerra
- Faculty of Health Sciences, Department of Biomedical Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| | - Fausto Pierdoná Guzen
- Faculty of Health Sciences, Department of Biomedical Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| | | | | | - Cynthia Cavalcanti de Albuquerque
- Faculty of Exact and Natural Sciences, Department of Biological Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| | - Claudio Lopes de Vasconcelos
- Faculty of Exact and Natural Sciences, Department of Chemistry, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
| |
Collapse
|
37
|
Lammert JM, Levine AT, Koshkebaghi D, Butler BE. Sign language experience has little effect on face and biomotion perception in bimodal bilinguals. Sci Rep 2023; 13:15328. [PMID: 37714887 PMCID: PMC10504335 DOI: 10.1038/s41598-023-41636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
Sensory and language experience can affect brain organization and domain-general abilities. For example, D/deaf individuals show superior visual perception compared to hearing controls in several domains, including the perception of faces and peripheral motion. While these enhancements may result from sensory loss and subsequent neural plasticity, they may also reflect experience using a visual-manual language, like American Sign Language (ASL), where signers must process moving hand signs and facial cues simultaneously. In an effort to disentangle these concurrent sensory experiences, we examined how learning sign language influences visual abilities by comparing bimodal bilinguals (i.e., sign language users with typical hearing) and hearing non-signers. Bimodal bilinguals and hearing non-signers completed online psychophysical measures of face matching and biological motion discrimination. No significant group differences were observed across these two tasks, suggesting that sign language experience is insufficient to induce perceptual advantages in typical-hearing adults. However, ASL proficiency (but not years of experience or age of acquisition) was found to predict performance on the motion perception task among bimodal bilinguals. Overall, the results presented here highlight a need for more nuanced study of how linguistic environments, sensory experience, and cognitive functions impact broad perceptual processes and underlying neural correlates.
Collapse
Affiliation(s)
- Jessica M Lammert
- Department of Psychology, University of Western Ontario, Western Interdisciplinary Research Building Room 6126, London, ON, N6A 5C2, Canada
- Western Institute for Neuroscience, University of Western Ontario, London, Canada
| | - Alexandra T Levine
- Department of Psychology, University of Western Ontario, Western Interdisciplinary Research Building Room 6126, London, ON, N6A 5C2, Canada
- Western Institute for Neuroscience, University of Western Ontario, London, Canada
| | - Dursa Koshkebaghi
- Undergraduate Neuroscience Program, University of Western Ontario, London, Canada
| | - Blake E Butler
- Department of Psychology, University of Western Ontario, Western Interdisciplinary Research Building Room 6126, London, ON, N6A 5C2, Canada.
- Western Institute for Neuroscience, University of Western Ontario, London, Canada.
- National Centre for Audiology, University of Western Ontario, London, Canada.
- Children's Health Research Institute, Lawson Health Research, London, Canada.
| |
Collapse
|
38
|
Sha MFR, Koga Y, Murata Y, Taniguchi M, Yamaguchi M. Learning-dependent structural plasticity of intracortical and sensory connections to functional domains of the olfactory tubercle. Front Neurosci 2023; 17:1247375. [PMID: 37680965 PMCID: PMC10480507 DOI: 10.3389/fnins.2023.1247375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
The olfactory tubercle (OT), which is a component of the olfactory cortex and ventral striatum, has functional domains that play a role in odor-guided motivated behaviors. Learning odor-guided attractive and aversive behavior activates the anteromedial (am) and lateral (l) domains of the OT, respectively. However, the mechanism driving learning-dependent activation of specific OT domains remains unknown. We hypothesized that the neuronal connectivity of OT domains is plastically altered through olfactory experience. To examine the plastic potential of synaptic connections to OT domains, we optogenetically stimulated intracortical inputs from the piriform cortex or sensory inputs from the olfactory bulb to the OT in mice in association with a food reward for attractive learning and electrical foot shock for aversive learning. For both intracortical and sensory connections, axon boutons that terminated in the OT domains were larger in the amOT than in the lOT for mice exhibiting attractive learning and larger in the lOT than in the amOT for mice exhibiting aversive learning. These results indicate that both intracortical and sensory connections to the OT domains have learning-dependent plastic potential, suggesting that this plasticity underlies learning-dependent activation of specific OT domains and the acquisition of appropriate motivated behaviors.
Collapse
Affiliation(s)
| | | | | | | | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
39
|
Dinse HR, Höffken O, Tegenthoff M. Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning - a minireview. Front Hum Neurosci 2023; 17:1235487. [PMID: 37662638 PMCID: PMC10469727 DOI: 10.3389/fnhum.2023.1235487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability.
Collapse
|
40
|
Meiser S, Sleeboom JM, Arkhypchuk I, Sandbote K, Kretzberg J. Cell anatomy and network input explain differences within but not between leech touch cells at two different locations. Front Cell Neurosci 2023; 17:1186997. [PMID: 37565030 PMCID: PMC10411907 DOI: 10.3389/fncel.2023.1186997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Mechanosensory cells in the leech share several common features with mechanoreceptors in the human glabrous skin. Previous studies showed that the six T (touch) cells in each body segment of the leech are highly variable in their responses to somatic current injection and change their excitability over time. Here, we investigate three potential reasons for this variability in excitability by comparing the responses of T cells at two soma locations (T2 and T3): (1) Differential effects of time-dependent changes in excitability, (2) divergent synaptic input from the network, and (3) different anatomical structures. These hypotheses were explored with a combination of electrophysiological double recordings, 3D reconstruction of neurobiotin-filled cells, and compartmental model simulations. Current injection triggered significantly more spikes with shorter latency and larger amplitudes in cells at soma location T2 than at T3. During longer recordings, cells at both locations increased their excitability over time in the same way. T2 and T3 cells received the same amount of synaptic input from the unstimulated network, and the polysynaptic connections between both T cells were mutually symmetric. However, we found a striking anatomical difference: While in our data set all T2 cells innervated two roots connecting the ganglion with the skin, 50% of the T3 cells had only one root process. The sub-sample of T3 cells with one root process was significantly less excitable than the T3 cells with two root processes and the T2 cells. To test if the additional root process causes higher excitability, we simulated the responses of 3D reconstructed cells of both anatomies with detailed multi-compartment models. The anatomical subtypes do not differ in excitability when identical biophysical parameters and a homogeneous channel distribution are assumed. Hence, all three hypotheses may contribute to the highly variable T cell responses, but none of them is the only factor accounting for the observed systematic difference in excitability between cells at T2 vs. T3 soma location. Therefore, future patch clamp and modeling studies are needed to analyze how biophysical properties and spatial distribution of ion channels on the cell surface contribute to the variability and systematic differences of electrophysiological phenotypes.
Collapse
Affiliation(s)
- Sonja Meiser
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jana Marie Sleeboom
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Institute of Physiology II, Faculty of Medicine, University Clinic Bonn (UKB), University of Bonn, Bonn, Germany
| | - Ihor Arkhypchuk
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Kevin Sandbote
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Cluster of Excellence Hearing4all, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
41
|
Gheres KW, Ünsal HS, Han X, Zhang Q, Turner KL, Zhang N, Drew PJ. Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice. Commun Biol 2023; 6:738. [PMID: 37460780 PMCID: PMC10352318 DOI: 10.1038/s42003-023-05121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drive vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes.
Collapse
Affiliation(s)
- Kyle W Gheres
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hayreddin S Ünsal
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Electrical and Electronics Engineering, Abdullah Gul University, Kayseri, Türkiye
| | - Xu Han
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick J Drew
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA.
- Departments of Neurosurgery and Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
42
|
Jeste DV, Malaspina D, Bagot K, Barch DM, Cole S, Dickerson F, Dilmore A, Ford CL, Karcher NR, Luby J, Rajji T, Pinto-Tomas AA, Young LJ. Review of Major Social Determinants of Health in Schizophrenia-Spectrum Psychotic Disorders: III. Biology. Schizophr Bull 2023; 49:867-880. [PMID: 37023360 PMCID: PMC10318888 DOI: 10.1093/schbul/sbad031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
BACKGROUND Social determinants of health (SDoHs) are nonmedical factors that significantly impact health and longevity. We found no published reviews on the biology of SDoHs in schizophrenia-spectrum psychotic disorders (SSPD). STUDY DESIGN We present an overview of pathophysiological mechanisms and neurobiological processes plausibly involved in the effects of major SDoHs on clinical outcomes in SSPD. STUDY RESULTS This review of the biology of SDoHs focuses on early-life adversities, poverty, social disconnection, discrimination including racism, migration, disadvantaged neighborhoods, and food insecurity. These factors interact with psychological and biological factors to increase the risk and worsen the course and prognosis of schizophrenia. Published studies on the topic are limited by cross-sectional design, variable clinical and biomarker assessments, heterogeneous methods, and a lack of control for confounding variables. Drawing on preclinical and clinical studies, we propose a biological framework to consider the likely pathogenesis. Putative systemic pathophysiological processes include epigenetics, allostatic load, accelerated aging with inflammation (inflammaging), and the microbiome. These processes affect neural structures, brain function, neurochemistry, and neuroplasticity, impacting the development of psychosis, quality of life, cognitive impairment, physical comorbidities, and premature mortality. Our model provides a framework for research that could lead to developing specific strategies for prevention and treatment of the risk factors and biological processes, thereby improving the quality of life and increasing the longevity of people with SSPD. CONCLUSIONS Biology of SDoHs in SSPD is an exciting area of research that points to innovative multidisciplinary team science for improving the course and prognosis of these serious psychiatric disorders.
Collapse
Affiliation(s)
- Dilip V Jeste
- Department of Psychiatry, University of California, San Diego (Retired), CA, USA
| | - Dolores Malaspina
- Departments of Psychiatry, Neuroscience and Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kara Bagot
- Department of Psychiatry, Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deanna M Barch
- Departments of Psychological and Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Steve Cole
- Departments of Psychiatry and Biobehavioral Sciences, and Medicine, University of California, Los Angeles, CA, USA
| | - Faith Dickerson
- Department of Psychology, Sheppard Pratt, Baltimore, MD, USA
| | - Amanda Dilmore
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Charles L Ford
- Center for Translational Social Neuroscience, Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - Nicole R Karcher
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan Luby
- Department of Psychiatry (Child), Washington University in St. Louis, St. Louis, MO, USA
| | - Tarek Rajji
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Adrián A Pinto-Tomas
- Biochemistry Department, School of Medicine, Universidad de Costa Rica, San José, Costa Rica
| | - Larry J Young
- Center for Translational Social Neuroscience, Department of Psychiatry, Emory University, Atlanta, GA, USA
| |
Collapse
|
43
|
Wu S, Stogios N, Hahn M, Navagnanavel J, Emami Z, Chintoh A, Gerretsen P, Graff-Guerrero A, Rajji TK, Remington G, Agarwal SM. Outcomes and clinical implications of intranasal insulin on cognition in humans: A systematic review and meta-analysis. PLoS One 2023; 18:e0286887. [PMID: 37379265 DOI: 10.1371/journal.pone.0286887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Aberrant brain insulin signaling has been posited to lie at the crossroads of several metabolic and cognitive disorders. Intranasal insulin (INI) is a non-invasive approach that allows investigation and modulation of insulin signaling in the brain while limiting peripheral side effects. OBJECTIVES The objective of this systematic review and meta-analysis is to evaluate the effects of INI on cognition in diverse patient populations and healthy individuals. METHODS MEDLINE, EMBASE, PsycINFO, and Cochrane CENTRAL were systematically searched from 2000 to July 2021. Eligible studies were randomized controlled trials that studied the effects of INI on cognition. Two independent reviewers determined study eligibility and extracted relevant descriptive and outcome data. RESULTS Twenty-nine studies (pooled N = 1,726) in healthy individuals as well as those with Alzheimer's disease (AD)/mild cognitive impairment (MCI), mental health disorders, metabolic disorders, among others, were included in the quantitative meta-analysis. Patients with AD/MCI treated with INI were more likely to show an improvement in global cognition (SMD = 0.22, 95% CI: 0.05-0.38 p = <0.00001, N = 12 studies). Among studies with healthy individuals and other patient populations, no significant effects of INI were found for global cognition. CONCLUSIONS This review demonstrates that INI may be associated with pro-cognitive benefits for global cognition, specifically for individuals with AD/MCI. Further studies are required to better understand the neurobiological mechanisms and differences in etiology to dissect the intrinsic and extrinsic factors contributing to the treatment response of INI.
Collapse
Affiliation(s)
- Sally Wu
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | | | - Zahra Emami
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Araba Chintoh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Philip Gerretsen
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Tarek K Rajji
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Seybert C, Cotovio G, Rodrigues da Silva D, Faro Viana F, Pereira P, Oliveira-Maia AJ. Replicability of motor cortex-excitability modulation by intermittent theta burst stimulation. Clin Neurophysiol 2023; 152:22-33. [PMID: 37269770 DOI: 10.1016/j.clinph.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Transcranial Magnetic Stimulation (TMS) allows for cortical-excitability (CE) assessment and its modulation has been associated with neuroplasticity-like phenomena, thought to be impaired in neuropsychiatric disorders. However, the stability of these measures has been challenged, defying their potential as biomarkers. This study aimed to test the temporal stability of cortical-excitability modulation and study the impact of individual and methodological factors in determining within- and between-subject variability. METHODS We recruited healthy-subjects to assess motor cortex (MC) excitability modulation, collecting motor evoked potentials (MEP) from both hemispheres, before and after left-sided intermittent theta burst stimulation (iTBS), to obtain a measure of MEPs change (delta-MEPs). To assess stability across-time, the protocol was repeated after 6 weeks. Socio-demographic and psychological variables were collected to test association with delta-MEPs. RESULTS We found modulatory effects on left MC and not on right hemisphere following iTBS of left MC. Left delta-MEP was stable across-time when performed immediately after iTBS (ICC = 0.69), only when obtained first in left hemisphere. We discovered similar results in a replication cohort testing only left MC (ICC = 0.68). No meaningful associations were found between demographic and psychological factors and delta-MEPs. CONCLUSIONS Delta-MEP is stable immediately after modulation and not impacted by different individual factors, including expectation about TMS-effect. SIGNIFICANCE Motor cortex excitability modulation immediately after iTBS should be further explored as a potential biomarker for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Carolina Seybert
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Gonçalo Cotovio
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | | | - Francisco Faro Viana
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; Department of Physics, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Pereira
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; Portuguese Red Cross Health School, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
45
|
Echeverria V, Mendoza C, Iarkov A. Nicotinic acetylcholine receptors and learning and memory deficits in Neuroinflammatory diseases. Front Neurosci 2023; 17:1179611. [PMID: 37255751 PMCID: PMC10225599 DOI: 10.3389/fnins.2023.1179611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Animal survival depends on cognitive abilities such as learning and memory to adapt to environmental changes. Memory functions require an enhanced activity and connectivity of a particular arrangement of engram neurons, supported by the concerted action of neurons, glia, and vascular cells. The deterioration of the cholinergic system is a common occurrence in neurological conditions exacerbated by aging such as traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), Alzheimer's disease (AD), and Parkinson's disease (PD). Cotinine is a cholinergic modulator with neuroprotective, antidepressant, anti-inflammatory, antioxidant, and memory-enhancing effects. Current evidence suggests Cotinine's beneficial effects on cognition results from the positive modulation of the α7-nicotinic acetylcholine receptors (nAChRs) and the inhibition of the toll-like receptors (TLRs). The α7nAChR affects brain functions by modulating the function of neurons, glia, endothelial, immune, and dendritic cells and regulates inhibitory and excitatory neurotransmission throughout the GABA interneurons. In addition, Cotinine acting on the α7 nAChRs and TLR reduces neuroinflammation by inhibiting the release of pro-inflammatory cytokines by the immune cells. Also, α7nAChRs stimulate signaling pathways supporting structural, biochemical, electrochemical, and cellular changes in the Central nervous system during the cognitive processes, including Neurogenesis. Here, the mechanisms of memory formation as well as potential mechanisms of action of Cotinine on memory preservation in aging and neurological diseases are discussed.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL, United States
| | - Cristhian Mendoza
- Facultad de Odontologia y Ciencias de la Rehabilitacion, Universidad San Sebastián, Concepción, Chile
| | - Alex Iarkov
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| |
Collapse
|
46
|
Yavuz Y, Ozen DO, Erol ZY, Goren H, Yilmaz B. Effects of endocrine disruptors on the electrical activity of leptin receptor neurons in the dorsomedial hypothalamus and anxiety-like behavior in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121366. [PMID: 36858099 DOI: 10.1016/j.envpol.2023.121366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
There is increasing concern about the effects of endocrine disrupting chemicals (EDCs) on human health. Recently, some EDCs are suggested to affect energy metabolism leading to increased risk of obesity. Obesogenic effects of some EDCs on adipogenesis have been reported, however, there is no study examining their potential actions on the brain circuits controlling feeding and metabolism. We have investigated effects of tributyltin (TBT) and dichlorodiphenyltrichloroethane (p,p'-DDT) on electrical activity on dorsomedial hypothalamic leptin receptor neurons (DMHLepR), morphological adaptations in neuronal anatomy of DMHLepR, locomotion, and anxiety-like behaviors in mice. Twenty-three Lep-Cre transgenic mice were intracranially injected with GFP virus. Control animals received intraperitoneal corn oil alone while group 2 and 3 received TBT (25 μg/kg) and p,p'-DDT (2 mg/kg) for one month. Locomotor activity and anxiety-like behavior of the animals were determined by open field test. Electrophysiological effects of TBT and p,p'-DDT on DMHLepR neurons were determined by patch clamp method. Neuronal anatomy was determined by confocal microscopy. Spontaneous firing frequency of DMHLepR neurons of TBT group of mice was significantly higher than both p,p'-DDT and control groups (p < 0.01). TBT and p,p'-DDT significantly decreased frequency of the spontaneous inhibitory post-synaptic currents to DMHLepR neurons compared to the control group (p < 0.05). The time spent in the center and the number of entrances to the center by the TBT-administered mice were significantly lower than other groups (p < 0.01). The total distance traveled and mean speed of the control group of mice were significantly higher than the p,p'-DDT- and TBT-administered animals (p < 0.0001). c-Fos activity of the p,p'-DDT- and TBT-administered animals were significantly elevated compared to the control group (p < 0.001), while no change in the number of dendritic spines were observed. In conclusion, this study demonstrates that exposure to TBT and p,p'-DDT alters electrical activity in DMHLepR neurons and behavioral state in mice.
Collapse
Affiliation(s)
- Yavuz Yavuz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| | - Deniz Oyku Ozen
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Zehra Yagmur Erol
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Habibe Goren
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
47
|
Markiewicz-Gospodarek A, Markiewicz R, Borowski B, Dobrowolska B, Łoza B. Self-Regulatory Neuronal Mechanisms and Long-Term Challenges in Schizophrenia Treatment. Brain Sci 2023; 13:brainsci13040651. [PMID: 37190616 DOI: 10.3390/brainsci13040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Schizophrenia is a chronic and relapsing disorder that is characterized not only by delusions and hallucinations but also mainly by the progressive development of cognitive and social deficits. These deficits are related to impaired synaptic plasticity and impaired neurotransmission in the nervous system. Currently, technological innovations and medical advances make it possible to use various self-regulatory methods to improve impaired synaptic plasticity. To evaluate the therapeutic effect of various rehabilitation methods, we reviewed methods that modify synaptic plasticity and improve the cognitive and executive processes of patients with a diagnosis of schizophrenia. PubMed, Scopus, and Google Scholar bibliographic databases were searched with the keywords mentioned below. A total of 555 records were identified. Modern methods of schizophrenia therapy with neuroplastic potential, including neurofeedback, transcranial magnetic stimulation, transcranial direct current stimulation, vagus nerve stimulation, virtual reality therapy, and cognitive remediation therapy, were reviewed and analyzed. Since randomized controlled studies of long-term schizophrenia treatment do not exceed 2-3 years, and the pharmacological treatment itself has an incompletely estimated benefit-risk ratio, treatment methods based on other paradigms, including neuronal self-regulatory and neural plasticity mechanisms, should be considered. Methods available for monitoring neuroplastic effects in vivo (e.g., fMRI, neuropeptides in serum), as well as unfavorable parameters (e.g., features of the metabolic syndrome), enable individualized monitoring of the effectiveness of long-term treatment of schizophrenia.
Collapse
Affiliation(s)
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, 20-081 Lublin, Poland
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
48
|
Chen HF, Sheng XN, Yang ZY, Shao PF, Xu HH, Qin RM, Zhao H, Bai F. Multi-networks connectivity at baseline predicts the clinical efficacy of left angular gyrus-navigated rTMS in the spectrum of Alzheimer's disease: A sham-controlled study. CNS Neurosci Ther 2023. [PMID: 36942495 DOI: 10.1111/cns.14177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) is effective in alleviating cognitive deficits in Alzheimer's disease (AD). However, the strategy for target determination and the mechanisms for cognitive improvement remain unclear. METHODS One hundred and thirteen elderly subjects were recruited in this study, including both cross-sectional (n = 79) and longitudinal experiments (the rTMS group: n = 24; the sham group: n = 10). The cross-sectional experiment explored the precise intervention target based on the cortical-hippocampal network. The longitudinal experiment investigated the clinical efficacy of neuro-navigated rTMS treatment over a four-week period and explored its underlying neural mechanism using seed-based and network-based analysis. Finally, we applied connectome-based predictive modeling to predict the rTMS response using these functional features at baseline. RESULTS RTMS at a targeted site of the left angular gyrus (MNI: -45, -67, 38) significantly induced cognitive improvement in memory and language function (p < 0.001). The improved cognition correlated with the default mode network (DMN) subsystems. Furthermore, the connectivity patterns of DMN subsystems (r = 0.52, p = 0.01) or large-scale networks (r = 0.85, p = 0.001) at baseline significantly predicted the Δ language cognition after the rTMS treatment. The connectivity patterns of DMN subsystems (r = 0.47, p = 0.019) or large-scale networks (r = 0.80, p = 0.001) at baseline could predict the Δ memory cognition after the rTMS treatment. CONCLUSION These findings suggest that neuro-navigated rTMS targeting the left angular gyrus could improve cognitive function in AD patients. Importantly, dynamic regulation of the intra- and inter-DMN at baseline may represent a potential predictor for favorable rTMS treatment response in patients with cognitive impairment.
Collapse
Affiliation(s)
- Hai-Feng Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiao-Ning Sheng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Zhi-Yuan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Peng-Fei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Heng-Heng Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruo-Meng Qin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
- Geriatric Medicine Center, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
49
|
Chen S, Yang Q, Lim S. Efficient inference of synaptic plasticity rule with Gaussian process regression. iScience 2023; 26:106182. [PMID: 36879810 PMCID: PMC9985048 DOI: 10.1016/j.isci.2023.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Finding the form of synaptic plasticity is critical to understanding its functions underlying learning and memory. We investigated an efficient method to infer synaptic plasticity rules in various experimental settings. We considered biologically plausible models fitting a wide range of in-vitro studies and examined the recovery of their firing-rate dependence from sparse and noisy data. Among the methods assuming low-rankness or smoothness of plasticity rules, Gaussian process regression (GPR), a nonparametric Bayesian approach, performs the best. Under the conditions measuring changes in synaptic weights directly or measuring changes in neural activities as indirect observables of synaptic plasticity, which leads to different inference problems, GPR performs well. Also, GPR could simultaneously recover multiple plasticity rules and robustly perform under various plasticity rules and noise levels. Such flexibility and efficiency, particularly at the low sampling regime, make GPR suitable for recent experimental developments and inferring a broader class of plasticity models.
Collapse
Affiliation(s)
- Shirui Chen
- Department of Applied Mathematics, University of Washington, Lewis Hall 201, Box 353925, Seattle, WA 98195-3925, USA
- Neural Science, New York University Shanghai, 1555 Century Avenue, Shanghai, 200122, China
| | - Qixin Yang
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, The Suzanne and Charles Goodman Brain Sciences Building, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
- Neural Science, New York University Shanghai, 1555 Century Avenue, Shanghai, 200122, China
| | - Sukbin Lim
- Neural Science, New York University Shanghai, 1555 Century Avenue, Shanghai, 200122, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
| |
Collapse
|
50
|
Clark KB. Neural Field Continuum Limits and the Structure-Function Partitioning of Cognitive-Emotional Brain Networks. BIOLOGY 2023; 12:352. [PMID: 36979044 PMCID: PMC10045557 DOI: 10.3390/biology12030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
In The cognitive-emotional brain, Pessoa overlooks continuum effects on nonlinear brain network connectivity by eschewing neural field theories and physiologically derived constructs representative of neuronal plasticity. The absence of this content, which is so very important for understanding the dynamic structure-function embedding and partitioning of brains, diminishes the rich competitive and cooperative nature of neural networks and trivializes Pessoa's arguments, and similar arguments by other authors, on the phylogenetic and operational significance of an optimally integrated brain filled with variable-strength neural connections. Riemannian neuromanifolds, containing limit-imposing metaplastic Hebbian- and antiHebbian-type control variables, simulate scalable network behavior that is difficult to capture from the simpler graph-theoretic analysis preferred by Pessoa and other neuroscientists. Field theories suggest the partitioning and performance benefits of embedded cognitive-emotional networks that optimally evolve between exotic classical and quantum computational phases, where matrix singularities and condensations produce degenerate structure-function homogeneities unrealistic of healthy brains. Some network partitioning, as opposed to unconstrained embeddedness, is thus required for effective execution of cognitive-emotional network functions and, in our new era of neuroscience, should be considered a critical aspect of proper brain organization and operation.
Collapse
Affiliation(s)
- Kevin B. Clark
- Cures Within Reach, Chicago, IL 60602, USA;
- Felidae Conservation Fund, Mill Valley, CA 94941, USA
- Campus and Domain Champions Program, Multi-Tier Assistance, Training, and Computational Help (MATCH) Track, National Science Foundation’s Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS), https://access-ci.org/
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Network for Life Detection (NfoLD), NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Multi-Omics and Systems Biology & Artificial Intelligence and Machine Learning Analysis Working Groups, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- Frontier Development Lab, NASA Ames Research Center, Mountain View, CA 94035, USA & SETI Institute, Mountain View, CA 94043, USA
- Peace Innovation Institute, The Hague 2511, Netherlands & Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016, USA
| |
Collapse
|