1
|
Protic D, Polli R, Bettella E, Usdin K, Murgia A, Tassone F. Somatic Instability Leading to Mosaicism in Fragile X Syndrome and Associated Disorders: Complex Mechanisms, Diagnostics, and Clinical Relevance. Int J Mol Sci 2024; 25:13681. [PMID: 39769443 PMCID: PMC11728179 DOI: 10.3390/ijms252413681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM. Mosaicism has also been reported in carriers of premutation (PM) alleles, which have 55-200 CGG repeats. PM alleles confer risk for the fragile X premutation-associated conditions (FXPAC), including FXTAS, FXPOI, and FXAND, conditions thought to be due to the toxic consequences of transcripts containing large CGG-tracts. Unmethylated FM (UFM) alleles are transcriptionally and translationally active. Thus, they produce transcripts with toxic effects. These transcripts do produce some FMRP, the encoded product of the FMR1 gene, albeit with reduced translational efficiency. As a result, mosaicism can result in a complex clinical presentation. Here, we review the concept of mosaicism in both FXS and in PM carriers, including its potential clinical significance.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11000 Belgrade, Serbia
| | - Roberta Polli
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Elisa Bettella
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Alessandra Murgia
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
2
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Ferrer I. Historical review: The golden age of the Golgi method in human neuropathology. J Neuropathol Exp Neurol 2024; 83:375-395. [PMID: 38622902 DOI: 10.1093/jnen/nlae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Golgi methods were used to study human neuropathology in the 1970s, 1980s, and 1990s of the last century. Although a relatively small number of laboratories applied these methods, their impact was crucial by increasing knowledge about: (1) the morphology, orientation, and localization of neurons in human cerebral and cerebellar malformations and ganglionic tumors, and (2) the presence of abnormal structures including large and thin spines (spine dysgenesis) in several disorders linked to mental retardation, focal enlargements of the axon hillock and dendrites (meganeurites) in neuronal storage diseases, growth cone-like appendages in Alzheimer disease, as well as abnormal structures in other dementias. Although there were initial concerns about their reliability, reduced dendritic branches and dendritic spines were identified as common alterations in mental retardation, dementia, and other pathological conditions. Similar observations in appropriate experimental models have supported many abnormalities that were first identified using Golgi methods in human material. Moreover, electron microscopy, immunohistochemistry, fluorescent tracers, and combined methods have proven the accuracy of pioneering observations uniquely visualized as 3D images of fully stained individual neurons. Although Golgi methods had their golden age many years ago, these methods may still be useful complementary tools in human neuropathology.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de LLobregat, Spain
| |
Collapse
|
4
|
Coulson RL, Frattini V, Moyer CE, Hodges J, Walter P, Mourrain P, Zuo Y, Wang GX. Translational modulator ISRIB alleviates synaptic and behavioral phenotypes in Fragile X syndrome. iScience 2024; 27:109259. [PMID: 38510125 PMCID: PMC10951902 DOI: 10.1016/j.isci.2024.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/31/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of fragile X messenger ribonucleoprotein (FMRP), a translational regulator that binds the transcripts of proteins involved in synaptic function and plasticity. Dysregulated protein synthesis is a central effect of FMRP loss, however, direct translational modulation has not been leveraged in the treatment of FXS. Thus, we examined the effect of the translational modulator integrated stress response inhibitor (ISRIB) in treating synaptic and behavioral symptoms of FXS. We show that FMRP loss dysregulates synaptic protein abundance, stabilizing dendritic spines through increased PSD-95 levels while preventing spine maturation through reduced glutamate receptor accumulation, thus leading to the formation of dense, immature dendritic spines, characteristic of FXS patients and Fmr1 knockout (KO) mice. ISRIB rescues these deficits and improves social recognition in Fmr1 KO mice. These findings highlight the therapeutic potential of targeting core translational mechanisms in FXS and neurodevelopmental disorders more broadly.
Collapse
Affiliation(s)
- Rochelle L. Coulson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Valentina Frattini
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Caitlin E. Moyer
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Hodges
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter Walter
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- INSERM 1024, Ecole Normale Supérieure, Paris, France
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gordon X. Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Tian Z, Lu XT, Jiang X, Tian J. Bryostatin-1: a promising compound for neurological disorders. Front Pharmacol 2023; 14:1187411. [PMID: 37351510 PMCID: PMC10282138 DOI: 10.3389/fphar.2023.1187411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
The central nervous system (CNS) is the most complex system in human body, and there is often a lack of effective treatment strategies for the disorders related with CNS. Natural compounds with multiple pharmacological activities may offer better options because they have broad cellular targets and potentially produce synergic and integrative effects. Bryostatin-1 is one of such promising compounds, a macrolide separated from marine invertebrates. Bryostatin-1 has been shown to produce various biological activities through binding with protein kinase C (PKC). In this review, we mainly summarize the pharmacological effects of bryostatin-1 in the treatment of multiple neurological diseases in preclinical studies and clinical trials. Bryostatin-1 is shown to have great therapeutic potential for Alzheimer's disease, multiple sclerosis, fragile X syndrome, stroke, traumatic brain injury, and depression. It exhibits significant rescuing effects on the deficits of spatial learning, cognitive function, memory and other neurological functions caused by diseases, producing good neuroprotective effects. The promising neuropharmacological activities of bryostatin-1 suggest that it is a potential candidate for the treatment of related neurological disorders although there are still some issues needed to be addressed before its application in clinic.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines on Public Health in Chongqing, Chongqing, China
| |
Collapse
|
6
|
De Donno MD, Puricella A, D'Attis S, Specchia V, Bozzetti MP. Expression of Transposable Elements in the Brain of the Drosophila melanogaster Model for Fragile X Syndrome. Genes (Basel) 2023; 14:genes14051060. [PMID: 37239420 DOI: 10.3390/genes14051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Fragile X syndrome is a neuro-developmental disease affecting intellectual abilities and social interactions. Drosophila melanogaster represents a consolidated model to study neuronal pathways underlying this syndrome, especially because the model recapitulates complex behavioural phenotypes. Drosophila Fragile X protein, or FMRP, is required for a normal neuronal structure and for correct synaptic differentiation in both the peripheral and central nervous systems, as well as for synaptic connectivity during development of the neuronal circuits. At the molecular level, FMRP has a crucial role in RNA homeostasis, including a role in transposon RNA regulation in the gonads of D. m. Transposons are repetitive sequences regulated at both the transcriptional and post-transcriptional levels to avoid genomic instability. De-regulation of transposons in the brain in response to chromatin relaxation has previously been related to neurodegenerative events in Drosophila models. Here, we demonstrate for the first time that FMRP is required for transposon silencing in larval and adult brains of Drosophila "loss of function" dFmr1 mutants. This study highlights that flies kept in isolation, defined as asocial conditions, experience activation of transposable elements. In all, these results suggest a role for transposons in the pathogenesis of certain neurological alterations in Fragile X as well as in abnormal social behaviors.
Collapse
Affiliation(s)
- Maria Dolores De Donno
- Department of Biological and Environmental Sciences and Technologies, DiSTeBA, University of Salento, Via Monteroni 165, 73100 Lecce, Italy
| | - Antonietta Puricella
- Department of Biological and Environmental Sciences and Technologies, DiSTeBA, University of Salento, Via Monteroni 165, 73100 Lecce, Italy
| | - Simona D'Attis
- Department of Biological and Environmental Sciences and Technologies, DiSTeBA, University of Salento, Via Monteroni 165, 73100 Lecce, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, DiSTeBA, University of Salento, Via Monteroni 165, 73100 Lecce, Italy
| | - Maria Pia Bozzetti
- Department of Biological and Environmental Sciences and Technologies, DiSTeBA, University of Salento, Via Monteroni 165, 73100 Lecce, Italy
| |
Collapse
|
7
|
Maurer JJ, Choi A, An I, Sathi N, Chung S. Sleep disturbances in autism spectrum disorder: Animal models, neural mechanisms, and therapeutics. Neurobiol Sleep Circadian Rhythms 2023; 14:100095. [PMID: 37188242 PMCID: PMC10176270 DOI: 10.1016/j.nbscr.2023.100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Sleep is crucial for brain development. Sleep disturbances are prevalent in children with autism spectrum disorder (ASD). Strikingly, these sleep problems are positively correlated with the severity of ASD core symptoms such as deficits in social skills and stereotypic behavior, indicating that sleep problems and the behavioral characteristics of ASD may be related. In this review, we will discuss sleep disturbances in children with ASD and highlight mouse models to study sleep disturbances and behavioral phenotypes in ASD. In addition, we will review neuromodulators controlling sleep and wakefulness and how these neuromodulatory systems are disrupted in animal models and patients with ASD. Lastly, we will address how the therapeutic interventions for patients with ASD improve various aspects of sleep. Together, gaining mechanistic insights into the neural mechanisms underlying sleep disturbances in children with ASD will help us to develop better therapeutic interventions.
Collapse
|
8
|
Zhu SI, McCullough MH, Pujic Z, Sibberas J, Sun B, Darveniza T, Bucknall B, Avitan L, Goodhill GJ. fmr1 Mutation Alters the Early Development of Sensory Coding and Hunting and Social Behaviors in Larval Zebrafish. J Neurosci 2023; 43:1211-1224. [PMID: 36596699 PMCID: PMC9962781 DOI: 10.1523/jneurosci.1721-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Autism spectrum disorders (ASDs) are developmental in origin; however, little is known about how they affect the early development of behavior and sensory coding. The most common inherited form of autism is Fragile X syndrome (FXS), caused by a mutation in FMR1 Mutation of fmr1 in zebrafish causes anxiety-like behavior, hyperactivity, and hypersensitivity in auditory and visual processing. Here, we show that zebrafish fmr1-/- mutant larvae of either sex also display changes in hunting behavior, tectal coding, and social interaction. During hunting, they were less successful at catching prey and displayed altered behavioral sequences. In the tectum, representations of prey-like stimuli were more diffuse and had higher dimensionality. In a social behavioral assay, they spent more time observing a conspecific but responded more slowly to social cues. However, when given a choice of rearing environment fmr1-/- larvae preferred one with reduced visual stimulation, and rearing them in this environment reduced genotype-specific effects on tectal excitability. Together, these results shed new light on how fmr1-/- changes the early development of neural systems and behavior in a vertebrate.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are caused by changes in early neural development. Animal models of ASDs offer the opportunity to study these developmental processes in greater detail than in humans. Here, we found that a zebrafish mutant for a gene which in humans causes one type of ASD showed early alterations in hunting behavior, social behavior, and how visual stimuli are represented in the brain. However, we also found that mutant fish preferred reduced visual stimulation, and rearing them in this environment reduced alterations in neural activity patterns. These results suggest interesting new directions for using zebrafish as a model to study the development of brain and behavior in ASDs, and how the impact of ASDs could potentially be reduced.
Collapse
Affiliation(s)
- Shuyu I Zhu
- Queensland Brain Institute
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63110
| | | | | | | | | | - Thomas Darveniza
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63110
| | | | | | - Geoffrey J Goodhill
- Queensland Brain Institute
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
9
|
Kalyanasundar B, Blonde GD, Spector AC, Travers SP. A Novel Mechanism for T1R-Independent Taste Responses to Concentrated Sugars. J Neurosci 2023; 43:965-978. [PMID: 36623875 PMCID: PMC9908317 DOI: 10.1523/jneurosci.1760-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Recent findings from our laboratory demonstrated that the rostral nucleus of the solitary tract (rNST) retains some responsiveness to sugars in double-knock-out mice lacking either the T1R1+T1R3 (KO1+3) or T1R2+T1R3 (KO2+3) taste receptor heterodimers. Here, we extended these findings in the parabrachial nucleus (PBN) of male and female KO1+3 mice using warm stimuli to optimize sugar responses and employing additional concentrations and pharmacological agents to probe mechanisms. PBN T1R-independent sugar responses, including those to concentrated glucose, were more evident than in rNST. Similar to the NST, there were no "sugar-best" neurons in KO1+3 mice. Nevertheless, 1000 mm glucose activated nearly 55% of PBN neurons, with responses usually occurring in neurons that also displayed acid and amiloride-insensitive NaCl responses. In wild-type (WT) mice, concentrated sugars activated the same electrolyte-sensitive neurons but also "sugar-best" cells. Regardless of genotype, phlorizin, an inhibitor of the sodium-glucose co-transporter (SGLT), a component of a hypothesized alternate glucose-sensing mechanism, did not diminish responses to 1000 mm glucose. The efficacy of concentrated sugars for driving neurons broadly responsive to electrolytes implied an origin from Type III taste bud cells. To test this, we used the carbonic anhydrase (CA) inhibitor dorzolamide (DRZ), previously shown to inhibit amiloride-insensitive sodium responses arising from Type III taste bud cells. Dorzolamide had no effect on sugar-elicited responses in WT sugar-best PBN neurons but strongly suppressed them in WT and KO1+3 electrolyte-generalist neurons. These findings suggest a novel T1R-independent mechanism for hyperosmotic sugars, involving a CA-dependent mechanism in Type III taste bud cells.SIGNIFICANCE STATEMENT Since the discovery of Tas1r receptors for sugars and artificial sweeteners, evidence has accrued that mice lacking these receptors maintain some behavioral, physiological, and neural responsiveness to sugars. But the substrate(s) has remained elusive. Here, we recorded from parabrachial nucleus (PBN) taste neurons and identified T1R-independent responses to hyperosmotic sugars dependent on carbonic anhydrase (CA) and occurring primarily in neurons broadly responsive to NaCl and acid, implying an origin from Type III taste bud cells. The effectiveness of different sugars in driving these T1R-independent responses did not correlate with their efficacy in driving licking, suggesting they evoke a nonsweet sensation. Nevertheless, these salient responses are likely to comprise an adequate cue for learned preferences that occur in the absence of T1R receptors.
Collapse
Affiliation(s)
- B Kalyanasundar
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, Ohio, 43210-1267
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, 32306-4301
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, 32306-4301
| | - Susan P Travers
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, Ohio, 43210-1267
| |
Collapse
|
10
|
Hoglund BK, Carfagno V, Olive MF, Leyrer-Jackson JM. Metabotropic glutamate receptors and cognition: From underlying plasticity and neuroprotection to cognitive disorders and therapeutic targets. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:367-413. [PMID: 36868635 DOI: 10.1016/bs.irn.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors that play pivotal roles in mediating the activity of neurons and other cell types within the brain, communication between cell types, synaptic plasticity, and gene expression. As such, these receptors play an important role in a number of cognitive processes. In this chapter, we discuss the role of mGlu receptors in various forms of cognition and their underlying physiology, with an emphasis on cognitive dysfunction. Specifically, we highlight evidence that links mGlu physiology to cognitive dysfunction across brain disorders including Parkinson's disease, Alzheimer's disease, Fragile X syndrome, post-traumatic stress disorder, and schizophrenia. We also provide recent evidence demonstrating that mGlu receptors may elicit neuroprotective effects in particular disease states. Lastly, we discuss how mGlu receptors can be targeted utilizing positive and negative allosteric modulators as well as subtype specific agonists and antagonist to restore cognitive function across these disorders.
Collapse
Affiliation(s)
- Brandon K Hoglund
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States
| | - Vincent Carfagno
- School of Medicine, Midwestern University, Glendale, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Jonna M Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States.
| |
Collapse
|
11
|
Lee B, Beuhler L, Lee HY. The Primary Ciliary Deficits in Cerebellar Bergmann Glia of the Mouse Model of Fragile X Syndrome. CEREBELLUM (LONDON, ENGLAND) 2022; 21:801-813. [PMID: 35438410 PMCID: PMC10857775 DOI: 10.1007/s12311-022-01382-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
Primary cilia are non-motile cilia that function as antennae for cells to sense signals. Deficits of primary cilia cause ciliopathies, leading to the pathogenesis of various developmental disorders; however, the contribution of primary cilia to neurodevelopmental disorders is largely unknown. Fragile X syndrome (FXS) is a genetically inherited disorder and is the most common known cause of autism spectrum disorders. FXS is caused by the silencing of the fragile X mental retardation 1 (FMR1) gene, which encodes for the fragile X mental retardation protein (FMRP). Here, we discovered a reduction in the number of primary cilia and the Sonic hedgehog (Shh) signaling in cerebellar Bergmann glia of Fmr1 KO mice. We further found reduced granule neuron precursor (GNP) proliferation and thickness of the external germinal layer (EGL) in Fmr1 KO mice, implicating that primary ciliary deficits in Bergmann glia may contribute to cerebellar developmental phenotypes in FXS, as Shh signaling through primary cilia in Bergmann glia is known to mediate proper GNP proliferation in the EGL. Taken together, our study demonstrates that FMRP loss leads to primary ciliary deficits in cerebellar Bergmann glia which may contribute to cerebellar deficits in FXS.
Collapse
Affiliation(s)
- Bumwhee Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Laura Beuhler
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
12
|
Sato K, Takayama KI, Hashimoto M, Inoue S. Transcriptional and Post-Transcriptional Regulations of Amyloid-β Precursor Protein (APP ) mRNA. FRONTIERS IN AGING 2022; 2:721579. [PMID: 35822056 PMCID: PMC9261399 DOI: 10.3389/fragi.2021.721579] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by progressive impairment of memory, thinking, behavior, and dementia. Based on ample evidence showing neurotoxicity of amyloid-β (Aβ) aggregates in AD, proteolytically derived from amyloid precursor protein (APP), it has been assumed that misfolding of Aβ plays a crucial role in the AD pathogenesis. Additionally, extra copies of the APP gene caused by chromosomal duplication in patients with Down syndrome can promote AD pathogenesis, indicating the pathological involvement of the APP gene dose in AD. Furthermore, increased APP expression due to locus duplication and promoter mutation of APP has been found in familial AD. Given this background, we aimed to summarize the mechanism underlying the upregulation of APP expression levels from a cutting-edge perspective. We first reviewed the literature relevant to this issue, specifically focusing on the transcriptional regulation of APP by transcription factors that bind to the promoter/enhancer regions. APP expression is also regulated by growth factors, cytokines, and hormone, such as androgen. We further evaluated the possible involvement of post-transcriptional regulators of APP in AD pathogenesis, such as RNA splicing factors. Indeed, alternative splicing isoforms of APP are proposed to be involved in the increased production of Aβ. Moreover, non-coding RNAs, including microRNAs, post-transcriptionally regulate the APP expression. Collectively, elucidation of the novel mechanisms underlying the upregulation of APP would lead to the development of clinical diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
13
|
Parsaeimehr A, Ebirim RI, Ozbay G. CRISPR-Cas technology a new era in genomic engineering. BIOTECHNOLOGY REPORTS 2022; 34:e00731. [PMID: 35686011 PMCID: PMC9171425 DOI: 10.1016/j.btre.2022.e00731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/01/2022]
Abstract
CRISPR-Cas systems offer a flexible and easy-to-use molecular platform to precisely modify and control organisms' genomes in a variety of fields, from agricultural biotechnology to therapeutics. With CRISPR technology, crop genomes can be precisely edited in a shorter and more efficient approach compared to traditional breeding or classic mutagenesis. CRISPR-Cas system can be used to manage the fermentation process by addressing phage resistance, antimicrobial activity, and genome editing. CRISPR-Cas technology has opened up a new era in gene therapy and other therapeutic fields and given hope to thousands of patients with genetic diseases. Anti-CRISPR molecules are powerful tools for regulating the CRISPR-Cas systems.
The CRISPR-Cas systems have offered a flexible, easy-to-use platform to precisely modify and control the genomes of organisms in various fields, ranging from agricultural biotechnology to therapeutics. This system is extensively used in the study of infectious, progressive, and life-threatening genetic diseases for the improvement of quality and quantity of major crops and in the development of sustainable methods for the generation of biofuels. As CRISPR-Cas technology continues to evolve, it is becoming more controllable and precise with the addition of molecular regulators, which will provide benefits for everyone and save many lives. Studies on the constant growth of CRISPR technology are important due to its rapid development. In this paper, we present the current applications and progress of CRISPR-Cas genome editing systems in several fields of research, we further highlight the applications of anti-CRISPR molecules to regulate CRISPR-Cas gene editing systems, and we discuss ethical considerations in CRISPR-Cas applications.
Collapse
|
14
|
Barbé L, Finkbeiner S. Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases. Front Aging Neurosci 2022; 14:750629. [PMID: 35592702 PMCID: PMC9110800 DOI: 10.3389/fnagi.2022.750629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Repeat diseases, such as fragile X syndrome, myotonic dystrophy, Friedreich ataxia, Huntington disease, spinocerebellar ataxias, and some forms of amyotrophic lateral sclerosis, are caused by repetitive DNA sequences that are expanded in affected individuals. The age at which an individual begins to experience symptoms, and the severity of disease, are partially determined by the size of the repeat. However, the epigenetic state of the area in and around the repeat also plays an important role in determining the age of disease onset and the rate of disease progression. Many repeat diseases share a common epigenetic pattern of increased methylation at CpG islands near the repeat region. CpG islands are CG-rich sequences that are tightly regulated by methylation and are often found at gene enhancer or insulator elements in the genome. Methylation of CpG islands can inhibit binding of the transcriptional regulator CTCF, resulting in a closed chromatin state and gene down regulation. The downregulation of these genes leads to some disease-specific symptoms. Additionally, a genetic and epigenetic interplay is suggested by an effect of methylation on repeat instability, a hallmark of large repeat expansions that leads to increasing disease severity in successive generations. In this review, we will discuss the common epigenetic patterns shared across repeat diseases, how the genetics and epigenetics interact, and how this could be involved in disease manifestation. We also discuss the currently available stem cell and mouse models, which frequently do not recapitulate epigenetic patterns observed in human disease, and propose alternative strategies to study the role of epigenetics in repeat diseases.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Steve Finkbeiner,
| |
Collapse
|
15
|
Zhao X, Yang J, Zhang J, Wang X, Chen L, Zhang C, Shen Z. Inhibitory Effect of Aptamer-Carbon Dot Nanomaterial-siRNA Complex on the Metastasis of Hepatocellular Carcinoma Cells by Interfering with FMRP. Eur J Pharm Biopharm 2022; 174:47-55. [PMID: 35364257 DOI: 10.1016/j.ejpb.2022.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
Abstract
Using small interfering RNA (siRNA) for the specific gene-silencing has been a novel therapeutic method for the treatment of incurable diseases such as malignancies. However, it remains a challenge whether siRNA can be safely and effectively delivered into target cells. Therefore, we synthesized fluorescent carbon dots (CDs) as a gene vector at the siRNA delivery system that induced efficient gene knockdown in vitro while binding aptamer AS1411 to resolve the difficulty in cell targeting. We found that CDs with adequate biocompatibility can improve the efficiency of cellular uptake of siRNA. CLSM and FCM results showed that CDs were mainly localized in the cytoplasm and emitted bright green fluorescence. In addition, the CD/siRNA delivery system mediated by the aptamer AS1411 effectively silenced the expression of Fragile X mental retardation protein (FMRP) and successfully inhibited the migration and invasive propensity of hepatocellular carcinoma (HCC) cells. In summary, we have synthesized a valuable siRNA delivery vector enabling not only bioimaging but also effective downregulation of gene expression, which is indicative of an efficient potential for gene delivery and therapy.
Collapse
Affiliation(s)
- Xiaoliang Zhao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, and School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, China; these authors contributed equally to this work
| | - Jie Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China; these authors contributed equally to this work
| | - Jing Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, and School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lulu Chen
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, and School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chao Zhang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, and School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhifa Shen
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, and School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
16
|
Karagianni K, Pettas S, Christoforidou G, Kanata E, Bekas N, Xanthopoulos K, Dafou D, Sklaviadis T. A Systematic Review of Common and Brain-Disease-Specific RNA Editing Alterations Providing Novel Insights into Neurological and Neurodegenerative Disease Manifestations. Biomolecules 2022; 12:biom12030465. [PMID: 35327657 PMCID: PMC8946084 DOI: 10.3390/biom12030465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
RNA editing contributes to transcriptome diversification through RNA modifications in relation to genome-encoded information (RNA–DNA differences, RDDs). The deamination of Adenosine (A) to Inosine (I) or Cytidine (C) to Uridine (U) is the most common type of mammalian RNA editing. It occurs as a nuclear co- and/or post-transcriptional event catalyzed by ADARs (Adenosine deaminases acting on RNA) and APOBECs (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like genes). RNA editing may modify the structure, stability, and processing of a transcript. This review focuses on RNA editing in psychiatric, neurological, neurodegenerative (NDs), and autoimmune brain disorders in humans and rodent models. We discuss targeted studies that focus on RNA editing in specific neuron-enriched transcripts with well-established functions in neuronal activity, and transcriptome-wide studies, enabled by recent technological advances. We provide comparative editome analyses between human disease and corresponding animal models. Data suggest RNA editing to be an emerging mechanism in disease development, displaying common and disease-specific patterns. Commonly edited RNAs represent potential disease-associated targets for therapeutic and diagnostic values. Currently available data are primarily descriptive, calling for additional research to expand global editing profiles and to provide disease mechanistic insights. The potential use of RNA editing events as disease biomarkers and available tools for RNA editing identification, classification, ranking, and functional characterization that are being developed will enable comprehensive analyses for a better understanding of disease(s) pathogenesis and potential cures.
Collapse
Affiliation(s)
- Korina Karagianni
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Spyros Pettas
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Georgia Christoforidou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Eirini Kanata
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| | - Nikolaos Bekas
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Konstantinos Xanthopoulos
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
- Correspondence:
| | - Theodoros Sklaviadis
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| |
Collapse
|
17
|
Razak KA, Binder DK, Ethell IM. Neural Correlates of Auditory Hypersensitivity in Fragile X Syndrome. Front Psychiatry 2021; 12:720752. [PMID: 34690832 PMCID: PMC8529206 DOI: 10.3389/fpsyt.2021.720752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023] Open
Abstract
The mechanisms underlying the common association between autism spectrum disorders (ASD) and sensory processing disorders (SPD) are unclear, and treatment options to reduce atypical sensory processing are limited. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and ASD behaviors. As in most children with ASD, atypical sensory processing is a common symptom in FXS, frequently manifesting as sensory hypersensitivity. Auditory hypersensitivity is a highly debilitating condition in FXS that may lead to language delays, social anxiety and ritualized repetitive behaviors. Animal models of FXS, including Fmr1 knock out (KO) mouse, also show auditory hypersensitivity, providing a translation relevant platform to study underlying pathophysiological mechanisms. The focus of this review is to summarize recent studies in the Fmr1 KO mouse that identified neural correlates of auditory hypersensitivity. We review results of electroencephalography (EEG) recordings in the Fmr1 KO mice and highlight EEG phenotypes that are remarkably similar to EEG findings in humans with FXS. The EEG phenotypes associated with the loss of FMRP include enhanced resting EEG gamma band power, reduced cross frequency coupling, reduced sound-evoked synchrony of neural responses at gamma band frequencies, increased event-related potential amplitudes, reduced habituation of neural responses and increased non-phase locked power. In addition, we highlight the postnatal period when the EEG phenotypes develop and show a strong association of the phenotypes with enhanced matrix-metalloproteinase-9 (MMP-9) activity, abnormal development of parvalbumin (PV)-expressing inhibitory interneurons and reduced formation of specialized extracellular matrix structures called perineuronal nets (PNNs). Finally, we discuss how dysfunctions of inhibitory PV interneurons may contribute to cortical hyperexcitability and EEG abnormalities observed in FXS. Taken together, the studies reviewed here indicate that EEG recordings can be utilized in both pre-clinical studies and clinical trials, while at the same time, used to identify cellular and circuit mechanisms of dysfunction in FXS. New therapeutic approaches that reduce MMP-9 activity and restore functions of PV interneurons may succeed in reducing FXS sensory symptoms. Future studies should examine long-lasting benefits of developmental vs. adult interventions on sensory phenotypes.
Collapse
Affiliation(s)
- Khaleel A. Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Devin K. Binder
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- Division of Biomedical Sciences and Graduate Biomedical Sciences Program, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M. Ethell
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- Division of Biomedical Sciences and Graduate Biomedical Sciences Program, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
18
|
Sapozhnikov DM, Szyf M. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat Commun 2021; 12:5711. [PMID: 34588447 PMCID: PMC8481236 DOI: 10.1038/s41467-021-25991-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Despite four decades of research to support the association between DNA methylation and gene expression, the causality of this relationship remains unresolved. Here, we reaffirm that experimental confounds preclude resolution of this question with existing strategies, including recently developed CRISPR/dCas9 and TET-based epigenetic editors. Instead, we demonstrate a highly effective method using only nuclease-dead Cas9 and guide RNA to physically block DNA methylation at specific targets in the absence of a confounding flexibly-tethered enzyme, thereby enabling the examination of the role of DNA demethylation per se in living cells, with no evidence of off-target activity. Using this method, we probe a small number of inducible promoters and find the effect of DNA demethylation to be small, while demethylation of CpG-rich FMR1 produces larger changes in gene expression. This method could be used to reveal the extent and nature of the contribution of DNA methylation to gene regulation.
Collapse
Affiliation(s)
- Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
20
|
Talvio K, Kanninen KM, White AR, Koistinaho J, Castrén ML. Increased iron content in the heart of the Fmr1 knockout mouse. Biometals 2021; 34:947-954. [PMID: 34089433 PMCID: PMC8313461 DOI: 10.1007/s10534-021-00320-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/24/2021] [Indexed: 11/12/2022]
Abstract
Trace elements have important functions in several processes involved in cellular homeostasis and survival. Dysfunctional metal ion homeostasis can make an important impact on cellular defence mechanisms. We assessed the concentrations of 23 trace minerals in different tissues (brain, spleen, heart and liver) of Fmr1 knockout (KO) mice that display the main phenotype of Fragile X syndrome (FXS), an intellectual disability syndrome and the best-known monogenic model of autism spectrum disorder (ASD). Altogether, seven minerals—Cu, Fe, K, Mg, Mn, Na, and P—were above the detection limit with the analysis revealing increased iron content in the heart of Fmr1 KO mice. In addition, levels of iron were higher in the cerebellum of the transgenic mouse when compared to wild type controls. These results implicate a role for dysregulated iron homeostasis in FXS tissues and suggest that defective iron-related mechanisms contribute to increased tissue vulnerability in FXS.
Collapse
Affiliation(s)
- Karo Talvio
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, 00290, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anthony R White
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia.,Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maija L Castrén
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, 00290, Helsinki, Finland.
| |
Collapse
|
21
|
Laboratory testing for fragile X, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:799-812. [PMID: 33795824 DOI: 10.1038/s41436-021-01115-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
Molecular genetic testing of the FMR1 gene is commonly performed in clinical laboratories. Pathogenic variants in the FMR1 gene are associated with fragile X syndrome, fragile X-associated tremor ataxia syndrome (FXTAS), and fragile X-associated primary ovarian insufficiency (FXPOI). This document provides updated information regarding FMR1 pathogenic variants, including prevalence, genotype-phenotype correlations, and variant nomenclature. Methodological considerations are provided for Southern blot analysis and polymerase chain reaction (PCR) amplification of FMR1, including triplet repeat-primed and methylation-specific PCR.The American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee has the mission of maintaining high technical standards for the performance and interpretation of genetic tests. In part, this is accomplished by the publication of the document ACMG Technical Standards for Clinical Genetics Laboratories, which is now maintained online ( http://www.acmg.net ). This subcommittee also reviews the outcome of national proficiency testing in the genetics area and may choose to focus on specific diseases or methodologies in response to those results. Accordingly, the subcommittee selected fragile X syndrome to be the first topic in a series of supplemental sections, recognizing that it is one of the most frequently ordered genetic tests and that it has many alternative methods with different strengths and weaknesses. This document is the fourth update to the original standards and guidelines for fragile X testing that were published in 2001, with revisions in 2005 and 2013, respectively.This versionClarifies the clinical features associated with different FMRI variants (Section 2.3)Discusses important reporting considerations (Section 3.3.1.3)Provides updates on technology (Section 4.1).
Collapse
|
22
|
Abstract
The brain is one of the organs that are preferentially targeted by adenosine-to-inosine (A-to-I) RNA editing, a posttranscriptional modification. This chemical modification affects neuronal development and functions at multiple levels, leading to normal brain homeostasis by increasing the complexity of the transcriptome. This includes modulation of the properties of ion channel and neurotransmitter receptors by recoding, redirection of miRNA targets by changing sequence complementarity, and suppression of immune response by altering RNA structure. Therefore, from another perspective, it appears that the brain is highly vulnerable to dysregulation of A-to-I RNA editing. Here, we focus on how aberrant A-to-I RNA editing is involved in neurological and neurodegenerative diseases of humans including epilepsy, amyotrophic lateral sclerosis, psychiatric disorders, developmental disorders, brain tumors, and encephalopathy caused by autoimmunity. In addition, we provide information regarding animal models to better understand the mechanisms behind disease phenotype.
Collapse
Affiliation(s)
- Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
23
|
Zhang K, Wang Y, Fan T, Zeng C, Sun ZS. The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell 2020; 13:6-25. [PMID: 33306168 PMCID: PMC8776968 DOI: 10.1007/s13238-020-00812-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
The serine/threonine p21-activated kinases (PAKs), as main effectors of the Rho GTPases Cdc42 and Rac, represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity. PAKs show wide expression in the brain, but they differ in specific cell types, brain regions, and developmental stages. PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines. PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders. Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment, comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases, which may also represent potential therapeutic targets of these diseases.
Collapse
Affiliation(s)
- Kaifan Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Cheng Zeng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
24
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
25
|
Kosti A, de Araujo PR, Li WQ, Guardia GDA, Chiou J, Yi C, Ray D, Meliso F, Li YM, Delambre T, Qiao M, Burns SS, Lorbeer FK, Georgi F, Flosbach M, Klinnert S, Jenseit A, Lei X, Sandoval CR, Ha K, Zheng H, Pandey R, Gruslova A, Gupta YK, Brenner A, Kokovay E, Hughes TR, Morris QD, Galante PAF, Tiziani S, Penalva LOF. The RNA-binding protein SERBP1 functions as a novel oncogenic factor in glioblastoma by bridging cancer metabolism and epigenetic regulation. Genome Biol 2020; 21:195. [PMID: 32762776 PMCID: PMC7412812 DOI: 10.1186/s13059-020-02115-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in RBP expression and function are often observed in cancer and influence critical pathways implicated in tumor initiation and growth. Identification and characterization of oncogenic RBPs and their regulatory networks provide new opportunities for targeted therapy. RESULTS We identify the RNA-binding protein SERBP1 as a novel regulator of glioblastoma (GBM) development. High SERBP1 expression is prevalent in GBMs and correlates with poor patient survival and poor response to chemo- and radiotherapy. SERBP1 knockdown causes delay in tumor growth and impacts cancer-relevant phenotypes in GBM and glioma stem cell lines. RNAcompete identifies a GC-rich region as SERBP1-binding motif; subsequent genomic and functional analyses establish SERBP1 regulation role in metabolic routes preferentially used by cancer cells. An important consequence of these functions is SERBP1 impact on methionine production. SERBP1 knockdown decreases methionine levels causing a subsequent reduction in histone methylation as shown for H3K27me3 and upregulation of genes associated with neurogenesis, neuronal differentiation, and function. Further analysis demonstrates that several of these genes are downregulated in GBM, potentially through epigenetic silencing as indicated by the presence of H3K27me3 sites. CONCLUSIONS SERBP1 is the first example of an RNA-binding protein functioning as a central regulator of cancer metabolism and indirect modulator of epigenetic regulation in GBM. By bridging these two processes, SERBP1 enhances glioma stem cell phenotypes and contributes to GBM poorly differentiated state.
Collapse
Affiliation(s)
- Adam Kosti
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Patricia Rosa de Araujo
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Wei-Qing Li
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Gabriela D. A. Guardia
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, São Paulo 01309-060 Brazil
| | - Jennifer Chiou
- Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78712 USA
| | - Caihong Yi
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Fabiana Meliso
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, São Paulo 01309-060 Brazil
| | - Yi-Ming Li
- Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Talia Delambre
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Mei Qiao
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Suzanne S. Burns
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Franziska K. Lorbeer
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Fanny Georgi
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Markus Flosbach
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Sarah Klinnert
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Anne Jenseit
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Xiufen Lei
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | | | - Kevin Ha
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Renu Pandey
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | | | - Yogesh K. Gupta
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Andrew Brenner
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Timothy R. Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
- Canadian Institute for Advanced Research, MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, ON M5G 1M1 Canada
| | - Quaid D. Morris
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1 Canada
| | - Pedro A. F. Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, São Paulo 01309-060 Brazil
| | - Stefano Tiziani
- Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78712 USA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
26
|
Chan WK, Griffiths R, Price DJ, Mason JO. Cerebral organoids as tools to identify the developmental roots of autism. Mol Autism 2020; 11:58. [PMID: 32660622 PMCID: PMC7359249 DOI: 10.1186/s13229-020-00360-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Some autism spectrum disorders (ASD) likely arise as a result of abnormalities during early embryonic development of the brain. Studying human embryonic brain development directly is challenging, mainly due to ethical and practical constraints. However, the recent development of cerebral organoids provides a powerful tool for studying both normal human embryonic brain development and, potentially, the origins of neurodevelopmental disorders including ASD. Substantial evidence now indicates that cerebral organoids can mimic normal embryonic brain development and neural cells found in organoids closely resemble their in vivo counterparts. However, with prolonged culture, significant differences begin to arise. We suggest that cerebral organoids, in their current form, are most suitable to model earlier neurodevelopmental events and processes such as neurogenesis and cortical lamination. Processes implicated in ASDs which occur at later stages of development, such as synaptogenesis and neural circuit formation, may also be modeled using organoids. The accuracy of such models will benefit from continuous improvements to protocols for organoid differentiation.
Collapse
Affiliation(s)
- Wai Kit Chan
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Rosie Griffiths
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - John O Mason
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
27
|
Telias M. Pharmacological Treatments for Fragile X Syndrome Based on Synaptic Dysfunction. Curr Pharm Des 2020; 25:4394-4404. [PMID: 31682210 DOI: 10.2174/1381612825666191102165206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common form of monogenic hereditary cognitive impairment, including intellectual disability, autism, hyperactivity, and epilepsy. METHODS This article reviews the literature pertaining to the role of synaptic dysfunction in FXS. RESULTS In FXS, synaptic dysfunction alters the excitation-inhibition ratio, dysregulating molecular and cellular processes underlying cognition, learning, memory, and social behavior. Decades of research have yielded important hypotheses that could explain, at least in part, the development of these neurological disorders in FXS patients. However, the main goal of translating lab research in animal models to pharmacological treatments in the clinic has been so far largely unsuccessful, leaving FXS a still incurable disease. CONCLUSION In this concise review, we summarize and analyze the main hypotheses proposed to explain synaptic dysregulation in FXS, by reviewing the scientific evidence that led to pharmaceutical clinical trials and their outcome.
Collapse
Affiliation(s)
- Michael Telias
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
28
|
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord 2020; 12:13. [PMID: 32359368 PMCID: PMC7196229 DOI: 10.1186/s11689-020-09310-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/13/2020] [Indexed: 01/27/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of autism and intellectual disabilities. Humans with FXS exhibit increased anxiety, sensory hypersensitivity, seizures, repetitive behaviors, cognitive inflexibility, and social behavioral impairments. The main purpose of this review is to summarize developmental studies of FXS in humans and in the mouse model, the Fmr1 knockout mouse. The literature presents considerable evidence that a number of early developmental deficits can be identified and that these early deficits chart a course of altered developmental experience leading to symptoms well characterized in adolescents and adults. Nevertheless, a number of critical issues remain unclear or untested regarding the development of symptomology and underlying mechanisms. First, what is the role of FMRP, the protein product of Fmr1 gene, during different developmental ages? Does the absence of FMRP during early development lead to irreversible changes, or could reintroduction of FMRP or therapeutics aimed at FMRP-interacting proteins/pathways hold promise when provided in adults? These questions have implications for clinical trial designs in terms of optimal treatment windows, but few studies have systematically addressed these issues in preclinical and clinical work. Published studies also point to complex trajectories of symptom development, leading to the conclusion that single developmental time point studies are unlikely to disambiguate effects of genetic mutation from effects of altered developmental experience and compensatory plasticity. We conclude by suggesting a number of experiments needed to address these major gaps in the field.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, USA
| | - Kelli C Dominick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA. .,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
| |
Collapse
|
29
|
Altered anxiety and social behaviors in a mouse model of Fragile X syndrome treated with hyperbaric oxygen therapy. J Clin Neurosci 2020; 73:245-251. [PMID: 32067828 DOI: 10.1016/j.jocn.2020.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 11/21/2022]
Abstract
Fragile X syndrome (FXS) is a common mental retardation syndrome. Anxiety and abnormal social behaviors are prominent features of FXS in humans. To better understand the effects of hyperbaric oxygen therapy (HBOT) on these behaviors, we analyzed anxiety-related and social behaviors in Fmr1 knockout mice treated by HBOT. In the open field test, HBOT group mice preferred the periphery to central areas and tended to run or walk along the wall. The results suggested that thigmotaxis was significantly increased in the HBOT group compared with the control group. In the elevated plus maze test, the percentage of distance traveled was significantly increased in the open arm and significantly decreased in the closed arm for HBOT group mice compared with control group mice. These results suggested that HBOT group mice displayed enhanced motor activity in the open arm and exhibited fewer anxiety-related behaviors. In the three-chambered social approach test, the HBOT group mice made more approaches to the wire cup containing an acquaintance mouse than control group mice in the sociability test and made more approaches to the wire cup containing a stranger mouse than control group mice in the social novelty preference test. The results suggested that HBOT group mice showed increased levels of social interaction and decreased "social anxiety" than the control group to partner mice in this test. Our findings indicated that HBOT resulted in altered anxiety and social behavior in Fmr1 knockout mice and could possibly be used as a treatment for FXS.
Collapse
|
30
|
Swinnen B, Robberecht W, Van Den Bosch L. RNA toxicity in non-coding repeat expansion disorders. EMBO J 2020; 39:e101112. [PMID: 31721251 PMCID: PMC6939197 DOI: 10.15252/embj.2018101112] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Several neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are caused by non-coding nucleotide repeat expansions. Different pathogenic mechanisms may underlie these non-coding repeat expansion disorders. While gain-of-function mechanisms, such as toxicity associated with expression of repeat RNA or toxicity associated with repeat-associated non-ATG (RAN) products, are most frequently connected with these disorders, loss-of-function mechanisms have also been implicated. We review the different pathways that have been linked to non-coding repeat expansion disorders such as C9ORF72-linked ALS/frontotemporal dementia (FTD), myotonic dystrophy, fragile X tremor/ataxia syndrome (FXTAS), SCA, and Huntington's disease-like 2. We discuss modes of RNA toxicity focusing on the identity and the interacting partners of the toxic RNA species. Using the C9ORF72 ALS/FTD paradigm, we further explore the efforts and different methods used to disentangle RNA vs. RAN toxicity. Overall, we conclude that there is ample evidence for a role of RNA toxicity in non-coding repeat expansion diseases.
Collapse
Affiliation(s)
- Bart Swinnen
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Wim Robberecht
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
31
|
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. ADVANCES IN NEUROBIOLOGY 2020; 24:97-141. [PMID: 32006358 DOI: 10.1007/978-3-030-30402-7_4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
32
|
Gonzalez D, Tomasek M, Hays S, Sridhar V, Ammanuel S, Chang CW, Pawlowski K, Huber KM, Gibson JR. Audiogenic Seizures in the Fmr1 Knock-Out Mouse Are Induced by Fmr1 Deletion in Subcortical, VGlut2-Expressing Excitatory Neurons and Require Deletion in the Inferior Colliculus. J Neurosci 2019; 39:9852-9863. [PMID: 31666356 PMCID: PMC6891051 DOI: 10.1523/jneurosci.0886-19.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading monogenetic cause of autism. One symptom of FXS and autism is sensory hypersensitivity (also called sensory over-responsivity). Perhaps related to this, the audiogenic seizure (AGS) is arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knock-out (KO) mouse. Therefore, the AGS may be considered a mouse model of sensory hypersensitivity. Hyperactive circuits are hypothesized to underlie dysfunction in a number of brain regions in patients with FXS and Fmr1 KO mice, and the AGS may be a result of this. But the specific cell types and brain regions underlying AGSs in the Fmr1 KO are unknown. We used conditional deletion or expression of Fmr1 in different cell populations to determine whether Fmr1 deletion in those cells was sufficient or necessary, respectively, for the AGS phenotype in males. Our data indicate that Fmr1 deletion in glutamatergic neurons that express vesicular glutamate transporter 2 (VGlut2) and are located in subcortical brain regions is sufficient and necessary to cause AGSs. Furthermore, the deletion of Fmr1 in glutamatergic neurons of the inferior colliculus is necessary for AGSs. When we demonstrate necessity, we show that Fmr1 expression in either the larger population of VGlut2-expressing glutamatergic neurons or the smaller population of inferior collicular glutamatergic neurons-in an otherwise Fmr1 KO mouse-eliminates AGSs. Therefore, targeting these neuronal populations in FXS and autism may be part of a therapeutic strategy to alleviate sensory hypersensitivity.SIGNIFICANCE STATEMENT Sensory hypersensitivity in fragile X syndrome (FXS) and autism patients significantly interferes with quality of life. Audiogenic seizures (AGSs) are arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knockout-and may be considered a model of sensory hypersensitivity in FXS. We provide the clearest and most precise genetic evidence to date for the cell types and brain regions involved in causing AGSs in the Fmr1 knockout and, more broadly, for any mouse mutant. The expression of Fmr1 in these same cell types in an otherwise Fmr1 knockout eliminates AGSs indicating possible cellular targets for alleviating sensory hypersensitivity in FXS and other forms of autism.
Collapse
Affiliation(s)
| | | | - Seth Hays
- Department of Neuroscience, Dallas, and
| | | | | | | | - Karen Pawlowski
- Department of Otolaryngology and Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9035
| | | | | |
Collapse
|
33
|
Impaired Reliability and Precision of Spiking in Adults But Not Juveniles in a Mouse Model of Fragile X Syndrome. eNeuro 2019; 6:ENEURO.0217-19.2019. [PMID: 31685673 PMCID: PMC6917895 DOI: 10.1523/eneuro.0217-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common source of intellectual disability and autism. Extensive studies have been performed on the network and behavioral correlates of the syndrome, but our knowledge about intrinsic conductance changes is still limited. In this study, we show a differential effect of FMRP knockout in different subsections of hippocampus using whole-cell patch clamp in mouse hippocampal slices. We observed no significant change in spike numbers in the CA1 region of hippocampus, but a significant increase in CA3, in juvenile mice. However, in adult mice we see a reduction in spike number in the CA1 with no significant difference in CA3. In addition, we see increased variability in spike numbers in CA1 cells following a variety of steady and modulated current step protocols. This effect emerges in adult mice (8 weeks) but not juvenile mice (4 weeks). This increased spiking variability was correlated with reduced spike number and with elevated AHP. The increased AHP arose from elevated SK currents (small conductance calcium-activated potassium channels), but other currents involved in medium AHP, such as Ih and M, were not significantly different. We obtained a partial rescue of the cellular variability phenotype when we blocked SK current using the specific blocker apamin. Our observations provide a single-cell correlate of the network observations of response variability and loss of synchronization, and suggest that the elevation of SK currents in FXS may provide a partial mechanistic explanation for this difference.
Collapse
|
34
|
Zhu YJ, Zheng B, Luo GJ, Ma XK, Lu XY, Lin XM, Yang S, Zhao Q, Wu T, Li ZX, Liu XL, Wu R, Liu JF, Ge Y, Yang L, Wang HY, Chen L. Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. Theranostics 2019; 9:3526-3540. [PMID: 31281495 PMCID: PMC6587157 DOI: 10.7150/thno.32796] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Circular RNA (circRNA) possesses great pre-clinical diagnostic and therapeutic potentials in multiple cancers. It has been reported playing roles in multiple malignant behaviors including proliferation, migration, metastasis and chemoresistance. However, the underlying correlation between circRNAs and cancer stem cells (CSCs) has not been reported yet. Methods: circZKSCAN1 level was detected in HCC tissue microarrays to clarify its prognostic values. Gain and loss function experiments were applied to investigate the role of circZKSCAN1 in HCC stemness. Bioinformatic analysis was used to predict the possible downstream RNA binding protein and further RNA immunoprecipitation sequencing was carried out to identify the RBP-regulated genes. Results: The absence of circZKSCAN1 endowed several malignant properties including cancer stemness and tightly correlated with worse overall and recurrence-free survival rate in HCC. Bioinformatics analysis and RNA immunoprecipitation-sequencing (RIP-seq) results revealed that circZKSCAN1 exerted its inhibitive role by competitively binding FMRP, therefore, block the binding between FMRP and β-catenin-binding protein-cell cycle and apoptosis regulator 1 (CCAR1) mRNA, and subsequently restrain the transcriptional activity of Wnt signaling. In addition, RNA-splicing protein Quaking 5 was found downregulated in HCC tissues and responsible for the reduction of circZKSCAN1. Conclusion: Collectively, this study revealed the mechanisms underlying the regulatory role of circZKSCAN1 in HCC CSCs and identified the newly discovered Qki5-circZKSCAN1-FMRP-CCAR1-Wnt signaling axis as a potentially important therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Yan-Jing Zhu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Bo Zheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Gui-Juan Luo
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Xu-Kai Ma
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yuan Lu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Xi-Meng Lin
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tong Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Zhi-Xuan Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Xiao-Long Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Rui Wu
- Department of Biliary Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Changhai Road 225, Shanghai 200438, China
| | - Jing-Feng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Yang Ge
- School of Public Health, Shanghai JiaoTong University, 200240, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Yang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
- Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Abstract
Spinocerebellar ataxia type 8 (SCA8) is a rare autosomal dominant neurodegenerative disease caused by expanded CTA/CTG repeats in the ATXN8OS gene. Many patients had pure cerebellar ataxia, while some had parkinsonism, both without causal explanation. We analyzed the ATXN8OS gene in 150 Japanese patients with ataxia and 76 patients with Parkinson's disease or related disorders. We systematically reassessed 123 patients with SCA8, both our patients and those reported in other studies. Two patients with progressive supranuclear palsy (PSP) had mutations in the ATXN8OS gene. Systematic analyses revealed that patients with parkinsonism had significantly shorter CTA/CTG repeat expansions and older age at onset than those with predominant ataxia. We show the imaging results of patients with and without parkinsonism. We also found a significant inverse relationship between repeat sizes and age at onset in all patients, which has not been detected previously. Our results may be useful to genetic counseling, improve understanding of the pathomechanism, and extend the clinical phenotype of SCA8.
Collapse
|
36
|
Pal R, Bhattacharya A. Modelling Protein Synthesis as A Biomarker in Fragile X Syndrome Patient-Derived Cells. Brain Sci 2019; 9:E59. [PMID: 30862080 PMCID: PMC6468675 DOI: 10.3390/brainsci9030059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
The most conserved molecular phenotype of Fragile X Syndrome (FXS) is aberrant protein synthesis. This has been validated in a variety of experimental model systems from zebrafish to rats, patient-derived lymphoblasts and fibroblasts. With the advent of personalized medicine paradigms, patient-derived cells and their derivatives are gaining more translational importance, not only to model disease in a dish, but also for biomarker discovery. Here we review past and current practices of measuring protein synthesis in FXS, studies in patient derived cells and the inherent challenges in measuring protein synthesis in them to offer usable avenues of modeling this important metabolic metric for further biomarker development.
Collapse
Affiliation(s)
- Rakhi Pal
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India.
| | - Aditi Bhattacharya
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India.
| |
Collapse
|
37
|
Telias M. Molecular Mechanisms of Synaptic Dysregulation in Fragile X Syndrome and Autism Spectrum Disorders. Front Mol Neurosci 2019; 12:51. [PMID: 30899214 PMCID: PMC6417395 DOI: 10.3389/fnmol.2019.00051] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of monogenic hereditary cognitive impairment. FXS patient exhibit a high comorbidity rate with autism spectrum disorders (ASDs). This makes FXS a model disease for understanding how synaptic dysregulation alters neuronal excitability, learning and memory, social behavior, and more. Since 1991, with the discovery of fragile X mental retardation 1 (FMR1) as the sole gene that is mutated in FXS, thousands of studies into the function of the gene and its encoded protein FMR1 protein (FMRP), have been conducted, yielding important information regarding the pathophysiology of the disease, as well as insight into basic synaptic mechanisms that control neuronal networking and circuitry. Among the most important, are molecular mechanisms directly involved in plasticity, including glutamate and γ-aminobutyric acid (GABA) receptors, which can control synaptic transmission and signal transduction, including short- and long-term plasticity. More recently, several novel mechanisms involving growth factors, enzymatic cascades and transcription factors (TFs), have been proposed to have the potential of explaining some of the synaptic dysregulation in FXS. In this review article, I summarize the main mechanisms proposed to underlie synaptic disruption in FXS and ASDs. I focus on studies conducted on the Fmr1 knock-out (KO) mouse model and on FXS-human pluripotent stem cells (hPSCs), emphasizing the differences and even contradictions between mouse and human, whenever possible. As FXS and ASDs are both neurodevelopmental disorders that follow a specific time-course of disease progression, I highlight those studies focusing on the differential developmental regulation of synaptic abnormalities in these diseases.
Collapse
Affiliation(s)
- Michael Telias
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
38
|
Specchia V, Puricella A, D'Attis S, Massari S, Giangrande A, Bozzetti MP. Drosophila melanogaster as a Model to Study the Multiple Phenotypes, Related to Genome Stability of the Fragile-X Syndrome. Front Genet 2019; 10:10. [PMID: 30815010 PMCID: PMC6381874 DOI: 10.3389/fgene.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Fragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also display cellular and morphological traits including branched dendritic spines, large ears, and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered germline development, resembling the phenotypes observed in FraX patients. Therefore, Drosophila melanogaster is considered a good model to study the physiopathological mechanisms underlying the Fragile-X syndrome. In this review, we explore how the multifaceted roles of the FMRP protein have been addressed in the Drosophila model and how the gained knowledge may open novel perspectives for understanding the molecular defects causing the disease and for identifying novel therapeutical targets.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| |
Collapse
|
39
|
Rohith BN, Shyamala BV. Developmental Deformity Due to
scalloped
Non‐Function in
Drosophila
Brain Leads to Cognitive Impairment. Dev Neurobiol 2019; 79:236-251. [DOI: 10.1002/dneu.22668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/07/2018] [Accepted: 01/18/2019] [Indexed: 11/10/2022]
|
40
|
Abstract
Nowadays, women's family planning intentions are postponed, and it is common that only later will the conditions be created for the woman to have children. Fortunately, in most cases, pregnancy is possible in this case, taking into account the increased genetic risk. However, this later childbirth may become impossible or significantly more difficult if we can detect sterility and infertility, and its genetic cause is revealed. Any procedure that can help to reduce the "aging" of society, the reproduction rate, must be treated as an important public health issue. It would be particularly important in cases where genetic causes can be detected in the background of female sterility and infertility. Endocrine causes, infections, immunological causes, psychic factors, stress, and weight problems may be among the causes of female infertility in addition to genetic causes and genetic developmental disorders. Infertility can also be caused by iatrogenic factors, previous interventions, and surgery. In this chapter we will discuss the diseases in which genetic factors play a role.
Collapse
Affiliation(s)
- Artur Beke
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
41
|
Protic D, Salcedo-Arellano MJ, Dy JB, Potter LA, Hagerman RJ. New Targeted Treatments for Fragile X Syndrome. Curr Pediatr Rev 2019; 15:251-258. [PMID: 31241016 PMCID: PMC6930353 DOI: 10.2174/1573396315666190625110748] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability with prevalence rates estimated to be 1:5,000 in males and 1:8,000 in females. The increase of >200 Cytosine Guanine Guanine (CGG) repeats in the 5' untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene results in transcriptional silencing on the FMR1 gene with a subsequent reduction or absence of fragile X mental retardation protein (FMRP), an RNA binding protein involved in the maturation and elimination of synapses. In addition to intellectual disability, common features of FXS are behavioral problems, autism, language deficits and atypical physical features. There are still no currently approved curative therapies for FXS, and clinical management continues to focus on symptomatic treatment of comorbid behaviors and psychiatric problems. Here we discuss several treatments that target the neurobiological pathway abnormal in FXS. These medications are clinically available at present and the data suggest that these medications can be helpful for those with FXS.
Collapse
Affiliation(s)
- Dragana Protic
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, United States.,Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maria J Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, United States.,Department of Pediatrics, Davis School of Medicine, University of California, Sacramento, CA, United States
| | - Jeanne Barbara Dy
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, United States.,MedMom Institute for Human Development, Pasig City, Philippines.,Department of Pediatrics, The Medical City, Ortigas Avenue, Pasig City, NCR, Philippines.,School of Medicine and Public Health, Ateneo de Manila University, Pasig City, NCR, Philippines
| | - Laura A Potter
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, United States
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, United States.,Department of Pediatrics, Davis School of Medicine, University of California, Sacramento, CA, United States
| |
Collapse
|
42
|
Wen TH, Lovelace JW, Ethell IM, Binder DK, Razak KA. Developmental Changes in EEG Phenotypes in a Mouse Model of Fragile X Syndrome. Neuroscience 2018; 398:126-143. [PMID: 30528856 DOI: 10.1016/j.neuroscience.2018.11.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/29/2023]
Abstract
Fragile X Syndrome (FXS) is a leading genetic cause of autism and intellectual disabilities. Sensory-processing deficits are common in humans with FXS and an animal model, the Fmr1 knockout (KO) mouse, manifesting in the auditory system as debilitating hypersensitivity and abnormal electroencephalographic (EEG) and event-related potential (ERP) phenotypes. FXS is a neurodevelopmental disorder, but how EEG/ERP phenotypes change during development is unclear. Therefore, we characterized baseline and stimulus-evoked EEG in auditory and frontal cortex of developing (postnatal day (P) 21 and P30) and adult (P60) wildtype (WT) and Fmr1 KO mice with the FVB genetic background. We found that baseline gamma-band power and N1 amplitude of auditory ERP were increased in frontal cortex of Fmr1 KO mice during development and in adults. Baseline gamma power was increased in auditory cortex at P30. Genotype differences in stimulus-evoked gamma power were present in both cortical regions, but the direction and strength of the changes were age-dependent. These findings suggest that cortical deficits are present during early development and may contribute to sensory-processing deficits in FXS, which in turn may lead to anxiety and delayed language. Developmental changes in EEG measures indicate that observations at a single time-point during development are not reflective of FXS disease progression and highlight the need to identify developmental trajectories and optimal windows for treatment.
Collapse
Affiliation(s)
- Teresa H Wen
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Jonathan W Lovelace
- Psychology Department and Psychology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Devin K Binder
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Psychology Department and Psychology Graduate Program, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
43
|
Matsumoto Y, Shimizu K, Arahata K, Suzuki M, Shimizu A, Takei K, Yamauchi J, Hakeda-Suzuki S, Suzuki T, Morimoto T. Prepulse inhibition in Drosophila melanogaster larvae. Biol Open 2018; 7:bio034710. [PMID: 30262549 PMCID: PMC6176951 DOI: 10.1242/bio.034710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/15/2018] [Indexed: 12/26/2022] Open
Abstract
The neural mechanisms of psychiatric diseases like autism spectrum disorder and schizophrenia have been intensively studied, and a number of candidate genes have been identified. However, the relationship between genes and neural system functioning remains unclear. Model organisms may serve as a powerful tool for addressing this question due to the availability of established genetic tools. Here, we report prepulse inhibition (PPI) in Drosophila larvae for the first time. PPI is a neurological phenomenon found in humans and other organisms and is used in the diagnosis of schizophrenia and other psychiatric disorders. A weaker prestimulus (prepulse) inhibits the reaction to a subsequent strong, startling stimulus (pulse). Using the larval startle response to the buzz of a predator (wasp), we examined PPI in wild-type flies and two mutants: an fmr1 mutant, which is implicated in Fragile X syndrome, and a centaurin gamma 1A (CenG1A) mutant, which is associated with GTPase, PH, ArfGAP, and ANK domains and implicated in autism. Both mutants showed decreased PPI, whereas, interestingly, double mutants showed substantial PPI. The PPI phenomenon described here can provide a useful tool for the study of neural mechanisms of synaptic modification and psychiatric diseases.
Collapse
Affiliation(s)
- Yutaro Matsumoto
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuya Shimizu
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kota Arahata
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Miku Suzuki
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Akira Shimizu
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Koki Takei
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Satoko Hakeda-Suzuki
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama, 226-8501, Japan
| | - Takashi Suzuki
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama, 226-8501, Japan
| | - Takako Morimoto
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
44
|
Cheng Y, Li Z, Manupipatpong S, Lin L, Li X, Xu T, Jiang YH, Shu Q, Wu H, Jin P. 5-Hydroxymethylcytosine alterations in the human postmortem brains of autism spectrum disorder. Hum Mol Genet 2018; 27:2955-2964. [PMID: 29790956 PMCID: PMC6097011 DOI: 10.1093/hmg/ddy193] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorders (ASDs) include a group of syndromes characterized by impaired language, social and communication skills, in addition to restrictive behaviors or stereotypes. However, with a prevalence of 1.5% in developed countries and high comorbidity rates, no clear underlying mechanism that unifies the heterogeneous phenotypes of ASD exists. 5-hydroxymethylcytosine (5hmC) is highly enriched in the brain and recognized as an essential epigenetic mark in developmental and brain disorders. To explore the role of 5hmC in ASD, we used the genomic DNA isolated from the postmortem cerebellum of both ASD patients and age-matched controls to profile genome-wide distribution of 5hmC. We identified 797 age-dependent differentially hydroxymethylated regions (DhMRs) in the young group (age ≤ 18), while no significant DhMR was identified in the groups over 18 years of age. Pathway and disease association analyses demonstrated that the intragenic DhMRs were in the genes involved in cell-cell communication and neurological disorders. Also, we saw significant 5hmC changes in the larger group of psychiatric genes. Interestingly, we found that the predicted cis functions of non-coding intergenic DhMRs strikingly associate with ASD and intellectual disorders. A significant fraction of intergenic DhMRs overlapped with topologically associating domains. These results together suggest that 5hmC alteration is associated with ASD, particularly in the early development stage, and could contribute to the pathogenesis of ASD.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Sasicha Manupipatpong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Li Lin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xuekun Li
- The Children’s Hospital and Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Tianlei Xu
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
| | - Yong-Hui Jiang
- Department of Pediatrics, University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qiang Shu
- The Children’s Hospital and Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
45
|
Fink JJ, Levine ES. Uncovering True Cellular Phenotypes: Using Induced Pluripotent Stem Cell-Derived Neurons to Study Early Insults in Neurodevelopmental Disorders. Front Neurol 2018; 9:237. [PMID: 29713304 PMCID: PMC5911479 DOI: 10.3389/fneur.2018.00237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
Animal models of neurodevelopmental disorders have provided invaluable insights into the molecular-, cellular-, and circuit-level defects associated with a plethora of genetic disruptions. In many cases, these deficits have been linked to changes in disease-relevant behaviors, but very few of these findings have been translated to treatments for human disease. This may be due to significant species differences and the difficulty in modeling disorders that involve deletion or duplication of multiple genes. The identification of primary underlying pathophysiology in these models is confounded by the accumulation of secondary disease phenotypes in the mature nervous system, as well as potential compensatory mechanisms. The discovery of induced pluripotent stem cell technology now provides a tool to accurately model complex genetic neurogenetic disorders. Using this technique, patient-specific cell lines can be generated and differentiated into specific subtypes of neurons that can be used to identify primary cellular and molecular phenotypes. It is clear that impairments in synaptic structure and function are a common pathophysiology across neurodevelopmental disorders, and electrophysiological analysis at the earliest stages of neuronal development is critical for identifying changes in activity and excitability that can contribute to synaptic dysfunction and identify targets for disease-modifying therapies.
Collapse
Affiliation(s)
- James J Fink
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
46
|
Xu B, Zhang Y, Zhan S, Wang X, Zhang H, Meng X, Ge W. Proteomic Profiling of Brain and Testis Reveals the Diverse Changes in Ribosomal Proteins in fmr1 Knockout Mice. Neuroscience 2018; 371:469-483. [PMID: 29292077 DOI: 10.1016/j.neuroscience.2017.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023]
Abstract
Fragile X syndrome (FXS), the leading cause of inherited forms of mental retardation and autism, is caused by the transcriptional silencing of fmr1 encoding the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is a widely expressed, but primarily in the brain and testis, and associated approximately 4% of transcripts. Macro-orchidism is a common symptom associated with FXS both in humans and mice. Thus, we analyze the pooled samples of cerebral cortex, hippocampus and testis from both the fmr1-KO and wild-type mice by a LC-MS/MS proteomic study. Among the identified proteins, most of those showing significant changes in expression were up- or downregulated in the absence of FMRP. Proteins (FMRP, RPS8, RPL23a and ATPIF1, RPL6, GAP43, MTCH2 and MPZ in brain, and FMRP, CAH3, AKR1B7 and C9 in testis) identified by MS/MS were also verified by Western blotting. The Gene Ontology and WikiPathways analysis revealed that the differentially expressed proteins were clustered in the polyribosome and RNA-binding protein categories in both cerebral cortex and hippocampus, but not in testis. Although this study was limited by the little number of samples, our results provide detailed insights into the ribosomal protein profiles of cerebral cortex, hippocampus and testis in the absence of FMRP. Our studies also provide a better understanding of protein profile changes and the underlying dysregulated pathways arising from fmr1 silencing in FXS.
Collapse
Affiliation(s)
- Benhong Xu
- Affiliated Hospital of Hebei University, No. 212, Yu Hua East Road, Nan Shi District, Baoding, Hebei 071000, China; State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5 Dongdansantiao, Dongcheng District, Beijing 100005, China; Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yusheng Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5 Dongdansantiao, Dongcheng District, Beijing 100005, China
| | - Shaohua Zhan
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5 Dongdansantiao, Dongcheng District, Beijing 100005, China
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5 Dongdansantiao, Dongcheng District, Beijing 100005, China
| | - Haisong Zhang
- Affiliated Hospital of Hebei University, No. 212, Yu Hua East Road, Nan Shi District, Baoding, Hebei 071000, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Ge
- Affiliated Hospital of Hebei University, No. 212, Yu Hua East Road, Nan Shi District, Baoding, Hebei 071000, China; State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5 Dongdansantiao, Dongcheng District, Beijing 100005, China.
| |
Collapse
|
47
|
Chailangkarn T, Noree C, Muotri AR. The contribution of GTF2I haploinsufficiency to Williams syndrome. Mol Cell Probes 2018; 40:45-51. [PMID: 29305905 DOI: 10.1016/j.mcp.2017.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 01/14/2023]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder involving hemideletion of as many as 26-28 genes, resulting in a constellation of unique physical, cognitive and behavior phenotypes. The haploinsufficiency effect of each gene has been studied and correlated with phenotype(s) using several models including WS subjects, animal models, and peripheral cell lines. However, links for most of the genes to WS phenotypes remains unclear. Among those genes, general transcription factor 2I (GTF2I) is of particular interest as its haploinsufficiency is possibly associated with hypersociability in WS. Here, we describe studies of atypical WS cases as well as mouse models focusing on GTF2I that support a role for this protein in the neurocognitive and behavioral profiles of WS individuals. We also review collective studies on diverse molecular functions of GTF2I that may provide mechanistic explanation for phenotypes recently reported in our relevant cellular model, namely WS induced pluripotent stem cell (iPSC)-derived neurons. Finally, in light of the progress in gene-manipulating approaches, we suggest their uses in revealing the neural functions of GTF2I in the context of WS.
Collapse
Affiliation(s)
- Thanathom Chailangkarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Virology and Cell Technology Laboratory, Pathum Thani, 12120, Thailand.
| | - Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, UCSD Stem Cell Program, Department of Pediatrics/Rady Children's Hospital San Diego, La Jolla, CA 92037, USA; University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA
| |
Collapse
|
48
|
Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice. eNeuro 2017; 4:eN-NWR-0264-17. [PMID: 29291238 PMCID: PMC5744645 DOI: 10.1523/eneuro.0264-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/14/2017] [Accepted: 12/05/2017] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS), the most common monogenic cause of autism, is often associated with hypersensitivity to sound. Several studies have shown abnormalities in the auditory brainstem in FXS; however, the emergence of these auditory phenotypes during development has not been described. Here, we investigated the development of phenotypes in FXS model [Fmr1 knockout (KO)] mice in the ventral cochlear nucleus (VCN), medial nucleus of the trapezoid body (MNTB), and lateral superior olive (LSO). We studied features of the brainstem known to be altered in FXS or Fmr1 KO mice, including cell size and expression of markers for excitatory (VGLUT) and inhibitory (VGAT) synapses. We found that cell size was reduced in the nuclei with different time courses. VCN cell size is normal until after hearing onset, while MNTB and LSO show decreases earlier. VGAT expression was elevated relative to VGLUT in the Fmr1 KO mouse MNTB by P6, before hearing onset. Because glial cells influence development and are altered in FXS, we investigated their emergence in the developing Fmr1 KO brainstem. The number of microglia developed normally in all three nuclei in Fmr1 KO mice, but we found elevated numbers of astrocytes in Fmr1 KO in VCN and LSO at P14. The results indicate that some phenotypes are evident before spontaneous or auditory activity, while others emerge later, and suggest that Fmr1 acts at multiple sites and time points in auditory system development.
Collapse
|
49
|
Witten MR, Wissler L, Snow M, Geschwindner S, Read JA, Brandon NJ, Nairn AC, Lombroso PJ, Käck H, Ellman JA. X-ray Characterization and Structure-Based Optimization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors. J Med Chem 2017; 60:9299-9319. [PMID: 29116812 DOI: 10.1021/acs.jmedchem.7b01292] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Excessive activity of striatal-enriched protein tyrosine phosphatase (STEP) in the brain has been detected in numerous neuropsychiatric disorders including Alzheimer's disease. Notably, knockdown of STEP in an Alzheimer mouse model effected an increase in the phosphorylation levels of downstream STEP substrates and a significant reversal in the observed cognitive and memory deficits. These data point to the promising potential of STEP as a target for drug discovery in Alzheimer's treatment. We previously reported a substrate-based approach to the development of low molecular weight STEP inhibitors with Ki values as low as 7.8 μM. Herein, we disclose the first X-ray crystal structures of inhibitors bound to STEP and the surprising finding that they occupy noncoincident binding sites. Moreover, we utilize this structural information to optimize the inhibitor structure to achieve a Ki of 110 nM, with 15-60-fold selectivity across a series of phosphatases.
Collapse
Affiliation(s)
- Michael R Witten
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Lisa Wissler
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Gothenburg, Sweden
| | - Melanie Snow
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Macclesfield SK10 4TG, United Kingdom
| | - Stefan Geschwindner
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Gothenburg, Sweden
| | - Jon A Read
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Cambridge CB4 0WG, United Kingdom
| | - Nicholas J Brandon
- Neuroscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Cambridge, Massachusetts 02139, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University , New Haven, Connecticut 06520, United States
| | - Paul J Lombroso
- Department of Psychiatry, Yale University , New Haven, Connecticut 06520, United States.,Child Study Center, Yale University , New Haven, Connecticut 06520, United States
| | - Helena Käck
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Gothenburg, Sweden
| | - Jonathan A Ellman
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| |
Collapse
|
50
|
Santini E, Huynh TN, Longo F, Koo SY, Mojica E, D'Andrea L, Bagni C, Klann E. Reducing eIF4E-eIF4G interactions restores the balance between protein synthesis and actin dynamics in fragile X syndrome model mice. Sci Signal 2017; 10:10/504/eaan0665. [PMID: 29114037 DOI: 10.1126/scisignal.aan0665] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and autism spectrum disorder. FXS is caused by silencing of the FMR1 gene, which encodes fragile X mental retardation protein (FMRP), an mRNA-binding protein that represses the translation of its target mRNAs. One mechanism by which FMRP represses translation is through its association with cytoplasmic FMRP-interacting protein 1 (CYFIP1), which subsequently sequesters and inhibits eukaryotic initiation factor 4E (eIF4E). CYFIP1 shuttles between the FMRP-eIF4E complex and the Rac1-Wave regulatory complex, thereby connecting translational regulation to actin dynamics and dendritic spine morphology, which are dysregulated in FXS model mice that lack FMRP. Treating FXS mice with 4EGI-1, which blocks interactions between eIF4E and eIF4G, a critical interaction partner for translational initiation, reversed defects in hippocampus-dependent memory and spine morphology. We also found that 4EGI-1 normalized the phenotypes of enhanced metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD), enhanced Rac1-p21-activated kinase (PAK)-cofilin signaling, altered actin dynamics, and dysregulated CYFIP1/eIF4E and CYFIP1/Rac1 interactions in FXS mice. Our findings are consistent with the idea that an imbalance in protein synthesis and actin dynamics contributes to pathophysiology in FXS mice, and suggest that targeting eIF4E may be a strategy for treating FXS.
Collapse
Affiliation(s)
- Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, USA.,Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Thu N Huynh
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - So Yeon Koo
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Edward Mojica
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Laura D'Andrea
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy.,Center for Human Genetics and Leuven Research Institute for Neuroscience and Disease, KU Leuven, 3000 Leuven, Belgium.,VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|