1
|
Moreira P, Pocock R. Functions of nuclear factor Y in nervous system development, function and health. Neural Regen Res 2025; 20:2887-2894. [PMID: 39610092 PMCID: PMC11826454 DOI: 10.4103/nrr.nrr-d-24-00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 11/30/2024] Open
Abstract
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes, one of the most common motifs found in gene promoters and enhancers. Over the last 30 years, research has revealed that the nuclear factor Y complex controls many aspects of brain development, including differentiation, axon guidance, homeostasis, disease, and most recently regeneration. However, a complete understanding of transcriptional regulatory networks, including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive. In this review, we explore the nuclear factor Y complex's role and mode of action during brain development, as well as how genomic technologies may expand understanding of this key regulator of gene expression.
Collapse
Affiliation(s)
- Pedro Moreira
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Zhang Y, Shi Y, Zeng K, Chen L, Gao S. Hierarchical competing inhibition circuits govern motor stability in C. elegans. Nat Commun 2025; 16:4405. [PMID: 40355468 PMCID: PMC12069549 DOI: 10.1038/s41467-025-59668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Stable movement and efficient motor transition are both crucial for animals to navigate their environments, yet the neural principles underlying these abilities are not fully understood. In free-moving Caenorhabditis elegans, sustained forward locomotion is occasionally interrupted by backward movements, which are believed to result from reciprocal inhibition between the interneurons AVB and AVA. Here, we discovered that hierarchical competing inhibition circuits stabilize spontaneous movement and ensure motor transition. We found that the modulatory interneuron PVP activated AVB to maintain forward locomotion while inhibiting AVA to prevent backward movement. Another interneuron, DVC activates AVA and forms a disinhibition circuit that inhibits PVP, thereby relieving PVP's inhibition of AVA and facilitating backward movement. Notably, these asymmetrical circuit motifs create a higher-order competing inhibition that likely sharpens the motor transition. We also identified cholinergic and glutamatergic synaptic mechanisms underlying these circuits. This study elucidates a key neural principle that controls motor stability in C. elegans.
Collapse
Affiliation(s)
- Yongning Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yunzhu Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kanghua Zeng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lili Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
3
|
Zhang H, Meléndez A. Conserved components of the macroautophagy machinery in Caenorhabditis elegans. Genetics 2025; 229:iyaf007. [PMID: 40180610 PMCID: PMC12005284 DOI: 10.1093/genetics/iyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and its subsequent delivery to lysosomes for degradation and recycling. In Caenorhabditis elegans, autophagy participates in diverse processes such as stress resistance, cell fate specification, tissue remodeling, aging, and adaptive immunity. Genetic screens in C. elegans have identified a set of metazoan-specific autophagy genes that form the basis for our molecular understanding of steps unique to the autophagy pathway in multicellular organisms. Suppressor screens have uncovered multiple mechanisms that modulate autophagy activity under physiological conditions. C. elegans also provides a model to investigate how autophagy activity is coordinately controlled at an organismal level. In this chapter, we will discuss the molecular machinery, regulation, and physiological functions of autophagy, and also methods utilized for monitoring autophagy during C. elegans development.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Alicia Meléndez
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Molecular, Cellular and Developmental Biology and Biochemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
4
|
Paltian JJ, Prado VC, Fonseca CARD, Morais RBD, Cordeiro LM, Silva AFD, Alves D, Antunes Soares FA, Luchese C, Cruz L, Wilhelm EA. 7-chloro-4-(phenylselanyl) quinoline incorporation into polymeric nanocapsules improves its pharmacological action: Physicochemical, toxicological, and behavioral studies. Int J Pharm 2025; 673:125370. [PMID: 39965733 DOI: 10.1016/j.ijpharm.2025.125370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
The encapsulation of active substances offers significant advantages for various pharmaceutical applications. In this study, we explored the potential of nanotechnology to enhance the efficacy of the organic selenium compound 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) by encapsulating it within ethylcellulose polymeric nanocapsules. Initially, we developed and characterized the nanocapsule containing 4-PSQ. To evaluate their safety and pharmacological benefits, we conducted a series of studies, including hemolysis assays (in vitro), neurotoxicity assessments usingCaenorhabditis elegans, and analyses of hepatic and renal toxicity in Swiss mice. The pharmacological activity of 4-PSQ nanocapsules (4-PSQ NCs) was further investigated in nociception and acute inflammation models in male and female Swiss mice. The physicochemical characteristics of 4-PSQ NC comply with nanometric standards and allow for controlled release in vitro. In toxicity evaluations, 4-PSQ NCs exhibited reduced hemolytic and neurotoxic effects compared to the free compound (4-PSQ Free). Furthermore, oxidative damage markers and plasma biomarkers showed no significant differences between the encapsulated and free forms of 4-PSQ. Treatment with 4-PSQ Free or 4-PSQ NC demonstrated antinociceptive and antiedematogenic effects in the glutamate and hot plate tests; however, 4-PSQ NCs showedsignificantly greater efficacy. Furthermore, 4-PSQ NC showed a prolonged effect, reducing mechanical hypersensitivity in the inflammatory pain model induced by Complete Freund's Adjuvant. These findings highlight the potential of 4-PSQ NCs as a novel and promising strategy for developing safer and more effective analgesic and anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jaini Janke Paltian
- Laboratório de Pesquisa em Farmacologia Bioquímica, Programa de Pós-graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil
| | - Vinicius Costa Prado
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP, RS 97105-900, Brasil
| | - Caren Aline Ramson da Fonseca
- Laboratório de Pesquisa em Farmacologia Bioquímica, Programa de Pós-graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil
| | - Roberto Barbosa de Morais
- Laboratório de Síntese Orgânica Limpa, Programa de Pós-graduação em Química, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil
| | - Larissa Marafiga Cordeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP, RS 97105-900, Brasil
| | - Aline Franzen da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP, RS 97105-900, Brasil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa, Programa de Pós-graduação em Química, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil
| | - Felix Alexandre Antunes Soares
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP, RS 97105-900, Brasil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica, Programa de Pós-graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP, RS 97105-900, Brasil.
| | - Ethel Antunes Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica, Programa de Pós-graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil.
| |
Collapse
|
5
|
Muirhead CS, Guerra S, Fox BW, Schroeder FC, Srinivasan J. Serotonergic signaling governs C. elegans sensory response to conflicting olfactory stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644218. [PMID: 40166147 PMCID: PMC11957155 DOI: 10.1101/2025.03.19.644218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neural circuits that consolidate sensory cues are essential for neurological functioning. Neural circuits that perform sensory integration can vary greatly because the sensory processing regions of the brain employ various neural motifs. Here, we investigate a neural circuit that mediates the response to conflicting olfactory stimuli in C. elegans . We concurrently expose animals to an aversive dispersal pheromone, osas#9, and an attractive bacterial extract. While worms usually avoid osas#9 alone, they suppress this avoidance behavior in the presence of a bacterial extract. Loss-of-function mutants and cell-specific rescues reveal that serotonergic signaling from the ADF neuron is essential for bacterial extract-induced osas#9 avoidance attenuation. The inhibitory serotonin receptor, MOD-1, which is widely expressed on interneurons and motor neurons, is required for this sensory integration, suggesting that serotonin acts in an inhibitory manner. By performing calcium imaging on the ADF neurons in synaptic signaling ( unc-13 ) and peptidergic ( unc-31 ) signaling mutant backgrounds, we show that the ADF neurons require input from other neurons, likely the ASK neurons, to respond to food extracts. We reveal a cue integration neural circuit in which serotonergic signaling at the sensory neuron level silences an aversive neural signal. Significance Animals use sensory cues to make behavioral choices and sometimes, these cues convey opposite information. The nervous system consolidates competing sensory cues to create a coherent response to external stimuli. The neural circuits that govern this process are important, and still largely unknown. We use C. elegans, a soil-dwelling nematode, to uncover a neural circuit governing the consolidation of competing cues by concurrently exposing worms to positive and negative stimuli . We find that the neurotransmitter serotonin can suppress aversive neural signals created by negative stimuli. These results show the important neurological role that serotonin plays in modulating neural signals.
Collapse
|
6
|
Just BB, Torres de Farias S. Living cognition and the nature of organisms. Biosystems 2024; 246:105356. [PMID: 39426661 DOI: 10.1016/j.biosystems.2024.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
There is no consensus about what cognition is. Different perspectives conceptualize it in different ways. In the same vein, there is no agreement about which systems are truly cognitive. This begs the question, what makes a process or a system cognitive? One of the most conspicuous features of cognition is that it is a set of processes. Cognition, in the end, is a collection of processes such as perception, memory, learning, decision-making, problem-solving, goal-directedness, attention, anticipation, communication, and maybe emotion. There is a debate about what they mean, and which systems possess these processes. One aspect of this problem concerns the level at which cognition and the single processes are conceptualized. To make this scenario clear, evolutionary and self-maintenance arguments are taken. Given the evolutive landscape, one sees processes shared by all organisms and their derivations in specific taxa. No matter which side of the complexity spectrum one favors, the similarities of the simple processes with the complex ones cannot be ignored, and the differences of some complex processes with their simple versions cannot be blurred. A final cognitive framework must make sense of both sides of the spectrum, their differences and similarities. Here, we discuss from an evolutionary perspective the basic elements shared by all living beings and whether these may be necessary and sufficient for understanding the cognitive process. Following these considerations, cognition can be expanded to every living being. Cognition is the set of informational and dynamic processes an organism must interact with and grasp aspects of its world. Understood at their most basic level, perception, memory, learning, problem-solving, decision-making, action, and other cognitive processes are basic features of biological functioning.
Collapse
Affiliation(s)
- Breno B Just
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Estudos Em Memória e Cognição (LEMCOG), Departamento de Psicologia, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK.
| |
Collapse
|
7
|
Kim JC, Kim Y, Cho S, Park HS. Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Chem Rev 2024; 124:12463-12497. [PMID: 39541258 DOI: 10.1021/acs.chemrev.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncanonical amino acids (ncAAs) are synthetic building blocks that, when incorporated into proteins, confer novel functions and enable precise control over biological processes. These small yet powerful tools offer unprecedented opportunities to investigate and manipulate various complex life forms. In particular, ncAA incorporation technology has garnered significant attention in the study of animals and their constituent cells, which serve as invaluable model organisms for gaining insights into human physiology, genetics, and diseases. This review will provide a comprehensive discussion on the applications of ncAA incorporation technology in animals and animal cells, covering past achievements, current developments, and future perspectives.
Collapse
Affiliation(s)
- Joo-Chan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - YouJin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suho Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Ladagu A, Olopade F, Chazot P, Elufioye T, Luong T, Fuller M, Halprin E, Mckay J, Ates-Alagoz Z, Gilbert T, Adejare A, Olopade J. ZA-II-05, a novel NMDA-receptor antagonist reverses vanadium-induced neurotoxicity in Caenorhabditis elegans (C. elegans). BMC Neurosci 2024; 25:56. [PMID: 39468459 PMCID: PMC11520585 DOI: 10.1186/s12868-024-00902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Vanadium is a widely used transition metal in industrial applications, but it also poses significant neurotoxic and environmental risks. Previous studies have shown that exposure to vanadium may lead to neurodegenerative diseases and neuropathic pain, raising concerns about its impact on human health and the ecosystem. To address vanadium neurotoxicity, through targeting NMDA glutamate and dopamine signaling, both involved in neurodegenerative disorders, shows promise. Using Caenorhabditis elegans as a model, we evaluated a novel compound with a mixed NMDA glutamate receptor-dopamine transporter pharmacology, ZA-II-05 and found it effectively ameliorated vanadium-induced neurotoxicity, suggesting a potential neuroprotective role. METHODS Synchronized young adult worms were assigned to four different experimental groups; Controls; 100 mM of Vanadium; Vanadium and 1 mg/ml ZA-II-05; and ZA-II-05 alone. These were examined with different markers, including DAPI, MitoTracker Green and MitoSox stains for assessment of nuclei and mitochondrial density and oxidative stress, respectively. RESULTS Exposure to vanadium in C. elegans resulted in decreased nuclear presence and reduction in mitochondrial content were also analyzed based on fluorescence in the pharyngeal region, signifying an increase in the production of reactive oxygen species, while vanadium co-treatment with ZA-II-05 caused a significant increase in nuclear presence and mitochondrial content. DISCUSSION Treatment with ZA-II-05 significantly preserved cellular integrity, exhibiting a reversal of the detrimental effects induced by vanadium by modulating and preserving the normal function of chemosensory neurons and downstream signaling pathways. This study provides valuable insights into the mechanisms of vanadium-induced neurotoxicity and offers perspectives for developing therapeutic interventions for neurodegenerative diseases related to environmental toxins.
Collapse
Affiliation(s)
- Amany Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Funmilayo Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Paul Chazot
- Department of Biosciences, Durham University, County Durham, DH1 3LE, UK
| | - Taiwo Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Toan Luong
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Madison Fuller
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Ethan Halprin
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Jessica Mckay
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Taidinda Gilbert
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA.
| | - James Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Vega A, Chua A, Tran A, Seader A, Chang E, Ayala L, Torres A, Pontrelli G, Harris G. Worms love Coffee too! Characterizing the neural substrates that regulate odor-guided responses to coffee. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001242. [PMID: 39502422 PMCID: PMC11536047 DOI: 10.17912/micropub.biology.001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
The coffee industry reaches over 80 billion US dollars in revenue partially due to the numerous chemicals that allow for coffee's highly attractive aroma and overall flavor. Many people integrate coffee into their everyday routine; therefore, understanding the attraction to coffee can facilitate, 1) the characterization of its attractive nature, and, 2) allow further understanding of how humans interpret taste and smell on a molecular and cellular level, from initial sensation to higher processing of these complex neural signals. We report that the model worm, C. elegans , can smell and perform strong attraction behavior using chemotaxis towards various types of coffee odors. In this study, we show that the nematode C. elegans is strongly attracted to various forms of coffee. We have also identified neuronal molecules that mediate this sensory-dependent behavior. Overall, we provide a platform to more thoroughly dissect the mechanisms and neuronal circuits that mediate odor-guided behavior to a complex human-sensed stimulus.
Collapse
Affiliation(s)
- Ashley Vega
- California State University, Channel Islands, Camarillo, California, United States
| | - Alexis Chua
- California State University, Channel Islands, Camarillo, California, United States
| | - Annabelle Tran
- California State University, Channel Islands, Camarillo, California, United States
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, California, United States
| | - Amber Seader
- California State University, Channel Islands, Camarillo, California, United States
| | - Emily Chang
- California State University, Channel Islands, Camarillo, California, United States
| | - Liz Ayala
- California State University, Channel Islands, Camarillo, California, United States
| | - Adriana Torres
- California State University, Channel Islands, Camarillo, California, United States
| | - Gianina Pontrelli
- California State University, Channel Islands, Camarillo, California, United States
| | - Gareth Harris
- California State University, Channel Islands, Camarillo, California, United States
| |
Collapse
|
10
|
Sirwani N, Hedtke SM, Grant K, McColl G, Grant WN. Levels of Amyloid Beta ( Aβ) Expression in the Caenorhabditis elegans Neurons Influence the Onset and Severity of Neuronally Mediated Phenotypes. Cells 2024; 13:1598. [PMID: 39329779 PMCID: PMC11430350 DOI: 10.3390/cells13181598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
A characteristic feature of Alzheimer's disease (AD) is the formation of neuronal extracellular senile plaques composed of aggregates of fibrillar amyloid β (Aβ) peptides, with the Aβ1-42 peptide being the most abundant species. These Aβ peptides have been proposed to contribute to the pathophysiology of the disease; however, there are few tools available to test this hypothesis directly. In particular, there are no data that establish a dose-response relationship between Aβ peptide expression level and disease. We have generated a panel of transgenic Caenorhabditis elegans strains expressing the human Aβ1-42 peptide under the control of promoter regions of two pan-neuronal expressed genes, snb-1 and rgef-1. Phenotypic data show strong age-related defects in motility, subtle changes in chemotaxis, reduced median and maximum lifespan, changes in health span indicators, and impaired learning. The Aβ1-42 expression level of these strains differed as a function of promoter identity and transgene copy number, and the timing and severity of phenotypes mediated by Aβ1-42 were strongly positively correlated with expression level. The pan-neuronal expression of varying levels of human Aβ1-42 in a nematode model provides a new tool to investigate the in vivo toxicity of neuronal Aβ expression and the molecular and cellular mechanisms underlying AD progression in the absence of endogenous Aβ peptides. More importantly, it allows direct quantitative testing of the dose-response relationship between neuronal Aβ peptide expression and disease for the first time. These strains may also be used to develop screens for novel therapeutics to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Neha Sirwani
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (S.M.H.); (W.N.G.)
| | - Shannon M. Hedtke
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (S.M.H.); (W.N.G.)
| | - Kirsten Grant
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (S.M.H.); (W.N.G.)
| | - Gawain McColl
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Warwick N. Grant
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (S.M.H.); (W.N.G.)
| |
Collapse
|
11
|
Muirhead CS, Reddy KC, Guerra S, Rieger M, Hart MP, Srinivasan J, Chalasani SH. Neurexin drives Caenorhabditis elegans avoidance behavior independently of its post-synaptic binding partner neuroligin. G3 (BETHESDA, MD.) 2024; 14:jkae111. [PMID: 38781440 PMCID: PMC11304965 DOI: 10.1093/g3journal/jkae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Neurexins and their canonical binding partners, neuroligins, are localized to neuronal pre-, and post-synapses, respectively, but less is known about their role in driving behaviors. Here, we use the nematode C. elegans to show that neurexin, but not neuroligin, is required for avoiding specific chemorepellents. We find that adults with knockouts of the entire neurexin locus exhibit a strong avoidance deficit in response to glycerol and a weaker defect in response to copper. Notably, the C. elegans neurexin (nrx-1) locus, like its mammalian homologs, encodes multiple isoforms, α and γ. Using isoform-specific mutations, we find that the γ isoform is selectively required for glycerol avoidance. Next, we used transgenic rescue experiments to show that this isoform functions at least partially in the nervous system. We also confirm that the transgenes are expressed in the neurons and observe protein accumulation in neurites. Furthermore, we tested whether these mutants affect the behavioral responses of juveniles. We find that juveniles (4th larval stages) of mutants knocking out the entire locus or the α-isoforms, but not γ-isoform, are defective in avoiding glycerol. These results suggest that the different neurexin isoforms affect chemosensory avoidance behavior in juveniles and adults, providing a general principle of how isoforms of this conserved gene affect behavior across species.
Collapse
Affiliation(s)
- Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Kirthi C Reddy
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sophia Guerra
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Michael Rieger
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Vidal-Saez MS, Vilarroya O, Garcia-Ojalvo J. A multiscale sensorimotor model of experience-dependent behavior in a minimal organism. Biophys J 2024; 123:1654-1667. [PMID: 38815587 PMCID: PMC11213988 DOI: 10.1016/j.bpj.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
To survive in ever-changing environments, living organisms need to continuously combine the ongoing external inputs they receive, representing present conditions, with their dynamical internal state, which includes influences of past experiences. It is still unclear in general, however 1) how this happens at the molecular and cellular levels and 2) how the corresponding molecular and cellular processes are integrated with the behavioral responses of the organism. Here, we address these issues by modeling mathematically a particular behavioral paradigm in a minimal model organism, namely chemotaxis in the nematode C. elegans. Specifically, we use a long-standing collection of elegant experiments on salt chemotaxis in this animal, in which the migration direction varies depending on its previous experience. Our model integrates the molecular, cellular, and organismal levels to reproduce the experimentally observed experience-dependent behavior. The model proposes specific molecular mechanisms for the encoding of current conditions and past experiences in key neurons associated with this response, predicting the behavior of various mutants associated with those molecular circuits.
Collapse
Affiliation(s)
- María Sol Vidal-Saez
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar Vilarroya
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
13
|
Haley JA, Chalasani SH. C. elegans foraging as a model for understanding the neuronal basis of decision-making. Cell Mol Life Sci 2024; 81:252. [PMID: 38849591 PMCID: PMC11335288 DOI: 10.1007/s00018-024-05223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024]
Abstract
Animals have evolved to seek, select, and exploit food sources in their environment. Collectively termed foraging, these ubiquitous behaviors are necessary for animal survival. As a foundation for understanding foraging, behavioral ecologists established early theoretical and mathematical frameworks which have been subsequently refined and supported by field and laboratory studies of foraging animals. These simple models sought to explain how animals decide which strategies to employ when locating food, what food items to consume, and when to explore the environment for new food sources. These foraging decisions involve integration of prior experience with multimodal sensory information about the animal's current environment and internal state. We suggest that the nematode Caenorhabditis elegans is well-suited for a high-resolution analysis of complex goal-oriented behaviors such as foraging. We focus our discussion on behavioral studies highlighting C. elegans foraging on bacteria and summarize what is known about the underlying neuronal and molecular pathways. Broadly, we suggest that this simple model system can provide a mechanistic understanding of decision-making and present additional avenues for advancing our understanding of complex behavioral processes.
Collapse
Affiliation(s)
- Jessica A Haley
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
14
|
Romussi S, Giunti S, Andersen N, De Rosa MJ. C. elegans: a prominent platform for modeling and drug screening in neurological disorders. Expert Opin Drug Discov 2024; 19:565-585. [PMID: 38509691 DOI: 10.1080/17460441.2024.2329103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.
Collapse
Affiliation(s)
- Stefano Romussi
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
| | - Sebastián Giunti
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia Andersen
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
15
|
Li L, Li Y, Zeng K, Wang Q. Mercuric sulfide nanoparticles suppress the neurobehavioral functions of Caenorhabditis elegans through a Skp1-dependent mechanism. Food Chem Toxicol 2024; 186:114576. [PMID: 38458533 DOI: 10.1016/j.fct.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Cinnabar is the naturally occurring mercuric sulfide (HgS) and concerns about its safety have been grown. However, the molecular mechanism of HgS-related neurotoxicity remains unclear. S-phase kinase-associated protein 1 (Skp1), identified as the target protein of HgS, plays a crucial role in the development of neurological diseases. This study aims to investigate the neurotoxic effects and molecular mechanism of HgS based on Skp1 using the Caenorhabditis elegans (C. elegans) model. We prepared the HgS nanoparticles and conducted a comparative analysis of neurobehavioral differences in both wild-type C. elegans (N2) and a transgenic strain of C. elegans (VC1241) with a knockout of the SKP1 homologous gene after exposure to HgS nanoparticles. Our results showed that HgS nanoparticles could suppress locomotion, defecation, egg-laying, and associative learning behaviors in N2 C. elegans, while no significant alterations were observed in the VC1241 C. elegans. Furthermore, we conducted a 4D label-free proteomics analysis and screened 504 key proteins significantly affected by HgS nanoparticles through Skp1. These proteins play pivotal roles in various pathways, including SNARE interactions in vesicular transport, TGF-beta signaling pathway, calcium signaling pathway, FoxO signaling pathway, etc. In summary, HgS nanoparticles at high doses suppress the neurobehavioral functions of C. elegans through a Skp1-dependent mechanism.
Collapse
Affiliation(s)
- Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China.
| |
Collapse
|
16
|
Stetak AL, Grenal T, Lenninger Z, Knight KM, Doser RL, Hoerndli FJ. A Necessary Role for PKC-2 and TPA-1 in Olfactory Memory and Synaptic AMPAR Trafficking in Caenorhabditis elegans. J Neurosci 2024; 44:e1120232024. [PMID: 38238075 PMCID: PMC10919255 DOI: 10.1523/jneurosci.1120-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Protein kinase C (PKC) functions are essential for synaptic plasticity, learning, and memory. However, the roles of specific members of the PKC family in synaptic function, learning, and memory are poorly understood. Here, we investigated the role of individual PKC homologs for synaptic plasticity in Caenorhabditis elegans and found a differential role for pkc-2 and tpa-1, but not pkc-1 and pkc-3 in associative olfactory learning and memory. More specifically we show that PKC-2 is essential for associative learning and TPA-1 for short-term associative memory (STAM). Using endogenous labeling and cell-specific rescues, we show that TPA-1 and PKC-2 are required in AVA for their functions. Previous studies demonstrated that olfactory learning and memory in C. elegans are tied to proper synaptic content and trafficking of AMPA-type ionotropic glutamate receptor homolog GLR-1 in the AVA command interneurons. Therefore, we quantified synaptic content, transport, and delivery of GLR-1 in AVA and showed that loss of pkc-2 and tpa-1 leads to decreased transport and delivery but only a subtle decrease in GLR-1 levels at synapses. AVA-specific expression of both PKC-2 and TPA-1 rescued these defects. Finally, genetic epistasis showed that PKC-2 and TPA-1 likely act in the same pathway to control GLR-1 transport and delivery, while regulating different aspects of olfactory learning and STAM. Thus, our data tie together cell-specific functions of 2 PKCs to neuronal and behavioral outcomes in C. elegans, enabling comparative approaches to understand the evolutionarily conserved role of PKC in synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Attila L Stetak
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
- University Psychiatric Clinics, University of Basel, 4002 Basel, Switzerland
| | - Thomas Grenal
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - Zephyr Lenninger
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Kaz M Knight
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Rachel L Doser
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
- Health and Exercise Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Frederic J Hoerndli
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
17
|
Dichio V, De Vico Fallani F. Exploration-Exploitation Paradigm for Networked Biological Systems. PHYSICAL REVIEW LETTERS 2024; 132:098402. [PMID: 38489647 DOI: 10.1103/physrevlett.132.098402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
The stochastic exploration of the configuration space and the exploitation of functional states underlie many biological processes. The evolutionary dynamics stands out as a remarkable example. Here, we introduce a novel formalism that mimics evolution and encodes a general exploration-exploitation dynamics for biological networks. We apply it to the brain wiring problem, focusing on the maturation of that of the nematode Caenorhabditis elegans. We demonstrate that a parsimonious maxent description of the adult brain combined with our framework is able to track down the entire developmental trajectory.
Collapse
Affiliation(s)
- Vito Dichio
- Sorbonne Universite, Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hopital de la Pitie Salpêtriere, F-75013, Paris, France
| | - Fabrizio De Vico Fallani
- Sorbonne Universite, Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hopital de la Pitie Salpêtriere, F-75013, Paris, France
| |
Collapse
|
18
|
Li R, Xu Y, Wen X, Chen YH, Wang PZ, Zhao JL, Wu PP, Wu JJ, Liu H, Huang JH, Li SJ, Wu ZX. GCY-20 signaling controls suppression of Caenorhabditis elegans egg laying by moderate cold. Cell Rep 2024; 43:113708. [PMID: 38294902 DOI: 10.1016/j.celrep.2024.113708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/19/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Organisms sensing environmental cues and internal states and integrating the sensory information to control fecundity are essential for survival and proliferation. The present study finds that a moderate cold temperature of 11°C reduces egg laying in Caenorhabditis elegans. ASEL and AWC neurons sense the cold via GCY-20 signaling and act antagonistically on egg laying through the ASEL and AWC/AIA/HSN circuits. Upon cold stimulation, ASEL and AWC release glutamate to activate and inhibit AIA interneurons by acting on highly and lowly sensitive ionotropic GLR-2 and GLC-3 receptors, respectively. AIA inhibits HSN motor neuron activity via acetylcholinergic ACR-14 receptor signaling and suppresses egg laying. Thus, ASEL and AWC initiate and reduce the cold suppression of egg laying. ASEL's action on AIA and egg laying dominates AWC's action. The biased opposite actions of these neurons on egg laying provide animals with a precise adaptation of reproductive behavior to environmental temperatures.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wen
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuan-Hua Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hao Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Hua X, Wang D. Disruption of dopamine metabolism by exposure to 6-PPD quinone in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122649. [PMID: 37777057 DOI: 10.1016/j.envpol.2023.122649] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Caenorhabditis elegans is a useful model for examining metabolic processes and related mechanisms. We here examined the effect of exposure to N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) on dopamine metabolism and underling molecular basis in nematodes. The dopamine content was reduced by 6-PPDQ (1 and 10 μg/L). Meanwhile, dopamine related behaviors (basal slowing response and area restricted searching) were changed by 6-PPDQ (1 and 10 μg/L). Exposure to 6-PPDQ (1 and 10 μg/L) decreased expressions of genes (cat-2 and bas-1) encoding enzymes governing dopamine synthesis and cat-1 encoding dopamine transporter. Development of dopaminergic neurons was also affected by 10 μg/L 6-PPDQ as reflected by decrease in fluorescence intensity, neuronal loss, and defect in dendrite development. Exposure to 6-PPDQ (1 and 10 μg/L) altered expressions of ast-1 and rcat-1 encoding upregulators of cat-2 and bas-1. The dopamine content and expressions of cat-2 and bas-1 were inhibited by RNAi of ast-1 and increased by RNAi of rcat-1 in 6-PPDQ exposed nematodes. Using endpoints of locomotion behavior and brood size, in 6-PPDQ exposed nematodes, the susceptibility to toxicity was caused by RNAi of ast-1, cat-2, bas-1, and cat-1, and the resistance to toxicity was induced by RNAi of rcat-1. Therefore, 6-PPDQ exposure disrupted dopamine metabolism and the altered molecular basis for dopamine metabolism was associated with 6-PPDQ toxicity induction. Moreover, the defects in dopamine related behaviors and toxicity on locomotion and reproduction could be rescued by treatment with 0.1 mM dopamine.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
20
|
Sterling P, Laughlin S. Why an animal needs a brain. Anim Cogn 2023; 26:1751-1762. [PMID: 38041700 DOI: 10.1007/s10071-023-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 12/03/2023]
Abstract
In Principles of Neural Design (2015, MIT Press), inspired by Charles Darwin, Sterling and Laughlin undertook the unfashionable task of distilling principles from facts in the technique-driven, data-saturated domain of neuroscience. Their starting point for deriving the organizing principles of brains are two brainless single-celled organisms, Escherichia coli and Paramecium, and the 302-neuron brain of the nematode Caenorhabditis elegans. The book is an exemplar in how to connect the dots between simpler and (much) more complex organisms in a particular area. Here, they have generously agreed to republish an abridged version of Chapter 2 (Why an Animal Needs a Brain), in which many of their principles are first described.
Collapse
Affiliation(s)
- Peter Sterling
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Simon Laughlin
- Department of Zoology, University of Cambridge, Cambridge, England
| |
Collapse
|
21
|
Huang YC, Luo J, Huang W, Baker CM, Gomes MA, Meng B, Byrne AB, Flavell SW. A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission. Curr Biol 2023; 33:4430-4445.e6. [PMID: 37769660 PMCID: PMC10860333 DOI: 10.1016/j.cub.2023.08.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neurons in the circuits that generate behaviors have a remarkable capacity for flexibility as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of adaptive behaviors remains unknown. Here, we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg laying and locomotion while also biasing the animals toward low-speed dwelling behavior over minutes. The acute effects of HSN on egg laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal compartments. The long-lasting effects on dwelling are mediated in part by HSN release of serotonin, which is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal that neurons can borrow serotonin from one another to control behavior.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenjia Huang
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Casey M Baker
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew A Gomes
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bohan Meng
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra B Byrne
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Tee LF, Young JJ, Maruyama K, Kimura S, Suzuki R, Endo Y, Kimura KD. Electric shock causes a fleeing-like persistent behavioral response in the nematode Caenorhabditis elegans. Genetics 2023; 225:iyad148. [PMID: 37595066 PMCID: PMC10550322 DOI: 10.1093/genetics/iyad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/27/2023] [Indexed: 08/20/2023] Open
Abstract
Behavioral persistency reflects internal brain states, which are the foundations of multiple brain functions. However, experimental paradigms enabling genetic analyses of behavioral persistency and its associated brain functions have been limited. Here, we report novel persistent behavioral responses caused by electric stimuli in the nematode Caenorhabditis elegans. When the animals on bacterial food are stimulated by alternating current, their movement speed suddenly increases 2- to 3-fold, persisting for more than 1 minute even after a 5-second stimulation. Genetic analyses reveal that voltage-gated channels in the neurons are required for the response, possibly as the sensors, and neuropeptide signaling regulates the duration of the persistent response. Additional behavioral analyses implicate that the animal's response to electric shock is scalable and has a negative valence. These properties, along with persistence, have been recently regarded as essential features of emotion, suggesting that C. elegans response to electric shock may reflect a form of emotion, akin to fear.
Collapse
Affiliation(s)
- Ling Fei Tee
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Jared J Young
- Mills College at Northeastern University, Oakland, CA 94613, USA
| | - Keisuke Maruyama
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Sota Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Ryoga Suzuki
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Yuto Endo
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koutarou D Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
23
|
Ückert AK, Rütschlin S, Gutbier S, Wörz NC, Miah MR, Martins AC, Hauer I, Holzer AK, Meyburg B, Mix AK, Hauck C, Aschner M, Böttcher T, Leist M. Identification of the bacterial metabolite aerugine as potential trigger of human dopaminergic neurodegeneration. ENVIRONMENT INTERNATIONAL 2023; 180:108229. [PMID: 37797477 PMCID: PMC10666548 DOI: 10.1016/j.envint.2023.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
The causes of nigrostriatal cell death in idiopathic Parkinson's disease are unknown, but exposure to toxic chemicals may play some role. We followed up here on suggestions that bacterial secondary metabolites might be selectively cytotoxic to dopaminergic neurons. Extracts from Streptomyces venezuelae were found to kill human dopaminergic neurons (LUHMES cells). Utilizing this model system as a bioassay, we identified a bacterial metabolite known as aerugine (C10H11NO2S; 2-[4-(hydroxymethyl)-4,5-dihydro-1,3-thiazol-2-yl]phenol) and confirmed this finding by chemical re-synthesis. This 2-hydroxyphenyl-thiazoline compound was previously shown to be a product of a wide-spread biosynthetic cluster also found in the human microbiome and in several pathogens. Aerugine triggered half-maximal dopaminergic neurotoxicity at 3-4 µM. It was less toxic for other neurons (10-20 µM), and non-toxic (at <100 µM) for common human cell lines. Neurotoxicity was completely prevented by several iron chelators, by distinct anti-oxidants and by a caspase inhibitor. In the Caenorhabditis elegans model organism, general survival was not affected by aerugine concentrations up to 100 µM. When transgenic worms, expressing green fluorescent protein only in their dopamine neurons, were exposed to aerugine, specific neurodegeneration was observed. The toxicant also exerted functional dopaminergic toxicity in nematodes as determined by the "basal slowing response" assay. Thus, our research has unveiled a bacterial metabolite with a remarkably selective toxicity toward human dopaminergic neurons in vitro and for the dopaminergic nervous system of Caenorhabditis elegans in vivo. These findings suggest that microbe-derived environmental chemicals should be further investigated for their role in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Anna-Katharina Ückert
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Sina Rütschlin
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Simon Gutbier
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Nathalie Christine Wörz
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria; Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States; Department of Neuroscience, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Isa Hauer
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Anna-Katharina Holzer
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Birthe Meyburg
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Ann-Kathrin Mix
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457 Konstanz, Germany
| | - Christof Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457 Konstanz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States; Department of Neuroscience, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany; Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria.
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
24
|
Gat A, Pechuk V, Peedikayil-Kurien S, Karimi S, Goldman G, Sela S, Lubliner J, Krieg M, Oren-Suissa M. Integration of spatially opposing cues by a single interneuron guides decision-making in C. elegans. Cell Rep 2023; 42:113075. [PMID: 37691148 DOI: 10.1016/j.celrep.2023.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/11/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
The capacity of animals to respond to hazardous stimuli in their surroundings is crucial for their survival. In mammals, complex evaluations of the environment require large numbers and different subtypes of neurons. The nematode C. elegans avoids hazardous chemicals they encounter by reversing their direction of movement. How does the worms' compact nervous system process the spatial information and direct motion change? We show here that a single interneuron, AVA, receives glutamatergic excitatory and inhibitory signals from head and tail sensory neurons, respectively. AVA integrates the spatially distinct and opposing cues, whose output instructs the animal's behavioral decision. We further find that the differential activation of AVA stems from distinct localization of inhibitory and excitatory glutamate-gated receptors along AVA's process and from different threshold sensitivities of the sensory neurons. Our results thus uncover a cellular mechanism that mediates spatial computation of nociceptive cues for efficient decision-making in C. elegans.
Collapse
Affiliation(s)
- Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vladyslava Pechuk
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sonu Peedikayil-Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shadi Karimi
- Neurophotonics and Mechanical Systems Biology, ICFO (Institut de Ciencies Fot'oniques), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Gal Goldman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sapir Sela
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jazz Lubliner
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Krieg
- Neurophotonics and Mechanical Systems Biology, ICFO (Institut de Ciencies Fot'oniques), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
25
|
Brynildsen JK, Rajan K, Henderson MX, Bassett DS. Network models to enhance the translational impact of cross-species studies. Nat Rev Neurosci 2023; 24:575-588. [PMID: 37524935 PMCID: PMC10634203 DOI: 10.1038/s41583-023-00720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 08/02/2023]
Abstract
Neuroscience studies are often carried out in animal models for the purpose of understanding specific aspects of the human condition. However, the translation of findings across species remains a substantial challenge. Network science approaches can enhance the translational impact of cross-species studies by providing a means of mapping small-scale cellular processes identified in animal model studies to larger-scale inter-regional circuits observed in humans. In this Review, we highlight the contributions of network science approaches to the development of cross-species translational research in neuroscience. We lay the foundation for our discussion by exploring the objectives of cross-species translational models. We then discuss how the development of new tools that enable the acquisition of whole-brain data in animal models with cellular resolution provides unprecedented opportunity for cross-species applications of network science approaches for understanding large-scale brain networks. We describe how these tools may support the translation of findings across species and imaging modalities and highlight future opportunities. Our overarching goal is to illustrate how the application of network science tools across human and animal model studies could deepen insight into the neurobiology that underlies phenomena observed with non-invasive neuroimaging methods and could simultaneously further our ability to translate findings across species.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanaka Rajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael X Henderson
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
26
|
Li Z, Zhou J, Wani KA, Yu T, Ronan EA, Piggott BJ, Liu J, Xu XS. A C. elegans neuron both promotes and suppresses motor behavior to fine tune motor output. Front Mol Neurosci 2023; 16:1228980. [PMID: 37680582 PMCID: PMC10482346 DOI: 10.3389/fnmol.2023.1228980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
How neural circuits drive behavior is a central question in neuroscience. Proper execution of motor behavior requires precise coordination of many neurons. Within a motor circuit, individual neurons tend to play discrete roles by promoting or suppressing motor output. How exactly neurons function in specific roles to fine tune motor output is not well understood. In C. elegans, the interneuron RIM plays important yet complex roles in locomotion behavior. Here, we show that RIM both promotes and suppresses distinct features of locomotion behavior to fine tune motor output. This dual function is achieved via the excitation and inhibition of the same motor circuit by electrical and chemical neurotransmission, respectively. Additionally, this bi-directional regulation contributes to motor adaptation in animals placed in novel environments. Our findings reveal that individual neurons within a neural circuit may act in opposing ways to regulate circuit dynamics to fine tune behavioral output.
Collapse
Affiliation(s)
- Zhaoyu Li
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Jiejun Zhou
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- College of Life Science and Technology, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Khursheed A. Wani
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Teng Yu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- College of Life Science and Technology, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Elizabeth A. Ronan
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Beverly J. Piggott
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Jianfeng Liu
- College of Life Science and Technology, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - X.Z. Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Zhan X, Chen C, Niu L, Du X, Lei Y, Dan R, Wang ZW, Liu P. Locomotion modulates olfactory learning through proprioception in C. elegans. Nat Commun 2023; 14:4534. [PMID: 37500635 PMCID: PMC10374624 DOI: 10.1038/s41467-023-40286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Locomotor activities can enhance learning, but the underlying circuit and synaptic mechanisms are largely unknown. Here we show that locomotion facilitates aversive olfactory learning in C. elegans by activating mechanoreceptors in motor neurons, and transmitting the proprioceptive information thus generated to locomotion interneurons through antidromic-rectifying gap junctions. The proprioceptive information serves to regulate experience-dependent activities and functional coupling of interneurons that process olfactory sensory information to produce the learning behavior. Genetic destruction of either the mechanoreceptors in motor neurons, the rectifying gap junctions between the motor neurons and locomotion interneurons, or specific inhibitory synapses among the interneurons impairs the aversive olfactory learning. We have thus uncovered an unexpected role of proprioception in a specific learning behavior as well as the circuit, synaptic, and gene bases for this function.
Collapse
Affiliation(s)
- Xu Zhan
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China
- Department of Orthopaedics, Hefeng Central Hospital, 445800, Enshi, Hubei, China
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Xinran Du
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Ying Lei
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Rui Dan
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
28
|
Koopman M, Güngördü L, Seinstra RI, Nollen EA. Neuronal overexpression of human TDP-43 in Caenorhabditis elegans causes a range of sensorimotor phenotypes. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000766. [PMID: 37151213 PMCID: PMC10157381 DOI: 10.17912/micropub.biology.000766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Affiliation(s)
- Mandy Koopman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Laboratory of Molecular Neurobiology of Ageing, The Netherlands
| | - Lale Güngördü
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Laboratory of Molecular Neurobiology of Ageing, The Netherlands
| | - Renée I. Seinstra
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Laboratory of Molecular Neurobiology of Ageing, The Netherlands
| | - Ellen A.A. Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Laboratory of Molecular Neurobiology of Ageing, The Netherlands
| |
Collapse
|
29
|
Huang YC, Luo J, Huang W, Baker CM, Gomes MA, Byrne AB, Flavell SW. A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.532814. [PMID: 37034579 PMCID: PMC10081309 DOI: 10.1101/2023.04.02.532814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neuron classes in the circuits that generate behavior have a remarkable capacity for flexibility, as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of highly coordinated behaviors remains unknown. Here we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg-laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg-laying and locomotion while also biasing the animals towards low-speed dwelling behavior over longer timescales. The acute effects of HSN on egg-laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal projections. The long-lasting effects on dwelling are mediated by HSN release of serotonin that is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal for the first time that neurons can borrow serotonin from one another to control behavior.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wenjia Huang
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Casey M. Baker
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew A. Gomes
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra B. Byrne
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Steven W. Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
30
|
Liu H, Wu JJ, Li R, Wang PZ, Huang JH, Xu Y, Zhao JL, Wu PP, Li SJ, Wu ZX. Disexcitation in the ASH/RIM/ADL negative feedback circuit fine-tunes hyperosmotic sensation and avoidance in Caenorhabditis elegans. Front Mol Neurosci 2023; 16:1101628. [PMID: 37008778 PMCID: PMC10050701 DOI: 10.3389/fnmol.2023.1101628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Sensations, especially nociception, are tightly controlled and regulated by the central and peripheral nervous systems. Osmotic sensation and related physiological and behavioral reactions are essential for animal well-being and survival. In this study, we find that interaction between secondary nociceptive ADL and primary nociceptive ASH neurons upregulates Caenorhabditis elegans avoidance of the mild and medium hyperosmolality of 0.41 and 0.88 Osm but does not affect avoidance of high osmolality of 1.37 and 2.29 Osm. The interaction between ASH and ADL is actualized through a negative feedback circuit consisting of ASH, ADL, and RIM interneurons. In this circuit, hyperosmolality-sensitive ADL augments the ASH hyperosmotic response and animal hyperosmotic avoidance; RIM inhibits ADL and is excited by ASH; thus, ASH exciting RIM reduces ADL augmenting ASH. The neuronal signal integration modality in the circuit is disexcitation. In addition, ASH promotes hyperosmotic avoidance through ASH/RIC/AIY feedforward circuit. Finally, we find that in addition to ASH and ADL, multiple sensory neurons are involved in hyperosmotic sensation and avoidance behavior.
Collapse
|
31
|
Ikejiri Y, Tanimoto Y, Fujita K, Hiramatsu F, Yamazaki SJ, Endo Y, Iwatani Y, Fujimoto K, Kimura KD. Neural mechanism of experience-dependent sensory gain control in C. elegans. Neurosci Res 2023; 191:77-90. [PMID: 36681153 DOI: 10.1016/j.neures.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Animals' sensory systems adjust their responsiveness to environmental stimuli that vary greatly in their intensity. Here we report the neural mechanism of experience-dependent sensory adjustment, especially gain control, in the ASH nociceptive neurons in Caenorhabditis elegans. Using calcium imaging under gradual changes in stimulus intensity, we find that the ASH neurons of naive animals respond to concentration increases in a repulsive odor 2-nonanone regardless of the magnitude of the concentration increase. However, after preexposure to the odor, the ASH neurons exhibit significantly weak responses to a small gradual increase in odor concentration while their responses to a large gradual increase remain strong. Thus, preexposure changes the slope of stimulus-response relationships (i.e., gain control). Behavioral analysis suggests that this gain control contributes to the preexposure-dependent enhancement of odor avoidance behavior. Mathematical analysis reveals that the ASH response consists of fast and slow components, and that the fast component is specifically suppressed by preexposure for the gain control. In addition, genetic analysis suggests that G protein signaling may be required for the regulation of fast component. We propose how prior experience dynamically and specifically modulates stimulus-response relationships in sensory neurons, eventually leading to adaptive modulation of behavior.
Collapse
Affiliation(s)
- Yosuke Ikejiri
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Tanimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kosuke Fujita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Fumie Hiramatsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shuhei J Yamazaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuto Endo
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yasushi Iwatani
- Department of Science and Technology, Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koutarou D Kimura
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
32
|
Yoshiyama KO, Okamoto NL, Hidema J, Higashitani A. 222 nm far-UVC efficiently introduces nerve damage in Caenorhabditis elegans. PLoS One 2023; 18:e0281162. [PMID: 36719882 PMCID: PMC9888708 DOI: 10.1371/journal.pone.0281162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Far-ultraviolet radiation C light (far-UVC; 222 nm wavelength) has received attention as a safer light for killing pathogenic bacteria and viruses, as no or little DNA damage is observed after irradiation in mammalian skin models. Far-UVC does not penetrate deeply into tissues; therefore, it cannot reach the underlying critical basal cells. However, it was unclear whether far-UVC (222-UVC) irradiation could cause more biological damage at shallower depths than the 254 nm UVC irradiation (254-UVC), which penetrates more deeply. This study investigated the biological effects of 222- and 254-UVC on the small and transparent model organism Caenorhabditis elegans. At the same energy level of irradiation, 222-UVC introduced slightly less cyclobutane pyrimidine dimer damage to naked DNA in solution than 254-UVC. The survival of eggs laid during 0-4 h after irradiation showed a marked decrease with 254-UVC but not 222-UVC. In addition, defect of chromosomal condensation was observed in a full-grown oocyte by 254-UVC irradiation. In contrast, 222-UVC had a significant effect on the loss of motility of C. elegans. The sensory nervous system, which includes dopamine CEP and PVD neurons on the body surface, was severely damaged by 222-UVC, but not by the same dose of 254-UVC. Interestingly, increasing 254-UVC irradiation by about 10-fold causes similar damage to CEP neurons. These results suggest that 222-UVC is less penetrating, so energy transfer occurs more effectively in tissues near the surface, causing more severe damage than 254-UVC.
Collapse
Affiliation(s)
| | | | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| | | |
Collapse
|
33
|
Thapliyal S, Glauser DA. Neurogenetic Analysis in Caenorhabditis elegans. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Mabardi L, Sato H, Toyoshima Y, Iino Y, Kunitomo H. Different modes of stimuli delivery elicit changes in glutamate driven, experience-dependent interneuron response in C. elegans. Neurosci Res 2023; 186:33-42. [PMID: 36252701 DOI: 10.1016/j.neures.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Memory-related neuronal responses are often elicited by sensory stimuli that recapitulate previous experience. Despite the importance of this sensory input processing, its underlying mechanisms remain poorly understood. Caenorhabditis elegans chemotax towards salt concentrations experienced in the presence of food. The amphid sensory neurons ASE-left and ASE-right respond to increases and decreases of ambient salt concentration in opposite manners. AIA, AIB and AIY interneurons are post-synaptic to the ASE pair and are thought to be involved in the processing of salt information transmitted from ASE. However, it remains elusive how the responses of these interneurons are regulated by stimulus patterns. Here we show that AIY interneurons display an experience-dependent response to gradual salt concentration changes but not to abrupt stepwise concentration changes. Animals with AIY intact (but AIA and AIB ablated) chemotax towards low salt concentrations similarly to wild-type animals after cultivation with low salt. ASE neurons transmit salt information about the environment through glutamatergic signaling, directing the activity of the interneurons AIY that promote movement towards favorable conditions.
Collapse
Affiliation(s)
- Llian Mabardi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Hirofumi Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Yu Toyoshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan.
| | - Hirofumi Kunitomo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan.
| |
Collapse
|
35
|
Sridhar N, Fajrial AK, Doser RL, Hoerndli FJ, Ding X. Surface acoustic wave microfluidics for repetitive and reversible temporary immobilization of C. elegans. LAB ON A CHIP 2022; 22:4882-4893. [PMID: 36377422 PMCID: PMC10091851 DOI: 10.1039/d2lc00737a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Caenorhabditis elegans is an important genetic model for neuroscience studies, used for analyses of how genes control connectivity, neuronal function, and behavior. To date, however, most studies of neuronal function in C. elegans are incapable of obtaining microscopy imaging with subcellular resolution and behavior analysis in the same set of animals. This constraint stems from the immobilization requirement for high-resolution imaging that is incompatible with behavioral analysis using conventional immobilization techniques. Here, we present a novel microfluidic device that uses surface acoustic waves (SAW) as a non-contact method to temporarily immobilize worms for a short period (30 seconds). We optimize the SAW based protocol for rapid switching between free-swimming and immobilized states, facilitating non-invasive analysis of swimming behavior as well as high-resolution synaptic imaging in the same animal. We find that the coupling of heat and acoustic pressure play a key role in the immobilization process. We introduce a proof-of-concept longitudinal study, illustrating that the device enables repeated imaging of fluorescently tagged synaptic receptors in command interneurons and analysis of swimming behavior in the same animals for three days. This longitudinal approach provides the first correlative analysis of synaptic glutamatergic receptors and swimming behavior in aging animals. We anticipate that this device will enable further longitudinal analysis of animal motility and subcellular morphological changes during development and aging in C. elegans.
Collapse
Affiliation(s)
- Nakul Sridhar
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Apresio Kefin Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Rachel L Doser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | - Frederic J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
36
|
Scharpf I, Cichocka S, Le DT, von Mikecz A. Peripheral neuropathy, protein aggregation and serotonergic neurotransmission: Distinctive bio-interactions of thiacloprid and thiamethoxam in the nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120253. [PMID: 36155223 DOI: 10.1016/j.envpol.2022.120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Due to worldwide production, sales and application, neonicotinoids dominate the global use of insecticides. While, neonicotinoids are considered as pinpoint neurotoxicants that impair cholinergic neurotransmission in pest insects, the sublethal effects on nontarget organisms and other neurotransmitters remain poorly understood. Thus, we investigated long-term neurological outcomes in the decomposer nematode Caenorhabditis elegans. In the adult roundworm the neonicotinoid thiacloprid impaired serotonergic and dopaminergic neuromuscular behaviors, while respective exposures to thiamethoxam showed no effects. Thiacloprid caused a concentration-dependent delay of the transition between swimming and crawling locomotion that is controlled by dopaminergic and serotonergic neurotransmission. Age-resolved analyses revealed that impairment of locomotion occurred in young as well as middle-aged worms. Treatment with exogenous serotonin rescued thiacloprid-induced swimming deficits in young worms, whereas additional exposure with silica nanoparticles enhanced the reduction of swimming behavior. Delay of forward locomotion was partly caused by a new paralysis pattern that identified thiacloprid as an agent promoting a specific rigidity of posterior body wall muscle cells and peripheral neuropathy in the nematode (lowest-observed-effect-level 10 ng/ml). On the molecular level exposure with thiacloprid accelerated protein aggregation in body wall muscle cells of polyglutamine disease reporter worms indicating proteotoxic stress. The results from the soil nematode Caenorhabditis elegans show that assessment of neurotoxicity by neonicotinoids requires acknowledgment and deeper research into dopaminergic and serotonergic neurochemistry of nontarget organisms. Likewise, it has to be considered more that different neonicotinoids may promote diverse neural end points.
Collapse
Affiliation(s)
- Inge Scharpf
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Sylwia Cichocka
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Dang Tri Le
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
37
|
Wang X, Cheng S, Chen X, Zhang W, Xie Y, Liu W, You Y, Yi C, Zhu B, Gu M, Xu B, Lu Y, Wang J, Hu W. A metabotropic glutamate receptor affects the growth and development of Schistosoma japonicum. Front Microbiol 2022; 13:1045490. [PMID: 36532433 PMCID: PMC9750798 DOI: 10.3389/fmicb.2022.1045490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2023] Open
Abstract
Schistosomiasis is a zoonotic parasitic disease caused by schistosome infection that severely threatens human health. Therapy relies mainly on single drug treatment with praziquantel. Therefore, there is an urgent need to develop alternative medicines. The glutamate neurotransmitter in helminths is involved in many physiological functions by interacting with various cell-surface receptors. However, the roles and detailed regulatory mechanisms of the metabotropic glutamate receptor (mGluR) in the growth and development of Schistosoma japonicum remain poorly understood. In this study, we identified two putative mGluRs in S. japonicum and named them SjGRM7 (Sjc_001309, similar to GRM7) and SjGRM (Sjc_001163, similar to mGluR). Further validation using a calcium mobilization assay showed that SjGRM7 and SjGRM are glutamate-specific. The results of in situ hybridization showed that SjGRM is mainly located in the nerves of both males and gonads of females, and SjGRM7 is principally found in the nerves and gonads of males and females. In a RNA interference experiment, the results showed that SjGRM7 knockdown by double-stranded RNA (dsRNA) in S. japonicum caused edema, chassis detachment, and separation of paired worms in vitro. Furthermore, dsRNA interference of SjGRM7 could significantly affect the development and egg production of male and female worms in vivo and alleviate the host liver granulomas and fibrosis. Finally, we examined the molecular mechanisms underlying the regulatory function of mGluR using RNA sequencing. The data suggest that SjGRM7 propagates its signals through the G protein-coupled receptor signaling pathway to promote nervous system development in S. japonicum. In conclusion, SjGRM7 is a potential target for anti-schistosomiasis. This study enables future research on the mechanisms of action of Schistosomiasis japonica drugs.
Collapse
Affiliation(s)
- Xiaoling Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shaoyun Cheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiangyu Chen
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxiang Xie
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wanling Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanmin You
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Mengjie Gu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jipeng Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
38
|
Long HQ, Gao J, He SQ, Han JF, Tu Y, Chen N. The role of crm-1 in ionizing radiation-induced nervous system dysfunction in Caenorhabditis elegans. Neural Regen Res 2022; 18:1386-1392. [PMID: 36453427 PMCID: PMC9838165 DOI: 10.4103/1673-5374.357908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ionizing radiation can cause changes in nervous system function. However, the underlying mechanism remains unclear. In this study, Caenorhabditis elegans (C. elegans) was irradiated with 75 Gy of 60Co whole-body γ radiation. Behavioral indicators (head thrashes, touch avoidance, and foraging), and the development of dopaminergic neurons related to behavioral function, were evaluated to assess the effects of ionizing radiation on nervous system function in C. elegans. Various behaviors were impaired after whole-body irradiation and degeneration of dopamine neurons was observed. This suggests that 75 Gy of γ radiation is sufficient to induce nervous system dysfunction. The genes nhr-76 and crm-1, which are reported to be related to nervous system function in human and mouse, were screened by transcriptome sequencing and bioinformatics analysis after irradiation or sham irradiation. The expression levels of these two genes were increased after radiation. Next, RNAi technology was used to inhibit the expression of crm-1, a gene whose homologs are associated with motor neuron development in other species. Downregulation of crm-1 expression effectively alleviated the deleterious effects of ionizing radiation on head thrashes and touch avoidance. It was also found that the expression level of crm-1 was regulated by the nuclear receptor gene nhr-76. The results of this study suggest that knocking down the expression level of nhr-76 can reduce the expression level of crm-1, while down-regulating the expression level of crm-1 can alleviate behavioral disorders induced by ionizing radiation. Therefore, inhibition of crm-1 may be of interest as a potential therapeutic target for ionizing radiation-induced neurological dysfunction.
Collapse
Affiliation(s)
- Hui-Qiang Long
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, China
| | - Jin Gao
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, China
| | - Shu-Qing He
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian-Fang Han
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, China
| | - Yu Tu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, China,Correspondence to: Yu Tu, ; Na Chen, .
| | - Na Chen
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, China,Correspondence to: Yu Tu, ; Na Chen, .
| |
Collapse
|
39
|
Positive interaction between ASH and ASK sensory neurons accelerates nociception and inhibits behavioral adaptation. iScience 2022; 25:105287. [PMID: 36304123 PMCID: PMC9593764 DOI: 10.1016/j.isci.2022.105287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/22/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Central and peripheral sensory neurons tightly regulate nociception and avoidance behavior. The peripheral modulation of nociception provides more veridical and instantaneous information for animals to achieve rapid, more fine-tuned and concentrated behavioral responses. In this study, we find that positive interaction between ASH and ASK sensory neurons is essential for the fast-rising phase of ASH Ca2+ responses to noxious copper ions and inhibits the adaption of avoiding Cu2+. We reveal the underlying neuronal circuit mechanism. ASK accelerates the ASH Ca2+ responses by transferring cGMP through gap junctions. ASH excites ASK via a disinhibitory neuronal circuit composed of ASH, AIA, and ASK. Avoidance adaptation depends on the slope rate of the rising phase of ASH Ca2+ responses. Thus, in addition to amplitude, sensory kinetics is significant for sensations and behaviors, especially for sensory and behavioral adaptations.
Collapse
|
40
|
Jiang Y, Huang M, Li C, Hua C, Qin R, Chang D, Jiang D, Zhao L, Wang X, Yu J, Wang C. Responses of infective juveniles of the soybean cyst nematode (Heterodera glycines) and the root-knot nematodes (Meloidogyne hapla, M. incognita) to amino acids. NEMATOLOGY 2022. [DOI: 10.1163/15685411-bja10190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Plant-parasitic nematode infective juveniles (J2) use phytochemical signals released into the rhizosphere to locate host roots. Amino acids are the second most abundant metabolites of root exudates, but it is unknown if they are associated with J2 chemotaxis. In this study, J2 chemotaxis and mortality of the soybean cyst nematode (Heterodera glycines) and root-knot nematodes (Meloidogyne incognita and M. hapla) were examined in response to 15 amino acids and the corresponding pH values for tested amino acid solutions were measured. Responses varied by amino acid and among the species. Significant attraction, determined by J2 count within amino acid solution dispensers after 24 h exposure, occurred with 19 out of 45 J2-amino acid combinations. Heterodera glycines, M. hapla and M. incognita were attracted to nine, three and seven amino acids, respectively. Strongest attractions were to acidic polar amino acids aspartate and glutamate (H. glycines, M. hapla) and basic polar arginine (M. hapla), as previously reported, acid and basic pH attracting nematodes, thereby indicating that pH might be one of the attraction factors for these amino acids. All three nematodes exhibited clustering behaviours, such as halo or balling formations, just outside amino acid solution dispensers, with H. glycines, M. hapla and M. incognita responding to four, 12 and two amino acids, respectively. Six of 15 amino acid solutions, representing a range of pH values, caused increased mortality. Certain aspartate and glutamate affected both H. glycines and M. hapla; arginine, aspartate, cysteine, lysine, methionine affected M. incognita; and cysteine caused complete mortality in M. hapla. All the results suggest that amino acids affect nematode attraction and mortality.
Collapse
Affiliation(s)
- Ye Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Huang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
| | - Chunjie Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
| | - Cui Hua
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
| | - Ruifeng Qin
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Doudou Chang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
| | - Xuan Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
| | - Jinyao Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
| | - Congli Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, P.R. China
| |
Collapse
|
41
|
Pechuk V, Goldman G, Salzberg Y, Chaubey AH, Bola RA, Hoffman JR, Endreson ML, Miller RM, Reger NJ, Portman DS, Ferkey DM, Schneidman E, Oren-Suissa M. Reprogramming the topology of the nociceptive circuit in C. elegans reshapes sexual behavior. Curr Biol 2022; 32:4372-4385.e7. [PMID: 36075218 DOI: 10.1016/j.cub.2022.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
The effect of the detailed connectivity of a neural circuit on its function and the resulting behavior of the organism is a key question in many neural systems. Here, we study the circuit for nociception in C. elegans, which is composed of the same neurons in the two sexes that are wired differently. We show that the nociceptive sensory neurons respond similarly in the two sexes, yet the animals display sexually dimorphic behaviors to the same aversive stimuli. To uncover the role of the downstream network topology in shaping behavior, we learn and simulate network models that replicate the observed dimorphic behaviors and use them to predict simple network rewirings that would switch behavior between the sexes. We then show experimentally that these subtle synaptic rewirings indeed flip behavior. Interestingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that network topologies that enable efficient avoidance of noxious cues have a reproductive "cost." Our results present a deconstruction of the design of a neural circuit that controls sexual behavior and how to reprogram it.
Collapse
Affiliation(s)
- Vladyslava Pechuk
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Goldman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aditi H Chaubey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - R Aaron Bola
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jonathon R Hoffman
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Morgan L Endreson
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Renee M Miller
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Noah J Reger
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Elad Schneidman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
42
|
Tanner D, Carigo D, Sevilla C, Lewis M, Harris G. Sex differences in decision-making: Identifying multisensory behavioral differences in males and hermaphrodites. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000594. [PMID: 35971405 PMCID: PMC9375158 DOI: 10.17912/micropub.biology.000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022]
Abstract
This present study uses C. elegans as a model to investigate how sex differences can influence sensory behavior and decision-making when encountering conflicting cues. We use a multi-sensory behavioral assay to characterize the differences between hermaphrodites and male worms when escaping from a food lawn during exposure to repulsive odors, such as, 2-nonanone. We find that male worms show a delayed food leaving during exposure to 2-nonanone when compared to hermaphrodite worms, and this is observed across multiple repulsive cues (2-nonanone and undiluted benzaldehyde) and multiple food types ( E. coli (OP50) and Comamonas sp ). Overall, this study provides a platform to further investigate how sensory-dependent decision-making behavior differs between sexes.
Collapse
Affiliation(s)
- Duncan Tanner
- Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Denise Carigo
- Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Chane Sevilla
- Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Madison Lewis
- Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Gareth Harris
- Biology Program, California State University Channel Islands, Camarillo, CA, USA
,
Correspondence to: Gareth Harris (
)
| |
Collapse
|
43
|
Magaram U, Weiss C, Vasan A, Reddy KC, Friend J, Chalasani SH. Two pathways are required for ultrasound-evoked behavioral changes in Caenorhabditis elegans. PLoS One 2022; 17:e0267698. [PMID: 35511952 PMCID: PMC9071135 DOI: 10.1371/journal.pone.0267698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Ultrasound has been shown to affect the function of both neurons and non-neuronal cells, but, the underlying molecular machinery has been poorly understood. Here, we show that at least two mechanosensitive proteins act together to generate C. elegans behavioral responses to ultrasound stimuli. We first show that these animals generate reversals in response to a single 10 msec pulse from a 2.25 MHz ultrasound transducer. Next, we show that the pore-forming subunit of the mechanosensitive channel TRP-4, and a DEG/ENaC/ASIC ion channel MEC-4, are both required for this ultrasound-evoked reversal response. Further, the trp-4;mec-4 double mutant shows a stronger behavioral deficit compared to either single mutant. Finally, overexpressing TRP-4 in specific chemosensory neurons can rescue the ultrasound-triggered behavioral deficit in the mec-4 null mutant, suggesting that both TRP-4 and MEC-4 act together in affecting behavior. Together, we demonstrate that multiple mechanosensitive proteins likely cooperate to transform ultrasound stimuli into behavioral changes.
Collapse
Affiliation(s)
- Uri Magaram
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, United States of America
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - Connor Weiss
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - Aditya Vasan
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Kirthi C. Reddy
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - James Friend
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
44
|
Hering I, Le DT, von Mikecz A. How to keep up with the analysis of classic and emerging neurotoxins: Age-resolved fitness tests in the animal model Caenorhabditis elegans - a step-by-step protocol. EXCLI JOURNAL 2022; 21:344-353. [PMID: 35391920 PMCID: PMC8983854 DOI: 10.17179/excli2021-4626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
The global chemical inventory includes neurotoxins that are mostly interrogated concerning the biological response in developing organisms. Effects of pollutants on adults receive less attention, although vulnerabilities can be expected throughout the entire life span in young, middle-aged and old individuals. We use the animal model Caenorhabditis elegans to systematically quantify neurological outcomes by application of an age-resolved method. Adult hermaphrodite worms were exposed to pollutants or non-chemical stressors such as temperature in liquid culture on microtiter plates and locomotion fitness was analyzed in a whole-life approach. Cultivation at 15, 20 or 25 °C showed that worms held at 15 °C displayed an enhanced level of fitness concerning swimming movements until middle age (11-days-old) and then a decline. In contrast, C. elegans cultivated at ≥ 20 °C continually reduced their swimming movements with increasing age. Here, we provide a step-by-step protocol to investigate the health span of adult C. elegans that may serve as a platform for automation and data collection. Consistent with this, more neurotoxins can be investigated with respect to vulnerable age-groups as well as contributing non-chemical environmental factors such as temperature.
Collapse
Affiliation(s)
- Indra Hering
- IUF - Leibniz Research Institute for Environmental Medicine
| | - Dang Tri Le
- IUF - Leibniz Research Institute for Environmental Medicine
| | | |
Collapse
|
45
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
46
|
Neural model generating klinotaxis behavior accompanied by a random walk based on C. elegans connectome. Sci Rep 2022; 12:3043. [PMID: 35197494 PMCID: PMC8866504 DOI: 10.1038/s41598-022-06988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
Klinotaxis is a strategy of chemotaxis behavior in Caenorhabditis elegans (C. elegans), and random walking is evident during its locomotion. As yet, the understanding of the neural mechanisms underlying these behaviors has remained limited. In this study, we present a connectome-based simulation model of C. elegans to concurrently realize realistic klinotaxis and random walk behaviors and explore their neural mechanisms. First, input to the model is derived from an ASE sensory neuron model in which the all-or-none depolarization characteristic of ASEL neuron is incorporated for the first time. Then, the neural network is evolved by an evolutionary algorithm; klinotaxis emerged spontaneously. We identify a plausible mechanism of klinotaxis in this model. Next, we propose the liquid synapse according to the stochastic nature of biological synapses and introduce it into the model. Adopting this, the random walk is generated autonomously by the neural network, providing a new hypothesis as to the neural mechanism underlying the random walk. Finally, simulated ablation results are fairly consistent with the biological conclusion, suggesting the similarity between our model and the biological network. Our study is a useful step forward in behavioral simulation and understanding the neural mechanisms of behaviors in C. elegans.
Collapse
|
47
|
Cheng S, Zhu B, Luo F, Lin X, Sun C, You Y, Yi C, Xu B, Wang J, Lu Y, Hu W. Comparative transcriptome profiles of Schistosoma japonicum larval stages: Implications for parasite biology and host invasion. PLoS Negl Trop Dis 2022; 16:e0009889. [PMID: 35025881 PMCID: PMC8791509 DOI: 10.1371/journal.pntd.0009889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/26/2022] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum is prevalent in Asia with a wide mammalian host range, which leads to highly harmful zoonotic parasitic diseases. Most previous transcriptomic studies have been performed on this parasite, but mainly focus on stages inside the mammalian host. Moreover, few larval transcriptomic data are available in public databases. Here we mapped the detailed transcriptome profiles of four S. japonicum larval stages including eggs, miracidia, sporocysts and cercariae, providing a comprehensive development picture outside of the mammalian host. By analyzing the stage-specific/enriched genes, we identified functional genes associated with the biological characteristic at each stage: e.g. we observed enrichment of genes necessary for DNA replication only in sporocysts, while those involved in proteolysis were upregulated in sporocysts and/or cercariae. This data indicated that miracidia might use leishmanolysin and neprilysin to penetrate the snail, while elastase (SjCE2b) and leishmanolysin might contribute to the cercariae invasion. The expression profile of stem cell markers revealed potential germinal cell conversion during larval development. Additionally, our analysis indicated that tandem duplications had driven the expansion of the papain family in S. japonicum. Notably, all the duplicated cathepsin B-like proteases were highly expressed in cercariae. Utilizing our 3rd version of S. japonicum genome, we further characterized the alternative splicing profiles throughout these four stages. Taken together, the present study provides compressive gene expression profiles of S. japonicum larval stages and identifies a set of genes that might be involved in intermediate and definitive host invasion.
Collapse
Affiliation(s)
- Shaoyun Cheng
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Xiying Lin
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Chengsong Sun
- Anhui Provincial Institute of Parasitic Diseases, Hefei, China
| | - Yanmin You
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Cun Yi
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yan Lu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
48
|
Zhang Y, Zhao C, Zhang H, Lu Q, Zhou J, Liu R, Wang S, Pu Y, Yin L. Trans-generational effects of copper on nerve damage in Caenorhabditis elegans. CHEMOSPHERE 2021; 284:131324. [PMID: 34225113 DOI: 10.1016/j.chemosphere.2021.131324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 05/15/2023]
Abstract
The potential toxicity of copper has received great attention for a long time, however, trans-generational effects of copper have not been extensively investigated. Caenorhabditis elegans (C. elegans) was used to evaluate the trans-generational toxicities of copper several physiological endpoints: growth, head thrashes and body bends and degree of neuronal damage. Copper significantly inhibited growth, body bends, head thrashes and caused degeneration of dopaminergic neurons in a concentration-dependent manner in parental worms. Further we found oxidative damage was to underlying the onset of neuron degeneration. In our study copper promoted ROS accumulation, and led to an increased expression of the oxidative stress response-related genes sod-3 and a decreased expression of metal detoxification genes mtl-1 and mtl-2. Moreover, copper increased the fluorescence intensity of the transgenic strain that encodes the antioxidant enzyme SOD-3. Gradually decline in copper-induced impairments were observed in the filial generations without exposure. No growth impairment was shown in F3, the trend of head thrashes recovery gradually appeared in F2 and no growth impairment was shown in F3, the body bends impairment caused by the parental copper exposure was recovery until F4 and no growth impairment was shown in F5. Besides, dopamine neurons revealed damage related to neurobehavioral endpoints, with hereditary effects in the progeny together. In addition, sequencing results suggested that copper exposure could cause epigenetic changes. QRT-PCR results showed that differentially expressed genes can also be passed on to offspring.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Jingjing Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
49
|
Cheng H, Liu Y, Xue Y, Shao J, Tan Z, Liu S, Duan S, Kang L. Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans. Front Mol Neurosci 2021; 14:748214. [PMID: 34803606 PMCID: PMC8600271 DOI: 10.3389/fnmol.2021.748214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Various odorants trigger complex animal behaviors across species in both quality- and quantity-dependent manners. However, how the intensity of olfactory input is encoded remains largely unknown. Here we report that isoamyl alcohol (IAA) induces bi-directional currents through a Gα- guanylate cyclase (GC)- cGMP signaling pathway in Caenorhabditis elegans olfactory neuron amphid wing “C” cell (AWC), while two opposite cGMP signaling pathways are responsible for odor-sensing in olfactory neuron amphid wing “B” cell (AWB): (1) a depolarizing Gα (GPA-3)- phosphodiesterase (PDE) – cGMP pathway which can be activated by low concentrations of isoamyl alcohol (IAA), and (2) a hyperpolarizing Gα (ODR-3)- GC- cGMP pathway sensing high concentrations of IAA. Besides, IAA induces Gα (ODR-3)-TRPV(OSM-9)-dependent currents in amphid wing “A” cell (AWA) and amphid neuron “H” cell with single ciliated sensory ending (ASH) neurons with different thresholds. Our results demonstrate that an elaborate combination of multiple signaling machineries encode the intensity of olfactory input, shedding light on understanding the molecular strategies on sensory transduction.
Collapse
Affiliation(s)
- Hankui Cheng
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yu Liu
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yadan Xue
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Shao
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhibing Tan
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyan Liu
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Kang
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Wallace MN, Shackleton TM, Thompson Z, Palmer AR. Juxtacellular Labeling of Stellate, Disk and Basket Neurons in the Central Nucleus of the Guinea Pig Inferior Colliculus. Front Neural Circuits 2021; 15:721015. [PMID: 34790099 PMCID: PMC8592287 DOI: 10.3389/fncir.2021.721015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
We reconstructed the intrinsic axons of 32 neurons in the guinea pig inferior colliculus (IC) following juxtacellular labeling. Biocytin was injected into cells in vivo, after first analyzing physiological response properties. Based on axonal morphology there were two classes of neuron: (1) laminar cells (14/32, 44%) with an intrinsic axon and flattened dendrites confined to a single fibrodendritic lamina and (2) translaminar cells (18/32, 56%) with axons that terminated in two or more laminae in the central nucleus (ICc) or the surrounding cortex. There was also one small, low-frequency cell with bushy-like dendrites that was very sensitive to interaural timing differences. The translaminar cells were subdivided into three groups of cells with: (a) stellate dendrites that crossed at least two laminae (8/32, 25%); (b) flattened dendrites confined to one lamina and that had mainly en passant axonal swellings (7/32, 22%) and (c) short, flattened dendrites and axons with distinctive clusters of large terminal boutons in the ICc (3/32, 9%). These terminal clusters were similar to those of cortical basket cells. The 14 laminar cells all had sustained responses apart from one offset response. Almost half the non-basket type translaminar cells (7/15) had onset responses while the others had sustained responses. The basket cells were the only ones to have short-latency (7–9 ms), chopper responses and this distinctive temporal response should allow them to be studied in more detail in future. This is the first description of basket cells in the auditory brainstem, but more work is required to confirm their neurotransmitter and precise post-synaptic targets.
Collapse
Affiliation(s)
- Mark N Wallace
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Trevor M Shackleton
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Zoe Thompson
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|