1
|
Paes T, Hofland LJ, Iyer AM, Feelders RA. Epigenetic implications in the pathogenesis of corticotroph tumors. Pituitary 2025; 28:51. [PMID: 40257628 PMCID: PMC12011945 DOI: 10.1007/s11102-025-01522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Non-mutational epigenetic reprogramming is considered an important enabling characteristic of neoplasia. Corticotroph tumors and other subtypes of pituitary tumors are characterized by distinct epigenetic profiles. The DNA methylation profile is consistent with disease-specific gene expression, which highlights the importance of epigenetic changes in tumor formation and progression. Elucidating the epigenetic changes underlying tumorigenesis plays an important role in understanding the molecular pathogenesis of corticotroph tumors and may ultimately contribute to improving tumor-specific treatment. Here, we provide an overview of the epigenetic landscape of corticotroph tumors. We also review the role of epigenetics in silencing the expression of tumor suppressor genes and promoting oncogenes expression, which could potentially be involved in the pathogenesis of corticotroph tumors. We briefly discuss microRNAs and epigenetic aspects of POMC regulation. Lastly, since the epigenetic changes are reversible, we discuss drugs that target epigenetic modifiers that could potentially be used in the arsenal of Cushing's disease treatment modalities.
Collapse
Affiliation(s)
- Ticiana Paes
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
- Department of Internal Medicine, Roger Williams Medical Center, Providence, RI, USA
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands.
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Xu M, Cui M, Wang Y, Li B, Feng L, Xing H, Zhang K. Therapeutic potentials of natural products for post-traumatic stress disorder: A focus on epigenetics. CHINESE HERBAL MEDICINES 2025; 17:203-219. [PMID: 40256720 PMCID: PMC12009077 DOI: 10.1016/j.chmed.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 07/18/2024] [Indexed: 04/22/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a relatively common but complex mental illness with a range of diverse risk factors. Typical symptoms include the re-experience or avoidance of traumatic events, cognitive impairment, and hypervigilance. While the exact pathogenesis of PTSD is unclear, many studies indicate that epigenetic regulation plays a key role in its development. Specifically, numerous studies have indicated that the levels of histone acetylation and methylation, DNA methylation, and noncoding RNA are altered in PTSD patients. Further to this, natural products have been found to achieve epigenetic regulation of PTSD by regulating the expression of epigenetic enzymes, long noncoding RNA (lncRNA), and miRNA, thereby playing a role in improving PTSD symptoms. To date, however, no epigenetic regulation related drugs have been used in the treatment of PTSD. Furthermore, while natural products that can epigenetically regulate PTSD have received increasing levels of attention, there have not yet been any systematic reports on the topic. Here, we summarized the roles and mechanisms of natural products in the epigenetic regulation of PTSD, providing a novel and unique perspective that will help to guide the development and application of new PTSD treatments.
Collapse
Affiliation(s)
- Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Minghui Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Li J, Huang L, Xiao W, Kong J, Hu M, Pan A, Yan X, Huang F, Wan L. Multimodal insights into adult neurogenesis: An integrative review of multi-omics approaches. Heliyon 2025; 11:e42668. [PMID: 40051854 PMCID: PMC11883395 DOI: 10.1016/j.heliyon.2025.e42668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Adult neural stem cells divide to produce neurons that migrate to preexisting neuronal circuits in a process named adult neurogenesis. Adult neurogenesis is one of the most exciting areas of current neuroscience, and it may be involved in a range of brain functions, including cognition, learning, memory, and social and behavior changes. While there is a growing number of multi-omics studies on adult neurogenesis, generalized analyses from a multi-omics perspective are lacking. In this review, we summarize studies related to genomics, metabolomics, proteomics, epigenomics, transcriptomics, and microbiomics of adult neurogenesis, and then discuss their future research priorities and potential neighborhoods. This will provide theoretical guidance and new directions for future research on adult neurogenesis.
Collapse
Affiliation(s)
- Jin Li
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
- Yiyang Medical College, Yiyang, Hunan Province, China
| | - Leyi Huang
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Minghua Hu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Fulian Huang
- Yiyang Medical College, Yiyang, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Mseis-Jackson N, Jiang M, Sharma M, Ranchod A, Williams C, Chen X, Li H. Dynamic regulation of NeuroD1 expression level by a novel viral construct during astrocyte-to-neuron reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638625. [PMID: 40027739 PMCID: PMC11870611 DOI: 10.1101/2025.02.17.638625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Astrocyte-to-neuron reprogramming presents a viable approach for regenerative medicine. The reprogramming factor NeuroD1 has demonstrated capability of neuronal reprogramming with high efficiency both in culture and in the injured central nervous system. High level of NeuroD1 expression is required to break down the cellular identity barrier for a successful reprogramming, and yet persistence of this high level drives the reprogrammed neurons primarily to glutamatergic subtype. This is consistent with the critical role of NeuroD1 in determination of glutamatergic neuronal lineage during development. However, diversified neuronal subtypes are needed to establish appropriate neuronal connectivity in disease/injury conditions. We reason that continuously high level of NeuroD1 expression forces the reprogrammed neurons into glutamatergic subtype, and that reducing NeuroD1 level after reprogramming may allow generation of neurons with diversified subtypes. For this purpose, we engineered a novel viral expression vector by which NeuroD1 expression can be dynamically regulated during the reprogramming process. Specifically, the target site of a neuron-specific microRNA (miR-124) is incorporated in the expression system. Therefore, this novel construct would still achieve a high NeuroD1 expression level in astrocytes for reprogramming to occur and yet reduce its level in the reprogrammed neurons by suppression of endogenous miR-124. In this study, we demonstrated that this construct elicits a dynamic gene expression pattern with much reduced level of NeuroD1 at later stages of neuronal reprogramming. We also showed that this construct still retains relatively high reprogramming efficiency and can generate mature neurons with an enhanced GABAergic neuronal phenotype.
Collapse
|
5
|
Raak SB, Hanley JG, O'Donnell C. Competition effects regulating the composition of the microRNA pool. J R Soc Interface 2025; 22:20240870. [PMID: 39965642 PMCID: PMC11835486 DOI: 10.1098/rsif.2024.0870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025] Open
Abstract
MicroRNAS (miRNAs) are short non-coding RNAs that can repress mRNA translation to regulate protein synthesis. During their maturation, multiple types of pre-miRNAs compete for a shared pool of the enzyme Dicer. It is unknown how this competition for a shared resource influences the relative expression of mature miRNAs. We study this process in a computational model of pre-miRNA maturation, fitted to in vitro Drosophila S2 cell data. We find that those pre-miRNAs that efficiently interact with Dicer outcompete other pre-miRNAs, when Dicer is scarce. To test our model predictions, we re-analysed previously published ex vivo mouse striatum data with reduced Dicer1 expression. We calculated a proxy measure for pre-miRNA affinity to TRBP (a protein that loads pre-miRNAs to Dicer). This measures well-predicted mature miRNA levels in the data, validating our assumptions. We used this as a basis to test the the model's predictions through further analysis of the data. We found that pre-miRNAs with strong TRBP association are over-represented in competition conditions, consistent with the modelling. Finally using further simulations, we discovered that pre-miRNAs with low maturation rates can affect the mature miRNA pool via competition among pre-miRNAs. Overall, this work presents evidence of pre-miRNA competition regulating the composition of mature miRNAs.
Collapse
Affiliation(s)
- Sofia B. Raak
- School of Biochemistry, University of Bristol, University Walk, Clifton, BristolBS8 1TD, UK
| | - Jonathan G. Hanley
- School of Biochemistry, University of Bristol, University Walk, Clifton, BristolBS8 1TD, UK
| | - Cian O'Donnell
- School of Engineering Mathematics and Technology, University of Bristol, University Walk, Clifton, BristolBS8 1TD, UK
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry/LondonderryBT48 7JL, UK
| |
Collapse
|
6
|
Sharma D, Bharadaj SK, Bharadaj S, Chakraborty S. MicroRNA-regulated suppression of some overexpressed genes in schizophrenia and their evolutionary significance. Schizophr Res 2025; 276:143-156. [PMID: 39892248 DOI: 10.1016/j.schres.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Impaired formation of the brain or nervous system is the root cause of neurodevelopmental disorders which appear in pregnancy or soon after birth. One such neurodevelopmental disorder is Schizophrenia. Among the most serious forms of psychosis, Schizophrenia (SCZ) affects 1 % of the general population. MiRNA targeting sites and codon usage of nine overexpressed genes in Schizophrenia were investigated in this study. The neutrality plot demonstrated the importance of natural selection over mutational pressure in the evolution of these genes. The analysis of COSM revealed that the miRNA target regions of the genes were encoded by non-optimal codons, resulting in low translational efficiency, whereas the GC content revealed that the miRNA-mRNA binding was strong. From this study it was concluded that each overexpressed gene was targeted by several human miRNAs for putative suppression. These identified miRNAs could have therapeutic potential in Schizophrenia therapy.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | | | - Stella Bharadaj
- Silchar Medical College and Hospital, Silchar 788014, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
7
|
Guha S, Jagadeesan Y, Pandey MM, Mittal A, Chitkara D. Targeting the epigenome with advanced delivery strategies for epigenetic modulators. Bioeng Transl Med 2025; 10:e10710. [PMID: 39801754 PMCID: PMC11711227 DOI: 10.1002/btm2.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Epigenetics mechanisms play a significant role in human diseases by altering DNA methylation status, chromatin structure, and/or modifying histone proteins. By modulating the epigenetic status, the expression of genes can be regulated without any change in the DNA sequence itself. Epigenetic drugs exhibit promising therapeutic efficacy against several epigenetically originated diseases including several cancers, neurodegenerative diseases, metabolic disorders, cardiovascular disorders, and so forth. Currently, a considerable amount of research is focused on discovering new drug molecules to combat the existing research gap in epigenetic drug therapy. A novel and efficient delivery system can be established as a promising approach to overcome the drawbacks associated with the current epigenetic modulators. Therefore, formulating the existing epigenetic drugs with distinct encapsulation strategies in nanocarriers, including solid lipid nanoparticles, nanogels, bio-engineered nanocarriers, liposomes, surface modified nanoparticles, and polymer-drug conjugates have been examined for therapeutic efficacy. Nonetheless, several epigenetic modulators are untouched for their therapeutic potential through different delivery strategies. This review provides a comprehensive up to date discussion on the research findings of various epigenetics mechanism, epigenetic modulators, and delivery strategies utilized to improve their therapeutic outcome. Furthermore, this review also highlights the recently emerged CRISPR tool for epigenome editing.
Collapse
Affiliation(s)
- Sonia Guha
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Yogeswaran Jagadeesan
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Murali Monohar Pandey
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Anupama Mittal
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Deepak Chitkara
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| |
Collapse
|
8
|
Zhang S, Liu N, Cao P, Qin Q, Li J, Yang L, Xin Y, Jiang M, Zhang S, Yang J, Lu J. LncRNA BC200 promotes the development of EBV-associated nasopharyngeal carcinoma by competitively binding to miR-6834-5p to upregulate TYMS expression. Int J Biol Macromol 2024; 278:134837. [PMID: 39179085 DOI: 10.1016/j.ijbiomac.2024.134837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is closely related to Epstein-Barr virus (EBV) infection. Long noncoding RNAs (lncRNAs) play important roles in cancers. However, the molecular mechanism underlying the roles of lncRNAs in EBV-associated NPC remains largely unclear. In this study, we confirmed that the expression of the lncRNA brain cytoplasmic 200 (BC200) was significantly increased in EBV-infected NPC cells and tissues. BC200 facilitated the growth and migration of NPC cells, suggesting that it participated in NPC progression by functioning as an oncogene. Mechanistically, BC200 was found to act as a ceRNA by sponging and inhibiting miR-6834-5p. Thymidylate synthetase (TYMS), whose high expression was reported to be an independent indicator of poor prognosis in NPC via an unknown mechanism, was identified as a target gene of miR-6834-5p in the present study. BC200 upregulated TYMS expression in a manner that depends on miR-6834-5p. TYMS was abnormally upregulated in EBV-positive NPC cells and tissues, and its ectopic expression contributed to the proliferation and migration of NPC cells. This study highlights the role of lncRNA BC200, which is upregulated by EBV, in promoting the development of NPC, suggesting that BC200-mediated ceRNA network may be valuable biomarkers for the diagnosis and treatment of EBV-associated NPC.
Collapse
Affiliation(s)
- Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Na Liu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Qingshuang Qin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Yujie Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Siwei Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jing Yang
- Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
9
|
Wang H, Liu Q, Liu Y, Dong W, Wan J, Jiao X, Wu Y, Li T, Miao H. Role of the circRNA_34414/miR-6960a-5p/SIRT3 axis in postoperative delirium via CA1 Vglut1+ neurons in older mice. CNS Neurosci Ther 2024; 30:e14902. [PMID: 39138637 PMCID: PMC11322041 DOI: 10.1111/cns.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
AIMS Postoperative delirium (POD) is a common neurological complication in elderly patients after anesthesia/surgery. The main purpose of this study is to explore the effect of circRNA-targeted miRNA regulating SIRT3 on mitochondrial function through ceRNA mechanism under the surgical model of tibial fracture and to further explore the potential mechanism of postoperative delirium mediated by circRNA, so as to provide new ideas for clinical diagnosis and prevention of POD. METHODS The surgical model of tibial fracture under sevoflurane anesthesia caused acute delirium-like behavior in elderly mice. We observed that the decrease of SIRT3 and mitochondrial dysfunction was related to POD, and miRNA and circRNA (circRNA_34414) related to SIRT3 were further studied. Through luciferase and RAP, we observed that circRNA_34414, as a miRNA sponge, was involved in the regulation of SIRT3 expression. RESULTS Postoperative delirium in elderly mice showed decreased expression of hippocampal circRNA_34414, increased expression of miR-6960-5p, decreased expression of SIRT3, and impaired mitochondrial membrane potential. Overexpression of circRNA_34414, or knockdown of miR-6960-5p, or overexpression of SIRT3 in hippocampal CA1 glutamatergic neurons significantly upregulated hippocampal SIRT3 expression, increased mitochondrial membrane potential levels, and significantly ameliorated postoperative delirium in aged mice; CircRNA_34414 ameliorates postoperative delirium in mice, possibly by targeting miR-6960-5p to upregulate SIRT3. CONCLUSIONS CircRNA_34414 is involved in the improvement of postoperative delirium induced by anesthesia/surgery by upregulating SIRT3 via sponging miR-6960-5p.
Collapse
Affiliation(s)
- Hai‐Bi Wang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Department of AnesthesiologyQidong People's Hospital/Qidong Liver Cancer Institute/Affiliated Qidong Hospital of Nantong UniversityNantongChina
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yan‐Ping Liu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Xin‐Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yu‐Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Tian‐Zuo Li
- Department of Anesthesiology, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Hui‐Hui Miao
- Department of Anesthesiology, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
10
|
Xavier G, Mauer J, Ota VK, Santoro ML, Belangero SI. Influence of antipsychotic drugs on microRNA expression in schizophrenia patients - A systematic review. J Psychiatr Res 2024; 176:163-172. [PMID: 38870782 DOI: 10.1016/j.jpsychires.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder with unclear pathophysiology. Moreover, there is no specific biological marker to help clinicians to define a diagnosis, and medication is decided according to the psychiatrist's experience. In this scenario, microRNAs (miRNAs), which are small noncoding RNA molecules that regulate several genes, emerge as potential peripheral biomarkers to help not only the evaluation of the disease state but also the treatment response. Here, we systematically reviewed indexed literature and evaluated follow-up studies investigating the changes in miRNA expression due to antipsychotic treatment. We also assessed target genes and performed pathway enrichment analysis of miRNAs listed in this systematic review. A total of 11 studies were selected according to research criteria, and we observed that 28 miRNAs play a relevant role in schizophrenia pathogenesis or response to antipsychotic treatment, seven of those of extreme interest as possible biomarkers either for condition or treatment. Predicted targets of the miRNAs reviewed here were previously associated with schizophrenia in genome-wide studies, and pathway analysis showed enrichment for genes related to neural processes. With this review, we expect to highlight the importance of miRNAs in schizophrenia pathogenesis and its treatment and point out interesting miRNAs to future studies.
Collapse
Affiliation(s)
- Gabriela Xavier
- LiNC, Laboratory of Integrative Neuroscience - Department of Psychiatry - Universidade Federal de São Paulo, Brazil; Genetics Division - Department of Morphology and Genetics - Universidade Federal de São Paulo, Brazil
| | - Jessica Mauer
- LiNC, Laboratory of Integrative Neuroscience - Department of Psychiatry - Universidade Federal de São Paulo, Brazil; Genetics Division - Department of Morphology and Genetics - Universidade Federal de São Paulo, Brazil
| | - Vanessa K Ota
- LiNC, Laboratory of Integrative Neuroscience - Department of Psychiatry - Universidade Federal de São Paulo, Brazil; Genetics Division - Department of Morphology and Genetics - Universidade Federal de São Paulo, Brazil
| | - Marcos L Santoro
- LiNC, Laboratory of Integrative Neuroscience - Department of Psychiatry - Universidade Federal de São Paulo, Brazil; Disciplina de Biologia Molecular - Departamento de Bioquímica - Universidade Federal de São Paulo, Brazil
| | - Sintia I Belangero
- LiNC, Laboratory of Integrative Neuroscience - Department of Psychiatry - Universidade Federal de São Paulo, Brazil; Genetics Division - Department of Morphology and Genetics - Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
11
|
Mseis-Jackson N, Sharma M, Li H. Controlling the Expression Level of the Neuronal Reprogramming Factors for a Successful Reprogramming Outcome. Cells 2024; 13:1223. [PMID: 39056804 PMCID: PMC11274869 DOI: 10.3390/cells13141223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neuronal reprogramming is a promising approach for making major advancement in regenerative medicine. Distinct from the approach of induced pluripotent stem cells, neuronal reprogramming converts non-neuronal cells to neurons without going through a primitive stem cell stage. In vivo neuronal reprogramming brings this approach to a higher level by changing the cell fate of glial cells to neurons in neural tissue through overexpressing reprogramming factors. Despite the ongoing debate over the validation and interpretation of newly generated neurons, in vivo neuronal reprogramming is still a feasible approach and has the potential to become clinical treatment with further optimization and refinement. Here, we discuss the major neuronal reprogramming factors (mostly pro-neurogenic transcription factors during development), especially the significance of their expression levels during neurogenesis and the reprogramming process focusing on NeuroD1. In the developing central nervous system, these pro-neurogenic transcription factors usually elicit distinct spatiotemporal expression patterns that are critical to their function in generating mature neurons. We argue that these dynamic expression patterns may be similarly needed in the process of reprogramming adult cells into neurons and further into mature neurons with subtype identities. We also summarize the existing approaches and propose new ones that control gene expression levels for a successful reprogramming outcome.
Collapse
Affiliation(s)
- Natalie Mseis-Jackson
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Mehek Sharma
- Department of Biological Sciences, College of Science & Mathematics, Augusta University, Augusta, GA 30912, USA;
| | - Hedong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
12
|
Piergiorge RM, Vasconcelos ATRD, Santos-Rebouças CB. Understanding the (epi)genetic dysregulation in Parkinson's disease through an integrative brain competitive endogenous RNA network. Mech Ageing Dev 2024; 219:111942. [PMID: 38762037 DOI: 10.1016/j.mad.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Parkinson's disease (PD) is a rapidly growing neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SN) and aggregation of α-synuclein. Its aetiology involves a multifaceted interplay among genetic, environmental, and epigenetic factors. We integrated brain gene expression data from PD patients to construct a comprehensive regulatory network encompassing messenger RNAs (mRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and, for the first time, RNA binding proteins (RBPs). Expression data from the SN of PD patients and controls were systematically selected from public databases to identify combined differentially expressed genes (DEGs). Brain co-expression analysis revealed modules comprising significant DEGs that function cooperatively. The relationships among co-expressed DEGs, miRNAs, circRNAs, and RBPs revealed an intricate competitive endogenous RNA (ceRNA) network responsible for post-transcriptional dysregulation in PD. Many genes in the ceRNA network, including the TOMM20 and HMGCR genes, overlap with the most relevant genes in our previous Alzheimer's disease-associated ceRNA network, suggesting common underlying mechanisms between both conditions. Moreover, in the ceRNA subnetwork, the RBP Aly/REF export factor (ALYREF), which acts as an RNA 5-methylcytosine(m5C)-binding protein, stood out. Our data sheds new light on the potential role of brain ceRNA networks in PD pathogenesis.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Qiu S, Dai H, Wang Y, Lv Y, Yu B, Yao C. The therapeutic potential of microRNAs to ameliorate spinal cord injury by regulating oligodendrocyte progenitor cells and remyelination. Front Cell Neurosci 2024; 18:1404463. [PMID: 38812792 PMCID: PMC11135050 DOI: 10.3389/fncel.2024.1404463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Spinal cord injury (SCI) can cause loss of sensory and motor function below the level of injury, posing a serious threat to human health and quality of life. One significant characteristic feature of pathological changes following injury in the nervous system is demyelination, which partially contributes to the long-term deficits in neural function after injury. The remyelination in the central nervous system (CNS) is mainly mediated by oligodendrocyte progenitor cells (OPCs). Numerous complex intracellular signaling and transcriptional factors regulate the differentiation process from OPCs to mature oligodendrocytes (OLs) and myelination. Studies have shown the importance of microRNA (miRNA) in regulating OPC functions. In this review, we focus on the demyelination and remyelination after SCI, and summarize the progress of miRNAs on OPC functions and remyelination, which might provide a potential therapeutic target for SCI treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
Mielecki D, Godlewski J, Salinska E. Hyperbaric oxygen therapy for the treatment of hypoxic/ischemic injury upon perinatal asphyxia-are we there yet? Front Neurol 2024; 15:1386695. [PMID: 38685945 PMCID: PMC11057380 DOI: 10.3389/fneur.2024.1386695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Birth asphyxia and its main sequel, hypoxic-ischemic encephalopathy, are one of the leading causes of children's deaths worldwide and can potentially worsen the quality of life in subsequent years. Despite extensive research efforts, efficient therapy against the consequences of hypoxia-ischemia occurring in the perinatal period of life is still lacking. The use of hyperbaric oxygen, improving such vital consequences of birth asphyxia as lowered partial oxygen pressure in tissue, apoptosis of neuronal cells, and impaired angiogenesis, is a promising approach. This review focused on the selected aspects of mainly experimental hyperbaric oxygen therapy. The therapeutic window for the treatment of perinatal asphyxia is very narrow, but administering hyperbaric oxygen within those days improves outcomes. Several miRNAs (e.g., mir-107) mediate the therapeutic effect of hyperbaric oxygen by modulating the Wnt pathway, inhibiting apoptosis, increasing angiogenesis, or inducing neural stem cells. Combining hyperbaric oxygen therapy with drugs, such as memantine or ephedrine, produced promising results. A separate aspect is the use of preconditioning with hyperbaric oxygen. Overall, preliminary clinical trials with hyperbaric oxygen therapy used in perinatal asphyxia give auspicious results.
Collapse
Affiliation(s)
- Damian Mielecki
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Godlewski
- NeuroOncology Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Luo M, Pang Y, Li J, Yi L, Wu B, Tian Q, He Y, Wang M, Xia L, He G, Song W, Du Y, Dong Z. miR-429-3p mediates memory decline by targeting MKP-1 to reduce surface GluA1-containing AMPA receptors in a mouse model of Alzheimer's disease. Acta Pharm Sin B 2024; 14:635-652. [PMID: 38322333 PMCID: PMC10840427 DOI: 10.1016/j.apsb.2023.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 02/08/2024] Open
Abstract
Alzheimer's disease (AD) is a leading cause of dementia in the elderly. Mitogen-activated protein kinase phosphatase 1 (MKP-1) plays a neuroprotective role in AD. However, the molecular mechanisms underlying the effects of MKP-1 on AD have not been extensively studied. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level, thereby repressing mRNA translation. Here, we reported that the microRNA-429-3p (miR-429-3p) was significantly increased in the brain of APP23/PS45 AD model mice and N2AAPP AD model cells. We further found that miR-429-3p could downregulate MKP-1 expression by directly binding to its 3'-untranslated region (3' UTR). Inhibition of miR-429-3p by its antagomir (A-miR-429) restored the expression of MKP-1 to a control level and consequently reduced the amyloidogenic processing of APP and Aβ accumulation. More importantly, intranasal administration of A-miR-429 successfully ameliorated the deficits of hippocampal CA1 long-term potentiation and spatial learning and memory in AD model mice by suppressing extracellular signal-regulated kinase (ERK1/2)-mediated GluA1 hyperphosphorylation at Ser831 site, thereby increasing the surface expression of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Together, these results demonstrate that inhibiting miR-429-3p to upregulate MKP-1 effectively improves cognitive and synaptic functions in AD model mice, suggesting that miR-429/MKP-1 pathway may be a novel therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Man Luo
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lilin Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Bin Wu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qiuyun Tian
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yan He
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Maoju Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Guiqiong He
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Weihong Song
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver BC V6T 1Z3, Canada
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Institute for Brain Science and Disease of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Yang H, Zhang X, Zhang M, Lu Y, Xie B, Sun S, Yu H, Cong B, Luo Y, Ma C, Wen D. Roles of lncLingo2 and its derived miR-876-5p in the acquisition of opioid reinforcement. Addict Biol 2024; 29:e13375. [PMID: 38380802 PMCID: PMC10898844 DOI: 10.1111/adb.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Recent studies found that non-coding RNAs (ncRNAs) played crucial roles in drug addiction through epigenetic regulation of gene expression and underlying drug-induced neuroadaptations. In this study, we characterized lncRNA transcriptome profiles in the nucleus accumbens (NAc) of mice exhibiting morphine-conditioned place preference (CPP) and explored the prospective roles of novel differentially expressed lncRNA, lncLingo2 and its derived miR-876-5p in the acquisition of opioids-associated behaviours. We found that the lncLingo2 was downregulated within the NAc core (NAcC) but not in the NAc shell (NAcS). This downregulation was found to be associated with the development of morphine CPP and heroin intravenous self-administration (IVSA). As Mfold software revealed that the secondary structures of lncLingo2 contained the sequence of pre-miR-876, transfection of LV-lncLingo2 into HEK293 cells significantly upregulated miR-876 expression and the changes of mature miR-876 are positively correlated with lncLingo2 expression in NAcC of morphine CPP trained mice. Delivering miR-876-5p mimics into NAcC also inhibited the acquisition of morphine CPP. Furthermore, bioinformatics analysis and dual-luciferase assay confirmed that miR-876-5p binds to its target gene, Kcnn3, selectively and regulates morphine CPP training-induced alteration of Kcnn3 expression. Lastly, the electrophysiological analysis indicated that the currents of small conductance calcium-activated potassium (SK) channel was increased, which led to low neuronal excitability in NAcC after CPP training, and these changes were reversed by lncLingo2 overexpression. Collectively, lncLingo2 may function as a precursor of miR-876-5p in NAcC, hence modulating the development of opioid-associated behaviours in mice, which may serve as an underlying biomarker and therapeutic target of opioid addiction.
Collapse
Affiliation(s)
- Hongyu Yang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Xiuning Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Department of GeneticsQiqihar Medical UniversityQiqiharHeilongjiang ProvinceChina
| | - Yun Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei ProvinceHebei Medical UniversityShijiazhuangChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Hailei Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Yixiao Luo
- Hunan Province People's HospitalThe First‐Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| |
Collapse
|
17
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
18
|
Rezaee D, Saadatpour F, Akbari N, Zoghi A, Najafi S, Beyranvand P, Zamani-Rarani F, Rashidi MA, Bagheri-Mohammadi S, Bakhtiari M. The role of microRNAs in the pathophysiology of human central nervous system: A focus on neurodegenerative diseases. Ageing Res Rev 2023; 92:102090. [PMID: 37832609 DOI: 10.1016/j.arr.2023.102090] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
microRNAs (miRNAs) are suggested to play substantial roles in regulating the development and various physiologic functions of the central nervous system (CNS). These include neurogenesis, cell fate and differentiation, morphogenesis, formation of dendrites, and targeting non-neural mRNAs. Notably, deregulation of an increasing number of miRNAs is associated with several neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and CNS tumors. They are particularly known to affect the amyloid β (Aβ) cleavage and accumulation, tau protein homeostasis, and expression of alpha-synuclein (α-syn), Parkin, PINK1, and brain-derived neurotrophic factor (BDNF) that play pivotal roles in the pathogenesis of neurodegenerative diseases. These include miR-16, miR-17-5p, miR-20a, miR-106a, miR-106b, miR-15a, miR-15b, miR-103, miR-107, miR-298, miR-328, miR-195, miR-485, and miR-29. In CNS tumors, several miRNAs, including miR-31, miR-16, and miR-21 have been identified to modulate tumorigenesis through impacting tumor invasion and apoptosis. In this review article, we have a look at the recent advances on our knowledge about the role of miRNAs in human brain development and functions, neurodegenerative diseases, and their clinical potentials.
Collapse
Affiliation(s)
- Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nayyereh Akbari
- Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Zoghi
- Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parisa Beyranvand
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fahimeh Zamani-Rarani
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Rashidi
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bakhtiari
- Department of Anatomical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
19
|
Rai S, Bharti PS, Singh R, Rastogi S, Rani K, Sharma V, Gorai PK, Rani N, Verma BK, Reddy TJ, Modi GP, Inampudi KK, Pandey HC, Yadav S, Rajan R, Nikolajeff F, Kumar S. Circulating plasma miR-23b-3p as a biomarker target for idiopathic Parkinson's disease: comparison with small extracellular vesicle miRNA. Front Neurosci 2023; 17:1174951. [PMID: 38033547 PMCID: PMC10684698 DOI: 10.3389/fnins.2023.1174951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 12/02/2023] Open
Abstract
Background Parkinson's disease (PD) is an increasingly common neurodegenerative condition, which causes movement dysfunction and a broad range of non-motor symptoms. There is no molecular or biochemical diagnosis test for PD. The miRNAs are a class of small non-coding RNAs and are extensively studied owing to their altered expression in pathological states and facile harvesting and analysis techniques. Methods A total of 48 samples (16 each of PD, aged-matched, and young controls) were recruited. The small extracellular vesicles (sEVs) were isolated and validated using Western blot, transmission electron microscope, and nanoparticle tracking analysis. Small RNA isolation, library preparation, and small RNA sequencing followed by differential expression and targeted prediction of miRNA were performed. The real-time PCR was performed with the targeted miRNA on PD, age-matched, and young healthy control of plasma and plasma-derived sEVs to demonstrate their potential as a diagnostic biomarker. Results In RNA sequencing, we identified 14.89% upregulated (fold change 1.11 to 11.04, p < 0.05) and 16.54% downregulated (fold change -1.04 to -7.28, p < 0.05) miRNAs in PD and controls. Four differentially expressed miRNAs (miR-23b-3p, miR-29a-3p, miR-19b-3p, and miR-150-3p) were selected. The expression of miR-23b-3p was "upregulated" (p = 0.002) in plasma, whereas "downregulated" (p = 0.0284) in plasma-derived sEVs in PD than age-matched controls. The ROC analysis of miR-23b-3p revealed better AUC values in plasma (AUC = 0.8086, p = 0.0029) and plasma-derived sEVs (AUC = 0.7278, p = 0.0483) of PD and age-matched controls. Conclusion We observed an opposite expression profile of miR-23b-3p in PD and age-matched healthy control in plasma and plasma-derived sEV fractions, where the expression of miR-23b-3p is increased in PD plasma while decreased in plasma-derived sEV fractions. We further observed the different miR-23b-3p expression profiles in young and age-matched healthy control.
Collapse
Affiliation(s)
- Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Rani
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences Bibinagar, Hyderabad, India
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Kumar Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | | | - Hem Chandra Pandey
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Yadav
- Department of Biochemistry, All India Institute of Medical Sciences Raebareli, Uttar Pradesh, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
20
|
Shi X, Xue Z, Ye K, Yuan J, Zhang Y, Qu J, Su J. Roles of non-coding RNAs in eye development and diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1785. [PMID: 36849659 DOI: 10.1002/wrna.1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
The prevalence of ocular disorders is dramatically increasing worldwide, especially those that cause visual impairment and permanent loss of vision, including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. Extensive evidence has shown that ncRNAs are key regulators in various biogenesis and biological functions, controlling gene expression related to histogenesis and cell differentiation in ocular tissues. Aberrant expression and function of ncRNA can lead to dysfunction of visual system and mediate progression of eye disorders. Here, we mainly offer an overview of the role of precise modulation of ncRNAs in eye development and function in patients with eye diseases. We also highlight the challenges and future perspectives in conducting ncRNA studies, focusing specifically on the role of ncRNAs that may hold expanded promise for their diagnostic and therapeutic applications in various eye diseases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Xinrui Shi
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengbo Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaicheng Ye
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Yuan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Yan Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
- Institute of PSI Genomics, Zhejiang, China
| |
Collapse
|
21
|
Guerra M, Meola L, Lattante S, Conte A, Sabatelli M, Sette C, Bernardini C. Characterization of SOD1-DT, a Divergent Long Non-Coding RNA in the Locus of the SOD1 Human Gene. Cells 2023; 12:2058. [PMID: 37626868 PMCID: PMC10453398 DOI: 10.3390/cells12162058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Researchers studying Amyotrophic Lateral Sclerosis (ALS) have made significant efforts to find a unique mechanism to explain the etiopathology of the different forms of the disease. However, despite several mutations associated with ALS having been discovered in recent years, the link between the mutated genes and its onset has not yet been fully elucidated. Among the genes associated with ALS, superoxide dismutase 1 (SOD1) was the first to be identified, but its role in the etiopathogenesis of the disease is still unclear. In recent years, research has been focused on the non-coding part of the genome to fully understand the mechanisms underlying gene regulation. Non-coding RNAs are conserved molecules and are not usually translated in protein. A total of 98% of the human genome is composed of non-protein coding sequences with roles in the transcriptional and post-transcriptional regulation of gene expression. In this study, we characterized a divergent nuclear lncRNA (SOD1-DT) transcribed in the antisense direction from the 5' region of the SOD1 coding gene in both the SH-SY5Y cell line and fibroblasts derived from ALS patients. Interestingly, this lncRNA seems to regulate gene expression, since its inhibition leads to the upregulation of surrounding genes including SOD1. SOD1-DT represents a very complex molecule, displaying allelic and transcriptional variability concerning transposable elements (TEs) included in its sequence, widening the scenario of gene expression regulation in ALS disease.
Collapse
Affiliation(s)
- Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (L.M.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Meola
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (L.M.); (C.S.)
| | - Serena Lattante
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Amelia Conte
- Adult NEMO Clinical Center, Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (M.S.)
| | - Mario Sabatelli
- Adult NEMO Clinical Center, Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (M.S.)
- Section of Neurology, Department of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (L.M.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Camilla Bernardini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (L.M.); (C.S.)
| |
Collapse
|
22
|
Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7759053. [PMID: 37333462 PMCID: PMC10270766 DOI: 10.1155/2023/7759053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNA transcripts. Mammalian miRNA coding sequences are located in introns and exons of genes encoding various proteins. As the central nervous system is the largest source of miRNA transcripts in living organisms, miRNA molecules are an integral part of the regulation of epigenetic activity in physiological and pathological processes. Their activity depends on many proteins that act as processors, transporters, and chaperones. Many variants of Parkinson's disease have been directly linked to specific gene mutations which in pathological conditions are cumulated resulting in the progression of neurogenerative changes. These mutations can often coexist with specific miRNA dysregulation. Dysregulation of different extracellular miRNAs has been confirmed in many studies on the PD patients. It seems reasonable to conduct further research on the role of miRNAs in the pathogenesis of Parkinson's disease and their potential use in future therapies and diagnosis of the disease. This review presents the current state of knowledge about the biogenesis and functionality of miRNAs in the human genome and their role in the neuropathogenesis of Parkinson's disease (PD)-one of the most common neurodegenerative disorders. The article also describes the process of miRNA formation which can occur in two ways-the canonical and noncanonical one. However, the main focus was on miRNA's use in in vitro and in vivo studies in the context of pathophysiology, diagnosis, and treatment of PD. Some issues, especially those regarding the usefulness of miRNAs in PD's diagnostics and especially its treatment, require further research. More standardization efforts and clinical trials on miRNAs are needed.
Collapse
Affiliation(s)
- Adam Szelągowski
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
23
|
Lin L, Liu X, Cheng X, Li Y, Gearing M, Levey A, Huang X, Li Y, Jin P, Li X. MicroRNA-650 Regulates the Pathogenesis of Alzheimer's Disease Through Targeting Cyclin-Dependent Kinase 5. Mol Neurobiol 2023; 60:2426-2441. [PMID: 36656459 PMCID: PMC10039829 DOI: 10.1007/s12035-023-03224-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) pathogenesis feature progressive neurodegeneration, amyloid-β plaque formation, and neurofibrillary tangles. Ample evidence has indicated the involvement of epigenetic pathways in AD pathogenesis. Here, we show that the expression of microRNA 650 (miR-650) is altered in brains from AD patients. Furthermore, we found that the processing of primary miR-650 to mature miR-650 is misregulated. Bioinformatic analysis predicted that miR-650 targets the expression of three AD-associated components: Apolipoprotein E (APOE), Presenilin 1 (PSEN1), and Cyclin-Dependent Kinase 5 (CDK5), and we have experimentally confirmed that miR-650 is able to significantly reduce the expression of APOE, PSEN1, and CDK5 in vitro. Importantly, the overexpression of miR-650 was further shown to significantly alter the CDK5 level and ameliorate AD pathologies in APP-PSEN1 transgenic mice. Overall, our results indicate that miR-650 influences AD pathogenesis through regulation of CDK5.
Collapse
Affiliation(s)
- Li Lin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, 510632, China.
| | - Xiaodong Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, 510632, China
| | - Xuejun Cheng
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Marla Gearing
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Allan Levey
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xiaoli Huang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ying Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
24
|
Ren ZL, Kang XD, Zheng YX, Shi HF, Chen CA, Shi YY, Wang QG, Cheng FF, Wang XQ, Li CX. Emerging effects of non-coding RNA in vascular endothelial cells during strokes. Vascul Pharmacol 2023; 150:107169. [PMID: 37059212 DOI: 10.1016/j.vph.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
Vascular and neurological damage are the typical outcomes of ischemic strokes. Vascular endothelial cells (VECs), a substantial component of the blood-brain barrier (BBB), are necessary for normal cerebrovascular physiology. During an ischemic stroke (IS), changes in the brain endothelium can lead to a BBB rupture, inflammation, and vasogenic brain edema, and VECs are essential for neurotrophic effects and angiogenesis. Non-coding RNAs (nc-RNAs) are endogenous molecules, and brain ischemia quickly changes the expression patterns of several non-coding RNA types, such as microRNA (miRNA/miR), long non-coding RNA (lncRNA), and circular RNA (circRNA). Furthermore, vascular endothelium-associated nc-RNAs are important mediators in the maintenance of healthy cerebrovascular function. In order to better understand how VECs are regulated epigenetically during an IS, in this review, we attempted to assemble the molecular functions of nc-RNAs that are linked with VECs during an IS.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang-Dong Kang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Xiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han-Fen Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Yu-Yu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
25
|
Dominguez-Alonso S, Carracedo A, Rodriguez-Fontenla C. The non-coding genome in Autism Spectrum Disorders. Eur J Med Genet 2023; 66:104752. [PMID: 37023975 DOI: 10.1016/j.ejmg.2023.104752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 04/08/2023]
Abstract
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders (NDDs) characterized by difficulties in social interaction and communication, repetitive behavior, and restricted interests. While ASD have been proven to have a strong genetic component, current research largely focuses on coding regions of the genome. However, non-coding DNA, which makes up for ∼99% of the human genome, has recently been recognized as an important contributor to the high heritability of ASD, and novel sequencing technologies have been a milestone in opening up new directions for the study of the gene regulatory networks embedded within the non-coding regions. Here, we summarize current progress on the contribution of non-coding alterations to the pathogenesis of ASD and provide an overview of existing methods allowing for the study of their functional relevance, discussing potential ways of unraveling ASD's "missing heritability".
Collapse
Affiliation(s)
- S Dominguez-Alonso
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Rodriguez-Fontenla
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
26
|
Muotri AR. Interchromosomal translocation in neural progenitor cells exposed to L1 retrotransposition. Genet Mol Biol 2023; 46:e20220268. [PMID: 36734369 PMCID: PMC9936793 DOI: 10.1590/1678-4685-gmb-2022-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023] Open
Abstract
LINE-1 (L1) elements are a class of transposons, comprising approximately 19% and 21% of the mouse and human genomes, respectively. L1 retrotransposons can reverse transcribe their own RNA sequence into a de novo DNA copy integrated into a new genomic location. This activity, known as retrotransposition, may induce genomic alterations, such as insertions and deletions. Interestingly, L1s can retrotranspose and generate more de novo L1 copies in brains than in other somatic tissues. Here, we describe for the first time interchromosomal translocation triggered by ectopic L1 retrotransposition in neural progenitor cells. Such an observation adds to the studies in neurological and psychiatric diseases that exhibited variation in L1 activity between diseased brains compared with controls, suggesting that L1 activity could be detrimental when de-regulated.
Collapse
Affiliation(s)
- Alysson R. Muotri
- University of California San Diego, Department of Pediatrics, La Jolla, CA, USA.,University of California San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA , USA.,University of California San Diego, Center for Academic Research and Training in Anthropogeny, Kavli Institute for Brain and Mind, Archealization Center, La Jolla, CA , USA.
| |
Collapse
|
27
|
Asadi MR, Abed S, Kouchakali G, Fattahi F, Sabaie H, Moslehian MS, Sharifi-Bonab M, Hussen BM, Taheri M, Ghafouri-Fard S, Rezazadeh M. Competing endogenous RNA (ceRNA) networks in Parkinson's disease: A systematic review. Front Cell Neurosci 2023; 17:1044634. [PMID: 36761351 PMCID: PMC9902725 DOI: 10.3389/fncel.2023.1044634] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Parkinson's disease (PD) is a distinctive clinical syndrome with several causes and clinical manifestations. Aside from an infectious cause, PD is a rapidly developing neurological disorder with a global rise in frequency. Notably, improved knowledge of molecular pathways and the developing novel diagnostic methods may result in better therapy for PD patients. In this regard, the amount of research on ceRNA axes is rising, highlighting the importance of these axes in PD. CeRNAs are transcripts that cross-regulate one another via competition for shared microRNAs (miRNAs). These transcripts may be either coding RNAs (mRNAs) or non-coding RNAs (ncRNAs). This research used a systematic review to assess validated loops of ceRNA in PD. The Prisma guideline was used to conduct this systematic review, which entailed systematically examining the articles of seven databases. Out of 309 entries, forty articles met all criteria for inclusion and were summarized in the appropriate table. CeRNA axes have been described through one of the shared vital components of the axes, including lncRNAs such as NEAT1, SNHG family, HOTAIR, MALAT1, XIST, circRNAs, and lincRNAs. Understanding the multiple aspects of this regulatory structure may aid in elucidating the unknown causal causes of PD and providing innovative molecular therapeutic targets and medical fields.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Abed
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazal Kouchakali
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Fattahi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Iraq
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
29
|
Lim M, Carollo A, Neoh MJY, Esposito G. Mapping miRNA Research in Schizophrenia: A Scientometric Review. Int J Mol Sci 2022; 24:ijms24010436. [PMID: 36613876 PMCID: PMC9820708 DOI: 10.3390/ijms24010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Micro RNA (miRNA) research has great implications in uncovering the aetiology of neuropsychiatric conditions due to the role of miRNA in brain development and function. Schizophrenia, a complex yet devastating neuropsychiatric disorder, is one such condition that had been extensively studied in the realm of miRNA. Although a relatively new field of research, this area of study has progressed sufficiently to warrant dozens of reviews summarising findings from past to present. However, as a majority of reviews cannot encapsulate the full body of research, there is still a need to synthesise the diversity of publications made in this area in a systematic but easy-to-understand manner. Therefore, this study adopted bibliometrics and scientometrics, specifically document co-citation analysis (DCA), to review the literature on miRNAs in the context of schizophrenia over the course of history. From a literature search on Scopus, 992 papers were found and analysed with CiteSpace. DCA analysis generated a network of 13 major clusters with different thematic focuses within the subject area. Finally, these clusters are qualitatively discussed. miRNA research has branched into schizophrenia, among other medical and psychiatric conditions, due to previous findings in other forms of non-coding RNA. With the rise of big data, bioinformatics analyses are increasingly common in this field of research. The future of research is projected to rely more heavily on interdisciplinary collaboration. Additionally, it can be expected that there will be more translational studies focusing on the application of these findings to the development of effective treatments.
Collapse
Affiliation(s)
- Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Michelle Jin Yee Neoh
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
- Correspondence:
| |
Collapse
|
30
|
Garg P, Jamal F, Srivastava P. Deciphering the role of precursor miR-12136 and miR-8485 in the progression of intellectual disability (ID). IBRO Neurosci Rep 2022; 13:393-401. [PMID: 36345471 PMCID: PMC9636553 DOI: 10.1016/j.ibneur.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
The short, non-coding RNAs known as miRNA modulate the expression of human protein-coding genes. About 90 % of genes in humans are controlled by the expression of miRNA. The dysfunction of these miRNA target genes leads to many human diseases, including neurodevelopmental disorders as well. Intellectual disability (ID) is a neurodevelopmental disorder that is characterized by adaptive behavior and intellectual functioning which includes logical reasoning, ability in learning, practical intelligence, and verbal skills. Identification of miRNA involved in ID and their associated target genes can help in the identification of diagnostic biomarkers related to ID at a very early age. The present study is an attempt to identify miRNA and their associated target genes that play an important role in the development of intellectual disability patients through the meta-analysis of available transcriptome data. A total of 6 transcriptomic studies were retrieved from NCBI and were subjected to quality check and trimming before alignment. The normalization and identification of differentially expressed miRNA were carried out using the EdgeR package of R studio. Further, the gene targets of downregulated miRNA were identified using miRDB. The system biology approaches were also applied to the study to identify the hub target genes and the diseases associated with main miRNAs.
Collapse
Affiliation(s)
- Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Farrukh Jamal
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, U.P., India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| |
Collapse
|
31
|
Pellegrini M, Bergonzoni G, Perrone F, Squitieri F, Biagioli M. Current Diagnostic Methods and Non-Coding RNAs as Possible Biomarkers in Huntington's Disease. Genes (Basel) 2022; 13:2017. [PMID: 36360254 PMCID: PMC9689996 DOI: 10.3390/genes13112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Whether as a cause or a symptom, RNA transcription is recurrently altered in pathologic conditions. This is also true for non-coding RNAs, with regulatory functions in a variety of processes such as differentiation, cell identity and metabolism. In line with their increasingly recognized roles in cellular pathways, RNAs are also currently evaluated as possible disease biomarkers. They could be informative not only to follow disease progression and assess treatment efficacy in clinics, but also to aid in the development of new therapeutic approaches. This is especially important for neurological and genetic disorders, where the administration of appropriate treatment during the disease prodromal stage could significantly delay, if not halt, disease progression. In this review we focus on the current status of biomarkers in Huntington's Disease (HD), a fatal hereditary and degenerative disease condition. First, we revise the sources and type of wet biomarkers currently in use. Then, we explore the feasibility of different RNA types (miRNA, ncRNA, circRNA) as possible biomarker candidates, discussing potential advantages, disadvantages, sources of origin and the ongoing investigations on this topic.
Collapse
Affiliation(s)
- Miguel Pellegrini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Perrone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Marta Biagioli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
32
|
Chmielowiec K, Chmielowiec J, Strońska-Pluta A, Trybek G, Śmiarowska M, Suchanecka A, Woźniak G, Jaroń A, Grzywacz A. Association of Polymorphism CHRNA5 and CHRNA3 Gene in People Addicted to Nicotine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10478. [PMID: 36078193 PMCID: PMC9517777 DOI: 10.3390/ijerph191710478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Smoking is a chronic and relapsing addictive trait that harms public health. Among the many identified genetic variants of nicotine dependence, the variants in the CHRNA5/A3/B4 gene cluster on chromosome 15 that encode the α5, α3, and β4 subunits have recently received a lot of attention. Importantly, variants in this gene cluster have been associated with nicotine addiction. Among the many significant variants in this cluster, the polymorphism SNP rs16969968 seems to be the most interesting factor in nicotine addiction. This polymorphism causes an amino acid change from aspartate to asparagine at position 398 of the α5 nicotinic receptor protein sequence. Our study aimed to analyze three polymorphic variants: the rs16969968 located in the CHRNA5 gene, the rs578776 and rs1051730 located in the CHRNA3 gene in nicotine-addicted subjects, and in controls. Our study encompasses an association analysis of genotypes and haplotypes. A group of 401 volunteers was recruited for the study and divided into two groups: the study group consisted of addicted smokers and a control group of 200 unrelated non-smokers who were not dependent on any substance and healthy. A statistically significant difference was observed in the frequency of genotypes of the rs1051730 polymorphism of the CHRNA3 gene (χ2 = 6.704 p = 0.035). The T/T genotype was statistically significantly more frequent in the group of nicotine-dependent subjects. The haplotypes rs16969968, rs578776, and rs1051730 were distinguished, of which the G-T-T and G-C-T haplotypes were present only in the study group. With differences in frequencies, statistical significance was noted-for the G-T-T haplotype p = 0.01284 and the G-C-T haplotype p = 0.00775. The research stated that novel haplotypes G-T-T and G-C-T, though with very low-frequency variants in CHRNA3, were associated with nicotine addiction.
Collapse
Affiliation(s)
- Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland
| | - Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Grzegorz Woźniak
- Private Dental Practice, 9 Bahnhofstrasse, 3940 Steg, Switzerland
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| |
Collapse
|
33
|
Eshkoor SA, Ghodsian N, Akhtari-Zavare M. MicroRNAs influence and longevity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
MiRNAs play critical roles in the regulation of cellular function, life span, and the aging process. They can affect longevity positively and negatively through different aging pathways.
Main text
MiRNAs are a group of short non-coding RNAs that regulate gene expressions at post-transcriptional levels. The different types of alterations in miRNAs biogenesis, mRNA expressions, and activities of miRNA-protein complexes can affect the regulation of normal post-transcriptional gene process, which may lead to aging, age-related diseases, and an earlier death. It seems that the influence of deregulation of miRNAs on senescence and age-related diseases occurring by targeting aging molecular pathways can be used for diagnosis and prognosis of them. Therefore, the expression and function of miRNAs should be studied more accurately with new applicable and validated experimental tools. However, the current review wishes to highlight simply a connection among miRNAs, senescence and some age-related diseases.
Conclusion
Despite several research indicating the key roles of miRNAs in aging and longevity, further investigations are still needed to elucidate the essential roles of miRNAs in controlling mRNA regulation, cell proliferation, death and/or protection during stress and health problems. Besides, more research on miRNAs will help to identify new targets for alternative strategies regarding effectively screen, treat, and prevent diseases as well as make slow the aging process.
Collapse
|
34
|
Wang Y, Xu X, Chen H, Zhu M, Guo X, Gao F. Micro-RNAs from Plasma-Derived Small Extracellular Vesicles as Potential Biomarkers for Tic Disorders Diagnosis. Brain Sci 2022; 12:brainsci12070829. [PMID: 35884636 PMCID: PMC9312839 DOI: 10.3390/brainsci12070829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Tic disorders (TDs) are a series of childhood neuropsychiatric disorders characterized by involuntary motor and/or vocal tics and commonly comorbid with several other psychopathological and/or behavioral disorders (e.g., attention deficit hyperactivity disorder and obsessive–compulsive disorder), which indeed aggravate clinical symptoms and complicate diagnosis and treatment. Micro-RNAs (miRNAs) derived from small extracellular vesicles (sEVs) have been recognized as novel circulating biomarkers of disease. To identify specific miRNAs derived from plasma sEVs for TDs’ diagnosis and prognosis, we used official EV isolation and purification methods to characterize the plasma-derived EV miRNAs from children with different types of TDs. Nanoparticle tracking analysis, transmission electron microscopy, and immunoblot analysis of EV surface markers were applied to confirm the features and quality of sEVs. The RNA sequencing (RNA-seq) approach was adapted to identify novel circulating sEVs-derived miRNAs with altered expression levels in paired comparisons of TDs versus healthy controls (HCs), transient tic disorder (TTD) versus chronic motor or vocal tic disorder (CTD), and TTD versus Tourette Syndrome (TS). GO term and KEGG pathway were performed for functional analysis and the receiver operator curve analysis was followed to test the diagnosis efficacy of differentially expressed miRNAs (DEMs) derived from plasma sEVs among paired groups, namely, TDs versus HCs, TTD versus CTD, and TTD versus TS. As a result, 10 miRNAs (hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7e, hsa-let-7f, hsa-miR-25-3p, hsa-miR-29a-3p, hsa-miR-30b-5p, hsa-miR-125b-5p, and hsa-miR-1469) have demonstrated a significantly different expression signature in the TDs group compared to HCs with excellent area under curve (AUC) values of 0.99, 0.973, 0.997, 1, 0.99, 0.997, 0.987, 0.993, 0.977, and 0.997, respectively, and the diagnostic efficacy of miRNAs was also estimated for discriminating TTD from CTD or TS. In our research, we finally obtained several potential sEVs-derived miRNA biomarkers to assess the diagnosis and prognosis of TDs.
Collapse
Affiliation(s)
- Yilong Wang
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xuebin Xu
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Haihua Chen
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Mengying Zhu
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiaotong Guo
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Feng Gao
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Correspondence: ; Tel.: +86-133-965-185-10
| |
Collapse
|
35
|
Yang C, Kang B, Cao Z, Zhang J, Zhao F, Wang D, Su P, Chen J. Early-Life Pb Exposure Might Exert Synapse-Toxic Effects Via Inhibiting Synapse-Associated Membrane Protein 2 (VAMP2) Mediated by Upregulation of miR-34b. J Alzheimers Dis 2022; 87:619-633. [DOI: 10.3233/jad-215638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early-life Pb exposure can cause behavioral and cognitive problems and induce symptoms of hyperactivity, impulsivity, and inattention in children. Studies showed that blood lead levels were highly correlated with neuropsychiatric disorders, and effects of neurotoxicity might persist and affect the incidence of neurodegenerative diseases, for example Alzheimer’s disease (AD). Objective: To explore possible mechanisms of developmental Pb-induced neuropsychiatric dysfunctions. Methods: Children were divided into low blood lead level (BLL) group (0–50.00μg/L) and high BLL group (> 50.00μg/L) and blood samples were collected. miRNA array was used to testify miRNA expression landscape between two groups. Correlation analysis and real-time PCR were applied to find miRNAs that altered in Pb and neuropsychiatric diseases. Animal models and cell experiments were used to confirm the effect of miRNAs in response to Pb, and siRNA and luciferase experiments were conducted to examine their effect on neural functions. Results: miRNA array data and correlation analysis showed that miR-34b was the most relevant miRNA among Pb neurotoxicity and neuropsychiatric disorders, and synapse-associated membrane protein 2 (VAMP2) was the target gene regulating synapse function. In vivo and in vitro studies showed Pb exposure injured rats’ cognitive abilities and induced upregulation of miR-34b and downregulation of VAMP2, resulting in decreases of hippocampal synaptic vesicles. Blockage of miR-34b mitigated Pb’s effects on VAMP2 in vitro. Conclusion: Early-life Pb exposure might exert synapse-toxic effects via inhibiting VAMP2 mediated by upregulation of miR-34b and shed a light on the underlying relationship between Pb neurotoxicity and developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Beipei Kang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jingyuan Chen
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
37
|
Guo Y, Xie Y, Luo Y. The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Front Immunol 2022; 13:851004. [PMID: 35222443 PMCID: PMC8863945 DOI: 10.3389/fimmu.2022.851004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Tumorigenesis is a complicated process caused by successive genetic and epigenetic alterations. The past decades demonstrated that the immune system affects tumorigenesis, tumor progression, and metastasis. Although increasing immunotherapies are revealed, only a tiny proportion of them are effective. Long non-coding RNAs (lncRNAs) are a class of single-stranded RNA molecules larger than 200 nucleotides and are essential in the molecular network of oncology and immunology. Increasing researches have focused on the connection between lncRNAs and cancer immunotherapy. However, the in-depth mechanisms are still elusive. In this review, we outline the latest studies on the functions of lncRNAs in the tumor immune microenvironment. Via participating in various biological processes such as neutrophil recruitment, macrophage polarization, NK cells cytotoxicity, and T cells functions, lncRNAs regulate tumorigenesis, tumor invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In addition, we reviewed the current understanding of the relevant strategies for targeting lncRNAs. LncRNAs-based therapeutics may represent promising approaches in serving as prognostic biomarkers or potential therapeutic targets in cancer, providing ideas for future research and clinical application on cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Yingli Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yajuan Xie
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
38
|
Kakebeen AD, Niswander L. Micronutrient imbalance and common phenotypes in neural tube defects. Genesis 2021; 59:e23455. [PMID: 34665506 PMCID: PMC8599664 DOI: 10.1002/dvg.23455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
Neural tube defects (NTDs) are among the most common birth defects, with a prevalence of close to 19 per 10,000 births worldwide. The etiology of NTDs is complex involving the interplay of genetic and environmental factors. Since nutrient deficiency is a risk factor and dietary changes are the major preventative measure to reduce the risk of NTDs, a more detailed understanding of how common micronutrient imbalances contribute to NTDs is crucial. While folic acid has been the most discussed environmental factor due to the success that population-wide fortification has had on prevention of NTDs, folic acid supplementation does not prevent all NTDs. The imbalance of several other micronutrients has been implicated as risks for NTDs by epidemiological studies and in vivo studies in animal models. In this review, we highlight recent literature deciphering the multifactorial mechanisms underlying NTDs with an emphasis on mouse and human data. Specifically, we focus on advances in our understanding of how too much or too little retinoic acid, zinc, and iron alter gene expression and cellular processes contributing to the pathobiology of NTDs. Synthesis of the discussed literature reveals common cellular phenotypes found in embryos with NTDs resulting from several micronutrient imbalances. The goal is to combine knowledge of these common cellular phenotypes with mechanisms underlying micronutrient imbalances to provide insights into possible new targets for preventative measures against NTDs.
Collapse
Affiliation(s)
- Anneke Dixie Kakebeen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lee Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
39
|
Jurcau A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2021; 22:11847. [PMID: 34769277 PMCID: PMC8584731 DOI: 10.3390/ijms222111847] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
As the population ages, the incidence of neurodegenerative diseases is increasing. Due to intensive research, important steps in the elucidation of pathogenetic cascades have been made and significantly implicated mitochondrial dysfunction and oxidative stress. However, the available treatment in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis is mainly symptomatic, providing minor benefits and, at most, slowing down the progression of the disease. Although in preclinical setting, drugs targeting mitochondrial dysfunction and oxidative stress yielded encouraging results, clinical trials failed or had inconclusive results. It is likely that by the time of clinical diagnosis, the pathogenetic cascades are full-blown and significant numbers of neurons have already degenerated, making it impossible for mitochondria-targeted or antioxidant molecules to stop or reverse the process. Until further research will provide more efficient molecules, a healthy lifestyle, with plenty of dietary antioxidants and avoidance of exogenous oxidants may postpone the onset of neurodegeneration, while familial cases may benefit from genetic testing and aggressive therapy started in the preclinical stage.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
40
|
Mehta SL, Chokkalla AK, Vemuganti R. Noncoding RNA crosstalk in brain health and diseases. Neurochem Int 2021; 149:105139. [PMID: 34280469 PMCID: PMC8387393 DOI: 10.1016/j.neuint.2021.105139] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022]
Abstract
The mammalian brain expresses several classes of noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). These ncRNAs play vital roles in regulating cellular processes by RNA/protein scaffolding, sponging and epigenetic modifications during the pathophysiological conditions, thereby controlling transcription and translation. Some of these functions are the result of crosstalk between ncRNAs to form a competitive endogenous RNA network. These intricately organized networks comprise lncRNA/miRNA, circRNA/miRNA, or lncRNA/miRNA/circRNA, leading to crosstalk between coding and ncRNAs through miRNAs. The miRNA response elements predominantly mediate the ncRNA crosstalk to buffer the miRNAs and thereby fine-tune and counterbalance the genomic changes and regulate neuronal plasticity, synaptogenesis and neuronal differentiation. The perturbed levels and interactions of the ncRNAs could lead to pathologic events like apoptosis and inflammation. Although the regulatory landscape of the ncRNA crosstalk is still evolving, some well-known examples such as lncRNA Malat1 sponging miR-145, circRNA CDR1as sponging miR-7, and lncRNA Cyrano and the circRNA CDR1as regulating miR-7, has been shown to affect brain function. The ability to manipulate these networks is crucial in determining the functional outcome of central nervous system (CNS) pathologies. The focus of this review is to highlights the interactions and crosstalk of these networks in regulating pathophysiologic CNS function.
Collapse
Affiliation(s)
- Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
41
|
Wu YQ, Liu Q, Wang HB, Chen C, Huang H, Sun YM, Ma LH, Wan J, Sun YY, Miao HH. Microarray Analysis Identifies Key Differentially Expressed Circular RNAs in Aged Mice With Postoperative Cognitive Dysfunction. Front Aging Neurosci 2021; 13:716383. [PMID: 34483886 PMCID: PMC8415796 DOI: 10.3389/fnagi.2021.716383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in elderly patients. Circular RNAs (circRNAs) may contribute to neurodegenerative diseases. However, the role of circRNAs in POCD in aged mice has not yet been reported. This study aimed to explore the potential circRNAs in a POCD model. First, a circRNA microarray was used to analyze the expression profiles. Differentially expressed circRNAs were validated using quantitative real-time polymerase chain reaction. A bioinformatics analysis was then used to construct a competing endogenous RNA (ceRNA) network. The database for annotation, visualization, and integrated discovery was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of circRNA-related genes. Moreover, protein-protein interactions were analyzed to predict the circRNA-regulated hub genes using the STRING and molecular complex detection plug-in of Cytoscape. Microarray screen 124 predicted circRNAs in the POCD of aged mice. We found that the up/downregulated circRNAs were involved in multiple signaling pathways. Hub genes, including Egfr and Prkacb, were identified and may be regulated by ceRNA networks. These results suggest that circRNAs are dysexpressed in the hippocampus and may contribute to POCD in aged mice.
Collapse
Affiliation(s)
- Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hai-Bi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yin-Ying Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hui-Hui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Coskun S, Karadag M, Gokcen C, Oztuzcu S. miR-132 and miR-942 Expression Levels in Children with Attention Deficit and Hyperactivity Disorder: A Controlled Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2021; 19:262-268. [PMID: 33888655 PMCID: PMC8077053 DOI: 10.9758/cpn.2021.19.2.262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Although attention deficit hyperactivity disorder (ADHD) is a disease with high genetic transition, our knowledge about the mechanism of the disease is limited. In this study, it was aimed to evaluate the levels of miR-132-3p and miR-942-5p that are associated with the dopamine carrier protein gene (DAT1) and dopamine receptor 5 (DRD5) genes, which have been shown to play a role in the development of ADHD. METHODS According to the Diagnostic and Statistical Manual of Mental Disorders 5th edition, 50 children diagnosed with ADHD and 48 healthy controls were included in the study. Affective Disorders and Schizophrenia Interview Schedule-Now and Lifetime Version-Turkish Adaptation was used to evaluate ADHD and the diagnoses accompanying ADHD. Quantitative Real-Time Polymerase Chain Reaction was used to evaluate miR-132-3p and miR-942-5p expression levels. RESULTS It was observed that miR-132-3p level (p = 0.001) was significantly higher with children with ADHD compared to the control group, and the level of miR-942-5p (p = 0.181) was higher in ADHD but did not reach statistically significant level. CONCLUSION In our study, we found that the increase in the miR-132-3p levels of children with ADHD may be a therapeutic target of the disease.
Collapse
Affiliation(s)
- Seyma Coskun
- Department of Child and Adolescent Psychiatry, Private Clinic, Adana, Turkey
| | - Mehmet Karadag
- Department of Child and Adolescent Psychiatry, Gaziantep University Medical School, Gaziantep, Turkey
| | - Cem Gokcen
- Department of Child and Adolescent Psychiatry, Gaziantep University Medical School, Gaziantep, Turkey
| | - Serdar Oztuzcu
- Department of Medical Biology, Gaziantep University Medical School, Gaziantep, Turkey
| |
Collapse
|
43
|
Faoro C, Ataide SF. Noncanonical Functions and Cellular Dynamics of the Mammalian Signal Recognition Particle Components. Front Mol Biosci 2021; 8:679584. [PMID: 34113652 PMCID: PMC8185352 DOI: 10.3389/fmolb.2021.679584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex fundamental for co-translational delivery of proteins to their proper membrane localization and secretory pathways. Literature of the past two decades has suggested new roles for individual SRP components, 7SL RNA and proteins SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72, outside the SRP cycle. These noncanonical functions interconnect SRP with a multitude of cellular and molecular pathways, including virus-host interactions, stress response, transcriptional regulation and modulation of apoptosis in autoimmune diseases. Uncovered novel properties of the SRP components present a new perspective for the mammalian SRP as a biological modulator of multiple cellular processes. As a consequence of these findings, SRP components have been correlated with a growing list of diseases, such as cancer progression, myopathies and bone marrow genetic diseases, suggesting a potential for development of SRP-target therapies of each individual component. For the first time, here we present the current knowledge on the SRP noncanonical functions and raise the need of a deeper understanding of the molecular interactions between SRP and accessory cellular components. We examine diseases associated with SRP components and discuss the development and feasibility of therapeutics targeting individual SRP noncanonical functions.
Collapse
Affiliation(s)
- Camilla Faoro
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sandro F Ataide
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
44
|
Kim DY, Kim JM. Multi-omics integration strategies for animal epigenetic studies - A review. Anim Biosci 2021; 34:1271-1282. [PMID: 33902167 PMCID: PMC8255897 DOI: 10.5713/ab.21.0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide studies provide considerable insights into the genetic background of animals; however, the inheritance of several heritable factors cannot be elucidated. Epigenetics explains these heritabilities, including those of genes influenced by environmental factors. Knowledge of the mechanisms underlying epigenetics enables understanding the processes of gene regulation through interactions with the environment. Recently developed next-generation sequencing (NGS) technologies help understand the interactional changes in epigenetic mechanisms. There are large sets of NGS data available; however, the integrative data analysis approaches still have limitations with regard to reliably interpreting the epigenetic changes. This review focuses on the epigenetic mechanisms and profiling methods and multi-omics integration methods that can provide comprehensive biological insights in animal genetic studies.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Korea
| |
Collapse
|
45
|
The "missing heritability"-Problem in psychiatry: Is the interaction of genetics, epigenetics and transposable elements a potential solution? Neurosci Biobehav Rev 2021; 126:23-42. [PMID: 33757815 DOI: 10.1016/j.neubiorev.2021.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders exhibit an enormous burden on the health care systems worldwide accounting for around one-third of years lost due to disability among adults. Their etiology is largely unknown and diagnostic classification is based on symptomatology and course of illness and not on objective biomarkers. Most psychiatric disorders are moderately to highly heritable. However, it is still unknown what mechanisms may explain the discrepancy between heritability estimates and the present data from genetic analysis. In addition to genetic differences also epigenetic modifications are considered as potentially relevant in the transfer of susceptibility to psychiatric diseases. Though, whether or not epigenetic alterations can be inherited for many generations is highly controversial. In the present article, we will critically summarize both the genetic findings and the results from epigenetic analyses, including also those of noncoding RNAs. We will argue that one possible solution to the "missing heritability" problem in psychiatry is a potential role of retrotransposons, the exploration of which is presently only in its beginnings.
Collapse
|
46
|
Lim TB, Foo SYR, Chen CK. The Role of Epigenetics in Congenital Heart Disease. Genes (Basel) 2021; 12:genes12030390. [PMID: 33803261 PMCID: PMC7998561 DOI: 10.3390/genes12030390] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect among newborns worldwide and contributes to significant infant morbidity and mortality. Owing to major advances in medical and surgical management, as well as improved prenatal diagnosis, the outcomes for these children with CHD have improved tremendously so much so that there are now more adults living with CHD than children. Advances in genomic technologies have discovered the genetic causes of a significant fraction of CHD, while at the same time pointing to remarkable complexity in CHD genetics. For this reason, the complex process of cardiogenesis, which is governed by multiple interlinked and dose-dependent pathways, is a well investigated process. In addition to the sequence of the genome, the contribution of epigenetics to cardiogenesis is increasingly recognized. Significant progress has been made dissecting the epigenome of the heart and identified associations with cardiovascular diseases. The role of epigenetic regulation in cardiac development/cardiogenesis, using tissue and animal models, has been well reviewed. Here, we curate the current literature based on studies in humans, which have revealed associated and/or causative epigenetic factors implicated in CHD. We sought to summarize the current knowledge on the functional role of epigenetics in cardiogenesis as well as in distinct CHDs, with an aim to provide scientists and clinicians an overview of the abnormal cardiogenic pathways affected by epigenetic mechanisms, for a better understanding of their impact on the developing fetal heart, particularly for readers interested in CHD research.
Collapse
Affiliation(s)
- Tingsen Benson Lim
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Sik Yin Roger Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
47
|
Korneev S, Garaliene J, Taylor G, Kemenes I, Kemenes G. Time dependent differential regulation of a novel long non-coding natural antisense RNA during long-term memory formation. Sci Rep 2021; 11:3594. [PMID: 33574420 PMCID: PMC7878882 DOI: 10.1038/s41598-021-83190-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Long natural antisense transcripts (NATs) have been demonstrated in significant numbers in a variety of eukaryotic organisms. They are particularly prevalent in the nervous system suggesting their importance in neural functions. However, the precise physiological roles of the overwhelming majority of long NATs remain unclear. Here we report on the characterization of a novel molluscan nitric oxide synthase (NOS)-related long non-coding NAT (Lym-NOS1AS). This NAT is spliced and polyadenylated and is transcribed from the non-template strand of the Lym-NOS1 gene. We demonstrate that the Lym-NOS1AS is co-expressed with the sense Lym-NOS1 mRNA in a key neuron of memory network. Also, we report that the Lym-NOS1AS is temporally and spatially regulated by one-trial conditioning leading to long term memory (LTM) formation. Specifically, in the cerebral, but not in the buccal ganglia, the temporal pattern of changes in Lym-NOS1AS expression after training correlates with the alteration of memory lapse and non-lapse periods. Our data suggest that the Lym-NOS1AS plays a role in the consolidation of nitric oxide-dependent LTM.
Collapse
Affiliation(s)
- Sergei Korneev
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Jekaterina Garaliene
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Gabriella Taylor
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Ildikó Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
48
|
Nogami M, Miyamoto K, Hayakawa-Yano Y, Nakanishi A, Yano M, Okano H. DGCR8-dependent efficient pri-miRNA processing of human pri-miR-9-2. J Biol Chem 2021; 296:100409. [PMID: 33581109 PMCID: PMC7995608 DOI: 10.1016/j.jbc.2021.100409] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Microprocessor complex, including DiGeorge syndrome critical region gene 8 (DGCR8) and DROSHA, recognizes and cleaves primary transcripts of microRNAs (pri-miRNAs) in the maturation of canonical miRNAs. The study of DGCR8 haploinsufficiency reveals that the efficiency of this activity varies for different miRNA species. It is thought that this variation might be associated with the risk of schizophrenia with 22q11 deletion syndrome caused by disruption of the DGCR8 gene. However, the underlying mechanism for varying action of DGCR8 with each miRNA remains largely unknown. Here, we used in vivo monitoring to measure the efficiency of DGCR8-dependent microprocessor activity in cultured cells. We confirmed that this system recapitulates the microprocessor activity of endogenous pri-miRNA with expression of a ratiometric fluorescence reporter. Using this system, we detected mir-9-2 as one of the most efficient targets. We also identified a novel DGCR8-responsive RNA element, which is highly conserved among mammalian species and could be regulated at the epi-transcriptome (RNA modification) level. This unique feature between DGCR8 and pri-miR-9-2 processing may suggest a link to the risk of schizophrenia.
Collapse
Affiliation(s)
- Masahiro Nogami
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan; Shonan Incubation Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| | - Kazumasa Miyamoto
- Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yoshika Hayakawa-Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsushi Nakanishi
- Shonan Incubation Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan; Regenerative Medicine Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
49
|
Xu Z, Ji G, Cui Y, Cui X. The Impacts of Non-coding RNAs and N 6-Methyladenosine on Cancer: Past, Present and Future. Curr Cancer Drug Targets 2021; 21:375-385. [PMID: 33475064 DOI: 10.2174/1568009621999210120193636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 11/22/2022]
Abstract
N6-methyladenosine (m6A) modifications control multifaceted RNA metabolism and are one of the most extensively distributed modifications on the human transcriptome, including non-coding RNAs (ncRNAs). Previous concepts of ncRNAs as "junk" transcriptional products have evolved to the concept that ncRNAs are functional regulatory molecules that determine specific biological processes and cell fates. The dysregulation of m6A modifications and ncRNAs have been implicated in the development of human carcinogenesis. Certain types of ncRNAs have been reported to exert regulatory effects on m6A machinery. However, a better understanding of the relationship between m6A modifications and ncRNAs in cancer is still needed. This review discusses mutual interactions between m6A modifications and ncRNAs and their impacts on the development of human cancer. We summarize the clinical significance of m6A-ncRNA networks for cancer diagnosis and treatment, and we ask challenging questions that remain unanswered in this field of research. Understanding the complex coordination between m6A modifications and ncRNAs will be useful for guiding the development of therapeutic interventions.
Collapse
Affiliation(s)
- Zhaoyuan Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Guohua Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Ying Cui
- Harbin Blood Center, Heilongjiang Blood Center, Harbin, China
| | - Xiaobo Cui
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| |
Collapse
|
50
|
Huang X, Bao C, Lv Q, Zhao J, Hu G, Wu H, Li Z, Yi Z. MicroRNA-195 predicts olanzapine response in drug-free patients with schizophrenia: A prospective cohort study. J Psychopharmacol 2021; 35:23-30. [PMID: 33274684 DOI: 10.1177/0269881120959617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disturbances of microRNA-195 have been implicated in the pathogenesis of schizophrenia. However, microRNA-195 levels in schizophrenia are controversial. AIMS To the best of our knowledge, this is the first study to examine microRNA-195 levels in untreated schizophrenia patients and their relationship to olanzapine response. METHODS We recruited 81 untreated schizophrenia patients and 96 healthy controls. The patients received 2 months olanzapine treatment. MicroRNA-195 levels in peripheral blood mononuclear cells were measured using quantitative real-time polymerase chain reaction testing. Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale. RESULTS No significant differences in microRNA-195 levels were found between patients and healthy controls (p > 0.05). Olanzapine significantly reduced microRNA-195 levels after 2 months treatment (p = 0.003). Interestingly, microRNA-195 levels decreased significantly in responders (p = 0.010), but not in non-responders (p > 0.05). Both baseline microRNA-195 levels (p = 0.027, p = 0.030) and the reduction rate of microRNA-195 levels (p = 0.034, p = 0.044) were positively associated with the reduction rate of Positive and Negative Syndrome Scale total score and general psychopathological subscale score. Multiple stepwise regression analysis revealed that baseline microRNA-195 level was an independent contributor to the reduction in Positive and Negative Syndrome Scale total score and the general psychopathological subscale score (p = 0.018, p = 0.030). Finally, logistic regression analysis suggested that baseline microRNA-195 level can serve as a biomarker for response to olanzapine (p = 0.037). CONCLUSIONS Our data indicate that microRNA-195 level may predict symptomatic improvement and olanzapine response in schizophrenia patients, suggesting that microRNA-195 should be considered as a potential therapeutic target for antipsychotics.
Collapse
Affiliation(s)
- Xinxin Huang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxi Bao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qinyu Lv
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqin Hu
- Department of Psychiatry, Huangpu District Mental Health Center, Shanghai, China
| | - Haisu Wu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui Yi
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|