1
|
Zhong J, Zhang Y, Lin S, Kang J, Hu M, Liu J, Chen Y, Jiang Q, Zhang C. Activin a regulates vascular formation and stabilization in direct coculture of dental pulp stem cells and endothelial cells. Int Endod J 2025. [PMID: 40106315 DOI: 10.1111/iej.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
AIM Establishing functional circulation on time is crucial to dental pulp tissue regeneration. Mesenchymal stem cells (MSCs) could act as mural cells to stabilize newly formed blood vessels, accelerating anastomosis. Our preliminary study found that direct coculture of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) significantly enhanced Activin A secretion. This study aimed to disclose the dynamic patterns of Activin A expression and its regulation on vascular formation and stabilization. METHODOLOGY DPSCs and HUVECs were cocultured directly at a ratio of 1:1 for 3 and 6 days. Activin A and Follistatin expression were evaluated by qRT-PCR and ELISA. HUVECs were exposed to 100 ng/mL Activin A or the conditioned medium (CM) generated from DPSC monoculture and DPSC-HUVEC coculture, respectively. HUVEC proliferation, migration, tube formation and angiogenic sprouting were assessed. In parallel, membrane-bound vascular endothelial growth factor receptors (mVEGFR1 and mVEGFR2) and soluble VEGFR1 (sVEGFR1) were analysed at days 3 and 6. RESULTS Activin A expression and secretion were elevated time-dependently during DPSC-HUVEC coculture. Follistatin expression decreased in DPSC-HUVEC coculture while the ratio of Activin A/Follinstain increased significantly. Activin A treatment did not promote DPSC towards smooth muscle cell (SMC)-specific differentiation, while Activin A and DPSC+HUVEC-CM suppressed HUVEC proliferation, migration, tube formation and sprouting. Activin A and DPSC+HUVEC-CM treatment markedly increased mVEGFR1 expression and sVEGFR1 secretion, suppressing HUVEC vascular formation. Activin A IgG partially reversed the effects of DPSC+HUVEC-CM on HUVECs by decreasing VEGFR1 expression and increasing vessel formation. Activin A pretreatment downregulated VEGF-triggered VEGFR2 phosphorylation of HUVECs. INHBA knockdown DPSCs disrupted the stabilization of the preformed HUVEC vascular tube network. CONCLUSION DPSC-HUVEC direct coculture upregulates Activin A secretion, interrupting VEGF receptors' balance in HUVECs to suppress HUVEC angiogenic sprouting and enhance vascular stabilization. These findings provide novel insights into the paracrine interactions on vascular stabilization of DPSC-HUVEC direct coculture.
Collapse
Affiliation(s)
- Jialin Zhong
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Yuchen Zhang
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
- Obstetrics Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shulan Lin
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Jun Kang
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Mingxin Hu
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Junqing Liu
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Ying Chen
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Ji SM, Choi JS, Lee JY, Kim S, Bae WY, Jang YW, Kim JE, Lee SH, Nam S, Jeong JW. Mild exposure to fine particulate matter promotes angiogenesis in non-small cell lung carcinoma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121715. [PMID: 37120000 DOI: 10.1016/j.envpol.2023.121715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Fine particulate matter (PM2.5) is associated with public health problems worldwide. Especially, PM2.5 induces epigenetic and microenvironmental changes in lung cancer. Angiogenesis is important for the development and growth of cancer and is mediated by angiogenic factors, including vascular endothelial growth factor. However, the effects of mild PM2.5 exposure on angiogenesis in lung cancer remain unclear. In this study, we examined angiogenic effects using relatively lower concentrations of PM2.5 than in other studies and found that PM2.5 increased angiogenic activities in both endothelial cells and non-small cell lung carcinoma cells. PM2.5 also promoted the growth and angiogenesis of lung cancer via the induction of hypoxia-inducible factor-1α (HIF-1α) in a xenograft mouse tumor model. Angiogenic factors, including vascular endothelial growth factor (VEGF), were highly expressed in lung cancer patients in countries with high PM2.5 levels in the atmosphere, and high expression of VEGF in lung cancer patients lowered the survival rate. Collectively, these results provide new insight into the mechanisms by which mild exposure to PM2.5 is involved in HIF-1α-mediated angiogenesis in lung cancer patients.
Collapse
Affiliation(s)
- Su Min Ji
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Sun Choi
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Clinical Research Institute, Kyung Hee University Medical Center, Seoul, 02447, Republic of Korea
| | - Ji Young Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sungyeon Kim
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Woom-Yee Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ye Won Jang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee Univeristy, Seoul, 02447, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Jiang T, Liang YS, Gu Y, Yao FC, Liu YF, Zhang KX, Song FB, Sun JL, Luo J. Different reoxygenation rates induce different metabolic, apoptotic and immune responses in Golden Pompano (Trachinotus blochii) after hypoxic stress. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108640. [PMID: 36871632 DOI: 10.1016/j.fsi.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Dissolved oxygen (DO) is essential for teleosts, and fluctuating environmental factors can result in hypoxic stress in the golden pompano (Trachinotus blochii). However, it is unknown whether different recovery speeds of DO concentration after hypoxia induce stress in T. blochii. In this study, T. blochii was subjected to hypoxic conditions (1.9 ± 0.2 mg/L) for 12 h followed by 12 h of reoxygenation at two different speeds (30 mg/L per hour and 1.7 mg/L per hour increasing). The gradual reoxygenation group (GRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 3 h, and the rapid reoxygenation group (RRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 10 min. Physiological and biochemical parameters of metabolism (glucose, glycegon, lactic acid (LD), lactate dehydrogenase (LDH), pyruvic acid (PA), phosphofructokinase (PFKA), and hexokinase (HK), triglyceride (TG), lipoprotein lipase (LPL), carnitine palmitoyltransferase 1 (CPT-1)) and transcriptome sequencing (RNA-seq of liver) were monitored to identify the effects of the two reoxygenation speeds. Increased LD content and increased activity of LDH, PA, PFKA, and HK suggested enhanced anaerobic glycolysis under hypoxic stress. LD and LDH levels remained significantly elevated during reoxygenation, indicating that the effects of hypoxia were not immediately alleviated during reoxygenation. The expressions of PGM2, PFKA, GAPDH, and PK were increased in the RRG, which suggests that glycolysis was enhanced. The same pattern was not observed in the GRG. Additionally, In the RRG, reoxygenation may promote glycolysis to guarantee energy supply. However, the GRG may through the lipid metabolism such as steroid biosynthesis at the later stage of reoxygenation. In the aspect of apoptosis, differentially expressed genes (DEGs) in the RRG were enriched in the p53 signaling pathway, which promoted cell apoptosis, while DEGs in the GRG seem to activate cell apoptosis at early stage of reoxygenation but was restrained latterly. DEGs in both the RRG and the GRG were enriched in the NF-kappa B and JAK-STAT signaling pathways, the RRG may induce cell survival by regulating the expression of IL-12B, COX2, and Bcl-XL, while in the GRG it may induce by regulating the expression of IL-8. Moreover, DEGs in the RRG were also enriched in the Toll-like receptor signaling pathway. This research revealed that at different velocity of reoxygenation after hypoxic stress, T. blochii would represent different metabolic, apoptotic and immune strategies, and this conclusion would provide new insight into the response to hypoxia and reoxygenation in teleosts.
Collapse
Affiliation(s)
- Tian Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Ye Song Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Yue Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Fu Cheng Yao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Yi Fan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Kai Xi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Fei Biao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Jun Long Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Xiong Q, Lu F, Xie X, Zhou W. Hypoxia-induced endothelial cell-derived exosome stimulates vascular smooth muscle cell proliferation and migration. Biomed Res 2023; 44:245-255. [PMID: 38008423 DOI: 10.2220/biomedres.44.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
This study mainly used human VSMCs and ECs cultured in vitro to investigate whether exosomes (Exos) are involved in the communication between ECs and VSMCs under hypoxia, and to explore the role and mechanism of ECs-derived exosomes in the abnormal proliferation of VSMCs. VSMCs proliferation and migration were assessed by a series of cell function assays after culturing VSMCs alone or co-culturing ECs under hypoxia or normoxia. Next, exosomes were extracted from ECs under hypoxia or normoxia and characterized. We then introduced ECs-Exos to observe their effects on VSMCs proliferation and migration, and further evaluated the expression of transforming growth factor-beta receptor 1 (TGFBR1) pathway-related proteins. Finally, the effect of ECs-Exos on VSMCs function was evaluated after knocking down TGFBR1 in ECs. VSMCs treated with ECs-Exos exhibited increased proliferation and migration ability in hypoxic environment, and the expression of TGFBR1 pathway-related proteins was upregulated. Administration of ECs-Exos with TGFβ1 knockdown conspicuously reversed the promoting effects of ECs-Exos on cell proliferation and migration under hypoxia. In summary, hypoxia affected the secretion of extracellular vesicles by endothelial cells, which can be internalized by VSMCs and accelerate the abnormal proliferation and migration of VSMCs by delivering TGFBR1.
Collapse
Affiliation(s)
- Qinggen Xiong
- Intervention Department (Vascular Surgery Department) of The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Fei Lu
- Intervention Department (Vascular Surgery Department) of The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Xiaoming Xie
- Intervention Department (Vascular Surgery Department) of The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Wei Zhou
- Intervention Department (Vascular Surgery Department) of The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| |
Collapse
|
5
|
Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 2022; 16:1067411. [PMID: 36507357 PMCID: PMC9732261 DOI: 10.3389/fnins.2022.1067411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability and death worldwide. Owing to the aging population and unhealthy lifestyles, the incidence of cerebrovascular disease is high. Vascular risk factors include hypertension, diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and effective reperfusion therapy for IS, it is crucial to actively control these risk factors to reduce the incidence and recurrence rates of IS. Evidence from human and animal studies suggests that moderate intermittent hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate common vascular risk factors and comorbidities. Given the complex pathophysiological mechanisms underlying IS, effective treatment must focus on reducing injury in the acute phase and promoting repair in the recovery phase. Therefore, this review discusses the preclinical perspectives on IH conditioning as a potential treatment for neurovascular injury and highlights IH pre and postconditioning strategies for IS. Hypoxia conditioning reduces brain injury by increasing resistance to acute ischemic and hypoxic stress, exerting neuroprotective effects, and promoting post-injury repair and regeneration. However, whether IH produces beneficial effects depends not only on the hypoxic regimen but also on inter-subject differences. Therefore, we discuss the factors that may influence the effectiveness of IH treatment, including age, sex, comorbidities, and circadian rhythm, which can be used to help identify the optimal intervention population and treatment protocols for more accurate, individualized clinical translation. In conclusion, IH conditioning as a non-invasive, non-pharmacological, systemic, and multi-targeted intervention can not only reduce brain damage after stroke but can also be applied to the prevention and functional recovery of IS, providing brain protection at different stages of the disease. It represents a promising therapeutic strategy. For patients with IS and high-risk groups, IH conditioning is expected to develop as an adjunctive clinical treatment option to reduce the incidence, recurrence, disability, and mortality of IS and to reduce disease burden.
Collapse
Affiliation(s)
- Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xunming Ji,
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China,Guangxian Nan,
| |
Collapse
|
6
|
Liu X, Deng H, Tang J, Wang Z, Zhu C, Cai X, Rong F, Chen X, Sun X, Jia S, Ouyang G, Li W, Xiao W. OTUB1 augments hypoxia signaling via its non-canonical ubiquitination inhibition of HIF-1α during hypoxia adaptation. Cell Death Dis 2022; 13:560. [PMID: 35732631 PMCID: PMC9217984 DOI: 10.1038/s41419-022-05008-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Abstract
As a main regulator of cellular responses to hypoxia, the protein stability of hypoxia-inducible factor (HIF)-1α is strictly controlled by oxygen tension dependent of PHDs-catalyzed protein hydroxylation and pVHL complex-mediated proteasomal degradation. Whether HIF-1α protein stability as well as its activity can be further regulated under hypoxia is not well understood. In this study, we found that OTUB1 augments hypoxia signaling independent of PHDs/VHL and FIH. OTUB1 binds to HIF-1α and depletion of OTUB1 reduces endogenous HIF-1α protein under hypoxia. In addition, OTUB1 inhibits K48-linked polyubiquitination of HIF-1α via its non-canonical inhibition of ubiquitination activity. Furthermore, OTUB1 promotes hypoxia-induced glycolytic reprogramming for cellular metabolic adaptation. These findings define a novel regulation of HIF-1α under hypoxia and demonstrate that OTUB1-mediated HIF-1α stabilization positively regulates HIF-1α transcriptional activity and benefits cellular hypoxia adaptation.
Collapse
Affiliation(s)
- Xing Liu
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China ,Hubei Hongshan Laboratory, Wuhan, 430070 PR China
| | - Hongyan Deng
- grid.49470.3e0000 0001 2331 6153College of Life Science, Wuhan University, Wuhan, 430072 PR China ,grid.49470.3e0000 0001 2331 6153Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 PR China
| | - Jinhua Tang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Zixuan Wang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Chunchun Zhu
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xiaolian Cai
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China
| | - Fangjing Rong
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xiaoyun Chen
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xueyi Sun
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Shuke Jia
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Gang Ouyang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China
| | - Wenhua Li
- grid.49470.3e0000 0001 2331 6153College of Life Science, Wuhan University, Wuhan, 430072 PR China ,grid.49470.3e0000 0001 2331 6153Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 PR China
| | - Wuhan Xiao
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China ,Hubei Hongshan Laboratory, Wuhan, 430070 PR China
| |
Collapse
|
7
|
Yang Y, Dong Z, Chen X, Wang Z, Zhang D, Liang L, Mu W. Molecular characterization and expression analysis of hypoxia-inducible factor-1α, factor-2α, and factor-3α and physiological response to hypoxia exposure in Amur minnow (Phoxinus lagowskii). AQUACULTURE INTERNATIONAL 2022; 30:607-632. [DOI: 10.1007/s10499-021-00826-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/27/2021] [Indexed: 01/03/2025]
|
8
|
Ma J, Stefanoska D, Grad S, Alini M, Peroglio M. Direct and Intervertebral Disc-Mediated Sensitization of Dorsal Root Ganglion Neurons by Hypoxia and Low pH. Neurospine 2020; 17:42-59. [PMID: 32252154 PMCID: PMC7136118 DOI: 10.14245/ns.2040052.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Ischemia-related risk factors are consistently correlated with discogenic pain, but it remains unclear how the ischemia-associated hypoxia and acidosis influence the peripheral sensory nervous system, namely the dorsal root ganglion (DRG), either directly or indirectly via intervertebral disc (IVD) mediation.
Methods Bovine tail IVD organ cultures were preconditioned in different hypoxic and/or acidic conditions for 3 days to collect the conditioned medium (CM). The DRG-derived ND7/23 cells were either treated by the IVD CM or directly stimulated by hypoxic and/or acidic conditions. Neuronal sensitization was evaluated using calcium imaging (Fluo-4) after 3 days.
Results We found that direct exposure of DRG cell line to hypoxia and acidosis increased both spontaneous and bradykinin-stimulated calcium response compared to normoxia-neutral pH cultures. Hypoxia and low pH in combination showed stronger effect than either parameter on its own. Indirect exposure of DRG to hypoxia-acidosis-stressed IVD CM also increased spontaneous and bradykinin-stimulated response, but to a lower extent than direct exposure. The impact of direct hypoxia and acidosis on DRG was validated in a primary sheep DRG cell culture, showing the same trend.
Conclusion Our data suggest that targeting hypoxia and acidosis stresses both in IVD and DRG could be a relevant objective in discogenic pain treatment.
Collapse
Affiliation(s)
- Junxuan Ma
- AO Research Institute Davos, Davos, Switzerland
| | | | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
9
|
The Phosphatase SHP-2 Activates HIF-1α in Wounds In Vivo by Inhibition of 26S Proteasome Activity. Int J Mol Sci 2019; 20:ijms20184404. [PMID: 31500245 PMCID: PMC6769879 DOI: 10.3390/ijms20184404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular remodeling and angiogenesis are required to improve the perfusion of ischemic tissues. The hypoxic environment, induced by ischemia, is a potent stimulus for hypoxia inducible factor 1α (HIF-1α) upregulation and activation, which induce pro-angiogenic gene expression. We previously showed that the tyrosine phosphatase SHP-2 drives hypoxia mediated HIF-1α upregulation via inhibition of the proteasomal pathway, resulting in revascularization of wounds in vivo. However, it is still unknown if SHP-2 mediates HIF-1α upregulation by affecting 26S proteasome activity and how the proteasome is regulated upon hypoxia. Using a reporter construct containing the oxygen-dependent degradation (ODD) domain of HIF-1α and a fluorogenic proteasome substrate in combination with SHP-2 mutant constructs, we show that SHP-2 inhibits the 26S proteasome activity in endothelial cells under hypoxic conditions in vitro via Src kinase/p38 mitogen-activated protein kinase (MAPK) signalling. Moreover, the simultaneous expression of constitutively active SHP-2 (E76A) and inactive SHP-2 (CS) in separate hypoxic wounds in the mice dorsal skin fold chamber by localized magnetic nanoparticle-assisted lentiviral transduction showed specific regulation of proteasome activity in vivo. Thus, we identified a new additional mechanism of SHP-2 mediated HIF-1α upregulation and proteasome activity, being functionally important for revascularization of wounds in vivo. SHP-2 may therefore constitute a potential novel therapeutic target for the induction of angiogenesis in ischemic vascular disease.
Collapse
|
10
|
Kumar S, Lakshmi PK, Sahi C, Pawar RS. Sida cordifolia accelerates wound healing process delayed by dexamethasone in rats: Effect on ROS and probable mechanism of action. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:279-292. [PMID: 30769040 DOI: 10.1016/j.jep.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 05/23/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
ETHNO PHARMACOLOGICAL RELEVANCE Sida cordifolia is used commonly in traditional systems of medicine (TSM) and as folk remedies for treating the wounds (both external and internal), infected area, rheumatic disorders, muscular weakness, tuberculosis, heart problems, bronchitis, neurological problems etc. Therefore, in order to authenticate the claims, a mechanism-oriented investigation of the wound healing properties of this plant is essential. AIM OF THE STUDY The overall aim of the present research is to understand the precise unknown cellular and molecular mechanism by which S. cordifolia accelerates wound healing delay caused by the steroidal drug dexamethasone. Here, we have also tried to quantify intracellular superoxide with the help of a unique fluoroprobe MitoSOX based on fluorescence measurements in yeast MATERIALS AND METHODS: Wound healing property of successive extracts (ethyl acetate, methanol and aqueous) of S. cordifolia against dexamethasone-induced retardation of wound healing in rats was studied. The various extracts of S. cordifolia were characterised by determining the various phytochemicals and quantifying the total phenolic content and flavonoidal content by High throughput assays. In order to know the probable mechanism of action of the successive fractionates, assessed the antioxidant activity both by in-vitro (DPPH-assay) and in-vivo methods in wild-type Saccharomyces cerevisiae BY 4743 (WT) and knock-out strain (Δtrx2) against H2O2-induced stress mediated damages. The cell survival was evaluated after exposure to the oxidizing reagent (4 mM H2O2) by two methods which included the ability of cells to proliferate on solid or liquid medium. The cell membrane integrity/amount of mitochondrial ROS was determined by treating the strains with extract/standard in presence of H2O2 and propidium iodide (PI)/MitoSOX Red RESULTS: During the preliminary in-vivo wound healing study, the period for complete re-epithelialization of the wound tissue was reduced significantly (pin the treatment groups as compared to the negative control group. The formulation HF3 containing aqueous extract of S. cordifolia (SCA) showed highest wound healing potential against dexamethasone-retarded wounds in rats which justifies its traditional use. In the growth curve assay, the H2O2-induced growth arrest was restored by aqueous extract of S. cordifolia (SCA) in a concentration-dependent(pmanner both in the WT and Δtrx2 strains similar to the standard (ascorbic acid), H2O2 after 24 hours incubation which was also confirmed by the findings of CFU method. We got almost similar results of cell viability when stained with PI. The lower level of mitochondrial superoxide was indicated by a significant (preduction in the amount of MitoSOX stained cells, in the extract-treated group in contrast to the H2O2-stressed group. CONCLUSION It was concluded that HF3 can be applied topically in hydrogel form in the case of delayed wound healing caused by the steroidal drug-dexamethasone, aptly justifying its traditional use. Regarding its mechanism of action, our findings report that the potent adaptive response of SCA-treated WT and Δtrx2 strains towards intracellular ROS specifically mitochondrial-ROS confirms its antioxidant potential. Moreover, as SCA was able to rescue the Δtrx2 strains from stress, it can be inferred that it might be able to induce the enzyme thioredoxin-II to restore redox homeostasis. The findings with the conditional mutant ∆trx2 are the first proof linking SCA action related to particular cellular pathways which may be because of the phenols and flavonoids and their synergistic effect.
Collapse
Affiliation(s)
- Shweta Kumar
- Pharmacognosy and Phytochemistry Laboratory, VNS Group of Institutions, Faculty of Pharmacy, VNS Campus, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh 462044, India.
| | - P K Lakshmi
- Pharmacognosy and Phytochemistry Laboratory, VNS Group of Institutions, Faculty of Pharmacy, VNS Campus, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh 462044, India
| | - Chandan Sahi
- Department of Biological Sciences, CS Lab, Indian Institute of Science Education and Research, Bhopal Bypass road, Bhouri, Madhya Pradesh 462066, India
| | - Rajesh Singh Pawar
- Pharmacognosy and Phytochemistry Laboratory, VNS Group of Institutions, Faculty of Pharmacy, VNS Campus, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh 462044, India.
| |
Collapse
|
11
|
Zeng J, Yan R, Pan H, You F, Cai T, Liu W, Zheng C, Zhao Z, Gong D, Chen L, Zhang Y. Weipixiao attenuate early angiogenesis in rats with gastric precancerous lesions. Altern Ther Health Med 2018; 18:250. [PMID: 30200948 PMCID: PMC6131880 DOI: 10.1186/s12906-018-2309-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Angiogenesis is a pathobiological hallmark of gastric cancer. However, rare studies focus on angiogenesis in gastric precancerous lesions (GPL). Weipixiao (WPX), a Chinese herbal preparation, is proved clinically effective in treating GPL. Here, we evaluated WPX's anti-angiogenic potential for GPL, and also investigated the possibility of its anti-angiogenic mechanisms. METHODS HPLC analysis was applied to screen the major chemical components of WPX. After modeling N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced GPL in male Sprague-Dawley rats, different doses of WPX were administrated orally for 10 weeks. Next, we performed histopathological examination using routine H&E staining and HID-AB-PAS staining. In parallel, we assessed angiogenesis revealed by microvessel density (MVD) using CD34 immunostaining, and subsequently observe microvessel ultrastructure in gastric mucosa under Transmission Electron Microscope. Finally, we detect expression of angiogenesis-associated markers VEGF and HIF-1α using immunohistochemistry. Moreover, mRNA expressions of ERK1, ERK2, Cylin D1 as well as HIF-1α in gastric mucosa were determined by quantitative real-time reverse transcription- polymerase chain reaction. RESULTS We observed the appearance of active angiogenesis in GPL rats, and demonstrated that WPX could reduce microvascular abnormalities and attenuate early angiogenesis in most of GPL specimens with a concomitant regression of most intestinal metaplasia (IM) and a portion of gastric epithelial dysplasia (GED). In parallel, WPX could suppress HIF-1α mRNA expression (P < 0.01) as well as protein expression (although without statistical significance), and could markedly inhibit VEGF protein expression in GPL rats. Mechanistically, WPX intervention, especially at low dose, caused a significant decrease in the ERK1 and Cylin D1 mRNA levels. However, WPX might probably have no regulatory effect on ERK2 amplification. CONCLUSIONS WPX could attenuate early angiogenesis and temper microvascular abnormalities in GPL rats. This might be partly achieved by inhibiting on the angiogenesis-associated markers HIF-1α and VEGF, and on the ERK1/Cylin D1 aberrant activation.
Collapse
|
12
|
Heikal L, Ghezzi P, Mengozzi M, Ferns G. Assessment of HIF-1α expression and release following endothelial injury in-vitro and in-vivo. Mol Med 2018; 24:22. [PMID: 30134815 PMCID: PMC6016879 DOI: 10.1186/s10020-018-0026-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Endothelial injury is an early and enduring feature of cardiovascular disease. Inflammation and hypoxia may be responsible for this, and are often associated with the up-regulation of several transcriptional factors that include Hypoxia Inducible Factor-1 (HIF-1). Although it has been reported that HIF-1α is detectable in plasma, it is known to be unstable. Our aim was to optimize an assay for HIF-1α to be applied to in vitro and in vivo applications, and to use this assay to assess the release kinetics of HIF-1α following endothelial injury. Methods An ELISA for the measurement of HIF-1α in cell-culture medium and plasma was optimized, and the assay was used to determine the best conditions for sample collection and storage. The results of the ELISA were validated using Western blotting and immunohistochemistry (IHC). In vitro, a standardized injury was produced in a monolayer of rat aortic endothelial cells (RAECs) and intracellular HIF-1α was measured at intervals over 24 h. In vivo, a rat angioplasty model was used. The right carotid artery was injured using a 2F Fogarty balloon catheter. HIF-1α was measured in the plasma and in the arterial tissue (0, 1, 2, 3 and 5 days post injury). Results The HIF-1α ELISA had a limit of detection of 2.7 pg/mL and was linear up to 1000 pg/ mL. Between and within-assay, the coefficient of variation values were less than 15%. HIF-1α was unstable in cell lysates and plasma, and it was necessary to add a protease inhibitor immediately after collection, and to store samples at -80 °C prior to analysis. The dynamics of HIF-1α release were different for the in vitro and in vivo models. In vitro, HIF-1α reached maximum concentrations approximately 2 h post injury, whereas peak values in plasma and tissues occurred approximately 2 days post injury, in the balloon injury model. Conclusion HIF-1α can be measured in plasma, but this requires careful sample collection and storage. The carotid artery balloon injury model is associated with the transient release of HIF-1α into the circulation that probably reflects the hypoxia induced in the artery wall. Electronic supplementary material The online version of this article (10.1186/s10020-018-0026-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lamia Heikal
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK
| | - Pietro Ghezzi
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK
| | - Manuela Mengozzi
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK
| | - Gordon Ferns
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK. .,Brighton and Sussex Medical School Department of Medical Education, Mayfield House, Falmer East Sussex, Brighton, BN1 9PH, UK.
| |
Collapse
|
13
|
Heun Y, Pogoda K, Anton M, Pircher J, Pfeifer A, Woernle M, Ribeiro A, Kameritsch P, Mykhaylyk O, Plank C, Kroetz F, Pohl U, Mannell H. HIF-1α Dependent Wound Healing Angiogenesis In Vivo Can Be Controlled by Site-Specific Lentiviral Magnetic Targeting of SHP-2. Mol Ther 2017; 25:1616-1627. [PMID: 28434868 DOI: 10.1016/j.ymthe.2017.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 11/26/2022] Open
Abstract
Hypoxia promotes vascularization by stabilization and activation of the hypoxia inducible factor 1α (HIF-1α), which constitutes a target for angiogenic gene therapy. However, gene therapy is hampered by low gene delivery efficiency and non-specific side effects. Here, we developed a gene transfer technique based on magnetic targeting of magnetic nanoparticle-lentivirus (MNP-LV) complexes allowing site-directed gene delivery to individual wounds in the dorsal skin of mice. Using this technique, we were able to control HIF-1α dependent wound healing angiogenesis in vivo via site-specific modulation of the tyrosine phosphatase activity of SHP-2. We thus uncover a novel physiological role of SHP-2 in protecting HIF-1α from proteasomal degradation via a Src kinase dependent mechanism, resulting in HIF-1α DNA-binding and transcriptional activity in vitro and in vivo. Excitingly, using targeting of MNP-LV complexes, we achieved simultaneous expression of constitutively active as well as inactive SHP-2 mutant proteins in separate wounds in vivo and hereby specifically and locally controlled HIF-1α activity as well as the angiogenic wound healing response in vivo. Therefore, magnetically targeted lentiviral induced modulation of SHP-2 activity may be an attractive approach for controlling patho-physiological conditions relying on hypoxic vessel growth at specific sites.
Collapse
Affiliation(s)
- Yvonn Heun
- Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, 81377 Munich, Germany
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany
| | - Martina Anton
- Institut für Molekulare Immunologie - Experimentelle Onkologie, Klinikum rechts der Isar der TUM, Ismaninger Strasse 22, 81675 München, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistrasse 15, 81377 Munich, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, 81377 Munich, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Markus Woernle
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, 80336 Munich, Germany
| | - Andrea Ribeiro
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, 80336 Munich, Germany
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany
| | - Olga Mykhaylyk
- Institut für Molekulare Immunologie - Experimentelle Onkologie, Klinikum rechts der Isar der TUM, Ismaninger Strasse 22, 81675 München, Germany
| | - Christian Plank
- Institut für Molekulare Immunologie - Experimentelle Onkologie, Klinikum rechts der Isar der TUM, Ismaninger Strasse 22, 81675 München, Germany
| | - Florian Kroetz
- Interventional Cardiology, Starnberg Community Hospital, Osswaldstrasse 1, 82319 Starnberg, Germany
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, 81377 Munich, Germany; Munich Cluster for Systems Neurology, (SyNergy), 81377 Munich, Germany
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, 81377 Munich, Germany.
| |
Collapse
|
14
|
Gusakova SV, Birulina YG, Smagliy LV, Kovalev IV, Petrova IV, Nosarev AV, Orlov SN. Regulation of Contractile Responses of Vascular Smooth Muscle Cells under Conditions of Hypoxia-Reoxygenation. Bull Exp Biol Med 2016; 162:195-198. [PMID: 27913935 DOI: 10.1007/s10517-016-3574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 11/27/2022]
Abstract
We analyzed the effects of hypoxia and reoxygenation on changes in contractile activity in rat aortic smooth muscles. Both hypoxia and reoxygenation induced relaxation of smooth muscle cells precontracted with high-potassium Krebs solution (30 mM KCl) or α1-adrenoceptor agonist phenylephrine. Vasodilation resulted from enhancement of potassium permeability of smooth muscle cell membranes caused by activation of voltage-gated potassium channels (triggered by both precontracting agents) or by opening of ATP-sensitive potassium channels (phenylephrine). In isolated smooth muscle cells, both hypoxia and inhibition of Na+,K+-ATPase with ouabain led to depletion of intracellular store of macroergic substances, reduced potassium concentration, and elevated the content of sodium ions.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Adrenergic alpha-1 Receptor Agonists/pharmacology
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Enzyme Inhibitors/pharmacology
- Hypoxia/metabolism
- Isometric Contraction/drug effects
- KATP Channels/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Ouabain/pharmacology
- Oxygen/pharmacology
- Phenylephrine/pharmacology
- Potassium/metabolism
- Potassium Channels, Voltage-Gated/metabolism
- Primary Cell Culture
- Rats
- Rats, Wistar
- Sodium/metabolism
- Sodium-Potassium-Exchanging ATPase/metabolism
- Tissue Culture Techniques
- Vasodilation/drug effects
Collapse
Affiliation(s)
- S V Gusakova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.
| | - Yu G Birulina
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - L V Smagliy
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | - I V Kovalev
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - I V Petrova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - A V Nosarev
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | - S N Orlov
- National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
15
|
Li F, Jiang T, Liu W, Hu Q, Yin H. The angiogenic effect of dracorhodin perchlorate on human umbilical vein endothelial cells and its potential mechanism of action. Mol Med Rep 2016; 14:1667-72. [PMID: 27357516 DOI: 10.3892/mmr.2016.5442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperglycemia is the key clinical feature of diabetes, and may induce refractory wound lesions and impaired angiogenesis. Dracorhodin perchlorate (Dra) is the major ingredient of dragon's blood and it has been used as a medicine to treat chronic wounds, such as diabetic foot, since ancient times in many cultures. The current study aimed to investigate the effect of Dra on human umbilical vein endothelial cells (HUVECs) under high‑glucose (HG) stimulation and its potential mechanism. Dra was observed to increase the multiplication capacity of HUVECs both under low glucose (LG) and HG concentrations. Additionally, migration and tube formation in HUVECs was facilitated by Dra. The expression levels of Ras, mitogen‑activated protein kinase (MAPK) and vascular endothelial growth factor, which are key components of the Ras/MAPK pathway, were upregulated following Dra treatment. The present study is the first report, to the best of our knowledge, of the effects of Dra on wound healing, and the association with the Ras/MAPK signaling pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of the General Hospital of People's Liberation Army of China, Beijing 100048, P.R. China
| | - Tao Jiang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
| | - Wei Liu
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of the General Hospital of People's Liberation Army of China, Beijing 100048, P.R. China
| | - Quan Hu
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of the General Hospital of People's Liberation Army of China, Beijing 100048, P.R. China
| | - Huinan Yin
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of the General Hospital of People's Liberation Army of China, Beijing 100048, P.R. China
| |
Collapse
|
16
|
Kramerov AA, Ljubimov AV. Stem cell therapies in the treatment of diabetic retinopathy and keratopathy. Exp Biol Med (Maywood) 2015; 241:559-68. [PMID: 26454200 DOI: 10.1177/1535370215609692] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nonproliferative diabetic retinopathy (DR) is characterized by multiple degenerative changes that could be potentially corrected by stem cell therapies. Most studies so far have attempted to alleviate typical abnormalities of early retinopathy, including vascular hyperpermeability, capillary closure and pericyte dropout. Success was reported with adult stem cells (vascular progenitors or adipose stem cells), as well as induced pluripotent stem cells from cord blood. The cells were able to associate with damaged vessels in both pericyte and endothelial lining positions in models of DR and ischemia-reperfusion. In some diabetic models, functional amelioration of vasculature and electroretinograms was noted. Another approach for endogenous progenitor cell therapy is to normalize dysfunctional diabetic bone marrow and residing endothelial progenitors using NO donors, PPAR-δ and -γ agonists, or inhibition of TGF-β. A potentially important strategy would be to reduce neuropathy by stem cell inoculations, either naïve (e.g., paracrine-acting adipose stem cells) or secreting specific neuroprotectants, such as ciliary neurotrophic factor or brain-derived neurotrophic factor that showed benefit in amyotrophic lateral sclerosis and Parkinson's disease. Recent advances in stem cell therapies for diabetic retinal microangiopathy may form the basis of first clinical trials in the near future. Additionally, stem cell therapies may prove beneficial for diabetic corneal disease (diabetic keratopathy) with pronounced epithelial stem cell dysfunction.
Collapse
Affiliation(s)
- Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
17
|
Yalu R, Oyesiji AE, Eisenberg I, Imbar T, Meidan R. HIF1A-dependent increase in endothelin 2 levels in granulosa cells: role of hypoxia, LH/cAMP, and reactive oxygen species. Reproduction 2015; 149:11-20. [PMID: 25433027 DOI: 10.1530/rep-14-0409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia-inducible factor 1 alpha (HIF1A) and endothelin 2 (EDN2) are transiently expressed during the same time window in the developing corpus luteum (CL). In this study, we sought to investigate the involvement of LH/cAMP, reactive oxygen species (ROS), and a hypoxia-mimetic compound (CoCl2) on HIF1A expression and how it affected EDN2 levels, using transformed human granulosa cells (thGCs) and primary bovine granulosa cells (GCs). CoCl2 elevated HIF1A protein levels in thGCs in a dose-dependent manner. Forskolin alone had no significant effect; however, forskolin and CoCl2 together further induced HIF1A protein and EDN2 mRNA expression in thGCs. Similarly, in primary GCs, LH with CoCl2 synergistically augmented HIF1A protein levels, which resulted in higher expression of EDN2 and another well-known hypoxia-inducible gene, VEGF (VEGFA). Importantly, LH alone elevated HIF1A mRNA but not its protein. The successful knockdown of HIF1A in thGCs using siRNA abolished hypoxia-induced EDN2 and also the additive effect of forskolin and CoCl2. We then examined the roles of ROS in thGCs: hydrogen peroxide (20 and 50 μM) elevated HIF1A protein as well as the expression of EDN2, implying that induction of HIF1A protein levels is sufficient to stimulate the expression of EDN2 (and VEGF) in normoxia. A broad-range ROS scavenger, butylated hydroxyanisole, inhibited CoCl2-induced HIF1A protein with a concomitant reduction in the mRNA expression of EDN2 and VEGF in thGCs. The results obtained in this study suggest that HIF1A, induced by various stimuli, is an essential mediator of EDN2 mRNA expression. The results may also explain the rise in the levels of HIF1A-dependent genes (EDN2 and VEGF) in the developing CL.
Collapse
Affiliation(s)
- Ronit Yalu
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Adepeju Esther Oyesiji
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Iris Eisenberg
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Tal Imbar
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Rina Meidan
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| |
Collapse
|
18
|
Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, Xiao W. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res 2015; 43:5081-98. [PMID: 25897119 PMCID: PMC4446437 DOI: 10.1093/nar/gkv379] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/11/2015] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α and HIF-2α are the main regulators of cellular responses to hypoxia. Post-translational modifications of HIF-1α and 2α are necessary to modulate their functions. The methylation of non-histone proteins by Set7, an SET domain-containing lysine methyltransferase, is a novel regulatory mechanism to control cell protein function in response to various cellular stresses. In this study, we show that Set7 methylates HIF-1α at lysine 32 and HIF-2α at lysine K29; this methylation inhibits the expression of HIF-1α/2α targets by impairing the occupancy of HIF-α on hypoxia response element of HIF target gene promoter. Set7-null fibroblasts and the cells with shRNA-knocked down Set7 exhibit upregulated HIF target genes. Set7 inhibitor blocks HIF-1α/2α methylation to enhance HIF target gene expression. Set7-null fibroblasts and the cells with shRNA-knocked down Set7 or inhibition of Set7 by the inhibitor subjected to hypoxia display an increased glucose uptake and intracellular adenosine triphosphate levels. These findings define a novel modification of HIF-1α/2α and demonstrate that Set7-medited lysine methylation negatively regulates HIF-α transcriptional activity and HIF-1α-mediated glucose homeostasis.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Zhu Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, P. R. China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Xiaoqian Leng
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Gang Ouyang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| |
Collapse
|
19
|
Ni HM, Bhakta A, Wang S, Li Z, Manley S, Huang H, Copple B, Ding WX. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice. PLoS One 2014; 9:e115849. [PMID: 25536043 PMCID: PMC4275262 DOI: 10.1371/journal.pone.0115849] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic alcohol causes liver hypoxia and steatosis, which eventually develops into alcoholic liver disease (ALD). While it has been known that alcohol consumption activates hepatic hypoxia inducing factor-1α (HIF-1α), conflicting results regarding the role of HIF-1α in alcohol-induced liver injury and steatosis in mice have been reported. In the present study, we aimed to use hepatocyte-specific HIF-1β knockout mice to eliminate the possible compensatory effects of the single knockout of the 1α subunit of HIF to study the role of HIFs in ALD. C57BL/6 wild type mice were treated with acute ethanol to mimic human binge drinking. Matched wild-type and hepatocyte specific HIF-1β knockout mice were also subjected to a recently established Gao-binge alcohol model to mimic chronic plus binge conditions, which is quite common in human alcoholics. We found that acute alcohol treatment increased BNIP3 and BNIP3L/NIX expression in primary cultured hepatocytes and in mouse livers, suggesting that HIF may be activated in these models. We further found that hepatocyte-specific HIF-1β knockout mice developed less steatosis and liver injury following the Gao-binge model or acute ethanol treatment compared with their matched wild type mice. Mechanistically, protection against Gao-binge treatment-induced steatosis and liver injury was likely associated with increased FoxO3a activation and subsequent induction of autophagy in hepatocyte-specific HIF-1β knockout mice.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Amar Bhakta
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenrui Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sharon Manley
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bryan Copple
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Villeneuve S, Reed BR, Madison CM, Wirth M, Marchant NL, Kriger S, Mack WJ, Sanossian N, DeCarli C, Chui HC, Weiner MW, Jagust WJ. Vascular risk and Aβ interact to reduce cortical thickness in AD vulnerable brain regions. Neurology 2014; 83:40-7. [PMID: 24907234 PMCID: PMC4114172 DOI: 10.1212/wnl.0000000000000550] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 03/26/2014] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE The objective of this study was to define whether vascular risk factors interact with β-amyloid (Aβ) in producing changes in brain structure that could underlie the increased risk of Alzheimer disease (AD). METHODS Sixty-six cognitively normal and mildly impaired older individuals with a wide range of vascular risk factors were included in this study. The presence of Aβ was assessed using [(11)C]Pittsburgh compound B-PET imaging, and cortical thickness was measured using 3-tesla MRI. Vascular risk was measured with the Framingham Coronary Risk Profile Index. RESULTS Individuals with high levels of vascular risk factors have thinner frontotemporal cortex independent of Aβ. These frontotemporal regions are also affected in individuals with Aβ deposition, but the latter show additional thinning in parietal cortices. Aβ and vascular risk were found to interact in posterior (especially in parietal) brain regions, where Aβ has its greatest effect. In this way, the negative effect of Aβ in posterior regions is increased by the presence of vascular risk. CONCLUSION Aβ and vascular risk interact to enhance cortical thinning in posterior brain regions that are particularly vulnerable to AD. These findings give insight concerning the mechanisms whereby vascular risk increases the likelihood of developing AD and supports the therapeutic intervention of controlling vascular risk for the prevention of AD.
Collapse
Affiliation(s)
- Sylvia Villeneuve
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles.
| | - Bruce R Reed
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| | - Cindee M Madison
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| | - Miranka Wirth
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| | - Natalie L Marchant
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| | - Stephen Kriger
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| | - Wendy J Mack
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| | - Nerses Sanossian
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| | - Charles DeCarli
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| | - Helena C Chui
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| | - Michael W Weiner
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| | - William J Jagust
- From the Helen Wills Neuroscience Institute (S.V., C.M.M., M.W., W.J.J.), University of California Berkeley; Department of Neurology (B.R.R., C.D.), University of California Davis; Department of Old Age Psychiatry (N.L.M.), Institute of Psychiatry, King's College London, UK; Center for Imaging of Neurodegenerative Diseases (S.K., M.W.W.), University of California San Francisco; and Departments of Preventive Medicine (W.J.M.) and Neurology (N.S., H.C.C.), University of Southern California, Los Angeles
| |
Collapse
|
21
|
Gao W, Ferguson G, Connell P, Walshe T, O'Brien C, Redmond EM, Cahill PA. Glucose attenuates hypoxia-induced changes in endothelial cell growth by inhibiting HIF-1α expression. Diab Vasc Dis Res 2014; 11:270-280. [PMID: 24853909 DOI: 10.1177/1479164114533356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hyperglycaemia and hypoxia play essential pathophysiological roles in diabetes. We determined whether hyperglycaemia influences endothelial cell growth under hypoxic conditions in vitro. Using a Ruskinn Invivo2 400 Hypoxia Workstation, bovine aortic endothelial cells (BAEC) were exposed to high glucose concentrations (25 mM glucose) under normoxic or hypoxic conditions before cell growth (balance of proliferation and apoptosis) was assessed by fluorescence-activated cell sorting (FACS) analysis, proliferating cell nuclear antigen (pCNA), Bcl-xL and caspase-3 protein expression and activity. Hypoxia increased hypoxia response element (HRE) transactivation and induced hypoxia-inducible factor-1α (HIF-1α) expression when compared to normoxic controls concomitant with a significant decrease in cell growth. High glucose (25 mM) concentrations attenuated HRE transactivation and HIF-1α protein expression while concurrently reducing hypoxia-induced changes in BAEC growth. Knockdown of HIF-1α expression significantly decreased hypoxia-induced changes in growth and attenuated the modulatory effects of glucose. These results provide evidence that hypoxia-induced control of BAEC growth can be altered by the presence of glucose via inhibition of HIF-1α expression and activation.
Collapse
Affiliation(s)
- Wei Gao
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Gail Ferguson
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Paul Connell
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland Mater Misericordiae Hospital, Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Tony Walshe
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Colm O'Brien
- Mater Misericordiae Hospital, Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester, Rochester, NY, USA
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
22
|
Liu H, Wang Z, Yu S, Xu J. Proteasomal degradation of O-GlcNAc transferase elevates hypoxia-induced vascular endothelial inflammatory response†. Cardiovasc Res 2014; 103:131-9. [PMID: 24788415 DOI: 10.1093/cvr/cvu116] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Hypoxia induces vascular inflammation by a mechanism not fully understood. Emerging evidence implicates O-GlcNAc transferase (OGT) in inflammation. This study explored the role of OGT in hypoxia-induced vascular endothelial inflammatory response. METHODS AND RESULTS Hypoxia was either induced (1% O2 chamber) or mimicked by exposure to hypoxia-mimetic agents in cultured endothelial cells. Hypoxia increased hypoxia-inducible factor (HIF-1α) and inflammatory response (gene and protein expression of interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1, and E-selectin) but, surprisingly, reduced OGT protein (not mRNA) levels. Hypoxia-mimetic CoCl2 failed to reduce OGT when proteasome inhibitors were present, suggesting proteasome involvement. Indeed, CoCl2 enhanced 26S proteasome functionality evidenced by diminished reporter (Ub(G76V)-GFP) proteins in proteasome reporter cells, likely due to increased chymotrypsin-like activities. Mechanistically, β-TrCP1 mediated OGT degradation, since siRNA ablation of this E3 ubiquitin ligase stabilized OGT. Administration of the oxidative stress inhibitors reversed both proteasome activation and OGT degradation. Furthermore, up-regulation of OGT by stabilization, overexpression, or activation mitigated CoCl2-elicited inflammatory response. These observations were recapitulated in a mouse (C57BL/6J) model mimicking hypoxia, in which lung tissues presented higher levels of HIF-1α, proteasome activity, and inflammatory response, but lower levels of OGT (n = 5/group, hypoxia vs. normoxia, P < 0.05). However, administration of an activator of OGT (glucosamine: 1 mg/g/day, vehicle: saline, ip, 5 days) abolished the up-regulation of proteasome activity and inflammatory response (n = 5/group, the treated vs. untreated hypoxia groups, P < 0.05). CONCLUSIONS 26S proteasome-mediated OGT reduction contributed to hypoxia-induced vascular endothelial inflammatory response. Modulation of OGT may represent a new approach to treat diseases characterized by hypoxic inflammation.
Collapse
Affiliation(s)
- Hongtao Liu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhongxiao Wang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shujie Yu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jian Xu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Ullrich V, Schildknecht S. Sensing hypoxia by mitochondria: a unifying hypothesis involving S-nitrosation. Antioxid Redox Signal 2014; 20:325-38. [PMID: 22793377 DOI: 10.1089/ars.2012.4788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Sudden hypoxia requires a rapid response in tissues with high energy demand. Mitochondria are rapid sensors for a lack of oxygen, but no consistent mechanism for the sensing process and the subsequent counter-regulation has been described. RECENT ADVANCES In the present hypothesis review, we suggest an oxygen-sensing mechanism by mitochondria that is initiated at low oxygen tension by electrons from the respiratory chain, leading to the reduction of intracellular nitrite to nitric oxide ((•)NO) that would subsequently compete with oxygen for binding to cytochrome c oxidase. This allows superoxide ((•)O2(-)) formation in hypoxic areas, leading to S-nitrosation and the inhibition of mitochondrial Krebs cycle enzymes. With more formation of (•)O2(-), peroxynitrite is generated and known to damage the connection between the mitochondrial matrix and the outer membrane. CRITICAL ISSUES A fundamental question on a regulatory mechanism is its reversibility. Readmission of oxygen and opening of the mitochondrial KATP-channel would allow electrons from glycerol-3-phosphate to selectively reduce the ubiquinone pool to generate (•)O2(-) at both sides of the inner mitochondrial membrane. On the cytosolic side, superoxide is dismutated and will support H2O2/Fe(2+)-dependent transcription processes and on the mitochondrial matrix side, it could lead to the one-electron reduction and reactivation of S-nitrosated proteins. FUTURE DIRECTIONS It remains to be elucidated up to which stage the herein proposed silencing of mitochondria remains reversible and when irreversible changes that ultimately lead to classical reperfusion injury are initiated.
Collapse
Affiliation(s)
- Volker Ullrich
- Department of Biology, University of Konstanz , Konstanz, Germany
| | | |
Collapse
|
24
|
Cervellati F, Cervellati C, Romani A, Cremonini E, Sticozzi C, Belmonte G, Pessina F, Valacchi G. Hypoxia induces cell damage via oxidative stress in retinal epithelial cells. Free Radic Res 2014; 48:303-12. [PMID: 24286355 DOI: 10.3109/10715762.2013.867484] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Retinal diseases (RD), including diabetic retinopathy, are among the most important eye diseases in industrialized countries. RD is characterized by abnormal angiogenesis associated with an increase in cell proliferation and apoptosis. Hypoxia could be one of the triggers of the pathogenic mechanism of this disease. A key regulatory component of the cell's hypoxia response system is hypoxia-inducible factor 1 alpha (HIF-1α). It has been demonstrated that the induction of HIF-1α expression can be also achieved in vitro by exposure with cobalt chloride (CoCl2), leading to an intracellular hypoxia-like state. In this study we have investigated the effects of CoCl2 on human retinal epithelium cells (hRPE), which are an integral part of the blood-retinal barrier, with the aim to determine the possible role of oxidative stress in chemical hypoxia-induced damage in retinal epithelial cells. Our data showed that CoCl2 treatment is able to induce HIF-1α expression, that parallels with the formation of reactive oxygen species (ROS) and the increase of lipid 8-isoprostanes and 4-hydroxynonenal (4-HNE) protein adducts levels. In addition we observed the activation of the redox-sensitive transcription factor nuclear factor-kappaB (NFkB) by CoCl2 which can explain the increased levels of vascular endothelial growth factor (VEGF). The increased number of dead cells seems to be related to an apoptotic process. Taken together these evidences suggest that oxidative stress induced by hypoxia might be involved in RD development through the stimulation of two key-events of RD such as neo-angiogenesis and apoptosis.
Collapse
Affiliation(s)
- F Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara , Ferrara , Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
The natural history of uterine leiomyomas: morphometric concordance with concepts of interstitial ischemia and inanosis. Obstet Gynecol Int 2013; 2013:285103. [PMID: 24198832 PMCID: PMC3806153 DOI: 10.1155/2013/285103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/30/2013] [Indexed: 11/18/2022] Open
Abstract
Based upon our morphologic observations, we hypothesize and also provide morphometric evidence for the occurrence of progressive developmental changes in many uterine fibroids, which can be arbitrarily divided into 4 phases. These developmental phases are related to the ongoing production of extracellular collagenous matrix, which eventually exceeds the degree of angiogenesis, resulting in the progressive separation of myocytes from their blood supply and a condition of interstitial ischemia. The consequence of this process of slow ischemia with nutritional and oxygen deprivation is a progressive myocyte atrophy (or inanition), culminating in cell death, a process that we refer to as inanosis. The studies presented here provide quantitative and semiquantitative evidence to support the concept of the declining proliferative activity as the collagenous matrix increases and the microvascular density decreases.
Collapse
|
26
|
Lee WH, Lee JM, Lim C, Kim S, Kim SG. Structural requirements within protoporphyrin IX in the inhibition of heat shock protein 90. Chem Biol Interact 2013; 204:49-57. [DOI: 10.1016/j.cbi.2013.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/28/2013] [Accepted: 04/15/2013] [Indexed: 02/04/2023]
|
27
|
Welker AF, Moreira DC, Campos ÉG, Hermes-Lima M. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:384-404. [PMID: 23587877 DOI: 10.1016/j.cbpa.2013.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 12/14/2022]
Abstract
Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by animals with aquatic respiration. Therefore, animals living in marine, estuarine and freshwater environments have developed efficient antioxidant defenses to minimize oxidative stress and to regulate the cellular actions of ROS. Changes in oxygen levels may lead to bursts of ROS generation that can be particularly harmful. This situation is commonly experienced by aquatic animals during abrupt transitions from periods of hypoxia/anoxia back to oxygenated conditions (e.g. intertidal cycles). The strategies developed differ significantly among aquatic species and are (i) improvement of their endogenous antioxidant system under hyperoxia (that leads to increased ROS formation) or other similar ROS-related stresses, (ii) increase in antioxidant levels when displaying higher metabolic rates, (iii) presence of constitutively high levels of antioxidants, that attenuates oxidative stress derived from fluctuations in oxygen availability, or (iv) increase in the activity of antioxidant enzymes (and/or the levels of their mRNAs) during hypometabolic states associated with anoxia/hypoxia. This enhancement of the antioxidant system - coined over a decade ago as "preparation for oxidative stress" - controls the possible harmful effects of increased ROS formation during hypoxia/reoxygenation. The present article proposes a novel explanation for the biochemical and molecular mechanisms involved in this phenomenon that could be triggered by hypoxia-induced ROS formation. We also discuss the connections among oxygen sensing, oxidative damage and regulation of the endogenous antioxidant defense apparatus in animals adapted to many natural or man-made challenges of the aquatic environment.
Collapse
Affiliation(s)
- Alexis F Welker
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900 DF, Brazil
| | | | | | | |
Collapse
|
28
|
Tsuji T, Aoshiba K, Itoh M, Nakamura H, Yamaguchi K. Hypercapnia accelerates wound healing in endothelial cell monolayers exposed to hypoxia. Open Respir Med J 2013; 7:6-12. [PMID: 23524473 PMCID: PMC3601342 DOI: 10.2174/1874306401307010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION While tissue hypoxia is known to play a critical role in the process of vascular injury and repair, the effect of hypercapnia on this process remains uncertain. We investigated whether hypercapnia might influence endothelial cell wound healing under the influence of hypoxia. MATERIALS AND METHODOLOGY Monolayers of human umbilical venous endothelial cells (HUVECs) were scratch-wounded and incubated under different levels of O2, CO2, and pH in the environment. RESULTS Inhibition of wound healing was observed in the HUVEC monolayers under the hypoxic condition as compared to the normoxic condition. Both hypercapnic acidosis and buffered hypercapnia, but not normocapnic acidosis improved the rate of wound healing under the influence of hypoxia. The beneficial effect of hypercapnia was associated with stimulation of cell proliferation, without effects on cell adhesion, migration or apoptosis. On the other hand, the stimulatory effect of hypercapnia on wound healing and cell proliferation was not noted under normoxic conditions. CONCLUSION These results suggest that hypercapnia, rather than acidosis per se, accelerated the wound healing in HUVEC monolayers cultured under hypoxic conditions. The effect of hypercapnia on wound healing was due, at least in part, to the stimulation of cell proliferation by hypercapnia.
Collapse
Affiliation(s)
- Takao Tsuji
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan
| | - Masayuki Itoh
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan
| | - Kazuhiro Yamaguchi
- Comprehensive and Internal Medicine, Tokyo Women's Medical University Medical Center East, 2-1-10 nishi-ogu, Arakawa-ku, Tokyo 116-8567, Japan
| |
Collapse
|
29
|
Liang J, Huang W, Yu X, Ashraf A, Wary KK, Xu M, Millard RW, Ashraf M, Wang Y. Suicide gene reveals the myocardial neovascularization role of mesenchymal stem cells overexpressing CXCR4 (MSC(CXCR4)). PLoS One 2012; 7:e46158. [PMID: 23029422 PMCID: PMC3460871 DOI: 10.1371/journal.pone.0046158] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023] Open
Abstract
Background Our previous studies indicated that MSCCXCR4 improved cardiac function after myocardial infarction (MI). This study was aimed to investigate the specific role of MSCCXCR4 in neovascularization of infarcted myocardium using a suicide gene approach. Methods MSCs were transduced with either lentivirus-null vector/GFP (MSCNull as control) or vector encoding for overexpressing CXCR4/GFP. The MSC derived-endothelial cell (EC) differentiation was assessed by a tube formation assay, Dil-ac-LDL uptake, EC marker expression, and VE-cadherin promoter activity assay. Gene expression was analyzed by quantitative RT-PCR or Western blot. The suicide gene approach was under the control of VE-cadherin promoter. In vivo studies: Cell patches containing MSCNull or MSCCXCR4 were transduced with suicide gene and implanted into the myocardium of MI rat. Rats received either ganciclovir (GCV) or vehicle after cell implantation. After one month, the cardiac functional changes and neovascularization were assessed by echocardiography, histological analysis, and micro-CT imaging. Results The expression of VEGF-A and HIF-1α was significantly higher in MSCCXCR4 as compared to MSCNull under hypoxia. Additionally, MSCCXCR4 enhanced new vessel formation and EC differentiation, as well as STAT3 phosphorylation under hypoxia. STAT3 participated in the transcription of VE-cadherin in MSCCXCR4 under hypoxia, which was inhibited by WP1066 (a STAT3 inhibitor). In addition, GCV specifically induced death of ECs with suicide gene activation. In vivo studies: MSCCXCR4 implantation promoted cardiac functional restoration, reduced infarct size, improved cardiac remodeling, and enhanced neovascularization in ischemic heart tissue. New vessels derived from MSCCXCR4 were observed at the injured heart margins and communicated with native coronary arteries. However, the derived vessel networks were reduced by GCV, reversing improvement of cardiac function. Conclusion The transplanted MSCCXCR4 enhanced neovascularization after MI by boosting release of angiogenic factors and increasing the potential of endothelial differentiation.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Differentiation
- Endothelial Cells/cytology
- Endothelial Cells/metabolism
- Gene Expression
- Genes, Transgenic, Suicide
- Genetic Vectors
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lentivirus/genetics
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardium/metabolism
- Neovascularization, Physiologic
- Phosphorylation
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Transduction, Genetic
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Jialiang Liang
- Department of Pathology, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Baze MM, Hunter K, Hayes JP. Chronic hypoxia stimulates an enhanced response to immune challenge without evidence of an energetic tradeoff. ACTA ACUST UNITED AC 2012; 214:3255-68. [PMID: 21900473 DOI: 10.1242/jeb.054544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is broad interest in whether there is a tradeoff between energy metabolism and immune function, and how stress affects immune function. Under hypoxic stress, maximal aerobic metabolism is limited, and other aspects of energy metabolism of animals may be altered as well. Although acute hypoxia appears to enhance certain immune responses, the effects of chronic hypoxia on immune function are largely unstudied. We tested: (1) whether chronic hypoxia affects immune function and (2) whether hypoxia affects the metabolic cost of immune function. First, flow cytometry was used to monitor the peripheral blood immunophenotype of mice over the course of 36 days of hypoxic exposure. Second, hypoxic and normoxic mice were subjected to an adaptive immune challenge via keyhole limpet hemocyanin (KLH) or to an innate immune challenge via lipopolysaccharide (LPS). The resting metabolic rates of mice in all immune challenge treatments were also measured. Although hypoxia had little effect on the peripheral blood immunophenotype, hypoxic mice challenged with KLH or LPS had enhanced immunological responses in the form of higher antibody titers or increased TNF-α production, respectively. Initially, mice exposed to hypoxia had lower metabolic rates, but this response was transitory and resting metabolic rates were normal by the end of the experiment. There was no effect of either immune challenge on resting metabolic rate, suggesting that mounting either the acute phase response or a humoral response is not as energetically expensive as previously thought. In addition, our results suggest that immune responses to chronic and acute hypoxia are concordant. Both forms of hypoxia appear to stimulate both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Monica M Baze
- Program in Ecology, Evolution and Conservation Biology and Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
31
|
Teng PY, Blair NP, Wanek J, Shahidi M. Oxygen tension and gradient measurements in the retinal microvasculature of rats. Graefes Arch Clin Exp Ophthalmol 2011; 250:361-7. [PMID: 22101835 DOI: 10.1007/s00417-011-1859-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/20/2011] [Accepted: 11/02/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxygen delivery from the retinal vasculature plays a crucial role in maintaining normal retinal metabolic function. Therefore, measurements of retinal vascular oxygen tension (PO(2)) and PO(2) longitudinal gradients (gPO(2)) along retinal blood vessels may help gain fundamental knowledge of retinal physiology and pathological processes. METHODS Three-dimensional retinal vascular PO(2) maps were generated in rats by optical section phosphorescence lifetime imaging. A major retinal artery and vein pair, and a smaller blood vessel (microvessel) between them were segmented, and PO(2) along each blood vessel was measured. In each blood vessel, an average PO(2) (mPO(2)) was calculated, and gPO(2) was determined by linear regression analysis. Reproducibility of measurements was assessed by calculating intraclass correlation coefficient (ICC) of repeated measurements. The correlations of mPO(2) and gPO(2) measurements with systemic arterial oxygen tension (P(a)O(2)) and carbon dioxide tension (P(a)CO(2)) was determined. RESULTS Measurements of mPO(2) and gPO(2) in retinal arteries, microvessels and veins were reproducible (ICC > 0.86; p < 0.01; N = 8), except for retinal arterial gPO(2). Retinal arterial, microvessel and venous mPO(2) were 41 ± 8, 32 ± 8 and 25 ± 7 mmHg, respectively (mean ± SD; N = 27). Retinal arterial mPO(2) was correlated with P(a)O(2) and P(a)CO(2) (R > 0.44; p < 0.03), while retinal microvessel and venous mPO(2) were only correlated with P(a)CO(2) (R > 0.68; p < 0.01). Retinal microvessel gPO(2) (-3.8 ± 1.5 mmHg/100 μm) was significantly steeper (more negative) than venous gPO(2) (0.02 ± 0.43 mmHg/100 μm) (p < 0.01; N = 27), and neither were significantly correlated with P(a)O(2) or P(a)CO(2). CONCLUSIONS Quantitative measurement of mPO(2) and gPO(2) in the retinal microvasculature was demonstrated. A significant decrease in PO(2) was observed along most retinal microvessels, indicative of substantial oxygen extraction by the retinal tissue. This method has the potential to help elucidate retinal microvascular oxygen transport in health and disease.
Collapse
Affiliation(s)
- Pang-Yu Teng
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
32
|
Hempel C, Combes V, Hunt NH, Kurtzhals JAL, Grau GER. CNS hypoxia is more pronounced in murine cerebral than noncerebral malaria and is reversed by erythropoietin. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1939-50. [PMID: 21854739 DOI: 10.1016/j.ajpath.2011.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/18/2011] [Accepted: 06/28/2011] [Indexed: 01/13/2023]
Abstract
Cerebral malaria (CM) is associated with high mortality and risk of sequelae, and development of adjunct therapies is hampered by limited knowledge of its pathogenesis. To assess the role of cerebral hypoxia, we used two experimental models of CM, Plasmodium berghei ANKA in CBA and C57BL/6 mice, and two models of malaria without neurologic signs, P. berghei K173 in CBA mice and P. berghei ANKA in BALB/c mice. Hypoxia was demonstrated in brain sections using intravenous pimonidazole and staining with hypoxia-inducible factor-1α-specific antibody. Cytopathic hypoxia was studied using poly (ADP-ribose) polymerase-1 (PARP-1) gene knockout mice. The effect of erythropoietin, an oxygen-sensitive cytokine that mediates protection against CM, on cerebral hypoxia was studied in C57BL/6 mice. Numerous hypoxic foci of neurons and glial cells were observed in mice with CM. Substantially fewer and smaller foci were observed in mice without CM, and hypoxia seemed to be confined to neuronal cell somas. PARP-1-deficient mice were not protected against CM, which argues against a role for cytopathic hypoxia. Erythropoietin therapy reversed the development of CM and substantially reduced the degree of neural hypoxia. These findings demonstrate cerebral hypoxia in malaria, strongly associated with cerebral dysfunction and a possible target for adjunctive therapy.
Collapse
Affiliation(s)
- Casper Hempel
- Centre for Medical Parasitology, Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Perdiguero EG, Galaup A, Durand M, Teillon J, Philippe J, Valenzuela DM, Murphy AJ, Yancopoulos GD, Thurston G, Germain S. Alteration of developmental and pathological retinal angiogenesis in angptl4-deficient mice. J Biol Chem 2011; 286:36841-51. [PMID: 21832056 DOI: 10.1074/jbc.m111.220061] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions.
Collapse
Affiliation(s)
- Elisa Gomez Perdiguero
- Collège de France, Center for Interdisciplinary Research in Biology, Paris 75005, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Effects of creatine in a rat intestinal model of ischemia/reperfusion injury. Eur J Nutr 2011; 51:375-84. [DOI: 10.1007/s00394-011-0222-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/11/2011] [Indexed: 01/13/2023]
|
35
|
Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011; 91:327-87. [PMID: 21248169 PMCID: PMC3844671 DOI: 10.1152/physrev.00047.2009] [Citation(s) in RCA: 1558] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Jeng-Jiann Chiu
- Division of Medical Engineering Research, National Health Research Institutes, Taiwan
| | | |
Collapse
|
36
|
Jian B, Yang S, Chen D, Zou L, Chatham JC, Chaudry I, Raju R. Aging influences cardiac mitochondrial gene expression and cardiovascular function following hemorrhage injury. Mol Med 2010; 17:542-9. [PMID: 21193900 DOI: 10.2119/molmed.2010.00195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/21/2010] [Indexed: 01/07/2023] Open
Abstract
Cardiac dysfunction and mortality associated with trauma and sepsis increase with age. Mitochondria play a critical role in the energy demand of cardiac muscles, and thereby on the function of the heart. Specific molecular pathways responsible for mitochondrial functional alterations after injury in relation to aging are largely unknown. To further investigate this, 6- and 22-month-old rats were subjected to trauma-hemorrhage (T-H) or sham operation and euthanized following resuscitation. Left ventricular tissue was profiled using our custom rodent mitochondrial gene chip (RoMitochip). Our experiments demonstrated a declined left ventricular performance and decreased alteration in mitochondrial gene expression with age following T-H and we have identified c-Myc, a pleotropic transcription factor, to be the most upregulated gene in 6- and 22-month-old rats after T-H. Following T-H, while 142 probe sets were altered significantly (39 up and 103 down) in 6-month-old rats, only 66 were altered (30 up and 36 down) in 22-month-old rats; 36 probe sets (11 up and 25 down) showed the same trend in both groups. The expression of c-Myc and cardiac death promoting gene Bnip3 were increased, and Pgc1-α and Ppar-α a decreased following T-H. Eleven tRNA transcripts on mtDNA were upregulated following T-H in the aged animals, compared with the sham group. Our observations suggest a c-myc-regulated mitochondrial dysfunction following T-H injury and marked decrease in age-dependent changes in the transcriptional profile of mitochondrial genes following T-H, possibly indicating cellular senescence. To our knowledge, this is the first report on mitochondrial gene expression profile following T-H in relation to aging.
Collapse
Affiliation(s)
- Bixi Jian
- Center for Surgical Research, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Bautista-Ortega J, Ruiz-Feria CA. L-arginine and antioxidant vitamins E and C improve the cardiovascular performance of broiler chickens grown under chronic hypobaric hypoxia. Poult Sci 2010; 89:2141-6. [PMID: 20852105 DOI: 10.3382/ps.2010-00764] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two hundred broiler chicks were randomly assigned to 3 dietary treatments: control [CTL; 3,200 kcal of ME/kg, 23% CP, 1.55% Arg, and 40 IU of vitamin E (VE)/kg of feed], high-Arg (HA; CTL+0.8% Arg), or high-Arg and high antioxidant-vitamin diet (AEC; HA+200 IU of VE/kg of feed and 500 mg of vitamin C/L of water). The chicks were housed in wire cages in hypobaric chambers simulating 3,000 m above sea level. From d 28 to 42, clinically healthy birds were selected for cardiovascular performance (n=7 to 12/treatment). After surgery, pulmonary arterial pressure (PAP) and mean arterial pressure (MAP) readings were taken at 180, 120, and 60 s (basal values) before an epinephrine (EPI) challenge and then at 30, 60, 120, 180, 300, 600, and 1,200 s after the challenge, followed by a second EPI challenge with similar sample readings. There were no differences in the basal PAP values among chicken groups. The PAP increased within 30 s after both EPI challenges in all groups. It took 180 s after the first EPI challenge for the CTL chickens to return to the basal PAP values, whereas HA and AEC chickens returned to basal PAP values in 120 s. After the second EPI challenge, it took 60, 180, and 300 s for the AEC, HA, and CTL groups, respectively, to return to basal PAP values. The MAP response pattern to the EPI challenges mimicked that of PAP, but there were no differences among treatments in MAP at any sampling point. Supplemental Arg, VE, and vitamin C did not reduce ascites incidence in hypoxic broilers. In conclusion, supplemental Arg improved the pulmonary vascular performance of hypoxic broiler chickens and its effects were further improved by the addition of the antioxidant VE and vitamin C. Arginine and antioxidant vitamins may have played synergistic roles to increase NO bioavailability and reduce oxidative stress damage, thus improving cardiopulmonary performance.
Collapse
Affiliation(s)
- J Bautista-Ortega
- Department of Poultry Science, Texas A&M University, College Station 77843-2472, USA
| | | |
Collapse
|
38
|
Goryacheva AV, Kruglov SV, Pshennikova MG, Smirin BV, Malyshev IY, Barskov IV, Viktorov IV, Downey HF, Manukhina EB. Adaptation to intermittent hypoxia restricts nitric oxide overproduction and prevents beta-amyloid toxicity in rat brain. Nitric Oxide 2010; 23:289-99. [DOI: 10.1016/j.niox.2010.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 08/18/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022]
|
39
|
Ye X, Wang Y, Nathans J. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 2010; 16:417-25. [PMID: 20688566 PMCID: PMC2963063 DOI: 10.1016/j.molmed.2010.07.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/09/2010] [Accepted: 07/09/2010] [Indexed: 01/22/2023]
Abstract
Disorders of retinal vascular growth and function are responsible for vision loss in a variety of diseases, including diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity and retinal artery or vein occlusion. Over the past decade, a new signaling pathway that controls retinal vascular development has emerged from the study of inherited disorders - in both humans and mice - that are characterized by retinal hypovascularization. This pathway utilizes a glial-derived extracellular ligand, Norrin, that acts on a transmembrane receptor, Frizzled4, a coreceptor, Lrp5, and an auxiliary membrane protein, Tspan12, on the surface of developing endothelial cells. The resulting signal controls a transcriptional program that regulates endothelial growth and maturation. It will be of great interest to determine whether modulating this pathway could represent a therapeutic approach to human retinal vascular disease.
Collapse
Affiliation(s)
- Xin Ye
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
40
|
Erythropoetin receptor expression in the human diabetic retina. BMC Res Notes 2009; 2:234. [PMID: 19930719 PMCID: PMC2785834 DOI: 10.1186/1756-0500-2-234] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/25/2009] [Indexed: 12/19/2022] Open
Abstract
Background Recent evidence suggests erythropoietin (EPO) and the erythropoietin receptor (EPOR) may play a direct role in the pathogenesis of diabetic retinopathy. Better characterization of the EPO-EPOR signaling system in the ischemic retina may offer a new therapeutic modality for ischemic ophthalmic diseases. This study was performed to identify EPOR mRNA expression in the human diabetic eye. Findings EPOR antisense RNA probes were validated on human pancreas tissue. In the normal eye, EPOR was expressed in the retinal ganglion cell layer. Minimal expression was observed in the inner and outer nuclear layer. Under conditions of diabetic retinopathy, EPOR expression shifted to photoreceptor cells. Increased expression was also observed in the peripheral retina. Conclusion EPOR expression may be a biomarker or contribute to disease mechanisms in diabetic retinopathy.
Collapse
|
41
|
Zhao F, Sellgren K, Ma T. Low-oxygen pretreatment enhances endothelial cell growth and retention under shear stress. Tissue Eng Part C Methods 2009; 15:135-46. [PMID: 19072661 DOI: 10.1089/ten.tec.2008.0321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oxygen (O(2)) tension is an important factor that regulates endothelial cell (EC) growth and adhesion. We hypothesized that low-O(2) treatment of ECs improves the endothelialization and cell retention upon physiologically relevant perfusion flow, due to enhanced cell proliferation and extracellular matrix (ECM) secretion. We assessed the effects of a low-O(2) tension of 5% O(2) upon growth and ECM production of human umbilical vein ECs (HUVECs), in comparison to their counterparts at 20% O(2) on poly(ethylene terephthalate) (PET) films. Low-O(2) pretreatment at 5% O(2) promoted HUVEC proliferation, ECM secretion, and intercellular adhesion. Cell retentions of the endothelialized PET films formed under 5% and 20% O(2) were analyzed by applying shear stress in the range of 5-20 dyn/cm(2) for up to 24 h under the O(2) of 12% and 20%, mimicking arterial and conventional experimental O(2), respectively. The 5% O(2)-pretreated samples exhibited significantly higher cell retention than their normoxic counterparts at high cell density (>30 x 10(3) cells/cm(2)) over extended exposure time (>12 h) when perfused under both 12% and 20% O(2). The endothelium formed under 5% O(2) maintained its ability to respond to perfusion flow by upregulating nitric oxide and prostacyclin production under both O(2) perfusion conditions. The results indicate that pretreatment at 5% O(2) is an effective strategy to enhance endothelialization of vascular grafts by promoting endothelium formation, cell retention, and function.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida 32310, USA
| | | | | |
Collapse
|
42
|
A new constitutively active mutant of AMP-activated protein kinase inhibits anoxia-induced apoptosis of vascular endothelial cell. Hypertens Res 2009; 32:133-9. [PMID: 19262472 DOI: 10.1038/hr.2008.25] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The inhibition of apoptotic changes in vascular endothelial cells is important for preventing vascular damage from hypoxia. AMP-activated protein kinase (AMPK) has recently been identified as playing a role in vascular protection. Although the chemical reagent 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) has been used to stimulate AMPK activity, AICAR has been associated with several nonspecific reactions. We therefore constructed a new constitutively active mutant of AMPK alpha 1 (NcaAMPK), which lacks the autoinhibitory domain in AMPK alpha 1 and in which threonine 172 has been replaced with aspartate. We investigated whether NcaAMPK has an anti-apoptotic effect in vascular endothelial cells under anoxic conditions. NcaAMPK, or green fluorescent protein (GFP) as a control, was overexpressed in human umbilical vein endothelial cells (HUVECs). After HUVECs were incubated for 40 h under normoxic or anoxic conditions, we examined cell viability, caspase 3/7 activity, and expression and phosphorylation levels of apoptosis-related proteins. Cell viabilities under anoxic conditions were improved in NcaAMPK-overexpressing cells. Anoxia increased caspase 3/7 activity, but NcaAMPK reduced this increase significantly. NcaAMPK overexpression increased protein kinase B/Akt Ser473 and endothelial nitric oxide synthase Ser1177 phosphorylation, but pretreatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) did not decrease the viability of NcaAMPK-overexpressing HUVECs. Furthermore, co-expression of a dominant-negative Akt reduced the improvement in cell viability and the suppression of poly (ADP-ribose) polymerase cleavage by NcaAMPK under anoxic conditions. In conclusion, NcaAMPK inhibited anoxia-induced apoptosis in vascular endothelial cells through Akt activation, suggesting that activation of AMPK might protect against ischemic vascular injury.
Collapse
|
43
|
Abstract
Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|