1
|
Li W, Liu S, Zong L, Huang Z, Jiang L, Liu X, Yang P, Zhang Y, Du Z, Fan W, Qin Z, Wang X, Zhang X, Wang X, Yin H, An J, Zhu C, Orr MC, Wang J, Ge S. Potential Correlation Between Bombus lantschouensis Thoracic Morphology and Flight Behavior. Integr Zool 2025. [PMID: 40365727 DOI: 10.1111/1749-4877.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Remarkably little modern work has investigated the thoracic structures of insects and their relationship to flight locomotion. Most studies focus exclusively on either morphology or flight kinematics. In this study, we explore within-species variation in mesosomal structures (thorax + propodeum) and their correlation with different flight modes of Bombus lantschouensis. The mesosomal structures, including skeletons and muscles, of four categories-pre-mating queen, post-mating queen, drone, and worker-are examined using micro-CT and 3D reconstruction. Their flight behaviors are also captured using high-speed cameras. Three key kinematic parameters are recorded-wingbeat frequency, flapping amplitude, and average speed-across three flight modes: takeoff, hovering, and forward flight. The wingbeat frequencies of the drone and the worker are higher than those of the queens. The relative distance between the mesophragma and propodeum (DMPP) and the toughness of the mesepisternum, part of the indirect flight system, are related to wingbeat frequency. Flapping amplitude is generally inversely proportional to wingbeat frequency, which might also be influenced by wing shape. After mating, additional fat in the body of the queen increased her weight and possibly compressed her muscles and DMPP, thereby reducing her average takeoff speed. Otherwise, the high diversity of the prothoracic muscles and the pronotal changes might be related to visual capabilities. The changes in the metathoracic muscles connecting to the metacoxal might be related to the functions of the hindlegs. This work provides a basis for future comparative work on bumblebee morphology and biomechanics.
Collapse
Affiliation(s)
- Wenjie Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sipei Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Zong
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhengzhong Huang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Jiang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaokun Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yitian Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhong Du
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weili Fan
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhuanghui Qin
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xieshuang Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinying Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Haodong Yin
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiandong An
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaodong Zhu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Michael C Orr
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Jiangning Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siqin Ge
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Horn CJ, Yuli S, Berry JA, Luong LT. A male-killing Spiroplasma endosymbiont has age-mediated impacts on Drosophila endurance and sleep. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104723. [PMID: 39551154 DOI: 10.1016/j.jinsphys.2024.104723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Endosymbiotic bacteria have a wide range of impacts on host physiology, behavior, metabolism, endurance, and mobility. Recent work found some endosymbionts also impact host sleep duration and quality. These effects may increase as flies age and endosymbiont titers increase. We tested the hypothesis that Spiroplasma poulsonni MSRO negatively impacts sleep in Drosophila melanogaster, and this in turn impairs fly endurance. In geotaxis climbing assays (a proxy for endurance), we found that MSRO impacted climbing endurance but in an age-dependent manner. Among younger flies, MSRO+ flies slept significantly less during dark periods (measured by a Drosophila Activity Monitoring System) compared to uninfected flies, but older MSRO+ flies did not show significant differences in amount of sleep compared to uninfected flies in the same cohort. While MSRO status impacted both sleep and endurance of hosts, endosymbiont-mediated sleep deprivation did not directly explain decreases in fly endurance. We discuss these results in the context of endosymbiont comparative biology.
Collapse
Affiliation(s)
- Collin J Horn
- Dalhousie University, Department of Psychology and Neuroscience, Canada; University of Alberta, Department of Biological Sciences, Canada.
| | - Sissi Yuli
- University of Alberta, Department of Biological Sciences, Canada
| | - Jacob A Berry
- University of Alberta, Department of Biological Sciences, Canada
| | - Lien T Luong
- University of Alberta, Department of Biological Sciences, Canada
| |
Collapse
|
3
|
McCulloch GA, Foster BJ, Kroos GC, Foster Y, Ni S, Vogel MFS, Waters JM. Dispersal-fecundity trade-offs in wild insect populations. J Evol Biol 2025; 38:430-436. [PMID: 39663214 DOI: 10.1093/jeb/voae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Wing reduction is a common feature of upland insect communities. This phenomenon is thought to be primarily driven by selection against flight, which is typically unfavourable in upland environments due to high winds and cold temperatures. In some insect taxa, wing reduction has been directly linked to increased fecundity. However, few studies have directly tested for shifts in fecundity linked to flight musculature. Here, we test for dispersal-fecundity trade-offs in the widespread subalpine stonefly Zelandoperla fenestrata. Our analysis of 450 stoneflies across 81 localities reveals significant dispersal-fecundity trade-offs. Specifically, we identify a positive association between the size of their flight muscles and the length of their wings, and a negative association between wing length and ovarian mass. Furthermore, we found a significant negative relationship between flight musculature and ovary mass. These results represent a rare example of a dispersal-fecundity trade-off in the wild and illustrate that such trade-offs can potentially involve corresponding reductions in both flight musculature and wing development. Our findings suggest that widespread taxa subject to variable environmental conditions may benefit from flexible allocation of energetic resources.
Collapse
Affiliation(s)
| | - Brodie J Foster
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Gracie C Kroos
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Yasmin Foster
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Steven Ni
- Department of Zoology, University of Otago, Dunedin, New Zealand
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
| | - Marianne F S Vogel
- Department of Zoology, University of Otago, Dunedin, New Zealand
- Institut Agro Rennes-Angers, Rennes, France
| | | |
Collapse
|
4
|
Rastegarpouyani H, Hojjatian A, Taylor KA. Two Forms of Thick Filament in the Flight Muscle of Drosophila melanogaster. Int J Mol Sci 2024; 25:11313. [PMID: 39457097 PMCID: PMC11509062 DOI: 10.3390/ijms252011313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Invertebrate striated muscle myosin filaments are highly variable in structure. The best characterized myosin filaments are those found in insect indirect flight muscle (IFM) in which the flight-powering muscles are not attached directly to the wings. Four insect orders, Hemiptera, Diptera, Hymenoptera, and Coleoptera, have evolved IFM. IFM thick filaments from the first three orders have highly similar myosin arrangements but differ significantly among their non-myosin proteins. The cryo-electron microscopy of isolated IFM myosin filaments from the Dipteran Drosophila melanogaster described here revealed the coexistence of two distinct filament types, one presenting a tubular backbone like in previous work and the other a solid backbone. Inside an annulus of myosin tails, tubular filaments show no noticeable densities; solid filaments show four paired paramyosin densities. Both myosin heads of the tubular filaments are disordered; solid filaments have one completely and one partially immobilized head. Tubular filaments have the protein stretchin-klp on their surface; solid filaments do not. Two proteins, flightin and myofilin, are identifiable in all the IFM filaments previously determined. In Drosophila, flightin assumes two conformations, being compact in solid filaments and extended in tubular filaments. Nearly identical solid filaments occur in the large water bug Lethocerus indicus, which flies infrequently. The Drosophila tubular filaments occur in younger flies, and the solid filaments appear in older flies, which fly less frequently if at all, suggesting that the solid filament form is correlated with infrequent muscle use. We suggest that the solid form is designed to conserve ATP when the muscle is not in active use.
Collapse
Affiliation(s)
- Hosna Rastegarpouyani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA; (H.R.); (A.H.)
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Alimohammad Hojjatian
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA; (H.R.); (A.H.)
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA; (H.R.); (A.H.)
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
5
|
Gerber R, Piscart C, Roussel JM, Bergerot B. Morphology-based classification of the flying capacities of aquatic insects: A first attempt. Curr Zool 2024; 70:607-617. [PMID: 39463693 PMCID: PMC11502146 DOI: 10.1093/cz/zoad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2024] Open
Abstract
Flight is a key feature of the reproduction and dispersal of emerging aquatic insects. However, morphological measurements of insect flight are mostly available for terrestrial taxa and dragonflies, while aquatic insects have been poorly investigated. We analyzed 7 flight-related morphological parameters of 32 taxa belonging to 5 orders of emerging aquatic insects (Ephemeroptera, Trichoptera, Plecoptera, Diptera, and Megaloptera) with different life history traits related to flight (dispersal strategy, voltinism, adult lifespan, and swarming behavior). After correcting for allometry, we used an a priori-free approach to cluster the individuals according to their flight-related morphology. Then, we explored the levels of agreement between these clusters, taxonomy, and several life history traits of the taxa. All orders were scattered among several clusters, suggesting a large range of flight capacities, particularly for Diptera. We found swarming taxa in each cluster, showing that morphological adaptations to swarming are not identical in all aquatic insects. The clusters did not match the expected dispersal capacity of the taxa as derived from the literature or databases. Heavy wide-winged insects notably gathered taxa traditionally described as good or weak dispersers. Flight capacities based on morphology partly matched with the taxonomy and life-history traits of aquatic insect imagoes. Other parameters such as flight propensity, energy stores, and wing kinematics should help refine their flying and dispersal capacity.
Collapse
Affiliation(s)
- Rémi Gerber
- University of Rennes, CNRS, ECOBIO UMR 6553, F-35042 Rennes, France
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | | | - Jean-Marc Roussel
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | | |
Collapse
|
6
|
Diaz T, Treidel LA, Menze MA, Williams CM, Lebenzon JE. Beclin-mediated Autophagy Drives Dorsal Longitudinal Flight Muscle Histolysis in the Variable Field Cricket, Gryllus lineaticeps. Integr Comp Biol 2024; 64:565-575. [PMID: 38760886 DOI: 10.1093/icb/icae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Flight muscle histolysis is a widespread strategy used by insects to break down functional flight muscle and modulate the energetic costs associated with flight muscle use and maintenance. The variable field cricket, Gryllus lineaticeps, undergoes histolysis during their transition between dispersal flight and reproduction. Despite the importance of histolysis on insect reproduction and fitness, the molecular mechanisms driving this flight muscle breakdown are not well understood. Here, we show that beclin-mediated autophagy, a conserved lysosomal-dependent degradation process, drives breakdown of dorsal longitudinal flight muscle in female flight-capable G. lineaticeps. We found that female G. lineaticeps activate autophagy in their dorsal longitudinal flight muscle (DLM), but to a greater extent than the neighboring dorsoventral flight muscle (DVM) during histolysis. RNA interference knockdown of beclin, a gene that encodes a critical autophagy initiation protein, delayed DLM histolysis, but did not affect DVM histolysis. This suggests that crickets selectively activate autophagy to break down the DLMs, while maintaining DVM function for other fitness-relevant activities such as walking. Overall, we confirmed that autophagy is a critical pathway used to remodel flight muscle cells during flight muscle histolysis, providing novel insights into the mechanisms underlying a major life history transition between dispersal and reproduction.
Collapse
Affiliation(s)
- Tomás Diaz
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Lisa A Treidel
- School of Biological Sciences, University of Nebraska Lincoln, 1104 T Street, Lincoln, NE 68588, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, 139 Life Sciences Bldg. Louisville, KY 40292, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Darveau CA. Insect Flight Energetics and the Evolution of Size, Form, and Function. Integr Comp Biol 2024; 64:586-597. [PMID: 38688867 PMCID: PMC11406158 DOI: 10.1093/icb/icae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024] Open
Abstract
Flying insects vary greatly in body size and wing proportions, significantly impacting their flight energetics. Generally, the larger the insect, the slower its flight wingbeat frequency. However, variation in frequency is also explained by differences in wing proportions, where larger-winged insects tend to have lower frequencies. These associations affect the energy required for flight. The correlated evolution of flight form and function can be further defined using a lineage of closely related bee species varying in body mass. The decline in flight wingbeat frequency with increasing size is paralleled by the flight mass-specific metabolic rate. The specific scaling exponents observed can be predicted from the wing area allometry, where a greater increase (hyperallometry) leads to a more pronounced effect on flight energetics, and hypoallometry can lead to no change in frequency and metabolic rate across species. The metabolic properties of the flight muscles also vary with body mass and wing proportions, as observed from the activity of glycolytic enzymes and the phospholipid compositions of muscle tissue, connecting morphological differences with muscle metabolic properties. The evolutionary scaling observed across species is recapitulated within species. The static allometry observed within the bumblebee Bombus impatiens, where the wing area is proportional and isometric, affects wingbeat frequency and metabolic rate, which is predicted to decrease with an increase in size. Intraspecific variation in flight muscle tissue properties is also related to flight metabolic rate. The role of developmental processes and phenotypic plasticity in explaining intraspecific differences is central to our understanding of flight energetics. These studies provide a framework where static allometry observed within species gives rise to evolutionary allometry, connecting the evolution of size, form, and function associated with insect flight.
Collapse
Affiliation(s)
- Charles-A Darveau
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
8
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Gilgenreiner M, Kurze C. Age dominates flight distance and duration, while body size shapes flight speed in Bombus terrestris L. (Hymenoptera: Apidae). Proc Biol Sci 2024; 291:20241001. [PMID: 39079662 PMCID: PMC11288671 DOI: 10.1098/rspb.2024.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
Flight plays a crucial role in the fitness of insect pollinators, such as bumblebees. Despite their relatively large body size compared with their wings, bumblebees can fly under difficult ambient conditions, such as cooler temperatures. While their body size is often positively linked to their foraging range and flight ability, the influence of age remains less explored. Here, we studied the flight performance (distance, duration and speed) of ageing bumblebee workers using tethered flight mills. Additionally, we measured their intertegular distance and dry mass as proxies for their body size. We found that the flight distance and duration were predominantly influenced by age, challenging assumptions that age does not play a key role in foraging and task allocation. From the age of 7 to 14 days, flight distance and duration increased sixfold and fivefold, respectively. Conversely, the body size primarily impacted the maximum and average flight speed of workers. Our findings indicate that age substantially influences the flight distance and duration in bumblebee workers, affecting foraging performance and potentially altering task allocation strategies. This underscores the importance of considering individual age and physiological changes alongside body size/mass in experiments involving bumblebee workers.
Collapse
Affiliation(s)
- Milena Gilgenreiner
- Institute for Zoology and Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Christoph Kurze
- Institute for Zoology and Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Vallejo-Marin M, Field DL, Fornoni J, Montesinos D, Dominguez CA, Hernandez I, Vallejo GC, Woodrow C, Ayala Barajas R, Jafferis N. Biomechanical properties of non-flight vibrations produced by bees. J Exp Biol 2024; 227:jeb247330. [PMID: 38773949 DOI: 10.1242/jeb.247330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Bees use thoracic vibrations produced by their indirect flight muscles for powering wingbeats in flight, but also during mating, pollination, defence and nest building. Previous work on non-flight vibrations has mostly focused on acoustic (airborne vibrations) and spectral properties (frequency domain). However, mechanical properties such as the vibration's acceleration amplitude are important in some behaviours, e.g. during buzz pollination, where higher amplitude vibrations remove more pollen from flowers. Bee vibrations have been studied in only a handful of species and we know very little about how they vary among species. In this study, we conducted the largest survey to date of the biomechanical properties of non-flight bee buzzes. We focused on defence buzzes as they can be induced experimentally and provide a common currency to compare among taxa. We analysed 15,000 buzzes produced by 306 individuals in 65 species and six families from Mexico, Scotland and Australia. We found a strong association between body size and the acceleration amplitude of bee buzzes. Comparison of genera that buzz-pollinate and those that do not suggests that buzz-pollinating bees produce vibrations with higher acceleration amplitude. We found no relationship between bee size and the fundamental frequency of defence buzzes. Although our results suggest that body size is a major determinant of the amplitude of non-flight vibrations, we also observed considerable variation in vibration properties among bees of equivalent size and even within individuals. Both morphology and behaviour thus affect the biomechanical properties of non-flight buzzes.
Collapse
Affiliation(s)
- Mario Vallejo-Marin
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| | - David L Field
- Applied Biosciences, Macquarie University, Sydney, NSW 2109, Australia
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Juan Fornoni
- Instituto de Ecología, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Daniel Montesinos
- Australian Tropical Herbarium, James Cook University, Cairns, QLD 4870, Australia
- College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Cesar A Dominguez
- Instituto de Ecología, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Ivan Hernandez
- Independent researcher, San Felipe del Agua, Oaxaca, Mexico
| | | | - Charlie Woodrow
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Ricardo Ayala Barajas
- Estación de Biología Chamela, National Autonomous University of Mexico (UNAM), Jalisco, Mexico
| | - Noah Jafferis
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
11
|
Song F, Yan Y, Sun J. Energy consumption during insect flight and bioinspiration for MAV design: A review. Comput Biol Med 2024; 170:108092. [PMID: 38325218 DOI: 10.1016/j.compbiomed.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The excellent biological characteristics of insects provide an important source of inspiration for designing micro air vehicles (MAVs). Insect flight is an incredibly complex and energy-intensive process. Unique insect flight muscles and contraction mechanisms enable flapping at high frequencies. Moreover, the metabolic rate during flight can reach hundreds of times the resting state. Understanding energy consumption during flight is crucial for designing efficient biomimetic aircraft. This paper summarizes the structures and contraction mechanisms of insect flight muscles, explores the underlying metabolic processes, and identifies methods for energy substrate identification and detection, and discusses inspiration for biomimetic MAV design. This paper reviews energy consumption during insect flight, promotes the understanding of insect bioenergetics, and applies this information to the design of MAVs.
Collapse
Affiliation(s)
- Fa Song
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, PR China
| | - Yongwei Yan
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, PR China
| | - Jiyu Sun
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, PR China.
| |
Collapse
|
12
|
De Araujo LI, Karsten M, Terblanche JS. Flight-reproduction trade-offs are weak in a field cage experiment across multiple Drosophila species. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100060. [PMID: 37292492 PMCID: PMC10244903 DOI: 10.1016/j.cris.2023.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Flight-reproduction trade-offs, such that more mobile individuals sacrifice reproductive output (e.g., fecundity) or incur fitness costs, are well-studied in a handful of wing-dimorphic model systems. However, these trade-offs have not been systematically assessed across reproduction-related traits and taxa in wing monomorphic species despite having broad implications for the ecology and evolution of pterygote insect species. Here we therefore determined the prevalence, magnitude and direction of flight-reproduction trade-offs on several fitness-related traits in a semi-field setting by comparing disperser and resident flies from repeated releases of five wild-caught, laboratory-reared Drosophila species, and explicitly controlling for a suite of potential confounding effects (maternal effects, recent thermal history) and potential morphological covariates (wing-loading, body mass). We found almost no systematic differences in reproductive output (egg production), reproductive fitness (offspring survival), or longevity between flying (disperser) and resident flies in our replicated releases, even if adjusting for potential morphological variation. After correction for false discovery rates, none of the five species showed evidence of a significant fitness trade-off associated with increased flight (sustained, simulated voluntary field dispersal). Our results therefore suggest that flight-reproduction trade-offs are not as common as might have been expected when assessed systematically across species and under the relatively standardized conditions and field setting employed here, at least not in the genus Drosophila. The magnitude and direction of potential dispersal- or flight-induced trade-offs, and the conditions that promote them, clearly require closer scrutiny. We argue that flight or dispersal is either genuinely cheaper than expected, or the costs manifest differently than those assessed here. Lost opportunities (i.e., time spent on mate-finding, mating or foraging) or nutrient-poor conditions could promote fitness costs to dispersal in our study system and that could be explored in future.
Collapse
|
13
|
Herhold HW, Davis SR, DeGrey SP, Grimaldi DA. Comparative Anatomy of the Insect Tracheal System Part 1: Introduction, Apterygotes, Paleoptera, Polyneoptera. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2023. [DOI: 10.1206/0003-0090.459.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Hollister W. Herhold
- Richard Gilder Graduate School and Division of Invertebrate Zoology, American Museum of Natural History, New York
| | - Steven R. Davis
- Division of Invertebrate Zoology, American Museum of Natural History; Laboratory of Developmental Neurobiology, Kanazawa University, Kanazawa, Japan
| | - Samuel P. DeGrey
- Kimberly Research and Extension Center, University of Idaho, Kimberly
| | - David A. Grimaldi
- Division of Invertebrate Zoology, American Museum of Natural History, New York
| |
Collapse
|
14
|
O'Callaghan F, Lehmann FO. Flow development and leading edge vorticity in bristled insect wings. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:219-229. [PMID: 36810678 PMCID: PMC10006064 DOI: 10.1007/s00359-023-01617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Small flying insects such as the tiny thrip Gynaikothrips ficorum have wings with bristles attached to a solid shaft instead of solid membranes. Air passing through the bristle fringe, however, makes bristled insect wings less effective for aerodynamic force production. In this study, we quantified the ability of bristled wings to generate a leading edge vortex (LEV) for lift support during wing flapping, scored its circulation during wing translation, and investigated its behaviour at the stroke reversals. The data were measured in robotic model wings flapping with a generic kinematic pattern at Reynolds number of ~ 3.4, while applying two-dimensional particle image velocimetry. We found that aerodynamic performance due to LEV circulation linearly decreases with increasing bristle spacing. The wings of Gynaikothrips ficorum might thus produce approximately 9% less aerodynamic force for flight than a solid membranous wing. At the stroke reversals, leading and trailing edge vortices dissipate quickly within no more than ~ 2% of the stroke cycle duration. This elevated dissipation makes vortex shedding obsolete during the reversals and allows a quick build-up of counter-vorticity when the wing reverses flapping direction. In sum, our findings highlight the flow conditions associated with bristled wing design in insects and are thus significant for assessing biological fitness and dispersal of insects flying in a viscosity-dominated fluid regime.
Collapse
Affiliation(s)
- Felicity O'Callaghan
- Department of Animal Physiology, Institute of Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Fritz-Olaf Lehmann
- Department of Animal Physiology, Institute of Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany.
| |
Collapse
|
15
|
Alzate A, Onstein RE. Understanding the relationship between dispersal and range size. Ecol Lett 2022; 25:2303-2323. [PMID: 36001639 DOI: 10.1111/ele.14089] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
The drivers of variability in species range sizes remain an outstanding enigma in ecology. The theoretical expectation of a positive dispersal-range size relationship has received mixed empirical support, despite dispersal being one of the most prominent hypothesised predictors of range size. Here, we synthesised results from 86 studies examining the dispersal-range size relationship for plants and animals in marine, terrestrial and freshwater realms. Overall, our meta-analysis showed that dispersal positively affects range size, but its effect is dependent on the clade and dispersal proxy studied. Moreover, despite potential differences in habitat connectivity, we did not find an effect of realm on the dispersal-range size relationship. Finally, the strength of the dispersal-range size relationship was dependent on latitude, range size metric and the taxonomic breadth of the study clade. Our synthesis emphasizes the importance of developing a mechanistic understanding of the trait to dispersal to range size relationship, considering the complexity of dispersal departure, transfer and settlement, as well as evolutionary components such as time for range expansion, speciation and past geological-environmental dynamics. We, therefore, call for a more integrative view of the dispersal process and its causal relationship with range size.
Collapse
Affiliation(s)
- Adriana Alzate
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Leipzig University, Leipzig, Germany
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Leipzig University, Leipzig, Germany.,Naturalis Biodiversity Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Jahant-Miller C, Miller R, Parry D. Size-dependent flight capacity and propensity in a range-expanding invasive insect. INSECT SCIENCE 2022; 29:879-888. [PMID: 34351047 DOI: 10.1111/1744-7917.12950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
For capital-breeding insects, all resources available for adult metabolic needs are accumulated during larval feeding. Therefore, body size at adult eclosion represents the total energetic capacity of the individual. For female capital breeders, body size is strongly correlated with lifetime fecundity, while in males, body size, which correlates with fitness, is less understood. In capital-breeding species with wingless, flightless, or dispersal-limited females, flight potential for male Lepidoptera has important implications for mate-finding and may be correlated with body size. At low population densities, failure to mate has been identified as an important Allee effect and can drive the success or failure of invasive species at range edges and in species of conservation concern. Th capital-breeding European subspecies of Lymantria dispar (L.), was introduced to North America in 1869 and now ranges across much of eastern North America. In L. dispar, females are flightless and mate-finding is entirely performed by males. We quantified male L. dispar flight capacity and propensity relative to morphological and physiological characteristics using fixed-arm flight mills. A range of male body sizes was produced by varying the protein content of standard artificial diets while holding other dietary components constant. Wing length, a proxy for body size, relative thorax mass, and forewing aspect were all important predictors of total flight distance and maximum speed. These results have important implications for mate-finding and invasion dynamics in L. dispar and may apply broadly to other capital-breeding insects.
Collapse
Affiliation(s)
- Chelsea Jahant-Miller
- Forest Health Protection, U.S. Forest Service, Coeur d'Alene, ID, 83815, USA
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Russell Miller
- School for Environment and Sustainability, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, 48106, USA
| | - Dylan Parry
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| |
Collapse
|
17
|
Pocius VM, Cibotti S, Ray S, Ankoma-Darko O, McCartney NB, Schilder RJ, Ali JG. Impacts of larval host plant species on dispersal traits and free-flight energetics of adult butterflies. Commun Biol 2022; 5:469. [PMID: 35577926 PMCID: PMC9110344 DOI: 10.1038/s42003-022-03396-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Animals derive resources from their diet and allocate them to organismal functions such as growth, maintenance, reproduction, and dispersal. How variation in diet quality can affect resource allocation to life-history traits, in particular those important to locomotion and dispersal, is poorly understood. We hypothesize that, particularly for specialist herbivore insects that are in co-evolutionary arms races with host plants, changes in host plant will impact performance. From their coevolutionary arms-race with plants, to a complex migratory life history, Monarch butterflies are among the most iconic insect species worldwide. Population declines initiated international conservation efforts involving the replanting of a variety of milkweed species. However, this practice was implemented with little regard for how diverse defensive chemistry of milkweeds experienced by monarch larvae may affect adult fitness traits. We report that adult flight muscle investment, flight energetics, and maintenance costs depend on the host plant species of larvae, and correlate with concentration of milkweed-derived cardenolides sequestered by adults. Our findings indicate host plant species can impact monarchs by affecting fuel requirements for flight. The growth of muscle and flight performance in monarch butterflies is influenced by the plant species the larvae grow on.
Collapse
Affiliation(s)
- Victoria M Pocius
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Staci Cibotti
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Swayamjit Ray
- Department of Plant Pathology, Cornell University, Ithaca, NY, USA
| | - Obenewa Ankoma-Darko
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Nathaniel B McCartney
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Rudolf J Schilder
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Jared G Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
18
|
Bonduriansky R, Creak C. Exoskeleton ageing and its relation to longevity and fecundity in female Australian leaf insects (. AUST J ZOOL 2022. [DOI: 10.1071/zo21052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Senescence is a decline in reproduction and survival rate with advancing age resulting from deterioration of somatic tissues and systems throughout the body. Age-related somatic changes (somatic ageing) have been studied extensively in vertebrates but are less well known in other animals, including insects. Since adult insects have very limited ability to repair their exoskeleton, somatic ageing could involve deterioration and discolouration of the cuticle. We investigated age-related changes in wing pigmentation and abdominal cuticle necrosis in females of the Australian leaf insect Phyllium monteithi. Adult females varied markedly in the extent and pattern of pigmentation on their bodies, and we found that pigment spots on the forewings increased in size with age in most individuals. As females aged, most individuals also exhibited increasing levels of abdominal cuticle necrosis, resulting in the loss of abdominal cuticle along the margin of the abdomen. Neither the extent of pigmentation nor cuticle loss were clearly associated with reduced fecundity or longevity in the protected laboratory environment, but it remains unknown whether these age-related changes have functional implications in the wild. Our results show that the P. monteithi exoskeleton undergoes complex changes with age, with potential implications for functional traits and fitness.
Collapse
|
19
|
Treidel LA, Quintanilla Ramirez GS, Chung DJ, Menze MA, Vázquez-Medina JP, Williams CM. Selection on dispersal drives evolution of metabolic capacities for energy production in female wing-polymorphic sand field crickets, Gryllus firmus. J Evol Biol 2022; 35:599-609. [PMID: 35255175 PMCID: PMC9311679 DOI: 10.1111/jeb.13996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/21/2022] [Accepted: 02/20/2022] [Indexed: 01/08/2023]
Abstract
Life history and metabolism covary, but the mechanisms and individual traits responsible for these linkages remain unresolved. Dispersal capability is a critical component of life history that is constrained by metabolic capacities for energy production. Conflicting relationships between metabolism and life histories may be explained by accounting for variation in dispersal and maximal metabolic rates. We used female wing-polymorphic sand field crickets, Gryllus firmus, selected either for long wings (LW, flight-capable) or short wings (SW, flightless) to test the hypothesis that selection on dispersal capability drives the evolution of metabolic capacities. While resting metabolic rates were similar, long-winged crickets reached higher maximal metabolic rates than short-winged crickets, resulting in improved running performance. We further provided insight into the mechanisms responsible for covariation between life history and metabolism by comparing mitochondrial content of tissues involved in powering locomotion and assessing the function of mitochondria isolated from long- and short-winged crickets. Our results demonstrated that larger metabolic capacities in long-winged crickets were underpinned by increases in mitochondrial content of dorsoventral flight muscle and enhanced bioenergetic capacities of mitochondria within the fat body, a tissue responsible for fuel storage and mobilization. Thus, selection on flight capability correlates with increases in maximal, but not resting metabolic rates, through modifications of tissues powering locomotion at the cellular and organelle levels. This allows organisms to meet high energetic demands of activity for life history. Dispersal capability should therefore explicitly be considered as a potential factor driving the evolution of metabolic capacities.
Collapse
Affiliation(s)
- Lisa A Treidel
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | | | - Dillon J Chung
- National Institutes of Health, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - José P Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
20
|
Padda SS, Stahlschmidt ZR. Evaluating the effects of water and food limitation on the life history of an insect using a multiple-stressor framework. Oecologia 2022; 198:519-530. [PMID: 35067802 DOI: 10.1007/s00442-022-05115-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Many environmental stressors naturally covary, and the frequency and duration of stressors such as heat waves and droughts are increasing globally with climate change. Multiple stressors may have additive or non-additive effects on fitness-related traits, such as locomotion, reproduction, and somatic growth. Despite its importance to terrestrial animals, water availability is rarely incorporated into multiple-stressor frameworks. Water limitation often occurs concurrently with food limitation (e.g., droughts can trigger famines), and the acquisition of water and food can be linked because water is necessary for digestion and metabolism. Thus, we investigated the independent and interactive effects of water and food limitation on life-history traits using female crickets (Gryllus firmus), which exhibit a wing dimorphism mediating a life-history trade-off between flight and fecundity. Our results indicate that traits vary in their sensitivities to environmental factors and factor-factor interactions. For example, neither environmental factor affected flight musculature, only water limitation affected survival, and food and water availability non-additively (i.e., interactively) influenced body and ovary mass. Water availability had a larger effect on traits than food availability, affected more traits than food availability, and mediated the effects of food availability. Further, life-history strategy influenced the costs of multiple stressors because females investing in flight capacity exhibited greater reductions in body and ovary mass during stress relative to females lacking flight capacity. Therefore, water is important in the multiple-stressor framework, and understanding the dynamics of covarying environmental factors and life history may be critical in the context of climate change characterized by concurrent environmental stressors.
Collapse
Affiliation(s)
- Sugjit S Padda
- University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA.,Department of Ecosystem Science and Management, Pennsylvania State University, State College, PA, 16801, USA
| | | |
Collapse
|
21
|
Chang H, Guo X, Guo S, Yang N, Huang Y. Trade-off between flight capability and reproduction in Acridoidea (Insecta: Orthoptera). Ecol Evol 2021; 11:16849-16861. [PMID: 34938477 PMCID: PMC8668762 DOI: 10.1002/ece3.8317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
In many insect taxa, there is a well-established trade-off between flight capability and reproduction. The wing types of Acridoidea exhibit extremely variability from full length to complete loss in many groups, thus, provide a good model for studying the trade-off between flight and reproduction. In this study, we completed the sampling of 63 Acridoidea species, measured the body length, wing length, body weight, flight muscle weight, testis and ovary weight, and the relative wing length (RWL), relative flight muscle weight (RFW), and gonadosomatic index (GSI) of different species were statistically analyzed. The results showed that there were significant differences in RWL, RFW, and GSI among Acridoidea species with different wing types. RFW of long-winged species was significantly higher than that of short-winged and wingless species (p < .01), while GSI of wingless species was higher than that of long-winged and short-winged species. The RWL and RFW had a strong positive correlation in species with different wing types (correlation coefficient r = .8344 for male and .7269 for female, and p < .05), while RFW was strong negatively correlated with GSI (r = -.2649 for male and -.5024 for female, and p < .05). For Acridoidea species with wing dimorphism, males with relatively long wings had higher RFW than that of females with relatively short wings, while females had higher GSI. Phylogenetic comparative analysis showed that RWL, RFW, and GSI all had phylogenetic signals and phylogenetic dependence. These results revealed that long-winged individuals are flight capable at the expense of reproduction, while short-winged and wingless individuals cannot fly, but has greater reproductive output. The results support the trade-off between flight and reproduction in Acridoidea.
Collapse
Affiliation(s)
- Huihui Chang
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Xiaoqiang Guo
- College of Life SciencesShaanxi Normal UniversityXi’anChina
- Shimen Middle SchoolFoshanChina
| | - Shuli Guo
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Nan Yang
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Yuan Huang
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| |
Collapse
|
22
|
Aita RC, Kees AM, Aukema BH, Hutchison WD, Koch RL. Effects of Starvation, Age, and Mating Status on Flight Capacity of Laboratory-Reared Brown Marmorated Stink Bug (Hemiptera: Pentatomidae). ENVIRONMENTAL ENTOMOLOGY 2021; 50:532-540. [PMID: 33822022 DOI: 10.1093/ee/nvab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is an invasive species to North America and has spread throughout most of the territory. Understanding flight in H. halys is crucial to understanding the dispersal capacity and developing forecasting models for this pest. The purpose of this research was to assess the effects of starvation, age, mating status, sex, and preflight weight on flight parameters of laboratory-reared H. halys using computer-monitored flight mills. The mean flight distance observed over a 24-h period was 266 m and the maximum distance was 7.3 km. Overall, the flight capacity of males and females was similar, even though females weighed more than males. The proportion of H. halys that initiated flight was not affected by starvation, age, or mating status. The number of bouts of individual flights and velocity significantly increased with longer durations of starvation. The number of bouts significantly decreased with increasing age. The total distance flew and total flight time was not affected by starvation, age, or mating status. Although some statistical differences were seen across the experiments, these differences likely represent minimal ecological significance. Therefore, these results suggest that H. halys are remarkably resilient, which may contribute to their success as an invasive species. The findings of this study could help better predict the dispersal potential of H. halys in Minnesota.
Collapse
Affiliation(s)
- Rafael Carlesso Aita
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| | - Aubree M Kees
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| | - Brian H Aukema
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| | - W D Hutchison
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| | - Robert L Koch
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| |
Collapse
|
23
|
Lambret P, Janssens L, Stoks R. The impact of salinity on a saline water insect: Contrasting survival and energy budget. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104224. [PMID: 33736984 DOI: 10.1016/j.jinsphys.2021.104224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Water salinity is a major driver of aquatic insects' distribution. Saline species are usually generalists with high survival and performance at both low and high salinity levels. Yet, costs of high salinity may be underestimated as these are most often measured in terms of larval life history traits, while effects of larval stressors may only be detectable when looking at physiological traits and traits in the adult stage. Here, we assessed the lethal and sublethal physiological effects of embryonic and larval exposure to a range of salinity levels in the damselfly Lestes macrostigma, both during and after metamorphosis. This species inhabits temporary freshwaters where salinity increases during the drying phase. Salinity had no effect on egg hatching success within the range 2-9.5 g/L sea salt (conductivity range 3.45-14.52 mS/cm). With increasing salinity (up to 16 g/L, 23.35 mS/cm), growth rate decreased and larvae took longer to emerge and did so at a smaller size. Larval survival to metamorphosis increased with salinity up to 8 g/L (12.45 mS/cm) and then declined at 16 g/L. Exposure to salinity in the larval stage had no effect across metamorphosis on both the adult thorax muscle mass and flight performance, and the investment in immune function. Increasing salinity in the larval stage also had no effect on the energy available but increased the energy consumption in the adult stage, resulting in a lower net energy budget. These negative sublethal effects of increasing salinity hence bridged metamorphosis and contrasted with the mortality data, suggesting that the higher mortality at the low salinity levels selected for larvae with the best body condition. Our results highlight the importance of taking into account other life-history and physiological traits, besides mortality, ideally across different life stages, to better understand and predict consequences of increasing salinization on freshwater insects.
Collapse
Affiliation(s)
- Philippe Lambret
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, 13200 Arles, France; Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Deberiotstraat 32, 3000 Leuven, Belgium.
| | - Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Kirkton SD, Yazdani AA. Chronic electrical stimulation reduces reliance on anaerobic metabolism in locust jumping muscle. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110954. [PMID: 33831581 DOI: 10.1016/j.cbpa.2021.110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Chronic electrical stimulation (CES) is a well-documented method for changing mammalian muscle from more fast-twitch to slow-twitch metabolic and contractile profiles. Although both mammalian and insect muscles have many similar anatomical and physiological properties, it is unknown if CES produces similar muscle plasticity changes in insects. To test this idea, we separated Schistocerca americana grasshoppers into two groups (n = 37 to 47): one that was subjected to CES for 180 min each day for five consecutive days and one group that was not. Each group was then electrically stimulated for a single time period (0, 5, 30, 60, or 180 min) before measuring jumping muscle lactate, a characteristic of fast-twitch type fibers. At each time point, CES led to a significantly reduced jumping muscle lactate concentration. Based on similar short-term CES mammalian studies, the reduction in lactate production was most likely due to a reduced reliance on anaerobic metabolism. Thus, longer stimulation periods should result in greater aerobic enzymatic activities, altered myosin ATPase, and shift fiber types. This is the first study to use electrical stimulation to explore insect muscle plasticity and our results show that grasshopper jumping muscle responds similarly to mammalian muscle.
Collapse
Affiliation(s)
- Scott D Kirkton
- Department of Biological Sciences, Union College, Schenectady, NY 12308, United States of America.
| | - Ariella A Yazdani
- Department of Biological Sciences, Union College, Schenectady, NY 12308, United States of America
| |
Collapse
|
25
|
Urca T, Gefen E, Ribak G. Critical P2 and insect flight: The role of tracheal volume in the Oogenesis-Flight Syndrome. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110873. [DOI: 10.1016/j.cbpa.2020.110873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
|
26
|
Lehmann FO, Wang H, Engels T. Vortex trapping recaptures energy in flying fruit flies. Sci Rep 2021; 11:6992. [PMID: 33772058 PMCID: PMC7997922 DOI: 10.1038/s41598-021-86359-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Flapping flight is one of the most costly forms of locomotion in animals. To limit energetic expenditures, flying insects thus developed multiple strategies. An effective mechanism to reduce flight power expenditures is the harvesting of kinetic energy from motion of the surrounding air. We here show an unusual mechanism of energy harvesting in an insect that recaptures the rotational energy of air vortices. The mechanism requires pronounced chordwise wing bending during which the wing surface momentary traps the vortex and transfers its kinetic energy to the wing within less than a millisecond. Numerical and robotic controls show that the decrease in vortex strength is minimal without the nearby wing surface. The measured energy recycling might slightly reduce the power requirements needed for body weight support in flight, lowering the flight costs in animals flying at elevated power demands. An increase in flight efficiency improves flight during aversive manoeuvring in response to predation and long-distance migration, and thus factors that determine the worldwide abundance and distribution of insect populations.
Collapse
Affiliation(s)
- Fritz-Olaf Lehmann
- grid.10493.3f0000000121858338Department of Animal Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Hao Wang
- grid.64938.300000 0000 9558 9911Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing, 210016 China
| | - Thomas Engels
- grid.10493.3f0000000121858338Department of Animal Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| |
Collapse
|
27
|
Zhang ZY, Ren J, Chu F, Guan JX, Yang GY, Liu YT, Zhang XY, Ge SQ, Huang QY. Biochemical, molecular, and morphological variations of flight muscles before and after dispersal flight in a eusocial termite, Reticulitermes chinensis. INSECT SCIENCE 2021; 28:77-92. [PMID: 32039551 DOI: 10.1111/1744-7917.12763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Swarming behavior facilitates pair formation, and therefore mating, in many eusocial termites. However, the physiological adjustments and morphological transformations of the flight muscles involved in flying and flightless insect forms are still unclear. Here, we found that the dispersal flight of the eusocial termite Reticulitermes chinensis Snyder led to a gradual decrease in adenosine triphosphate supply from oxidative phosphorylation, as well as a reduction in the activities of critical mitochondrial respiratory enzymes from preflight to dealation. Correspondingly, using three-dimensional reconstruction and transmission electron microscopy (TEM), the flight muscles were found to be gradually deteriorated during this process. In particular, two tergo-pleural muscles (IItpm5 and III-tpm5) necessary to adjust the rotation of wings for wing shedding behavior were present only in flying alates. These findings suggest that flight muscle systems vary in function and morphology to facilitate the swarming flight procedure, which sheds light on the important role of swarming in successful extension and fecundity of eusocial termites.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Ren
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fei Chu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun-Xia Guan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guang-Yu Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Tong Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin-Ying Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Ying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Kim MJ, O'Connor MB. Drosophila Activin signaling promotes muscle growth through InR/TORC1-dependent and -independent processes. Development 2021; 148:dev190868. [PMID: 33234715 PMCID: PMC7823159 DOI: 10.1242/dev.190868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022]
Abstract
The Myostatin/Activin branch of the TGF-β superfamily acts as a negative regulator of vertebrate skeletal muscle size, in part, through downregulation of insulin/insulin-like growth factor 1 (IGF-1) signaling. Surprisingly, recent studies in Drosophila indicate that motoneuron-derived Activin signaling acts as a positive regulator of muscle size. Here we demonstrate that Drosophila Activin signaling promotes the growth of muscle cells along all three axes: width, thickness and length. Activin signaling positively regulates the insulin receptor (InR)/TORC1 pathway and the level of Myosin heavy chain (Mhc), an essential sarcomeric protein, via increased Pdk1 and Akt1 expression. Enhancing InR/TORC1 signaling in the muscle of Activin pathway mutants restores Mhc levels close to those of the wild type, but only increases muscle width. In contrast, hyperactivation of the Activin pathway in muscles increases overall larval body and muscle fiber length, even when Mhc levels are lowered by suppression of TORC1. Together, these results indicate that the Drosophila Activin pathway regulates larval muscle geometry and body size via promoting InR/TORC1-dependent Mhc production and the differential assembly of sarcomeric components into either pre-existing or new sarcomeric units depending on the balance of InR/TORC1 and Activin signals.
Collapse
Affiliation(s)
- Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Plazio E, Bubová T, Vrabec V, Nowicki P. Sex-biased topography effects on butterfly dispersal. MOVEMENT ECOLOGY 2020; 8:50. [PMID: 33317641 PMCID: PMC7737334 DOI: 10.1186/s40462-020-00234-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Metapopulation persistence in fragmented landscapes is assured by dispersal of individuals between local populations. In this scenario the landscape topography, although usually neglected, may have an important role in shaping dispersal throughout the matrix separating habitat patches. Due to inter-sexual differences in optimal reproductive strategies, i.e., males maximizing the number of mating opportunities and females maximizing the offspring survival chances, topography-related constraints are expected to exert a different effect on male and female dispersal behaviour. We tested sex-biased topography effects on butterfly dispersal, with the following hypotheses: (1) females are constrained by topography in their movements and avoid hill crossing; (2) male dispersal is primarily driven by two-dimensional spatial structure of the habitat patches (i.e. their geometric locations and sizes) and little influenced by topography. METHODS Following intensive mark-recapture surveys of Maculinea (= Phengaris) nausithous and M. teleius within a landscape characterised by an alternation of hills and valleys, we investigated sex-specific patterns in their inter-patch movement probabilities derived with a multi-state recapture model. In particular, we (1) analysed the fit of dispersal kernels based on Euclidean (= straight line) vs. topography-based (= through valley) distances; (2) compared movement probabilities for the pairs of patches separated or not by topographic barriers; and (3) tested the differences in the downward and upward movement probabilities within the pairs of patches. RESULTS Euclidean distances between patches proved to be a substantially stronger predictor of inter-patch movement probabilities in males, while inter-patch distances measured along valleys performed much better for females, indicating that the latter tend to predominantly follow valleys when dispersing. In addition, there were significantly lower probabilities of movements across hills in females, but not in males. CONCLUSIONS Both above results provide support for the hypothesis that topography restricts dispersal in females, but not in males. Since the two sexes contribute differently to metapopulation functioning, i.e., only female dispersal can result in successful (re)colonisations of vacant patches, the topography effects exerted on females should be considered with particular attention when landscape management and conservation actions are designed in order to maintain the functional connectivity of metapopulation systems.
Collapse
Affiliation(s)
- Elisa Plazio
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Terezie Bubová
- Department of Zoology and Fisheries, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 21, Prague 6, Czech Republic
| | - Vladimír Vrabec
- Department of Zoology and Fisheries, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 21, Prague 6, Czech Republic
| | - Piotr Nowicki
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
30
|
Peeters C, Keller RA, Khalife A, Fischer G, Katzke J, Blanke A, Economo EP. The loss of flight in ant workers enabled an evolutionary redesign of the thorax for ground labour. Front Zool 2020; 17:33. [PMID: 33088333 PMCID: PMC7574298 DOI: 10.1186/s12983-020-00375-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Explanations for the ecological dominance of ants generally focus on the benefits of division of labour and cooperation during foraging. However, the principal innovation of ants relative to their wasp ancestors was the evolution of a new phenotype: a wingless worker caste optimized for ground labour. Ant workers are famous for their ability to lift and carry heavy loads, but we know surprisingly little about the morphological basis of their strength. Here we examine the consequences of the universal loss of flight in ant workers on skeletomuscular adaptations in the thorax for enhanced foraging on six legs. Results Using X-ray microcomputed tomography and 3D segmentation, we compared winged queens and wingless workers in Euponera sikorae (subfamily Ponerinae) and Cataglyphis savignyi (subfamily Formicinae). Workers are characterized by five major changes to their thorax: i) fusion of the articulated flight thorax (queens) into a rigid box optimized to support the muscles that operate the head, legs and abdomen, ii) redesign of internal cuticular structures for better bracing and muscle attachment, iii) substantial enlargement of the neck muscles for suspending and moving the head, iv) lengthening of the external trochanter muscles, predominant for the leg actions that lift the body off the ground, v) modified angle of the petiole muscles that are key for flexion of the abdomen. We measured volumes and pennation angles for a few key muscles to assess their increased efficacy. Our comparisons of additional workers across five genera in subfamilies Dorylinae and Myrmicinae show these modifications in the wingless thorax to be consistent. In contrast, a mutillid wasp showed a different pattern of muscle adaptations resulting from the lack of wing muscles. Conclusions Rather than simply a subtraction of costly flight muscles, we propose the ant worker thorax evolved into a power core underlying stronger mandibles, legs, and sting. This contrasts with solitary flightless insects where the lack of central place foraging generated distinct selective pressures for rearranging the thorax. Stronger emphasis is needed on morphological innovations of social insects to further our understanding of the evolution of social behaviours.
Collapse
Affiliation(s)
- Christian Peeters
- Institut d'Écologie et des Sciences de l'Environnement, Sorbonne Université, CNRS, 75005 Paris, France
| | - Roberto A Keller
- Museu Nacional de História Natural e da Ciência & cE3c-FCUL, Universidade de Lisboa, Lisbon, Portugal.,Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Adam Khalife
- Institut d'Écologie et des Sciences de l'Environnement, Sorbonne Université, CNRS, 75005 Paris, France.,Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Georg Fischer
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Julian Katzke
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Alexander Blanke
- Institute for Zoology, Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| |
Collapse
|
31
|
Abstract
Size is a key to locomotion. In insects, miniaturization leads to fundamental changes in wing structure and kinematics, making the study of flight in the smallest species important for basic biology and physics, and, potentially, for applied disciplines. However, the flight efficiency of miniature insects has never been studied, and their speed and maneuverability have remained unknown. We report a comparative study of speeds and accelerations in the smallest free-living insects, featherwing beetles (Coleoptera: Ptiliidae), and in larger representatives of related groups of Staphylinoidea. Our results show that the average and maximum flight speeds of larger ptiliids are extraordinarily high and comparable to those of staphylinids that have bodies 3 times as long. This is one of the few known exceptions to the “Great Flight Diagram,” according to which the flight speed of smaller organisms is generally lower than that of larger ones. The horizontal acceleration values recorded in Ptiliidae are almost twice as high as even in Silphidae, which are more than an order of magnitude larger. High absolute and record-breaking relative flight characteristics suggest that the unique morphology and kinematics of the ptiliid wings are effective adaptations to flight at low Reynolds numbers. These results are important for understanding the evolution of body size and flight in insects and pose a challenge to designers of miniature biomorphic aircraft.
Collapse
|
32
|
Han CS. Density-dependent sex-biased development of macroptery in a water strider. Ecol Evol 2020; 10:9514-9521. [PMID: 32953079 PMCID: PMC7487258 DOI: 10.1002/ece3.6644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
In wing-polymorphic insects, wing morphs differ not only in dispersal capability but also in life history traits because of trade-offs between flight capability and reproduction. When the fitness benefits and costs of producing wings differ between males and females, sex-specific trade-offs can result in sex differences in the frequency of long-winged individuals. Furthermore, the social environment during development affects sex differences in wing development, but few empirical tests of this phenomenon have been performed to date. Here, I used the wing-dimorphic water strider Tenagogerris euphrosyne to test how rearing density and sex ratio affect the sex-specific development of long-winged dispersing morphs (i.e., sex-specific macroptery). I also used a full-sib, split-family breeding design to assess genetic effects on density-dependent, sex-specific macroptery. I reared water strider nymphs at either high or low densities and measured their wing development. I found that long-winged morphs developed more frequently in males than in females when individuals were reared in a high-density environment. However, the frequency of long-winged morphs was not biased according to sex when individuals were reared in a low-density environment. In addition, full-sib males and females showed similar macroptery incidence rates at low nymphal density, whereas the macroptery incidence rates differed between full-sib males and females at high nymphal density. Thus complex gene-by-environment-by-sex interactions may explain the density-specific levels of sex bias in macroptery, although this interpretation should be treated with some caution. Overall, my study provides empirical evidence for density-specific, sex-biased wing development. My findings suggest that social factors as well as abiotic factors can be important in determining sex-biased wing development in insects.
Collapse
Affiliation(s)
- Chang S. Han
- Department of BiologyKyung Hee UniversitySeoulKorea
| |
Collapse
|
33
|
Patterns of sexual dimorphism in flight agility in territorial and non-territorial Odonata. J ETHOL 2020. [DOI: 10.1007/s10164-020-00670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Zullo L, Bozzo M, Daya A, Di Clemente A, Mancini FP, Megighian A, Nesher N, Röttinger E, Shomrat T, Tiozzo S, Zullo A, Candiani S. The Diversity of Muscles and Their Regenerative Potential across Animals. Cells 2020; 9:cells9091925. [PMID: 32825163 PMCID: PMC7563492 DOI: 10.3390/cells9091925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Collapse
Affiliation(s)
- Letizia Zullo
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (L.Z.); (A.Z.)
| | - Matteo Bozzo
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Alessio Di Clemente
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS, INSERM, 06107 Nice, France;
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Paris, France;
| | - Alberto Zullo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy;
- Correspondence: (L.Z.); (A.Z.)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| |
Collapse
|
35
|
Guo JL, Li XK, Shen XJ, Wang ML, Wu KM. Flight Performance of Mamestra brassicae (Lepidoptera: Noctuidae) Under Different Biotic and Abiotic Conditions. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5695772. [PMID: 31899494 PMCID: PMC6941620 DOI: 10.1093/jisesa/iez126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Mamestra brassicae L. is an important, regionally migratory pest of vegetable crops in Europe and Asia. Its migratory activity contributes significantly to population outbreaks, causing severe crop yield losses. Because an in-depth understanding of flight performance is key to revealing migratory patterns, here we used a computer-linked flight mill and stroboscope to study the flight ability and wingbeat frequency (WBF) of M. brassicae in relation to sex, age, temperature, and relative humidity (RH). The results showed that age significantly affected the flight ability and WBF of M. brassicae, and 3-d-old individuals performed the strongest performance (total flight distance: 45.6 ± 2.5 km; total flight duration: 9.3 ± 0.3 h; WBF: 44.0 ± 0.5 Hz at 24°C and 75% RH). The age for optimal flight was considered to be 2-3 d old. Temperature and RH also significantly affected flight ability and WBF; flight was optimal from 23°C to 25°C and 64-75% RH. Because M. brassicae thus has great potential to undertake long-distance migration, better knowledge of its flight behavior and migration will help establish a pest forecasting and early-warning system.
Collapse
Affiliation(s)
- Jiang-Long Guo
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiao-Kang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiu-Jing Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Meng-Lun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Kong-Ming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
36
|
Cremonez PSG, Matsumoto JF, Andrello AC, Roggia S, Pinheiro DO, Neves PMOJ. Macro-elements in the hemolymph of adult Euschistus heros (Fabr.) (Hemiptera: Pentatomidae) treated with pyriproxyfen. Comp Biochem Physiol C Toxicol Pharmacol 2019; 220:47-51. [PMID: 30825637 DOI: 10.1016/j.cbpc.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/11/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Euschistus heros is an important pest in many crops in Brazil, and different control strategies, mainly involving chemicals, have been evaluated; however, the side effects of these chemicals on the balance of inorganic element levels in the hemolymph are unknown. Thus, the aim of this work was to determine the concentration of inorganic elements (focusing on macro-elements) in the hemolymph of female and male E. heros adults, after applying pyriproxyfen at a sublethal concentration (LC30 = 6.68 mL L-1 diluted in distilled water) to 4th instar nymphs, which were kept in controlled conditions. The hemolymph pool was removed 48 h after adult emergence, centrifuged and placed on an acrylic disk added with Gallium as internal standard for the analysis of total reflection X-ray fluorescence. Most of the elements in the control treatment did not differ between females and males. However, following insecticide application to females and males, respectively, there was a significant increase in sulfur (19 and 51%), chlorine (33 and 137%) and calcium (47 and 82%) in the hemolymph. The significantly higher increase in macro-elements in males' hemolymph indicates that the action of pyriproxyfen may be sex-specific. Phosphorus and potassium concentrations also differed between females and males in the control and treated groups. The observed variation in inorganic elements in the insect's hemolymph may be related to the unknown effects of pyriproxyfen, mainly on immune and reproductive performance.
Collapse
Affiliation(s)
- Paulo S G Cremonez
- Department of Agronomy, State University of Londrina - UEL, Rod. Celso Garcia Cid, PR-445, Km 380, Mailbox: 10.011, 86057-970 Londrina, Paraná State, Brazil
| | - Janaina F Matsumoto
- Department of Agronomy, State University of Londrina - UEL, Rod. Celso Garcia Cid, PR-445, Km 380, Mailbox: 10.011, 86057-970 Londrina, Paraná State, Brazil
| | - Avacir C Andrello
- Department of Physics, State University of Londrina - UEL, Rod. Celso Garcia Cid, PR-445, Km 380, Cx. Postal 10.011, CEP 86057-970 Londrina, PR, Brazil.
| | - Samuel Roggia
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Soja, Rod. Carlos João Strass, PR-545, s/n, Acesso Orlando Amaral, Mailbox: 23, Warta, 86001-970 Londrina, Paraná State, Brazil.
| | - Daniela O Pinheiro
- Department of Histology, State University of Londrina - UEL, Rod. Celso Garcia Cid, PR-445, Km 380, Cx. Postal 10.011, CEP 86057-970 Londrina, PR, Brazil.
| | - Pedro M O J Neves
- Department of Agronomy, State University of Londrina - UEL, Rod. Celso Garcia Cid, PR-445, Km 380, Mailbox: 10.011, 86057-970 Londrina, Paraná State, Brazil.
| |
Collapse
|
37
|
Ziv Y, Davidowitz G. When Landscape Ecology Meets Physiology: Effects of Habitat Fragmentation on Resource Allocation Trade-Offs. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Jaumann S, Snell-Rood EC. Adult nutritional stress decreases oviposition choosiness and fecundity in female butterflies. Behav Ecol 2019. [DOI: 10.1093/beheco/arz022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sarah Jaumann
- Department of Ecology, Evolution and Behavior, University of Minnesota, MN, USA
- Department of Biological Sciences, The George Washington University, NW, Suite, Washington, DC, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, MN, USA
| |
Collapse
|
39
|
Schilder RJ, Stewart H. Parasitic gut infection in Libellula pulchella causes functional and molecular resemblance of dragonfly flight muscle to skeletal muscle of obese vertebrates. ACTA ACUST UNITED AC 2019; 222:jeb.188508. [PMID: 30659084 DOI: 10.1242/jeb.188508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
We previously demonstrated the existence of a naturally occurring metabolic disease phenotype in Libellula pulchella dragonflies that shows high similarity to vertebrate obesity and type II diabetes, and is caused by a protozoan gut parasite. To further mechanistic understanding of how this metabolic disease phenotype affects fitness of male L. pulchella in vivo, we examined infection effects on in situ muscle performance and molecular traits relevant to dragonfly flight performance in nature. Importantly, these traits were previously shown to be affected in obese vertebrates. Similarly to obesity effects in rat skeletal muscle, dragonfly gut infection caused a disruption of relationships between body mass, flight muscle power output and alternative pre-mRNA splicing of troponin T, which affects muscle calcium sensitivity and performance in insects and vertebrates. In addition, when simulated in situ to contract at cycle frequencies ranging from 20 to 45 Hz, flight muscles of infected individuals displayed a left shift in power-cycle frequency curves, indicating a significant reduction in their optimal cycle frequency. Interestingly, these power-cycle curves were similar to those produced by flight muscles of non-infected teneral (i.e. physiologically immature) adult L. pulchella males. Overall, our results indicate that the effects of metabolic disease on skeletal muscle physiology in natural insect systems are similar to those observed in vertebrates maintained in laboratory settings. More generally, they indicate that study of natural, host-parasite interactions can contribute important insight into how environmental factors other than diet and exercise may contribute to the development of metabolic disease phenotypes.
Collapse
Affiliation(s)
- Rudolf J Schilder
- Pennsylvania State University, Department of Entomology, 501 Ag Sciences & Industries Building, State College, PA 16802, USA .,Pennsylvania State University, Department of Biology, 501 Ag Sciences & Industries Building, State College, PA 16802, USA
| | - Hannah Stewart
- Pennsylvania State University, Department of Entomology, 501 Ag Sciences & Industries Building, State College, PA 16802, USA
| |
Collapse
|
40
|
Gypsy moth genome provides insights into flight capability and virus-host interactions. Proc Natl Acad Sci U S A 2019; 116:1669-1678. [PMID: 30642971 DOI: 10.1073/pnas.1818283116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since its accidental introduction to Massachusetts in the late 1800s, the European gypsy moth (EGM; Lymantria dispar dispar) has become a major defoliator in North American forests. However, in part because females are flightless, the spread of the EGM across the United States and Canada has been relatively slow over the past 150 years. In contrast, females of the Asian gypsy moth (AGM; Lymantria dispar asiatica) subspecies have fully developed wings and can fly, thereby posing a serious economic threat if populations are established in North America. To explore the genetic determinants of these phenotypic differences, we sequenced and annotated a draft genome of L. dispar and used it to identify genetic variation between EGM and AGM populations. The 865-Mb gypsy moth genome is the largest Lepidoptera genome sequenced to date and encodes ∼13,300 proteins. Gene ontology analyses of EGM and AGM samples revealed divergence between these populations in genes enriched for several gene ontology categories related to muscle adaptation, chemosensory communication, detoxification of food plant foliage, and immunity. These genetic differences likely contribute to variations in flight ability, chemical sensing, and pathogen interactions among EGM and AGM populations. Finally, we use our new genomic and transcriptomic tools to provide insights into genome-wide gene-expression changes of the gypsy moth after viral infection. Characterizing the immunological response of gypsy moths to virus infection may aid in the improvement of virus-based bioinsecticides currently used to control larval populations.
Collapse
|
41
|
Renault D, Yousef H, Mohamed AA. The multilevel antibiotic-induced perturbations to biological systems: Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:821-833. [PMID: 29909308 DOI: 10.1016/j.envpol.2018.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Antibiotics have been increasingly used over the past decades for human medicine, food-animal agriculture, aquaculture, and plant production. A significant part of the active molecules of antibiotics can be released into the environment, in turn affecting ecosystem functioning and biogeochemical processes. At lower organizational scales, these substances affect bacterial symbionts of insects, with negative consequences on growth and development of juveniles, and population dynamics. Yet, the multiple alterations of cellular physiology and metabolic processes have remained insufficiently explored in insects. We evaluated the effects of five antibiotics with different mode of action, i.e. ampicillin, cefradine, chloramphenicol, cycloheximide, and tetracycline, on the survival and ultrastructural organization of the flight muscles of newly emerged blow flies Chrysomya albiceps. Then, we examined the effects of different concentrations of antibiotics on mitochondrial protein content, efficiency of oxidative phosphorylation, and activity of transaminases (Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase) and described the cellular metabolic perturbations of flies treated with antibiotics. All antibiotics affected the survival of the insects and decreased the total mitochondrial protein content in a dose-dependent manner. Ultrastructural organization of flight muscles in treated flies differs dramatically compared to the control groups and severe pathological damages/structures disorganization of mitochondria appeared. The activities of mitochondrial transaminases significantly increased with increased antibiotic concentrations. The oxidation rate of pyruvate + proline from isolated mitochondria of the flight muscles of 1-day-old flies was significantly reduced at high doses of antibiotics. In parallel, the level of several metabolites, including TCA cycle intermediates, was reduced in antibiotics-treated flies. Overall, antibiotics provoked a system-wide alteration of the structure and physiology of flight muscles of the blow fly Ch. albiceps, and may have fitness consequences at the organism level. Environmental antibiotic pollution is likely to have unwanted cascading ecological effects of insect population dynamics and community structure.
Collapse
Affiliation(s)
- David Renault
- Université de Rennes 1, UMR CNRS 6553 EcoBio, 263 Avenue du Gal Leclerc, CS 74205, 35042 Rennes Cedex, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| | - Hesham Yousef
- Department of Entomology, Faculty of Science, Cairo University, Giza - PO Box 12613, Egypt
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza - PO Box 12613, Egypt
| |
Collapse
|
42
|
González AL, Céréghino R, Dézerald O, Farjalla VF, Leroy C, Richardson BA, Richardson MJ, Romero GQ, Srivastava DS. Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus‐based communities across Central and South America. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13197] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Angélica L. González
- Biology Department & Center for Computational and Integrative Biology Rutgers University Camden New JerseyUSA
- Department of Zoology and Biodiversity Research CentreUniversity of British Columbia Vancouver British Columbia Canada
| | - Régis Céréghino
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement (UMR 5245Université de Toulouse, CNRS Toulouse France
| | - Olivier Dézerald
- Biology Department & Center for Computational and Integrative Biology Rutgers University Camden New JerseyUSA
| | - Vinicius F. Farjalla
- Department of Ecology, Biology InstituteFederal University of Rio de Janeiro (UFRJ), Ilha do Fundão Rio de Janeiro Brazil
| | - Céline Leroy
- IRDUMR AMAP (botAnique et Modélisation de l'Architecture des Plantes et des végétations) Montpellier France
- UMR Ecologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles) Kourou France
| | - Barbara A. Richardson
- Edinburgh UK
- Luquillo LTER, Inst. for Tropical Ecosystem StudiesUniv. of Puerto Rico Río Piedras Puerto Rico
| | - Michael J. Richardson
- Edinburgh UK
- Luquillo LTER, Inst. for Tropical Ecosystem StudiesUniv. of Puerto Rico Río Piedras Puerto Rico
| | - Gustavo Q. Romero
- Departamento de Biologia Animal, Instituto de Biologia (IB)Universidade Estadual de Campinas (UNICAMP) Campinas‐SP Brazil
| | - Diane S. Srivastava
- Department of Zoology and Biodiversity Research CentreUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
43
|
Raine EH, Gray CL, Mann DJ, Slade EM. Tropical dung beetle morphological traits predict functional traits and show intraspecific differences across land uses. Ecol Evol 2018; 8:8686-8696. [PMID: 30271537 PMCID: PMC6157683 DOI: 10.1002/ece3.4218] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Functional traits and functional diversity measures are increasingly being used to examine land use effects on biodiversity and community assembly rules. Morphological traits are often used directly as functional traits. However, behavioral characteristics are more difficult to measure. Establishing methods to derive behavioral traits from morphological measurements is necessary to facilitate their inclusion in functional diversity analyses. We collected morphometric data from over 1,700 individuals of 12 species of dung beetle to establish whether morphological measurements can be used as predictors of behavioral traits. We also compared morphology among individuals collected from different land uses (primary forest, logged forest, and oil palm plantation) to identify whether intraspecific differences in morphology vary among land use types. We show that leg and eye measurements can be used to predict dung beetle nesting behavior and period of activity and we used this information to confirm the previously unresolved nesting behavior for Synapsis ritsemae. We found intraspecific differences in morphological traits across different land use types. Phenotypic plasticity was found for traits associated with dispersal (wing aspect ratio and wing loading) and reproductive capacity (abdomen size). The ability to predict behavioral functional traits from morphology is useful where the behavior of individuals cannot be directly observed, especially in tropical environments where the ecology of many species is poorly understood. In addition, we provide evidence that land use change can cause phenotypic plasticity in tropical dung beetle species. Our results reinforce recent calls for intraspecific variation in traits to receive more attention within community ecology.
Collapse
Affiliation(s)
| | - Claudia L. Gray
- Department of ZoologyUniversity of OxfordOxfordUK
- School of Life SciencesUniversity of SussexBrightonUK
| | - Darren J. Mann
- Department of ZoologyUniversity of OxfordOxfordUK
- Oxford University Museum of Natural HistoryOxfordUK
| | - Eleanor M. Slade
- Department of ZoologyUniversity of OxfordOxfordUK
- Lancaster Environment CentreUniversity of LancasterLancasterUK
| |
Collapse
|
44
|
Wone BWM, Pathak J, Davidowitz G. Flight duration and flight muscle ultrastructure of unfed hawk moths. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:457-464. [PMID: 29782921 DOI: 10.1016/j.asd.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Flight muscle breakdown has been reported for many orders of insects, but the basis of this breakdown in insects with lifelong dependence on flight is less clear. Lepidopterans show such muscle changes across their lifespans, yet how this change affects the ability of these insects to complete their life cycles is not well documented. We investigated the changes in muscle function and ultrastructure of unfed aging adult hawk moths (Manduca sexta). Flight duration was examined in young, middle-aged, and advanced-aged unfed moths. After measurement of flight duration, the main flight muscle (dorsolongitudinal muscle) was collected and histologically prepared for transmission electron microscopy to compare several measurements of muscle ultrastructure among moths of different ages. Muscle function assays revealed significant positive correlations between muscle ultrastructure and flight distance that were greatest in middle-aged moths and least in young moths. In addition, changes in flight muscle ultrastructure were detected across treatment groups. The number of mitochondria in muscle cells peaked in middle-aged moths. Many wild M. sexta do not feed as adults; thus, understanding the changes in flight capacity and muscle ultrastructure in unfed moths provides a more complete understanding of the ecophysiology and resource allocation strategies of this species.
Collapse
Affiliation(s)
- Bernard W M Wone
- Department of Entomology, University of Arizona, Tucson, AZ, USA; Department of Biology, University of South Dakota, Vermillion, SD, USA.
| | - Jaika Pathak
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Goggy Davidowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
45
|
Snelling EP, Duncker R, Jones KK, Fagan-Jeffries EP, Seymour RS. Flight metabolic rate of Locusta migratoria in relation to oxygen partial pressure in atmospheres of varying diffusivity and density. ACTA ACUST UNITED AC 2018; 220:4432-4439. [PMID: 29187621 DOI: 10.1242/jeb.168187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
Abstract
Flying insects have the highest mass-specific metabolic rate of all animals. Oxygen is supplied to the flight muscles by a combination of diffusion and convection along the internal air-filled tubes of the tracheal system. This study measured maximum flight metabolic rate (FMR) during tethered flight in the migratory locust Locusta migratoria under varying oxygen partial pressure (PO2 ) in background gas mixtures of nitrogen (N2), sulfur hexafluoride (SF6) and helium (He), to vary O2 diffusivity and gas mixture density independently. With N2 as the sole background gas (normodiffusive-normodense), mass-independent FMR averaged 132±19 mW g-0.75 at normoxia (PO2 =21 kPa), and was not limited by tracheal system conductance, because FMR did not increase in hyperoxia. However, FMR declined immediately with hypoxia, oxy-conforming nearly completely. Thus, the locust respiratory system is matched to maximum functional requirements, with little reserve capacity. With SF6 as the sole background gas (hypodiffusive-hyperdense), the shape of the relationship between FMR and PO2 was similar to that in N2, except that FMR was generally lower (e.g. 24% lower at normoxia). This appeared to be due to increased density of the gas mixture rather than decreased O2 diffusivity, because hyperoxia did not reverse it. Normoxic FMR was not significantly different in He-SF6 (hyperdiffusive-normodense) compared with the N2 background gas, and likewise there was no significant difference between FMR in SF6-He (normodiffusive-hyperdense) compared with the SF6 background gas. The results indicate that convection, not diffusion, is the main mechanism of O2 delivery to the flight muscle of the locust when demand is high.
Collapse
Affiliation(s)
- Edward P Snelling
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, Gauteng 2193, South Africa .,Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca Duncker
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Karl K Jones
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Erinn P Fagan-Jeffries
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Roger S Seymour
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
46
|
Asplen MK. Dispersal strategies in terrestrial insects. CURRENT OPINION IN INSECT SCIENCE 2018; 27:16-20. [PMID: 30025629 DOI: 10.1016/j.cois.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Terrestrial insects frequently disperse and/or migrate, either through their own self-directed actions or via other vehicles. Here, the following recent advances in the study of insect dispersal are highlighted: (1) components of classic hypotheses (marginal value theorem and inbreeding avoidance via sex-specific dispersal) have found varying degrees of recent support; (2) modern genetic tools have uncovered several candidate dispersal genes; (3) dispersal syndromes vary in their genetic and/or physiological constraints; and (4) common laboratory techniques may not accurately reflect dispersal in the field. A common theme is the tendency for breakthroughs to be concentrated in species with extremely well-defined dispersal phenotypes (e.g., long-distance migrants, wing polymorphic insects), suggesting the need for increased focus on species exhibiting less self-directed modes of dispersal.
Collapse
Affiliation(s)
- Mark K Asplen
- Natural Sciences Department, Metropolitan State University, 700 East Seventh Street, Saint Paul, MN 55106-5000, USA.
| |
Collapse
|
47
|
Heidinger IMM, Hein S, Feldhaar H, Poethke HJ. Biased dispersal of Metrioptera bicolor, a wing dimorphic bush-cricket. INSECT SCIENCE 2018; 25:297-308. [PMID: 27774776 DOI: 10.1111/1744-7917.12412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/17/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
In the highly fragmented landscape of central Europe, dispersal is of particular importance as it determines the long-term survival of animal populations. Dispersal not only secures the recolonization of patches where populations went extinct, it may also rescue small populations and thus prevent local extinction events. As dispersal involves different individual fitness costs, the decision to disperse should not be random but context-dependent and often will be biased toward a certain group of individuals (e.g., sex- and wing morph-biased dispersal). Although biased dispersal has far-reaching consequences for animal populations, immediate studies of sex- and wing morph-biased dispersal in orthopterans are very rare. Here, we used a combined approach of morphological and genetic analyses to investigate biased dispersal of Metrioptera bicolor, a wing dimorphic bush-cricket. Our results clearly show wing morph-biased dispersal for both sexes of M. bicolor. In addition, we found sex-biased dispersal for macropterous individuals, but not for micropters. Both, morphological and genetic data, favor macropterous males as dispersal unit of this bush-cricket species. To get an idea of the flight ability of M. bicolor, we compared our morphological data with that of Locusta migratoria and Schistocerca gregaria, which are very good flyers. Based on our morphological data, we suggest a good flight ability for macropters of M. bicolor, although flying individuals of this species are seldom observed.
Collapse
Affiliation(s)
- Ina Monika Margret Heidinger
- Field Station Fabrikschleichach, University of Würzburg, Rauhenebrach, Germany
- Bavarian State Institute for Viticulture and Horticulture, Bee Research Center, An der Steige 15, 97206, Veitshöchheim, Germany
| | | | - Heike Feldhaar
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
48
|
Levin E, McCue MD, Davidowitz G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc Biol Sci 2018; 284:rspb.2016.2126. [PMID: 28148746 DOI: 10.1098/rspb.2016.2126] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients-amino acids and fatty acids. We created artificial nectars spiked with 13C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals.
Collapse
Affiliation(s)
- Eran Levin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Marshall D McCue
- Department of Biological Sciences, St. Mary's University, San Antonio, TX, USA
| | - Goggy Davidowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
49
|
A procession of metabolic alterations accompanying muscle senescence in Manduca sexta. Sci Rep 2018; 8:1006. [PMID: 29343811 PMCID: PMC5772441 DOI: 10.1038/s41598-018-19630-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/03/2018] [Indexed: 11/20/2022] Open
Abstract
Biological aging profoundly impairs muscle function, performance, and metabolism. Because the progression of metabolic alterations associated with aging muscle has not been chronicled, we tracked the metabolic profiles of flight muscle from middle to advanced age in Manduca sexta to identify key molecules during the progression of muscle aging, as well as to evaluate the utility of the M. sexta system for molecular dissection of muscle aging. We identified a number of differences between Diel Time, Sexes, and Muscle Ages, including changes in metabolites related to energetics, extracellular matrix turnover, and glutathione metabolism. Increased abundances of glycolytic metabolites suggest a shift toward increased glycolysis with advancing age, whereas decreased abundances in lysolipids and acylcarnitines reflect decreasing beta-oxidation. We also observed a shift towards decreased polyamine metabolism with age, which might result in an age-related decline in lipid metabolism possibly due to regulation of energy metabolism by polyamines. Collectively, our findings demonstrate the feasibility of our system and approach and provide a deeper understanding of lepidopteran aging. More importantly, the results identify the key altered metabolic pathways that collectively contribute to the muscle aging phenotype and thereby improve our understanding of muscle senescence.
Collapse
|
50
|
|