1
|
Yang S, Ye Z, Chen L, Zhou X, Li W, Cheng F. Circadian Clock Gene Bmal1: A Molecular Bridge from AKI to CKD. Biomolecules 2025; 15:77. [PMID: 39858471 PMCID: PMC11762869 DOI: 10.3390/biom15010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) represent two frequently observed clinical conditions. AKI is characterized by an abrupt decrease in glomerular filtration rate (GFR), generally associated with elevated serum creatinine (sCr), blood urea nitrogen (BUN), and electrolyte imbalances. This condition usually persists for approximately a week, causing a transient reduction in kidney function. If these abnormalities continue beyond 90 days, the condition is redefined as chronic kidney disease (CKD) or may advance to end-stage renal disease (ESRD). Recent research increasingly indicates that maladaptive repair mechanisms after AKI significantly contribute to the development of CKD. Thus, implementing early interventions to halt the progression from AKI to CKD has the potential to markedly improve patient outcomes. Although considerable research has been conducted, the exact mechanisms linking AKI to CKD are complex, and effective treatments remain limited. Kidney function is influenced by circadian rhythms, with the circadian gene Bmal1 being vital in managing these cycles. Recent research indicates that Bmal1 is significantly involved in the progression of both AKI and CKD. In this study, we conducted a retrospective analysis of Bmal1's role in AKI and CKD, reviewed recent research advancements, and investigated how Bmal1 influences the pathological mechanisms underlying the progression from AKI to CKD. Additionally, we highlighted gaps in the existing research and examined the potential of Bmal1 as a therapeutic target in kidney disease management. This work aims to provide meaningful insights for future studies on the role of the circadian gene Bmal1 in the transition from AKI to CKD, with the goal of identifying therapeutic approaches to mitigate kidney disease progression.
Collapse
Affiliation(s)
- Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Lijia Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| |
Collapse
|
2
|
Quan LF, Chi YY, Dong YZ, Xu S, Chen BX, Li WJ. Identification and characterization of circadian clock genes in the head transcriptome of Conopomorpha sinensis Bradley. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101223. [PMID: 38432103 DOI: 10.1016/j.cbd.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Conopomorpha sinensis Bradley is the most detrimental pest to litchi and longan in China. Adult eclosion, locomotion, mating and oviposition of C. sinensis usually occur at night, regulated by a circadian rhythm. Nevertheless, our understanding of the linkages between adult circadian rhythms and clock genes remains inadequate. To address this gap, transcriptomic analysis was conducted on female and male heads (including antennae) of C. sinensis using the Illumina HiSeq 6000 platform to identify major circadian clock-related genes. The annotated sequences were analyzed by BLASTx, and candidate clock genes were classified based on conservation, predicted domain architectures, and phylogenetic analysis. The analysis revealed a higher conservation of these genes among the compared moths. Further, the expression profile analysis showed a significant spatiotemporal and circadian rhythmic accumulation of some clock genes during development. The candidate clock genes were predominantly expressed in the head, highlighting their crucial function in circadian rhythm regulation. Moreover, CsinPer, CsinTim1, and CsinCry1 displayed similar dynamic expressions with a peak expression level in the 4th age adults, suggesting their involvement in regulation of courtship and mating behaviors. The CsinPer and CsinTim1 mRNA oscillated strongly with a similar phase, containing a peak expression just before the female mating peak. This work will greatly contribute to understanding the circadian clock system of C. sinensis and provide valuable information for further studies of the molecular mechanisms involved in rhythmicity in fruit-boring pests.
Collapse
Affiliation(s)
- Lin-Fa Quan
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yan-Yan Chi
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yi-Zhi Dong
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Shu Xu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Bing-Xu Chen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
| | - Wen-Jing Li
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
| |
Collapse
|
3
|
Schuhmacher L, Heck S, Pitz M, Mathey E, Lamparter T, Blumhofer A, Leister K, Fischer R. The LOV-domain blue-light receptor LreA of the fungus Alternaria alternata binds predominantly FAD as chromophore and acts as a light and temperature sensor. J Biol Chem 2024; 300:107238. [PMID: 38552736 PMCID: PMC11061223 DOI: 10.1016/j.jbc.2024.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024] Open
Abstract
Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.
Collapse
Affiliation(s)
- Lars Schuhmacher
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Steffen Heck
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Michael Pitz
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Elena Mathey
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Tilman Lamparter
- Joseph Kölreuter Institute for Plant Research, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Alexander Blumhofer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Kai Leister
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany.
| |
Collapse
|
4
|
Ji J, Liu Y, Zhang L, Cheng Y, Stanley D, Jiang X. The clock gene, period, influences migratory flight and reproduction of the oriental armyworm, Mythimna separata (Walker). INSECT SCIENCE 2023; 30:650-660. [PMID: 36305760 DOI: 10.1111/1744-7917.13132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/15/2023]
Abstract
The oriental armyworm, Mythimna separata, is a major long-distance migratory insect pest of grain crops in China and other Asian countries. Migratory flights and reproductive behavior usually occur at night, regulated by a circadian rhythm. However, knowledge about the linkages between adult flight, reproduction, and clock genes is still incomplete. To fill this important gap in our knowledge, a clock gene (designated Msper) was identified and phylogenetic analysis indicated that the encoded protein (MsPER) was highly similar to PER proteins from other insect species. Quantitative RT-PCR assays demonstrated that significantly different spatiotemporal and circadian rhythmic accumulations of mRNA encoding MsPER occurred during development under steady 14 h : 10 h light : dark conditions. The highest mRNA accumulation occurred in adult antennae and the lowest in larvae. Msper was expressed rhythmically in adult antennae, relatively less in photophase and more entering scotophase. Injecting small interference RNA (siRNA) into adult heads effectively knocked down Msper mRNA levels within 72 h. Most siRNA-injected adults reduced their evening flight activity significantly and did not exhibit a normal evening peak of flight activity. They also failed to mate and lay eggs within 72 h. Adult mating behavior was restored to control levels by 72 h post injection. We infer that Msper is a prominent clock gene that acts in regulating adult migratory flight and mating behaviors of M. separata. Because of its influence on migration and mating, Msper may be a valuable gene to target for effective management of this migratory insect.
Collapse
Affiliation(s)
- Jiayue Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yueqiu Liu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, Columbia, MO, USA
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Zaheri B, Morse D. An overview of transcription in dinoflagellates. Gene 2022; 829:146505. [PMID: 35447242 DOI: 10.1016/j.gene.2022.146505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Dinoflagellates are a vital diverse family of unicellular algae widespread in various aquatic environments. Typically large genomes and permanently condensed chromosomes without histones make these organisms unique among eukaryotes in terms of chromatin structure and gene expression. Genomic and transcriptomic sequencing projects have provided new insight into the genetic foundation of dinoflagellate behaviors. Genes in tandem arrays, trans-splicing of mRNAs and lower levels of transcriptional regulation compared to other eukaryotes all contribute to the differences seen. Here we present a general overview of transcription in dinoflagellates based on previously described work.
Collapse
Affiliation(s)
- Bahareh Zaheri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada.
| |
Collapse
|
6
|
Krach EK, Skaro M, Wu Y, Arnold J. Characterizing the gene-environment interaction underlying natural morphological variation in Neurospora crassa conidiophores using high-throughput phenomics and transcriptomics. G3 (BETHESDA, MD.) 2022; 12:jkac050. [PMID: 35293585 PMCID: PMC8982394 DOI: 10.1093/g3journal/jkac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 11/12/2022]
Abstract
Neurospora crassa propagates through dissemination of conidia, which develop through specialized structures called conidiophores. Recent work has identified striking variation in conidiophore morphology, using a wild population collection from Louisiana, United States of America to classify 3 distinct phenotypes: Wild-Type, Wrap, and Bulky. Little is known about the impact of these phenotypes on sporulation or germination later in the N. crassa life cycle, or about the genetic variation that underlies them. In this study, we show that conidiophore morphology likely affects colonization capacity of wild N. crassa isolates through both sporulation distance and germination on different carbon sources. We generated and crossed homokaryotic strains belonging to each phenotypic group to more robustly fit a model for and estimate heritability of the complex trait, conidiophore architecture. Our fitted model suggests at least 3 genes and 2 epistatic interactions contribute to conidiophore phenotype, which has an estimated heritability of 0.47. To uncover genes contributing to these phenotypes, we performed RNA-sequencing on mycelia and conidiophores of strains representing each of the 3 phenotypes. Our results show that the Bulky strain had a distinct transcriptional profile from that of Wild-Type and Wrap, exhibiting differential expression patterns in clock-controlled genes (ccgs), the conidiation-specific gene con-6, and genes implicated in metabolism and communication. Combined, these results present novel ecological impacts of and differential gene expression underlying natural conidiophore morphological variation, a complex trait that has not yet been thoroughly explored.
Collapse
Affiliation(s)
- Emily K Krach
- Genetics Department, University of Georgia, Athens, GA 30602, USA
| | - Michael Skaro
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Yue Wu
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Jonathan Arnold
- Genetics Department, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Wavelengths and irradiances modulate the circadian rhythm of Neurospora crassa. PLoS One 2022; 17:e0266266. [PMID: 35353854 PMCID: PMC8967017 DOI: 10.1371/journal.pone.0266266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
The circadian rhythm affects the biological evolution and operating mechanisms of organisms. The impact of light on the circadian rhythm is a significant concern for both biology and human well-being. However, the relation between different wavelengths, irradiances, and circadian rhythm is unknown. In this study, we compared the effects of four different monochromatic light-emitting diode (LED) light and two different irradiances on the circadian rhythm of a wild-type Neurospora crassa. The results demonstrated that the circadian rhythm of Neurospora crassa can be modulated by violet (λp = 393 nm), blue (λp = 462 nm), and green (λp = 521 nm) light, regardless of the irradiances, in the visible region. Unexpectedly, for the yellow light (λp = 591 nm), the 2 W/m2 light had a more significant impact on circadian rhythm modulation than the 0.04 W/m2 light had. Considering the highest energy of yellow light (2.25 eV) is lower than the High Occupied Molecular Orbital (HOMO)-Lowest Unoccupied Molecular Orbital (LUMO) gap of WC-1 (2.43 eV). We speculate that there may be other potential photoreceptors that are involved in circadian rhythm modulation. The HOMO-LOMO gaps of these proteins are greater than 1.98 eV and less than 2.25 eV. These results provide a strong foundation for a deeper understanding of the impact of different light on the circadian rhythm and also shed light on the identification of new circadian rhythm modulation photoreceptors.
Collapse
|
8
|
Roemer RB, Irene Terry L, Booth DT, Walter GH. Insights from an ancient gymnosperm lineage: ambient temperature and light and the timing of thermogenesis in cycad cones. AMERICAN JOURNAL OF BOTANY 2022; 109:151-165. [PMID: 35025111 DOI: 10.1002/ajb2.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Although maintaining the appropriate mid-day timing of the diel thermogenic events of cones of the dioecious cycads Macrozamia lucida and M. macleayi is central to the survival of both plant and pollinator in this obligate pollination mutualism, the nature of the underlying mechanism remains obscure. We investigated whether it is under circadian control. Circadian mechanisms control the timing of many ecologically important processes in angiosperms, yet only a few gymnosperms have been studied in this regard. METHODS We subjected cones to different ambient temperature and lighting regimens (constant temperature and darkness; stepwise cool/warm ambient temperatures in constant darkness; stepwise dark/light exposures at constant temperature) to determine whether the resulting timing of their thermogenic events was consistent with circadian control. RESULTS Cones exposed to constant ambient temperature and darkness generated multiple temperature peaks endogenously, with an average interpeak-temperature period of 20.7 (±0.20) h that is temperature-compensated (Q10 = 1.02). Exposure to 24-h ambient temperature cycles (12 h cool/12 h warm, constant darkness) yielded an interpeak-temperature period of 24.0 (±0.05) h, accurately and precisely replicating the ambient temperature period. Exposure to 24-h photo-cycles (12 h light/12 h dark, constant ambient temperature) yielded a shorter, more variable interpeak-temperature period of 23 (±0.23) h. CONCLUSIONS Our results indicate that cycad cone thermogenesis is under circadian clock control and differentially affected by ambient temperature and light cycles. Our data from cycads (an ancient gymnosperm lineage) adds to what little is known about circadian timing in gymnosperms, which have rarely been studied from the circadian perspective.
Collapse
Affiliation(s)
- Robert B Roemer
- Department of Mechanical Engineering, University of Utah, 1543 Rio Tinto Kennecott Mechanical Engineering Bldg., 1495 E., 100 S., Salt Lake City, UT, 84112, USA
| | - L Irene Terry
- School of Biological Sciences, University of Utah, 257 S. 1400 E., Salt Lake City, UT, 84112, USA
| | - David T Booth
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
9
|
Genome-wide role of codon usage on transcription and identification of potential regulators. Proc Natl Acad Sci U S A 2021; 118:2022590118. [PMID: 33526697 DOI: 10.1073/pnas.2022590118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Codon usage bias is a fundamental feature of all genomes and plays an important role in determining gene expression levels. The codon usage was thought to influence gene expression mainly due to its impact on translation. Recently, however, codon usage was shown to affect transcription of fungal and mammalian genes, indicating the existence of a gene regulatory phenomenon with unknown mechanism. In Neurospora, codon usage biases strongly correlate with mRNA levels genome-wide, and here we show that the correlation between codon usage and RNA levels is maintained in the nucleus. In addition, codon optimality is tightly correlated with both total and nuclear RNA levels, suggesting that codon usage broadly influences mRNA levels through transcription in a translation-independent manner. A large-scale RNA sequencing-based genetic screen in Neurospora identified 18 candidate factors that when deleted decreased the genome-wide correlation between codon usage and RNA levels and reduced the codon usage effect on gene expression. Most of these factors, such as the H3K36 methyltransferase, are chromatin regulators or transcription factors. Together, our results suggest that the transcriptional effect of codon usage is mediated by multiple transcriptional regulatory mechanisms.
Collapse
|
10
|
Muñoz-Guzmán F, Caballero V, Larrondo LF. A global search for novel transcription factors impacting the Neurospora crassa circadian clock. G3 (BETHESDA, MD.) 2021; 11:jkab100. [PMID: 33792687 PMCID: PMC8495738 DOI: 10.1093/g3journal/jkab100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/16/2021] [Indexed: 01/15/2023]
Abstract
Eukaryotic circadian oscillators share a common circuit architecture, a negative feedback loop in which a positive element activates the transcription of a negative one that then represses the action of the former, inhibiting its own expression. While studies in mammals and insects have revealed additional transcriptional inputs modulating the expression of core clock components, this has been less characterized in the model Neurospora crassa, where the participation of other transcriptional components impacting circadian clock dynamics remains rather unexplored. Thus, we sought to identify additional transcriptional regulators modulating the N. crassa clock, following a reverse genetic screen based on luminescent circadian reporters and a collection of transcription factors (TFs) knockouts, successfully covering close to 60% of them. Besides the canonical core clock components WC-1 and -2, none of the tested transcriptional regulators proved to be essential for rhythmicity. Nevertheless, we identified a set of 23 TFs that when absent lead to discrete, but significant, changes in circadian period. While the current level of analysis does not provide mechanistic information about how these new players modulate circadian parameters, the results of this screen reveal that an important number of light and clock-regulated TFs, involved in a plethora of processes, are capable of modulating the clockworks. This partial reverse genetic clock screen also exemplifies how the N. crassa knockout collection continues to serve as an expedite platform to address broad biological questions.
Collapse
Affiliation(s)
- Felipe Muñoz-Guzmán
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Valeria Caballero
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Luis F Larrondo
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
11
|
A Two-Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment. Bull Math Biol 2021; 83:12. [PMID: 33415476 DOI: 10.1007/s11538-020-00829-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/30/2020] [Indexed: 10/22/2022]
Abstract
One of the essential characteristics of an authentic circadian clock is that the free-running period sustains an approximately 24-hour cycle. When organisms are exposed to an external stimulus, the endogenous oscillators synchronize to the cycling environment signal in a process known as entrainment. These environmental cues perform an important role in resetting the phase and period of the circadian clock. A "generalized assumption" states that when an organism has a short period, it will experience a phase advance, while an organism with a long period experiences a phase delay. Despite widespread use, this positive relationship relating period to the phase of entrainment does not describe all known experimental data. We developed a two-step entrainment model to explain a broader range of results as well as provide more quantitative analysis. We prove existence and stability of periodic orbits and given analytical solutions of the range of entrainment, fit the phase trajectory over the entire entrainment process to data from a published study for 12 subjects in extended day cycles, i.e., longer than 24 h. Our simulations closely replicated the phase data and predicted correctly the phase of entrainment. We investigate the factors related to the rate of entrainment (ROE) and present the three-dimensional parameter spaces, illustrating the various behaviors of the phase of entrainment and ROE. Our findings can be applied to diagnostics and treatments for patients with sleep disorders caused by shift work or jet lag.
Collapse
|
12
|
Upadhyay A, Marzoll D, Diernfellner A, Brunner M, Herzel H. Multiple random phosphorylations in clock proteins provide long delays and switches. Sci Rep 2020; 10:22224. [PMID: 33335302 PMCID: PMC7746754 DOI: 10.1038/s41598-020-79277-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/25/2020] [Indexed: 12/27/2022] Open
Abstract
Theory predicts that self-sustained oscillations require robust delays and nonlinearities (ultrasensitivity). Delayed negative feedback loops with switch-like inhibition of transcription constitute the core of eukaryotic circadian clocks. The kinetics of core clock proteins such as PER2 in mammals and FRQ in Neurospora crassa is governed by multiple phosphorylations. We investigate how multiple, slow and random phosphorylations control delay and molecular switches. We model phosphorylations of intrinsically disordered clock proteins (IDPs) using conceptual models of sequential and distributive phosphorylations. Our models help to understand the underlying mechanisms leading to delays and ultrasensitivity. The model shows temporal and steady state switches for the free kinase and the phosphoprotein. We show that random phosphorylations and sequestration mechanisms allow high Hill coefficients required for self-sustained oscillations.
Collapse
Affiliation(s)
- Abhishek Upadhyay
- Institute for Theoretical Biology, Charité, Universitätsmedizin Berlin, Humboldt University of Berlin, Philippstr. 13, 10115, Berlin, Germany.
| | - Daniela Marzoll
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Axel Diernfellner
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Michael Brunner
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité, Universitätsmedizin Berlin, Humboldt University of Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
13
|
Honda S, Eusebio-Cope A, Miyashita S, Yokoyama A, Aulia A, Shahi S, Kondo H, Suzuki N. Establishment of Neurospora crassa as a model organism for fungal virology. Nat Commun 2020; 11:5627. [PMID: 33159072 PMCID: PMC7648066 DOI: 10.1038/s41467-020-19355-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023] Open
Abstract
The filamentous fungus Neurospora crassa is used as a model organism for genetics, developmental biology and molecular biology. Remarkably, it is not known to host or to be susceptible to infection with any viruses. Here, we identify diverse RNA viruses in N. crassa and other Neurospora species, and show that N. crassa supports the replication of these viruses as well as some viruses from other fungi. Several encapsidated double-stranded RNA viruses and capsid-less positive-sense single-stranded RNA viruses can be experimentally introduced into N. crassa protoplasts or spheroplasts. This allowed us to examine viral replication and RNAi-mediated antiviral responses in this organism. We show that viral infection upregulates the transcription of RNAi components, and that Dicer proteins (DCL-1, DCL-2) and an Argonaute (QDE-2) participate in suppression of viral replication. Our study thus establishes N. crassa as a model system for the study of host-virus interactions.
Collapse
Affiliation(s)
- Shinji Honda
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Ana Eusebio-Cope
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza- Aoba, Sendai, 980-0845, Japan
| | - Ayumi Yokoyama
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Annisa Aulia
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
14
|
Tian H, Trozzi F, Zoltowski BD, Tao P. Deciphering the Allosteric Process of the Phaeodactylum tricornutum Aureochrome 1a LOV Domain. J Phys Chem B 2020; 124:8960-8972. [PMID: 32970438 DOI: 10.1021/acs.jpcb.0c05842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The conformational-driven allosteric protein diatom Phaeodactylum tricornutum aureochrome 1a (PtAu1a) differs from other light-oxygen-voltage (LOV) proteins for its uncommon structural topology. The mechanism of signaling transduction in the PtAu1a LOV domain (AuLOV) including flanking helices remains unclear because of this dissimilarity, which hinders the study of PtAu1a as an optogenetic tool. To clarify this mechanism, we employed a combination of tree-based machine learning models, Markov state models, machine-learning-based community analysis, and transition path theory to quantitatively analyze the allosteric process. Our results are in good agreement with the reported experimental findings and reveal a previously overlooked Cα helix and protein linkers as important in promoting the protein conformational changes. This integrated approach can be considered as a general workflow and applied on other allosteric proteins to provide detailed information about their allosteric mechanisms.
Collapse
Affiliation(s)
- Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Francesco Trozzi
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Brian D Zoltowski
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
15
|
Tokuda IT, Schmal C, Ananthasubramaniam B, Herzel H. Conceptual Models of Entrainment, Jet Lag, and Seasonality. Front Physiol 2020; 11:334. [PMID: 32411006 PMCID: PMC7199094 DOI: 10.3389/fphys.2020.00334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/23/2020] [Indexed: 01/16/2023] Open
Abstract
Understanding entrainment of circadian rhythms is a central goal of chronobiology. Many factors, such as period, amplitude, Zeitgeber strength, and daylength, govern entrainment ranges and phases of entrainment. We have tested whether simple amplitude-phase models can provide insight into the control of entrainment phases. Using global optimization, we derived conceptual models with just three free parameters (period, amplitude, and relaxation rate) that reproduce known phenotypic features of vertebrate clocks: phase response curves (PRCs) with relatively small phase shifts, fast re-entrainment after jet lag, and seasonal variability to track light onset or offset. Since optimization found multiple sets of model parameters, we could study this model ensemble to gain insight into the underlying design principles. We found complex associations between model parameters and entrainment features. Arnold onions of representative models visualize strong dependencies of entrainment on periods, relative Zeitgeber strength, and photoperiods. Our results support the use of oscillator theory as a framework for understanding the entrainment of circadian clocks.
Collapse
Affiliation(s)
- Isao T. Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kyoto, Japan
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | | | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
- Institute for Theoretical Biology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations. Nat Methods 2020; 17:422-429. [PMID: 32203389 PMCID: PMC7135964 DOI: 10.1038/s41592-020-0774-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 02/11/2020] [Indexed: 11/11/2022]
Abstract
Brain circuits comprise vast numbers of intricately interconnected neurons with diverse molecular, anatomical and physiological properties. To allow “user-defined” targeting of individual neurons for structural and functional studies, we created light-inducible site-specific DNA recombinases (SSRs) based on Cre, Dre and Flp (RecVs). RecVs can induce genomic modifications by one-photon or two-photon light induction in vivo. They can produce targeted, sparse and strong labeling of individual neurons by modifying multiple loci within mouse and zebrafish genomes. In combination with other genetic strategies, they allow intersectional targeting of different neuronal classes. In the mouse cortex they enable sparse labeling and whole-brain morphological reconstructions of individual neurons. Furthermore, these enzymes allow single-cell two-photon targeted genetic modifications and can be used in combination with functional optical indicators with minimal interference. In summary, RecVs enable spatiotemporally-precise optogenomic modifications that can facilitate detailed single-cell analysis of neural circuits by linking genetic identity, morphology, connectivity and function.
Collapse
|
17
|
Lee SJ, Morse D, Hijri M. Holobiont chronobiology: mycorrhiza may be a key to linking aboveground and underground rhythms. MYCORRHIZA 2019; 29:403-412. [PMID: 31190278 DOI: 10.1007/s00572-019-00903-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Circadian clocks are nearly ubiquitous timing mechanisms that can orchestrate rhythmic behavior and gene expression in a wide range of organisms. Clock mechanisms are becoming well understood in fungal, animal, and plant model systems, yet many of these organisms are surrounded by a complex and diverse microbiota which should be taken into account when examining their biology. Of particular interest are the symbiotic relationships between organisms that have coevolved over time, forming a unit called a holobiont. Several studies have now shown linkages between the circadian rhythms of symbiotic partners. Interrelated regulation of holobiont circadian rhythms seems thus important to coordinate shifts in activity over the day for all the partners. Therefore, we suggest that the classical view of "chronobiological individuals" should include "a holobiont" rather than an organism. Unfortunately, mechanisms that may regulate interspecies temporal acclimation and the evolution of the circadian clock in holobionts are far from being understood. For the plant holobiont, our understanding is particularly limited. In this case, the holobiont encompasses two different ecosystems, one above and the other below the ground, with the two potentially receiving timing information from different synchronizing signals (Zeitgebers). The arbuscular mycorrhizal (AM) symbiosis, formed by plant roots and fungi, is one of the oldest and most widespread associations between organisms. By mediating the nutritional flux between the plant and the many microbes in the soil, AM symbiosis constitutes the backbone of the plant holobiont. Even though the importance of the AM symbiosis has been well recognized in agricultural and environmental sciences, its circadian chronobiology remains almost completely unknown. We have begun to study the circadian clock of arbuscular mycorrhizal fungi, and we compile and here discuss the available information on the subject. We propose that analyzing the interrelated temporal organization of the AM symbiosis and determining its underlying mechanisms will advance our understanding of the role and coordination of circadian clocks in holobionts in general.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - David Morse
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
| |
Collapse
|
18
|
Hozer C, Pifferi F, Aujard F, Perret M. The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model. Front Physiol 2019; 10:1033. [PMID: 31447706 PMCID: PMC6696974 DOI: 10.3389/fphys.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023] Open
Abstract
Circadian rhythms, which measure time on a scale of 24 h, are genetically generated by the circadian clock, which plays a crucial role in the regulation of almost every physiological and metabolic process in most organisms. This review gathers all the available information about the circadian clock in a small Malagasy primate, the gray mouse lemur (Microcebus murinus), and reports 30 years data from the historical colony at Brunoy (France). Although the mouse lemur has long been seen as a "primitive" species, its clock displays high phenotypic plasticity, allowing perfect adaptation of its biological rhythms to environmental challenges (seasonality, food availability). The alterations of the circadian timing system in M. murinus during aging show many similarities with those in human aging. Comparisons are drawn with other mammalian species (more specifically, with rodents, other non-human primates and humans) to demonstrate that the gray mouse lemur is a good complementary and alternative model for studying the circadian clock and, more broadly, brain aging and pathologies.
Collapse
|
19
|
Upadhyay A, Brunner M, Herzel H. An Inactivation Switch Enables Rhythms in a Neurospora Clock Model. Int J Mol Sci 2019; 20:E2985. [PMID: 31248072 PMCID: PMC6627049 DOI: 10.3390/ijms20122985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
Autonomous endogenous time-keeping is ubiquitous across many living organisms, known as the circadian clock when it has a period of about 24 h. Interestingly, the fundamental design principle with a network of interconnected negative and positive feedback loops is conserved through evolution, although the molecular components differ. Filamentous fungus Neurospora crassa is a well-established chrono-genetics model organism to investigate the underlying mechanisms. The core negative feedback loop of the clock of Neurospora is composed of the transcription activator White Collar Complex (WCC) (heterodimer of WC1 and WC2) and the inhibitory element called FFC complex, which is made of FRQ (Frequency protein), FRH (Frequency interacting RNA Helicase) and CK1a (Casein kinase 1a). While exploring their temporal dynamics, we investigate how limit cycle oscillations arise and how molecular switches support self-sustained rhythms. We develop a mathematical model of 10 variables with 26 parameters to understand the interactions and feedback among WC1 and FFC elements in nuclear and cytoplasmic compartments. We performed control and bifurcation analysis to show that our novel model produces robust oscillations with a wild-type period of 22.5 h. Our model reveals a switch between WC1-induced transcription and FFC-assisted inactivation of WC1. Using the new model, we also study the possible mechanisms of glucose compensation. A fairly simple model with just three nonlinearities helps to elucidate clock dynamics, revealing a mechanism of rhythms' production. The model can further be utilized to study entrainment and temperature compensation.
Collapse
Affiliation(s)
- Abhishek Upadhyay
- Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin and Humboldt University of Berlin, Philippstr. 13, 10115 Berlin, Germany.
| | - Michael Brunner
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin and Humboldt University of Berlin, Philippstr. 13, 10115 Berlin, Germany.
| |
Collapse
|
20
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
21
|
Zhou H, Dong Z, Verkhivker G, Zoltowski BD, Tao P. Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis. PLoS Comput Biol 2019; 15:e1006801. [PMID: 30779735 PMCID: PMC6396943 DOI: 10.1371/journal.pcbi.1006801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/01/2019] [Accepted: 01/17/2019] [Indexed: 01/16/2023] Open
Abstract
The fungal circadian clock photoreceptor Vivid (VVD) contains a photosensitive allosteric light, oxygen, voltage (LOV) domain that undergoes a large N-terminal conformational change. The mechanism by which a blue-light driven covalent bond formation leads to a global conformational change remains unclear, which hinders the further development of VVD as an optogenetic tool. We answered this question through a novel computational platform integrating Markov state models, machine learning methods, and newly developed community analysis algorithms. Applying this new integrative approach, we provided a quantitative evaluation of the contribution from the covalent bond to the protein global conformational change, and proposed an atomistic allosteric mechanism leading to the discovery of the unexpected importance of A'α/Aβ and previously overlooked Eα/Fα loops in the conformational change. This approach could be applicable to other allosteric proteins in general to provide interpretable atomistic representations of their otherwise elusive allosteric mechanisms.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, United States of America
| | - Zheng Dong
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, United States of America
| | - Gennady Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
| | - Brian D. Zoltowski
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, United States of America
| | - Peng Tao
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, United States of America
| |
Collapse
|
22
|
Deciphering the Dynamics of Interlocked Feedback Loops in a Model of the Mammalian Circadian Clock. Biophys J 2018; 115:2055-2066. [PMID: 30473017 DOI: 10.1016/j.bpj.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/29/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Mathematical models of fundamental biological processes play an important role in consolidating theory and experiments, especially if they are systematically developed, thoroughly characterized, and well tested by experimental data. In this work, we report a detailed bifurcation analysis of a mathematical model of the mammalian circadian clock network developed by Relógio et al., noteworthy for its consistency with available data. Using one- and two-parameter bifurcation diagrams, we explore how oscillations in the model depend on the expression levels of its constituent genes and the activities of their encoded proteins. These bifurcation diagrams allow us to decipher the dynamics of interlocked feedback loops by parametric variation of genes and proteins in the model. Among other results, we find that REV-ERB, a member of a subfamily of orphan nuclear receptors, plays a critical role in the intertwined dynamics of Relógio's model. The bifurcation diagrams reported here can be used for predicting how the core clock network responds-in terms of period, amplitude and phases of oscillations-to different perturbations.
Collapse
|
23
|
Lee SJ, Kong M, Morse D, Hijri M. Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare. MYCORRHIZA 2018; 28:523-534. [PMID: 29931403 DOI: 10.1007/s00572-018-0843-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligatory plant symbionts that live underground, so few studies have examined their response to light. Responses to blue light by other fungi can be mediated by White Collar-1 (WC-1) and WC-2 proteins. These wc genes, together with the frequency gene (frq), also form part of the endogenous circadian clock. The clock mechanism has never been studied in AMF, although circadian growth of their hyphae in the field has been reported. Using both genomic and transcriptomic data, we have found homologs of wc-1, wc-2, and frq and related circadian clock genes in the arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis). Gene expression of wc-1, wc-2, and frq was analyzed using RT-qPCR on RNA extracted from germinating spores and from fungal material cultivated in vitro with transformed carrot roots. We found that all three core clock genes were expressed in both pre- and post-mycorrhizal stages of R. irregulare growth. Similar to the model fungus Neurospora crassa, the core circadian oscillator gene frq was induced by brief light stimulation. The presence of circadian clock and output genes in R. irregulare opens the door to the study of circadian clocks in the fungal partner of plant-AMF symbiosis. Our finding also provides new insight into the evolution of the circadian frq gene in fungi.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mengxuan Kong
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
| |
Collapse
|
24
|
Liversage J, Coetzee MP, Bluhm BH, Berger DK, Crampton BG. LOVe across kingdoms: Blue light perception vital for growth and development in plant–fungal interactions. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Lee K, Shiva Kumar P, McQuade S, Lee JY, Park S, An Z, Piccoli B. Experimental and Mathematical Analyses Relating Circadian Period and Phase of Entrainment in Neurospora crassa. J Biol Rhythms 2017; 32:550-559. [PMID: 29183256 DOI: 10.1177/0748730417738611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian rhythms are observed in most organisms on earth and are known to play a major role in successful adaptation to the 24-h cycling environment. Circadian phenotypes are characterized by a free-running period that is observed in constant conditions and an entrained phase that is observed in cyclic conditions. Thus, the relationship between the free-running period and phase of entrainment is of interest. A popular simple rule has been that the entrained phase is the expression of the period in a cycling environment (i.e., that a short period causes an advanced phase and a long period causes a delayed phase). However, there are experimental data that are not explained by this simple relationship, and no systematic study has been done to explore all possible period-phase relationships. Here, we show the existence of stable period-phase relationships that are exceptions to this rule. First, we analyzed period-phase relationships using populations with different degrees of genome complexity. Second, we generated isogenic F1 populations by crossing 14 classical period mutants to the same female and analyzed 2 populations with a short period/delayed phase and a long period/advanced phase. Third, we generated a mathematical model to account for such variable relationships between period and phase. Our analyses support the view that the circadian period of an organism is not the only predictor of the entrained phase.
Collapse
Affiliation(s)
- Kwangwon Lee
- Department of Biology, Rutgers, The State University of New Jersey, Camden, New Jersey.,Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Prithvi Shiva Kumar
- Department of Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Sean McQuade
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Joshua Y Lee
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Sohyun Park
- Department of Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Zheming An
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Benedetto Piccoli
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| |
Collapse
|
26
|
Sleeping Beauty? Developmental Timing, Sleep, and the Circadian Clock in Caenorhabditis elegans. ADVANCES IN GENETICS 2017; 97:43-80. [PMID: 28838356 DOI: 10.1016/bs.adgen.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genetics toolkit is pretty successful in drilling down into minutiae. The big challenge is to integrate the information from this specialty as well as those of biochemistry, physiology, behavior, and anatomy to explain how fundamental biological processes really work. Sleep, the circadian clock and development all qualify as overarching processes that encompass levels from molecule to behavior as part of their known mechanisms. They overlap each other, such that understanding the mechanisms of one can lead to insights into one of the others. In this essay, we consider how the experimental approaches and findings relating to Caenorhabditis elegans development and lethargus on one hand, and to the circadian clock and sleep in higher organisms on the other, could complement and enhance one another.
Collapse
|
27
|
Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms. PLoS One 2017; 12:e0177197. [PMID: 28486525 PMCID: PMC5423656 DOI: 10.1371/journal.pone.0177197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 01/17/2023] Open
Abstract
Molecular mechanisms responsible for 24 h circadian oscillations, entrainment to external cues, encoding of day length and the time-of-day effects have been well studied experimentally. However, it is still debated from the molecular network point of view whether each cell in suprachiasmatic nuclei harbors two molecular oscillators, where one tracks dawn and the other tracks dusk activities. A single cell dual morning and evening oscillator was proposed by Daan et al., based on the molecular network that has two sets of similar non-redundant per1/cry1 and per2/cry2 circadian genes and each can independently maintain their endogenous oscillations. Understanding of dual oscillator dynamics in a single cell at molecular level may provide insight about the circadian mechanisms that encodes day length variations and its response to external zeitgebers. We present here a realistic dual oscillator model of circadian rhythms based on the series of hypotheses proposed by Daan et al., in which they conjectured that the circadian genes per1/cry1 track dawn while per2/cry2 tracks dusk and they together constitute the morning and evening oscillators (dual oscillator). Their hypothesis also provides explanations about the encoding of day length in terms of molecular mechanisms of per/cry expression. We frame a minimal mathematical model with the assumption that per1 acts a morning oscillator and per2 acts as an evening oscillator and to support and interpret this assumption we fit the model to the experimental data of per1/per2 circadian temporal dynamics, phase response curves (PRC's), and entrainment phenomena under various light-dark conditions. We also capture different patterns of splitting phenomena by coupling two single cell dual oscillators with neuropeptides vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) as the coupling agents and provide interpretation for the occurrence of splitting in terms of ME oscillators, though they are not required to explain the morning and evening oscillators. The proposed dual oscillator model based on Daan's hypothesis supports per1 and per2 playing the role of morning and evening oscillators respectively and this may be the first step towards the understanding of the core molecular mechanism responsible for encoding the day length.
Collapse
|
28
|
Dunlap JC, Loros JJ. Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0039-2016. [PMID: 28527179 PMCID: PMC5446046 DOI: 10.1128/microbiolspec.funk-0039-2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/03/2023] Open
Abstract
The capacity for biological timekeeping arose at least three times through evolution, in prokaryotic cyanobacteria, in cells that evolved into higher plants, and within the group of organisms that eventually became the fungi and the animals. Neurospora is a tractable model system for understanding the molecular bases of circadian rhythms in the last of these groups, and is perhaps the most intensively studied circadian cell type. Rhythmic processes described in fungi include growth rate, stress responses, developmental capacity, and sporulation, as well as much of metabolism; fungi use clocks to anticipate daily environmental changes. A negative feedback loop comprises the core of the circadian system in fungi and animals. In Neurospora, the best studied fungal model, it is driven by two transcription factors, WC-1 and WC-2, that form the White Collar Complex (WCC). WCC elicits expression of the frq gene. FRQ complexes with other proteins, physically interacts with the WCC, and reduces its activity; the kinetics of these processes is strongly influenced by progressive phosphorylation of FRQ. When FRQ becomes sufficiently phosphorylated that it loses the ability to influence WCC activity, the circadian cycle starts again. Environmental cycles of light and temperature influence frq and FRQ expression and thereby reset the internal circadian clocks. The molecular basis of circadian output is also becoming understood. Taken together, molecular explanations are emerging for all the canonical circadian properties, providing a molecular and regulatory framework that may be extended to many members of the fungal and animal kingdoms, including humans.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
29
|
Zhou H, Zoltowski BD, Tao P. Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations. Sci Rep 2017; 7:46626. [PMID: 28425502 PMCID: PMC5397860 DOI: 10.1038/srep46626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/21/2017] [Indexed: 01/11/2023] Open
Abstract
VIVID(VVD) protein is a Light-Oxygen-Voltage(LOV) domain in circadian clock system. Upon blue light activation, a covalent bond is formed between VVD residue Cys108 and its cofactor flavin adenine dinucleotide(FAD), and prompts VVD switching from Dark state to Light state with significant conformational deviation. However, the mechanism of this local environment initiated global protein conformational change remains elusive. We employed a recently developed computational approach, rigid residue scan(RRS), to systematically probe the impact of the internal degrees of freedom in each amino acid residue of VVD on its overall dynamics by applying rigid body constraint on each residue in molecular dynamics simulations. Key residues were identified with distinctive impacts on Dark and Light states, respectively. All the simulations display wide range of distribution on a two-dimensional(2D) plot upon structural root-mean-square deviations(RMSD) from either Dark or Light state. Clustering analysis of the 2D RMSD distribution leads to 15 representative structures with drastically different conformation of N-terminus, which is also a key difference between Dark and Light states of VVD. Further principle component analyses(PCA) of RRS simulations agree with the observation of distinctive impact from individual residues on Dark and Light states.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery(CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Brian D Zoltowski
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery(CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery(CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas 75275, United States of America
| |
Collapse
|
30
|
Jerônimo R, Moraes MN, de Assis LVM, Ramos BC, Rocha T, Castrucci AMDL. Thermal stress in Danio rerio: a link between temperature, light, thermo-TRP channels, and clock genes. J Therm Biol 2017; 68:128-138. [PMID: 28689714 DOI: 10.1016/j.jtherbio.2017.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022]
Abstract
It is believed that the biological systems perceiving temperature and light daily cycles were subjected to the simultaneous selective pressures, which resulted in their co-evolutionary association. We investigated the influence of 1h 33°C heat shock on the expression of clock and heat shock protein genes, as well as the role of the thermo-TRP channel, TRPV1, in ZEM-2S cells of the teleost Danio rerio, in constant dark (DD) or light-dark cycles (LD). After heat shock, we observed an acute increase of hsp90 aa1 levels in both DD and LD conditions. Interestingly, the expression of hsp90 aa1 was two-fold lower in LD than in DD, what suggests an antagonistic effect of white light on heat shock action. Regarding clock genes, no effect was found in cells subjected to the heat shock in DD. When cells were kept in LD, the expression of per1, per2, cry1a, and cry1b increased in response to heat shock, indicating that heat shock only affects clock core of LD-synchronized ZEM-2S cells. We then evaluated whether TRPV1 played a role in heat-mediated hsp90 aa1 and per2 responses: hsp90 aa1 increase was unaffected whereas per2 increase was partially blocked by TRPV1 inhibitor, demonstrating the channel participation in clock gene regulation by heat shock. Taken together, our results open a novel investigative perspective regarding the relationship between temperature and clock genes, placing a new player in the regulation of this phenomenon: the TRPV1 channel.
Collapse
Affiliation(s)
- Rodrigo Jerônimo
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Bruno César Ramos
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Thainá Rocha
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Jacobson DJ, Powell AJ, Dettman JR, Saenz GS, Barton MM, Hiltz MD, Dvorachek WH, Glass NL, Taylor JW, Natvig DO. Neurosporain temperate forests of western North America. Mycologia 2017. [DOI: 10.1080/15572536.2005.11832998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David J. Jacobson
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, and Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Amy J. Powell
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jeremy R. Dettman
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Gregory S. Saenz
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | | | - Megan D. Hiltz
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | | | | | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Donald O. Natvig
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
32
|
de Paula RM, Lewis ZA, Greene AV, Seo KS, Morgan LW, Vitalini MW, Bennett L, Gomer RH, Bell-Pedersen D. Two Circadian Timing Circuits in Neurospora crassa Cells Share Components and Regulate Distinct Rhythmic Processes. J Biol Rhythms 2016; 21:159-68. [PMID: 16731655 DOI: 10.1177/0748730406288338] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Neurospora crassa, FRQ, WC-1, and WC-2 proteins comprise the core circadian FRQ-based oscillator that is directly responsive to light and drives daily rhythms in spore development and gene expression. However, physiological and biochemical studies have demonstrated the existence of additional oscillators in the cell that function in the absence of FRQ (collectively termed FRQ-less oscillators [FLOs]). Whether or not these represent temperature-compensated, entrainable circadian oscillators is not known. The authors previously identified an evening-peaking gene, W06H2 (now called clock-controlled gene 16 [ ccg-16]), which is expressed with a robust daily rhythm in cells that lack FRQ protein, suggesting that ccg-16 is regulated by a FLO. In this study, the authors provide evidence that the FLO driving ccg-16 rhythmicity is a circadian oscillator. They find that ccg-16 rhythms are generated by a temperature-responsive, temperature-compensated circadian FLO that, similar to the FRQ-based oscillator, requires functional WC-1 and WC-2 proteins for activity. They also find that FRQ is not essential for rhythmic WC-1 protein levels, raising the possibility that this WCFLO is involved in the generation of WC-1 rhythms. The results are consistent with the presence of 2 circadian oscillators within Neurospora cells, which the authors speculate may interact with each other through the shared WC proteins.
Collapse
Affiliation(s)
- Renato M de Paula
- Department of Biology, Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Foulkes NS, Whitmore D, Vallone D, Bertolucci C. Studying the Evolution of the Vertebrate Circadian Clock: The Power of Fish as Comparative Models. ADVANCES IN GENETICS 2016; 95:1-30. [PMID: 27503352 DOI: 10.1016/bs.adgen.2016.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The utility of any model species cannot be judged solely in terms of the tools and approaches it provides for genetic analysis. A fundamental consideration is also how its biology has been shaped by the environment and the ecological niche which it occupies. By comparing different species occupying very different habitats we can learn how molecular and cellular mechanisms change during evolution in order to optimally adapt to their environment. Such knowledge is as important as understanding how these mechanisms work. This is illustrated by the use of fish models for studying the function and evolution of the circadian clock. In this review we outline our current understanding of how fish clocks sense and respond to light and explain how this differs fundamentally from the situation with mammalian clocks. In addition, we present results from comparative studies involving two species of blind cavefish, Astyanax mexicanus and Phreatichthys andruzzii. This work reveals the consequences of evolution in perpetual darkness for the circadian clock and its regulation by light as well as for other mechanisms such as DNA repair, sleep, and metabolism which directly or indirectly are affected by regular exposure to sunlight. Major differences in the cave habitats inhabited by these two cavefish species have a clear impact on shaping the molecular and cellular adaptations to life in complete darkness.
Collapse
Affiliation(s)
- N S Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany; Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | | | - D Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | |
Collapse
|
34
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
35
|
Sun G, Zhou Z, Liu X, Gai K, Liu Q, Cha J, Kaleri FN, Wang Y, He Q. Suppression of WHITE COLLAR-independent frequency Transcription by Histone H3 Lysine 36 Methyltransferase SET-2 Is Necessary for Clock Function in Neurospora. J Biol Chem 2016; 291:11055-63. [PMID: 27002152 DOI: 10.1074/jbc.m115.711333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/25/2022] Open
Abstract
The circadian system in Neurospora is based on the transcriptional/translational feedback loops and rhythmic frequency (frq) transcription requires the WHITE COLLAR (WC) complex. Our previous paper has shown that frq could be transcribed in a WC-independent pathway in a strain lacking the histone H3K36 methyltransferase, SET-2 (su(var)3-9-enhancer-of-zeste-trithorax-2) (1), but the mechanism was unclear. Here we disclose that loss of histone H3K36 methylation, due to either deletion of SET-2 or H3K36R mutation, results in arrhythmic frq transcription and loss of overt rhythmicity. Histone acetylation at frq locus increases in set-2(KO) mutant. Consistent with these results, loss of H3K36 methylation readers, histone deacetylase RPD-3 (reduced potassium dependence 3) or EAF-3 (essential SAS-related acetyltransferase-associated factor 3), also leads to hyperacetylation of histone at frq locus and WC-independent frq expression, suggesting that proper chromatin modification at frq locus is required for circadian clock operation. Furthermore, a mutant strain with three amino acid substitutions (histone H3 lysine 9, 14, and 18 to glutamine) was generated to mimic the strain with hyperacetylation state of histone H3. H3K9QK14QK18Q mutant exhibits the same defective clock phenotype as rpd-3(KO) mutant. Our results support a scenario in which H3K36 methylation is required to establish a permissive chromatin state for circadian frq transcription by maintaining proper acetylation status at frq locus.
Collapse
Affiliation(s)
- Guangyan Sun
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhipeng Zhou
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China, and
| | - Xiao Liu
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kexin Gai
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingqing Liu
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Joonseok Cha
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Farah Naz Kaleri
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,
| |
Collapse
|
36
|
Circadian Control of Global Transcription. BIOMED RESEARCH INTERNATIONAL 2015; 2015:187809. [PMID: 26682214 PMCID: PMC4670846 DOI: 10.1155/2015/187809] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023]
Abstract
Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions.
Collapse
|
37
|
Analysis of Circadian Rhythms in the Basal Filamentous Ascomycete Pyronema confluens. G3-GENES GENOMES GENETICS 2015; 5:2061-71. [PMID: 26254031 PMCID: PMC4592989 DOI: 10.1534/g3.115.020461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many organisms use circadian clocks to adapt to daily changes in the environment. Major insights into the molecular mechanisms of circadian oscillators have been gained through studies of the model organism Neurospora crassa; however, little is known about molecular components of circadian clocks in other fungi. An important part of the N. crassa circadian clock is the frequency (frq) gene, homologs of which can be found in Sordariomycetes, Dothideomycetes, and Leotiomycetes, but not Eurotiomycetes. Recently, we identified a frq homolog in Pyronema confluens, a member of the early-diverging Pezizomycete lineage of filamentous ascomycetes. The P. confluens FRQ shares many conserved domains with the N. crassa FRQ. However, there is no known morphological phenotype showing overt circadian rhythmicity in P. confluens. To investigate whether a molecular clock is present, we analyzed frq transcription in constant darkness, and found circadian oscillation of frq with a peak in the subjective morning. This rhythm was temperature compensated. To identify additional clock-controlled genes, we performed RNA sequencing of two time points (subjective morning and evening). Circadian expression of two morning-specific genes was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) over a full time course, whereas expression of two putative morning-specific and five putative evening-specific genes could not be verified as circadian. frq expression was synchronized, but not entrained by light. In summary, we have found evidence for two of the three main properties of circadian rhythms (free-running rhythm, temperature compensation) in P. confluens, suggesting that a circadian clock with rhythmically expressed frq is present in this basal filamentous ascomycete.
Collapse
|
38
|
El-Arab KK, Pudasaini A, Zoltowski BD. Short LOV Proteins in Methylocystis Reveal Insight into LOV Domain Photocycle Mechanisms. PLoS One 2015; 10:e0124874. [PMID: 25933162 PMCID: PMC4416707 DOI: 10.1371/journal.pone.0124874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Light Oxygen Voltage (LOV) proteins are widely used in optogenetic devices, however universal signal transduction pathways and photocycle mechanisms remain elusive. In particular, short-LOV (sLOV) proteins have been discovered in bacteria and fungi, containing only the photoresponsive LOV element without any obvious signal transduction domains. These sLOV proteins may be ideal models for LOV domain function due to their ease of study as full-length proteins. Unfortunately, characterization of such proteins remains limited to select systems. Herein, we identify a family of bacterial sLOV proteins present in Methylocystis. Sequence analysis of Methylocystis LOV proteins (McLOV) demonstrates conservation with sLOV proteins from fungal systems that employ competitive dimerization as a signaling mechanism. Cloning and characterization of McLOV proteins confirms functional dimer formation and reveal unexpected photocycle mechanisms. Specifically, some McLOV photocycles are insensitive to external bases such as imidazole, in contrast to previously characterized LOV proteins. Mutational analysis identifies a key residue that imparts insensitivity to imidazole in two McLOV homologs and affects adduct decay by two orders of magnitude. The resultant data identifies a new family of LOV proteins that indicate a universal photocycle mechanism may not be present in LOV proteins.
Collapse
Affiliation(s)
- Kaley K. El-Arab
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas, United States of America
| | - Ashutosh Pudasaini
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas, United States of America
| | - Brian D. Zoltowski
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas, United States of America
| |
Collapse
|
39
|
Sancar C, Sancar G, Ha N, Cesbron F, Brunner M. Dawn- and dusk-phased circadian transcription rhythms coordinate anabolic and catabolic functions in Neurospora. BMC Biol 2015; 13:17. [PMID: 25762222 PMCID: PMC4381671 DOI: 10.1186/s12915-015-0126-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circadian clocks control rhythmic expression of a large number of genes in coordination with the 24 hour day-night cycle. The mechanisms generating circadian rhythms, their amplitude and circadian phase are dependent on a transcriptional network of immense complexity. Moreover, the contribution of post-transcriptional mechanisms in generating rhythms in RNA abundance is not known. RESULTS Here, we analyzed the clock-controlled transcriptome of Neurospora crassa together with temporal profiles of elongating RNA polymerase II. Our data indicate that transcription contributes to the rhythmic expression of the vast majority of clock-controlled genes (ccgs) in Neurospora. The ccgs accumulate in two main clusters with peak transcription and expression levels either at dawn or dusk. Dawn-phased genes are predominantly involved in catabolic and dusk-phased genes in anabolic processes, indicating a clock-controlled temporal separation of the physiology of Neurospora. Genes whose expression is strongly dependent on the core circadian activator WCC fall mainly into the dawn-phased cluster while rhythmic genes regulated by the glucose-dependent repressor CSP1 fall predominantly into the dusk-phased cluster. Surprisingly, the number of rhythmic transcripts increases about twofold in the absence of CSP1, indicating that rhythmic expression of many genes is attenuated by the activity of CSP1. CONCLUSIONS The data indicate that the vast majority of transcript rhythms in Neurospora are generated by dawn and dusk specific transcription. Our observations suggest a substantial plasticity of the circadian transcriptome with respect to the number of rhythmic genes as well as amplitude and phase of the expression rhythms and emphasize a major role of the circadian clock in the temporal organization of metabolism and physiology.
Collapse
Affiliation(s)
- Cigdem Sancar
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| | - Gencer Sancar
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| | - Nati Ha
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| | | | - Michael Brunner
- Heidelberg University Biochemistry Center, Heidelberg, Germany. .,University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, Heidelberg, D-69120, Germany.
| |
Collapse
|
40
|
Affiliation(s)
- Martin Egli
- Department
of Biochemistry, Vanderbilt University,
School of Medicine, Nashville, Tennessee 37232, United States
| | - Carl H. Johnson
- Department
of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
41
|
Abstract
Several lines of evidence suggest that the circadian clock is constructed of multiple molecular feedback oscillators that function to generate robust rhythms in organisms. However, while core oscillator mechanisms driving specific behaviors are well described in several model systems, the nature of other potential circadian oscillators is not understood. Using genetic approaches in the fungus Neurospora crassa, we uncovered an oscillator mechanism that drives rhythmic spore development in the absence of the well-characterized FRQ/WCC oscillator (FWO) and in constant light, conditions under which the FWO is not functional. While this novel oscillator does not require the FWO for activity, it does require the blue-light photoreceptor CRYPTOCHROME (CRY); thus, we call it the CRY-dependent oscillator (CDO). The CDO was uncovered in a strain carrying a mutation in cog-1 (cry-dependent oscillator gate-1), has a period of ∼1 day in constant light, and is temperature-compensated. In addition, cog-1 cells lacking the circadian blue-light photoreceptor WC-1 respond to blue light, suggesting that alternate light inputs function in cog-1 mutant cells. We show that the blue-light photoreceptors VIVID and CRY compensate for each other and for WC-1 in CRY-dependent oscillator light responses, but that WC-1 is necessary for circadian light entrainment.
Collapse
|
42
|
Gyöngyösi N, Káldi K. Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa. Antioxid Redox Signal 2014; 20:3007-23. [PMID: 23964982 DOI: 10.1089/ars.2013.5558] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SIGNIFICANCE Both circadian rhythm and the production of reactive oxygen species (ROS) are fundamental features of aerobic eukaryotic cells. The circadian clock enhances the fitness of organisms by enabling them to anticipate cycling changes in the surroundings. ROS generation in the cell is often altered in response to environmental changes, but oscillations in ROS levels may also reflect endogenous metabolic fluctuations governed by the circadian clock. On the other hand, an effective regulation and timing of antioxidant mechanisms may be crucial in the defense of cellular integrity. Thus, an interaction between the circadian timekeeping machinery and ROS homeostasis or signaling in both directions may be of advantage at all phylogenetic levels. RECENT ADVANCES The Frequency-White Collar-1 and White Collar-2 oscillator (FWO) of the filamentous fungus Neurospora crassa is well characterized at the molecular level. Several members of the ROS homeostasis were found to be controlled by the circadian clock, and ROS levels display circadian rhythm in Neurospora. On the other hand, multiple data indicate that ROS affect the molecular oscillator. CRITICAL ISSUES Increasing evidence suggests the interplay between ROS homeostasis and oscillators that may be partially or fully independent of the FWO. In addition, ROS may be part of a complex cellular network synchronizing non-transcriptional oscillators with timekeeping machineries based on the classical transcription-translation feedback mechanism. FUTURE DIRECTIONS Further investigations are needed to clarify how the different layers of the bidirectional interactions between ROS homeostasis and circadian regulation are interconnected.
Collapse
|
43
|
Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock. Proc Natl Acad Sci U S A 2013; 110:E4867-74. [PMID: 24277852 DOI: 10.1073/pnas.1315133110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rhythmic activation and repression of clock gene transcription is essential for the functions of eukaryotic circadian clocks. In the Neurospora circadian oscillator, frequency (frq) transcription requires the WHITE COLLAR (WC) complex. Here, we show that the transcriptional corepressor regulation of conidiation-1 (RCO-1) is essential for clock function by regulating frq transcription. In rco-1 mutants, both overt and molecular rhythms are abolished, frq mRNA levels are constantly high, and WC binding to the frq promoter is dramatically reduced. Surprisingly, frq mRNA levels were constantly high in the rco-1 wc double mutants, indicating that RCO-1 suppresses WC-independent transcription and promotes WC complex binding to the frq promoter. Furthermore, RCO-1 is required for maintaining normal chromatin structure at the frq locus. Deletion of H3K36 methyltransferase su(var)3-9-enhancer-of-zeste-trithorax-2 (SET-2) or the chromatin remodeling factor CHD-1 leads to WC-independent frq transcription and loss of overt rhythms. Together, our results uncover a previously unexpected regulatory mechanism for clock gene transcription.
Collapse
|
44
|
Transcription and Maturation of mRNA in Dinoflagellates. Microorganisms 2013; 1:71-99. [PMID: 27694765 PMCID: PMC5029490 DOI: 10.3390/microorganisms1010071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 10/14/2013] [Indexed: 01/17/2023] Open
Abstract
Dinoflagellates are of great importance to the marine ecosystem, yet scant details of how gene expression is regulated at the transcriptional level are available. Transcription is of interest in the context of the chromatin structure in the dinoflagellates as it shows many differences from more typical eukaryotic cells. Here we canvas recent transcriptome profiles to identify the molecular building blocks available for the construction of the transcriptional machinery and contrast these with those used by other systems. Dinoflagellates display a clear paucity of specific transcription factors, although surprisingly, the rest of the basic transcriptional machinery is not markedly different from what is found in the close relatives to the dinoflagellates.
Collapse
|
45
|
Lee KK, Ahn CH, Hong CI. Circadian rhythms in Neurospora crassa on a polydimethylsiloxane microfluidic device for real-time gas perturbations. BIOMICROFLUIDICS 2013; 7:44129. [PMID: 24404062 PMCID: PMC3772947 DOI: 10.1063/1.4819478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/13/2013] [Indexed: 05/06/2023]
Abstract
Racetubes, a conventional system employing hollow glass tubes, are typically used for monitoring circadian rhythms from the model filamentous fungus, Neurospora crassa. However, a major technical limitation in using a conventional system is that racetubes are not amenable for real-time gas perturbations. In this work, we demonstrate a simple microfluidic device combined with real-time gas perturbations for monitoring circadian rhythms in Neurospora crassa using bioluminescence assays. The developed platform is a useful toolbox for investigating molecular responses under various gas conditions for Neurospora and can also be applied to other microorganisms.
Collapse
Affiliation(s)
- Kang Kug Lee
- Microsystems and BioMEMS Laboratory, School of Electronics and Computing Systems, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Chong H Ahn
- Microsystems and BioMEMS Laboratory, School of Electronics and Computing Systems, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Christian I Hong
- Computational and Molecular Biology Laboratory, Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
46
|
Cha J, Zhou M, Liu Y. CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus. EMBO Rep 2013; 14:923-30. [PMID: 23958634 DOI: 10.1038/embor.2013.131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/24/2013] [Accepted: 07/31/2013] [Indexed: 12/30/2022] Open
Abstract
Rhythmic frq transcription is essential for the function of the Neurospora circadian clock. Here we show that there is a circadian histone occupancy rhythm at the frq promoter that is regulated by FREQUENCY (FRQ). Using a combination of forward genetics and genome sequencing, we identify Clock ATPase (CATP) as an essential clock component. Our results demonstrate that CATP associates with the frq locus and other WCC target genes and promotes histone removal at these loci to allow circadian gene transcription. These results indicate that the rhythmic control of histone occupancy at clock genes is critical for circadian clock function.
Collapse
Affiliation(s)
- Joonseok Cha
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
47
|
Yon F, Seo PJ, Ryu JY, Park CM, Baldwin IT, Kim SG. Identification and characterization of circadian clock genes in a native tobacco, Nicotiana attenuata. BMC PLANT BIOLOGY 2012; 12:172. [PMID: 23006446 PMCID: PMC3489836 DOI: 10.1186/1471-2229-12-172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 09/22/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND A plant's endogenous clock (circadian clock) entrains physiological processes to light/dark and temperature cycles. Forward and reverse genetic approaches in Arabidopsis have revealed the mechanisms of the circadian clock and its components in the genome. Similar approaches have been used to characterize conserved clock elements in several plant species. A wild tobacco, Nicotiana attenuata has been studied extensively to understand responses to biotic or abiotic stress in the glasshouse and also in their native habitat. During two decades of field experiment, we observed several diurnal rhythmic traits of N. attenuata in nature. To expand our knowledge of circadian clock function into the entrainment of traits important for ecological processes, we here report three core clock components in N. attenuata. RESULTS Protein similarity and transcript accumulation allowed us to isolate orthologous genes of the core circadian clock components, LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1/PSEUDO-RESPONSE REGULATOR 1 (TOC1/PRR1), and ZEITLUPE (ZTL). Transcript accumulation of NaLHY peaked at dawn and NaTOC1 peaked at dusk in plants grown under long day conditions. Ectopic expression of NaLHY and NaZTL in Arabidopsis resulted in elongated hypocotyl and late-flowering phenotypes. Protein interactions between NaTOC1 and NaZTL were confirmed by yeast two-hybrid assays. Finally, when NaTOC1 was silenced in N. attenuata, late-flowering phenotypes under long day conditions were clearly observed. CONCLUSIONS We identified three core circadian clock genes in N. attenuata and demonstrated the functional and biochemical conservation of NaLHY, NaTOC1, and NaZTL.
Collapse
Affiliation(s)
- Felipe Yon
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Pil-Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
- Department of Chemistry, Chonbuk National University, Jeonju, 561-756, Korea
| | - Jae Yong Ryu
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
48
|
Tseng YY, Hunt SM, Heintzen C, Crosthwaite SK, Schwartz JM. Comprehensive modelling of the Neurospora circadian clock and its temperature compensation. PLoS Comput Biol 2012; 8:e1002437. [PMID: 22496627 PMCID: PMC3320131 DOI: 10.1371/journal.pcbi.1002437] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/06/2012] [Indexed: 11/19/2022] Open
Abstract
Circadian clocks provide an internal measure of external time allowing organisms to anticipate and exploit predictable daily changes in the environment. Rhythms driven by circadian clocks have a temperature compensated periodicity of approximately 24 hours that persists in constant conditions and can be reset by environmental time cues. Computational modelling has aided our understanding of the molecular mechanisms of circadian clocks, nevertheless it remains a major challenge to integrate the large number of clock components and their interactions into a single, comprehensive model that is able to account for the full breadth of clock phenotypes. Here we present a comprehensive dynamic model of the Neurospora crassa circadian clock that incorporates its key components and their transcriptional and post-transcriptional regulation. The model accounts for a wide range of clock characteristics including: a periodicity of 21.6 hours, persistent oscillation in constant conditions, arrhythmicity in constant light, resetting by brief light pulses, and entrainment to full photoperiods. Crucial components influencing the period and amplitude of oscillations were identified by control analysis. Furthermore, simulations enabled us to propose a mechanism for temperature compensation, which is achieved by simultaneously increasing the translation of frq RNA and decreasing the nuclear import of FRQ protein. Circadian clocks are internal timekeepers that integrate signals from the environment and orchestrate cellular events to occur at the most favourable time of day. Circadian clocks in animals, plants, fungi and bacteria have similar characteristic properties and molecular architecture. They have a periodicity of approximately 24 hours, persist in constant conditions and can be reset by environmental time cues such as light and temperature. Another essential property, whose molecular basis is poorly understood, is that the period is temperature compensated i.e. it remains the same over a range of temperatures. Computational modelling has become a valuable tool to predict and understand the underlying mechanisms of such complex molecular systems, but existing clock models are often restricted in the scope of molecular reactions they cover and in the breadth of conditions they are able to reproduce. We therefore built a comprehensive model of the circadian clock of the fungus Neurospora crassa, which encompasses existing knowledge of the biochemistry of the Neurospora clock. We validated this model against a wide range of experimental phenotypes and then used the model to investigate possible molecular explanations of temperature compensation. Our simulations suggest that temperature compensation of period is achieved by changing the abundance and cellular localisation of a key clock protein.
Collapse
Affiliation(s)
- Yu-Yao Tseng
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Suzanne M. Hunt
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Christian Heintzen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Susan K. Crosthwaite
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (SKC); (JMS)
| | - Jean-Marc Schwartz
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (SKC); (JMS)
| |
Collapse
|
49
|
Relógio A, Westermark PO, Wallach T, Schellenberg K, Kramer A, Herzel H. Tuning the mammalian circadian clock: robust synergy of two loops. PLoS Comput Biol 2011; 7:e1002309. [PMID: 22194677 PMCID: PMC3240597 DOI: 10.1371/journal.pcbi.1002309] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/31/2011] [Indexed: 12/11/2022] Open
Abstract
The circadian clock is accountable for the regulation of internal rhythms in most living organisms. It allows the anticipation of environmental changes during the day and a better adaptation of physiological processes. In mammals the main clock is located in the suprachiasmatic nucleus (SCN) and synchronizes secondary clocks throughout the body. Its molecular constituents form an intracellular network which dictates circadian time and regulates clock-controlled genes. These clock-controlled genes are involved in crucial biological processes including metabolism and cell cycle regulation. Its malfunction can lead to disruption of biological rhythms and cause severe damage to the organism. The detailed mechanisms that govern the circadian system are not yet completely understood. Mathematical models can be of great help to exploit the mechanism of the circadian circuitry. We built a mathematical model for the core clock system using available data on phases and amplitudes of clock components obtained from an extensive literature search. This model was used to answer complex questions for example: how does the degradation rate of Per affect the period of the system and what is the role of the ROR/Bmal/REV-ERB (RBR) loop? Our findings indicate that an increase in the RNA degradation rate of the clock gene Period (Per) can contribute to increase or decrease of the period--a consequence of a non-monotonic effect of Per transcript stability on the circadian period identified by our model. Furthermore, we provide theoretical evidence for a potential role of the RBR loop as an independent oscillator. We carried out overexpression experiments on members of the RBR loop which lead to loss of oscillations consistent with our predictions. These findings challenge the role of the RBR loop as a merely auxiliary loop and might change our view of the clock molecular circuitry and of the function of the nuclear receptors (REV-ERB and ROR) as a putative driving force of molecular oscillations.
Collapse
Affiliation(s)
- Angela Relógio
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
At first, the saprophytic eukaryote Neurospora crassa and the photosynthetic prokaryote Synechococcus elongatus may seem to have little in common. However, in both organisms a circadian clock organizes cellular biochemistry, and each organism lends itself to classical and molecular genetic investigations that have revealed a detailed picture of the molecular basis of circadian rhythmicity. In the present chapter, an overview of the molecular clockwork in each organism will be described, highlighting similarities, differences and some as yet unexplained phenomena.
Collapse
|