1
|
Duan S, Agger K, Messling JE, Nishimura K, Han X, Peña-Rømer I, Shliaha P, Damhofer H, Douglas M, Kohli M, Pal A, Asad Y, Van Dyke A, Reilly R, Köchl R, Tybulewicz VLJ, Hendrickson RC, Raynaud FI, Gallipoli P, Poulogiannis G, Helin K. WNK1 signalling regulates amino acid transport and mTORC1 activity to sustain acute myeloid leukaemia growth. Nat Commun 2025; 16:4920. [PMID: 40425534 PMCID: PMC12116911 DOI: 10.1038/s41467-025-59969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
The lack of curative therapies for acute myeloid leukaemia (AML) remains an ongoing challenge despite recent advances in the understanding of the molecular basis of the disease. Here we identify the WNK1-OXSR1/STK39 pathway as a previously uncharacterised dependency in AML. We show that genetic depletion and pharmacological inhibition of WNK1 or its downstream phosphorylation targets OXSR1 and STK39 strongly reduce cell proliferation and induce apoptosis in leukaemia cells in vitro and in vivo. Furthermore, we show that the WNK1-OXSR1/STK39 pathway controls mTORC1 signalling via regulating amino acid uptake through a mechanism involving the phosphorylation of amino acid transporters, such as SLC38A2. Our findings underscore an important role of the WNK1-OXSR1/STK39 pathway in regulating amino acid uptake and driving AML progression.
Collapse
Affiliation(s)
- Shunlei Duan
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karl Agger
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Erik Messling
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Koutarou Nishimura
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuerui Han
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Isabel Peña-Rømer
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Pavel Shliaha
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helene Damhofer
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max Douglas
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Manas Kohli
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Akos Pal
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Yasmin Asad
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Aaron Van Dyke
- Department of Chemistry & Biochemistry, Fairfield University, Fairfield, CT, USA
| | - Raquel Reilly
- Department of Chemistry & Biochemistry, Fairfield University, Fairfield, CT, USA
| | | | | | - Ronald C Hendrickson
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florence I Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - George Poulogiannis
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Kristian Helin
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Zhao Y, Schubert H, Blakely A, Forbush B, Smith MD, Rinehart J, Cao E. Structural bases for Na +-Cl - cotransporter inhibition by thiazide diuretic drugs and activation by kinases. Nat Commun 2024; 15:7006. [PMID: 39143061 PMCID: PMC11324901 DOI: 10.1038/s41467-024-51381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC) drives salt reabsorption in the kidney and plays a decisive role in balancing electrolytes and blood pressure. Thiazide and thiazide-like diuretics inhibit NCC-mediated renal salt retention and have been cornerstones for treating hypertension and edema since the 1950s. Here we determine NCC co-structures individually complexed with the thiazide drug hydrochlorothiazide, and two thiazide-like drugs chlorthalidone and indapamide, revealing that they fit into an orthosteric site and occlude the NCC ion translocation pathway. Aberrant NCC activation by the WNKs-SPAK kinase cascade underlies Familial Hyperkalemic Hypertension, but it remains unknown whether/how phosphorylation transforms the NCC structure to accelerate ion translocation. We show that an intracellular amino-terminal motif of NCC, once phosphorylated, associates with the carboxyl-terminal domain, and together, they interact with the transmembrane domain. These interactions suggest a phosphorylation-dependent allosteric network that directly influences NCC ion translocation.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Heidi Schubert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Micholas Dean Smith
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Liu Y, Huang R, Wang R, Tamalunas A, Waidelich R, Stief CG, Hennenberg M. Isoform-independent promotion of contractility and proliferation, and suppression of survival by with no lysine/K kinases in prostate stromal cells. FASEB J 2024; 38:e23604. [PMID: 38591106 DOI: 10.1096/fj.202400362r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
With no lysine/K kinases (WNKs) promote vasocontraction and vascular smooth muscle cell proliferation. In the prostate, smooth muscle contraction and growth may be critical for the development and medical treatment of voiding symptoms in benign prostatic hyperplasia. Here, we examined the effects of isoform-specific WNK silencing and of the WNK inhibitor WNK463 on growth-related functions and contraction in prostate stromal cells, and in human prostate tissues. Impacts of WNK silencing by transfection of cultured stromal cells with isoform-specific siRNAs were qualitatively and quantitatively similar for each WNK isoform. Effects of silencing were largest on cell death (3-5 fold increase in annexin V-positive/7-AAD-positive cells), on proliferation rate, Ki-67 mRNA expression and actin organization (reduced around two-thirds). Contraction in matrix contraction assays and viability were reduced to a lower degree (approximately half), but again to a similar extent for each WNK isoform. Effects of silencing were quantitatively and qualitatively reproduced by 10 μM WNK463, while 1 μM still induced cell death and breakdown in actin organization, without affecting proliferation or viability. Using 500 nM and 10 μM, WNK463 partly inhibited neurogenic and U46619-induced contractions of human prostate tissues (around half), while inhibition of α1-adrenergic contractions (around half) was limited to 10 μM. All four WNK isoforms suppress cell death and promote proliferation in prostate stromal cells. WNK-driven contraction of stromal cells appears possible, even though to a limited extent. Outcomes of isoform-specific WNK silencing can be fully reproduced by WNK463, including inhibition of smooth muscle contraction in human prostate tissues, but require high concentrations.
Collapse
Affiliation(s)
- Yuhan Liu
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Raphaela Waidelich
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Untiet V. Astrocytic chloride regulates brain function in health and disease. Cell Calcium 2024; 118:102855. [PMID: 38364706 DOI: 10.1016/j.ceca.2024.102855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Chloride ions (Cl-) play a pivotal role in synaptic inhibition in the central nervous system, primarily mediated through ionotropic mechanisms. A recent breakthrough emphathizes the significant influence of astrocytic intracellular chloride concentration ([Cl-]i) regulation, a field still in its early stages of exploration. Typically, the [Cl-]i in most animal cells is maintained at lower levels than the extracellular chloride [Cl-]o, a critical balance to prevent cell swelling due to osmotic pressure. Various Cl- transporters are expressed differently across cell types, fine-tuning the [Cl-]i, while Cl- gradients are utilised by several families of Cl- channels. Although the passive distribution of ions within cells is governed by basic biophysical principles, astrocytes actively expend energy to sustain [Cl-]i at much higher levels than those achieved passively, and much higher than neuronal [Cl-]i. Beyond the role in volume regulation, astrocytic [Cl-]i is dynamically linked to brain states and influences neuronal signalling in actively behaving animals. As a vital component of brain function, astrocytic [Cl-]i also plays a role in the development of disorders where inhibitory transmission is disrupted. This review synthesises the latest insights into astrocytic [Cl-]i, elucidating its role in modulating brain function and its implications in various pathophysiological conditions.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
5
|
Dimke H. Introducing a special series: Membrane proteins, epithelial transport, and kidney physiology. Acta Physiol (Oxf) 2023; 238:e13958. [PMID: 36894496 DOI: 10.1111/apha.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Affiliation(s)
- Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Nephrology, Odense University Hospital, Odense C, Denmark
| |
Collapse
|
6
|
Koirala A, Pourafshar N, Daneshmand A, Wilcox CS, Mannemuddhu SS, Arora N. Etiology and Management of Edema: A Review. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:110-123. [PMID: 36868727 DOI: 10.1053/j.akdh.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 04/18/2023]
Abstract
The development of peripheral edema can often pose a significant diagnostic and therapeutic challenge for practitioners due to its association with a wide variety of underlying disorders ranging in severity. Updates to the original Starling's principle have provided new mechanistic insights into edema formation. Additionally, contemporary data highlighting the role of hypochloremia in the development of diuretic resistance provide a possible new therapeutic target. This article reviews the pathophysiology of edema formation and discusses implications for treatment.
Collapse
Affiliation(s)
- Abbal Koirala
- Division of Nephrology, University of Washington, Seattle, WA
| | - Negiin Pourafshar
- Division of Nephrology, MedStar Georgetown University Hospital, Washington DC
| | - Arvin Daneshmand
- Division of Nephrology, MedStar Georgetown University Hospital, Washington DC
| | | | | | - Nayan Arora
- Division of Nephrology, University of Washington, Seattle, WA.
| |
Collapse
|
7
|
Zhao Y, Cao E. Structural Pharmacology of Cation-Chloride Cotransporters. MEMBRANES 2022; 12:1206. [PMID: 36557113 PMCID: PMC9784483 DOI: 10.3390/membranes12121206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Loop and thiazide diuretics have been cornerstones of clinical management of hypertension and fluid overload conditions for more than five decades. The hunt for their molecular targets led to the discovery of cation-chloride cotransporters (CCCs) that catalyze electroneutral movement of Cl- together with Na+ and/or K+. CCCs consist of two 1 Na+-1 K+-2 Cl- (NKCC1-2), one 1 Na+-1 Cl- (NCC), and four 1 K+-1 Cl- (KCC1-4) transporters in human. CCCs are fundamental in trans-epithelia ion secretion and absorption, homeostasis of intracellular Cl- concentration and cell volume, and regulation of neuronal excitability. Malfunction of NKCC2 and NCC leads to abnormal salt and water retention in the kidney and, consequently, imbalance in electrolytes and blood pressure. Mutations in KCC2 and KCC3 are associated with brain disorders due to impairments in regulation of excitability and possibly cell volume of neurons. A recent surge of structures of CCCs have defined their dimeric architecture, their ion binding sites, their conformational changes associated with ion translocation, and the mechanisms of action of loop diuretics and small molecule inhibitors. These breakthroughs now set the stage to expand CCC pharmacology beyond loop and thiazide diuretics, developing the next generation of diuretics with improved potency and specificity. Beyond drugging renal-specific CCCs, brain-penetrable therapeutics are sorely needed to target CCCs in the nervous system for the treatment of neurological disorders and psychiatric conditions.
Collapse
|
8
|
Salihu S, Meor Azlan NF, Josiah SS, Wu Z, Wang Y, Zhang J. Role of the cation-chloride-cotransporters in the circadian system. Asian J Pharm Sci 2021; 16:589-597. [PMID: 34849164 PMCID: PMC8609385 DOI: 10.1016/j.ajps.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023] Open
Abstract
The circadian system plays an immense role in controlling physiological processes in our body. The suprachiasmatic nucleus (SCN) supervises this system, regulating and harmonising the circadian rhythms in our body. Most neurons present in the SCN are GABAergic neurons. Although GABA is considered the main inhibitory neurotransmitter of the CNS, recent studies have shown that excitatory responses were recorded in this area. These responses are enabled by an increase in intracellular chloride ions [Cl-]i levels. The chloride (Cl-) levels in GABAergic neurons are controlled by two solute carrier 12 (SLC12) cation-chloride-cotransporters (CCCs): Na+/K+/Cl- co-transporter (NKCC1) and K+/Cl- co-transporter (KCC2), that respectively cause an influx and efflux of Cl-. Recent works have found altered expression and/or activity of either of these co-transporters in SCN neurons and have been associated with circadian rhythms. In this review, we summarize and discuss the role of CCCs in circadian rhythms, and highlight these recent advances which attest to CCC's growing potential as strong research and therapeutic targets.
Collapse
Affiliation(s)
- Shihan Salihu
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Zhijuan Wu
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| |
Collapse
|
9
|
[Molecular genetics of human hypertension]. Internist (Berl) 2021; 62:223-235. [PMID: 33595671 DOI: 10.1007/s00108-021-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
A genetic influence on blood pressure was demonstrated more than 100 years ago and a simple Mendelian inheritance was initially presumed. Platt and Pickering conducted a lively debate on this topic. Platt favored the idea that a single gene or only a few genes were responsible for high blood pressure. Pickering presented research results, which supported the assumption that many genes exerted an influence on blood pressure. This was all in a period when it was not even known what genes were. Genome-wide association studies (GWAS) according to the Pickering model have identified > 500 blood pressure relevant gene loci, which are distributed over the whole genome. Each individual gene exerts only a small effect on blood pressure. The dark horses of hypertension research are the secondary causes. In pheochromocytoma, primary aldosteronism, Cushing's syndrome and even fibromuscular dysplasia (renovascular hypertension) the results indicate that a genetic cause regularly underlies secondary hypertension. This would therefore also partially confirm Platt's theory. In the meantime, a multitude of forms of hypertension have been described with a genetic inheritance according to Mendel. Each of these genetic variants exerts a considerable influence on blood pressure. A multitude of novel physiological mechanisms were explained by this. These findings will become therapeutically important. Therefore, it is incumbent upon clinicians to be optimally informed about these research results.
Collapse
|
10
|
Gonçalves V, Henriques AFA, Matos P, Jordan P. Ibuprofen disrupts a WNK1/GSK3β/SRPK1 protein complex required for expression of tumor-related splicing variant RAC1B in colorectal cells. Oncotarget 2020; 11:4421-4437. [PMID: 33315986 PMCID: PMC7720772 DOI: 10.18632/oncotarget.27816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
A major risk factor promoting tumor development is chronic inflammation and the use of nonsteroidal anti-inflammatory drugs (NSAID), including ibuprofen, can decrease the risk of developing various types of cancer, including colorectal cancer (CRC). Although the molecular mechanism behind the antitumor properties of NSAIDs has been largely attributed to inhibition of cyclooxygenases (COXs), several studies have shown that the chemopreventive properties of ibuprofen also involve multiple COX-independent effects. One example is its ability to inhibit the alternative splicing event generating RAC1B, which is overexpressed in a specific subset of BRAF-mutated colorectal tumors and sustains cell survival. Here we describe the mechanism by which ibuprofen prevents RAC1B alternative splicing in a BRAF mutant CRC cell line: it leads to decreased translocation of SRPK1 and SRSF1 to the nucleus and is regulated by a WNK1/GSK3β/SRPK1 protein kinase complex. Surprisingly, we demonstrate that ibuprofen does not inhibit the activity of any of the involved kinases but rather promotes disassembly of this regulatory complex, exposing GSK3β serine 9 to inhibitory phosphorylation, namely by AKT, which results in nuclear exclusion of SRPK1 and SRSF1 hypophosphorylation. The data shed new light on the biochemical mechanisms behind ibuprofen’s action on alternative spliced RAC1B and may support its use in personalized approaches to CRC therapy or chemoprevention regimens.
Collapse
Affiliation(s)
- Vânia Gonçalves
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,These authors contributed equally to this work
| | - Andreia F A Henriques
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,These authors contributed equally to this work
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Genetic variance on blood pressure was shown about 100 years ago; a Mendelian inheritance was initially presumed. Platt and Pickering conducted a lively debate, whether blood pressure was inherited in a Mendelian fashion or whether the condition was polygenic. Genetic-hypertension research has appropriately followed both pathways. RECENT FINDINGS Genome-wide association studies, Pickering model, have identified more than 500 blood-pressure loci, the targets of which are waiting to be evaluated. Then, come the 'dark-horses' of hypertension, namely 'secondary' causes. These conditions have been remarkably elucidative including pheochromocytoma, primary aldosteronism, Cushing's syndrome, and even renovascular hypertension. All these conditions feature genetic causes. Finally, arrive the Platt followers. A plethora of Mendelian conditions located within the kidney are established. These syndromes involve increased sodium (as chloride) absorption in the distal nephron. Finally, nonsalt-dependent Mendelian forms involving the vascular directly have been described. Mechanistically, Mendelian forms have large effects on blood pressure and offer effective treatment targets. SUMMARY Which genetic models will bring us improved therapies? Ongoing studies will answer that question. It behooves the clinician to follow this dynamic area of research.
Collapse
|
12
|
Wu P, Su XT, Gao ZX, Zhang DD, Duan XP, Xiao Y, Staub O, Wang WH, Lin DH. Renal Tubule Nedd4-2 Deficiency Stimulates Kir4.1/Kir5.1 and Thiazide-Sensitive NaCl Cotransporter in Distal Convoluted Tubule. J Am Soc Nephrol 2020; 31:1226-1242. [PMID: 32295826 DOI: 10.1681/asn.2019090923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The potassium channel Kir4.1 forms the Kir4.1/Kir5.1 heterotetramer in the basolateral membrane of the distal convoluted tubule (DCT) and plays an important role in the regulation of the thiazide-sensitive NaCl cotransporter (NCC). Kidney-specific deletion of the ubiquitin ligase Nedd4-2 increases expression of NCC, and coexpression of Nedd4-2 inhibits Kir4.1/Kir5.1 in vitro. Whether Nedd4-2 regulates NCC expression in part by regulating Kir4.1/Kir5.1 channel activity in the DCT is unknown. METHODS We used electrophysiology studies, immunoblotting, immunostaining, and renal clearance to examine Kir4.1/Kir5.1 activity in the DCT and NCC expression/activity in wild-type mice and mice with kidney-specific knockout of Nedd4-2, Kir4.1, or both. RESULTS Deletion of Nedd4-2 increased the activity/expression of Kir4.1 in the DCT and also, hyperpolarized the DCT membrane. Expression of phosphorylated NCC/total NCC and thiazide-induced natriuresis were significantly increased in the Nedd4-2 knockout mice, but these mice were normokalemic. Double-knockout mice lacking both Kir4.1/Kir5.1 and Nedd4-2 in the kidney exhibited increased expression of the epithelial sodium channel α-subunit, largely abolished basolateral potassium ion conductance (to a degree similar to that of kidney-specific Kir4.1 knockout mice), and depolarization of the DCT membrane. Compared with wild-type mice, the double-knockout mice displayed inhibited expression of phosphorylated NCC and total NCC and had significantly blunted thiazide-induced natriuresis as well as renal potassium wasting and hypokalemia. However, NCC expression/activity was higher in the double-knockout mice than in Kir4.1 knockout mice. CONCLUSIONS Nedd4-2 regulates Kir4.1/Kir5.1 expression/activity in the DCT and modulates NCC expression by Kir4.1-dependent and Kir4.1-independent mechanisms. Basolateral Kir4.1/Kir5.1 activity in the DCT partially accounts for the stimulation of NCC activity/expression induced by deletion of Nedd4-2.
Collapse
Affiliation(s)
- Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Yu Xiao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
13
|
Yang X, Wang Q, Cao E. Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy. Nat Commun 2020; 11:1016. [PMID: 32081947 PMCID: PMC7035313 DOI: 10.1038/s41467-020-14790-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
The secondary active cation-chloride cotransporters (CCCs) utilize the existing Na+ and/or K+ gradients to move Cl- into or out of cells. NKCC1 is an intensively studied member of the CCC family and plays fundamental roles in regulating trans-epithelial ion movement, cell volume, chloride homeostasis and neuronal excitability. Here, we report a cryo-EM structure of human NKCC1 captured in a partially loaded, inward-open state. NKCC1 assembles into a dimer, with the first ten transmembrane (TM) helices harboring the transport core and TM11-TM12 helices lining the dimer interface. TM1 and TM6 helices break α-helical geometry halfway across the lipid bilayer where ion binding sites are organized around these discontinuous regions. NKCC1 may harbor multiple extracellular entryways and intracellular exits, raising the possibility that K+, Na+, and Cl- ions may traverse along their own routes for translocation. NKCC1 structure provides a blueprint for further probing structure-function relationships of NKCC1 and other CCCs.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA
| | - Qinzhe Wang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA.
| |
Collapse
|
14
|
Lee D, Hong JH. The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs. Int J Mol Sci 2020; 21:ijms21010339. [PMID: 31947992 PMCID: PMC6981687 DOI: 10.3390/ijms21010339] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Correspondence: ; Tel.: +82-32-899-6682; Fax: +82-32-899-6039
| |
Collapse
|
15
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
16
|
Fan J, Tatum R, Hoggard J, Chen YH. Claudin-7 Modulates Cl - and Na + Homeostasis and WNK4 Expression in Renal Collecting Duct Cells. Int J Mol Sci 2019; 20:ijms20153798. [PMID: 31382627 PMCID: PMC6696617 DOI: 10.3390/ijms20153798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
Claudin-7 knockout (CLDN7-/-) mice display renal salt wasting and dehydration phenotypes. To address the role of CLDN7 in kidneys, we established collecting duct (CD) cell lines from CLDN7+/+ and CLDN7-/- mouse kidneys. We found that deletion of CLDN7 increased the transepithelial resistance (TER) and decreased the paracellular permeability for Cl- and Na+ in CLDN7-/- CD cells. Inhibition of transcellular Cl- and Na+ channels has no significant effect on TER or dilution potentials. Current-voltage curves were linear in both CLDN7+/+ and CLDN7-/- CD cells, indicating that the ion flux was through the paracellular pathway. The impairment of Cl- and Na+ permeability phenotype can be rescued by CLDN7 re-expression. We also found that WNK4 (its mutations lead to hypertension) expression, but not WNK1, was significantly increased in CLDN7-/- CD cell lines as well as in primary CLDN7-/- CD cells, suggesting that the expression of WNK4 was modulated by CLDN7. In addition, deletion of CLDN7 upregulated the expression level of the apical epithelial sodium channel (ENaC), indicating a potential cross-talk between paracellular and transcellular transport systems. This study demonstrates that CLDN7 plays an important role in salt balance in renal CD cells and modulating WNK4 and ENaC expression levels that are vital in controlling salt-sensitive hypertension.
Collapse
Affiliation(s)
- Junming Fan
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Rodney Tatum
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - John Hoggard
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
17
|
Wu P, Gao ZX, Zhang DD, Su XT, Wang WH, Lin DH. Deletion of Kir5.1 Impairs Renal Ability to Excrete Potassium during Increased Dietary Potassium Intake. J Am Soc Nephrol 2019; 30:1425-1438. [PMID: 31239388 PMCID: PMC6683724 DOI: 10.1681/asn.2019010025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The basolateral potassium channel in the distal convoluted tubule (DCT), comprising the inwardly rectifying potassium channel Kir4.1/Kir5.1 heterotetramer, plays a key role in mediating the effect of dietary potassium intake on the thiazide-sensitive NaCl cotransporter (NCC). The role of Kir5.1 (encoded by Kcnj16) in mediating effects of dietary potassium intake on the NCC and renal potassium excretion is unknown. METHODS We used electrophysiology, renal clearance, and immunoblotting to study Kir4.1 in the DCT and NCC in Kir5.1 knockout (Kcnj16-/- ) and wild-type (Kcnj16+/+ ) mice fed with normal, high, or low potassium diets. RESULTS We detected a 40-pS and 20-pS potassium channel in the basolateral membrane of the DCT in wild-type and knockout mice, respectively. Compared with wild-type, Kcnj16-/- mice fed a normal potassium diet had higher basolateral potassium conductance, a more negative DCT membrane potential, higher expression of phosphorylated NCC (pNCC) and total NCC (tNCC), and augmented thiazide-induced natriuresis. Neither high- nor low-potassium diets affected the basolateral DCT's potassium conductance and membrane potential in Kcnj16-/- mice. Although high potassium reduced and low potassium increased the expression of pNCC and tNCC in wild-type mice, these effects were absent in Kcnj16-/- mice. High potassium intake inhibited and low intake augmented thiazide-induced natriuresis in wild-type but not in Kcnj16-/- mice. Compared with wild-type, Kcnj16-/- mice with normal potassium intake had slightly lower plasma potassium but were more hyperkalemic with prolonged high potassium intake and more hypokalemic during potassium restriction. CONCLUSIONS Kir5.1 is essential for dietary potassium's effect on NCC and for maintaining potassium homeostasis.
Collapse
Affiliation(s)
- Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
18
|
Huang L, Liu X. microRNA-370 Promotes Cell Growth by Targeting WNK2 in Breast Cancer. DNA Cell Biol 2019; 38:501-509. [PMID: 31009242 DOI: 10.1089/dna.2018.4602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Li Huang
- Central Hospital of Zibo, Zhangdian District, Zibo, Shandong, China
| | - Xiangyu Liu
- Central Hospital of Zibo, Zhangdian District, Zibo, Shandong, China
| |
Collapse
|
19
|
Wu P, Gao ZX, Su XT, Wang MX, Wang WH, Lin DH. Kir4.1/Kir5.1 Activity Is Essential for Dietary Sodium Intake-Induced Modulation of Na-Cl Cotransporter. J Am Soc Nephrol 2018; 30:216-227. [PMID: 30559144 DOI: 10.1681/asn.2018080799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/13/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Dietary sodium intake regulates the thiazide-sensitive Na-Cl cotransporter (NCC) in the distal convoluted tubule (DCT). Whether the basolateral, inwardly rectifying potassium channel Kir4.1/Kir5.1 (a heterotetramer of Kir4.1/Kir5.1) in the DCT is essential for mediating the effect of dietary sodium intake on NCC activity is unknown. METHODS We used electrophysiology, renal clearance techniques, and immunoblotting to examine effects of Kir4.1/Kir5.1 in the DCT and NCC in wild-type and kidney-specific Kir4.1 knockout mice. RESULTS Low sodium intake stimulated basolateral Kir4.1/Kir5.1 activity, increased basolateral K+ conductance, and hyperpolarized the membrane. Conversely, high sodium intake inhibited the potassium channel, decreased basolateral K+ currents, and depolarized the membrane. Low sodium intake increased total and phosphorylated NCC expression and augmented hydrochlorothiazide-induced natriuresis; high sodium intake had opposite effects. Thus, elevated NCC activity induced by low sodium intake was associated with upregulation of Kir4.1/Kir5.1 activity in the DCT, whereas inhibition of NCC activity by high sodium intake was associated with diminished Kir4.1/Kir5.1 activity. In contrast, dietary sodium intake did not affect NCC activity in knockout mice. Further, Kir4.1 deletion not only abolished basolateral K+ conductance and depolarized the DCT membrane, but also abrogated the stimulating effects induced by low sodium intake on basolateral K+ conductance and hyperpolarization. Finally, dietary sodium intake did not alter urinary potassium excretion rate in hypokalemic knockout and wild-type mice. CONCLUSIONS Stimulation of Kir4.1/Kir5.1 by low intake of dietary sodium is essential for NCC upregulation, and inhibition of Kir4.1/Kir5.1 induced by high sodium intake is a key step for downregulation of NCC.
Collapse
Affiliation(s)
- Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Ming-Xiao Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
20
|
Wilson CS, Mongin AA. Cell Volume Control in Healthy Brain and Neuropathologies. CURRENT TOPICS IN MEMBRANES 2018; 81:385-455. [PMID: 30243438 DOI: 10.1016/bs.ctm.2018.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulation of cellular volume is a critical homeostatic process that is intimately linked to ionic and osmotic balance in the brain tissue. Because the brain is encased in the rigid skull and has a very complex cellular architecture, even minute changes in the volume of extracellular and intracellular compartments have a very strong impact on tissue excitability and function. The failure of cell volume control is a major feature of several neuropathologies, such as hyponatremia, stroke, epilepsy, hyperammonemia, and others. There is strong evidence that such dysregulation, especially uncontrolled cell swelling, plays a major role in adverse pathological outcomes. To protect themselves, brain cells utilize a variety of mechanisms to maintain their optimal volume, primarily by releasing or taking in ions and small organic molecules through diverse volume-sensitive ion channels and transporters. In principle, the mechanisms of cell volume regulation are not unique to the brain and share many commonalities with other tissues. However, because ions and some organic osmolytes (e.g., major amino acid neurotransmitters) have a strong impact on neuronal excitability, cell volume regulation in the brain is a surprisingly treacherous process, which may cause more harm than good. This topical review covers the established and emerging information in this rapidly developing area of physiology.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
21
|
He X, Liu C, Chen Y, He J, Dong Y. Risk of Cardiovascular Mortality Associated With Serum Sodium and Chloride in the General Population. Can J Cardiol 2018; 34:999-1003. [PMID: 29935992 DOI: 10.1016/j.cjca.2018.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The prognostic value of serum chloride among patients with heart failure was demonstrated by previous studies. However, the association of serum chloride and risk of cardiovascular mortality among the general population remains unclear. METHODS We included 16,483 participants in National Health and Nutrition Examination Survey III. Cox proportional hazards models were used to assess the association of serum sodium and chloride and cardiovascular mortality. Potential confounders were included in the models. Levels of serum sodium and chloride were also modeled with restrictive cubic splines for potential nonlinear associations. Subgroup analyses were based on baseline diseases and use of diuretics. RESULTS The mean age was 43.5 years, and 47.8% of the participants were men. During 277,059 person-years of follow-up, there were 1714 cardiovascular deaths. In the multivariate model, low-level serum sodium was associated with an increased risk of cardiovascular mortality (hazard ratio [HR], 1.10; 95% confidence interval [CI], 1.02-1.18 per standard deviation [SD]; P = 0.009), whereas a lower level of serum chloride was not (HR, 1.04; 95% CI, 0.97-1.12 per standard deviation; P = 0.278). Analyses with restrictive cubic splines yielded similar results. CONCLUSIONS Low serum sodium, rather than chloride, was independently associated with an increased risk of cardiovascular mortality.
Collapse
Affiliation(s)
- Xin He
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yili Chen
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Jiangui He
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China.
| |
Collapse
|
22
|
Wu P, Gao ZX, Su XT, Ellison DH, Hadchouel J, Teulon J, Wang WH. Role of WNK4 and kidney-specific WNK1 in mediating the effect of high dietary K + intake on ROMK channel in the distal convoluted tubule. Am J Physiol Renal Physiol 2018; 315:F223-F230. [PMID: 29667910 DOI: 10.1152/ajprenal.00050.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With-no-lysine kinase 4 (WNK4) and kidney-specific (KS)-WNK1 regulate ROMK (Kir1.1) channels in a variety of cell models. We now explore the role of WNK4 and KS-WNK1 in regulating ROMK in the native distal convoluted tubule (DCT)/connecting tubule (CNT) by measuring tertiapin-Q (TPNQ; ROMK inhibitor)-sensitive K+ currents with whole cell recording. TPNQ-sensitive K+ currents in DCT2/CNT of KS- WNK1-/- and WNK4-/- mice were significantly smaller than that of WT mice. In contrast, the basolateral K+ channels (a Kir4.1/5.1 heterotetramer) in the DCT were not inhibited. Moreover, WNK4-/- mice were hypokalemic, while KS- WNK1-/- mice had normal plasma K+ levels. High K+ (HK) intake significantly increased TPNQ-sensitive K+ currents in DCT2/CNT of WT and WNK4-/- mice but not in KS- WNK1-/- mice. However, TPNQ-sensitive K+ currents in the cortical collecting duct (CCD) were normal not only under control conditions but also significantly increased in response to HK in KS- WNK1-/- mice. This suggests that the deletion of KS-WNK1-induced inhibition of ROMK occurs only in the DCT2/CNT. Renal clearance study further demonstrated that the deletion of KS-WNK1 did not affect the renal ability of K+ excretion under control conditions and during increasing K+ intake. Also, HK intake did not cause hyperkalemia in KS- WNK1-/- mice. We conclude that KS-WNK1 but not WNK4 is required for HK intake-induced stimulation of ROMK activity in DCT2/CNT. However, KS-WNK1 is not essential for HK-induced stimulation of ROMK in the CCD, and the lack of KS-WNK1 does not affect net renal K+ excretion.
Collapse
Affiliation(s)
- Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale, UMR_S1155, University Pierre et Marie Curie, Hospital Tenon , Paris , France.,University Pierre et Marie Curie, Centre de Recherches des Cordeliers, UMR_S1138, Paris , France
| | - Jacques Teulon
- University Pierre et Marie Curie, Centre de Recherches des Cordeliers, UMR_S1138, Paris , France
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
23
|
Wilson CS, Mongin AA. The signaling role for chloride in the bidirectional communication between neurons and astrocytes. Neurosci Lett 2018; 689:33-44. [PMID: 29329909 DOI: 10.1016/j.neulet.2018.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 01/01/2023]
Abstract
It is well known that the electrical signaling in neuronal networks is modulated by chloride (Cl-) fluxes via the inhibitory GABAA and glycine receptors. Here, we discuss the putative contribution of Cl- fluxes and intracellular Cl- to other forms of information transfer in the CNS, namely the bidirectional communication between neurons and astrocytes. The manuscript (i) summarizes the generic functions of Cl- in cellular physiology, (ii) recaps molecular identities and properties of Cl- transporters and channels in neurons and astrocytes, and (iii) analyzes emerging studies implicating Cl- in the modulation of neuroglial communication. The existing literature suggests that neurons can alter astrocytic Cl- levels in a number of ways; via (a) the release of neurotransmitters and activation of glial transporters that have intrinsic Cl- conductance, (b) the metabotropic receptor-driven changes in activity of the electroneutral cation-Cl- cotransporter NKCC1, and (c) the transient, activity-dependent changes in glial cell volume which open the volume-regulated Cl-/anion channel VRAC. Reciprocally, astrocytes are thought to alter neuronal [Cl-]i through either (a) VRAC-mediated release of the inhibitory gliotransmitters, GABA and taurine, which open neuronal GABAA and glycine receptor/Cl- channels, or (b) the gliotransmitter-driven stimulation of NKCC1. The most important recent developments in this area are the identification of the molecular composition and functional heterogeneity of brain VRAC channels, and the discovery of a new cytosolic [Cl-] sensor - the Wnk family protein kinases. With new work in the field, our understanding of the role of Cl- in information processing within the CNS is expected to be significantly updated.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation.
| |
Collapse
|
24
|
Zhang YJ, Zheng HQ, Chen BY, Sun L, Ma MM, Wang GL, Guan YY. WNK1 is required for proliferation induced by hypotonic challenge in rat vascular smooth muscle cells. Acta Pharmacol Sin 2018; 39:35-47. [PMID: 28770829 DOI: 10.1038/aps.2017.56] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
Hypotonic challenge evoked vascular cell proliferation through activation of volume-regulated Cl- channel (VRCC), leading to a decrease in the intracellular Cl- concentration ([Cl-]i). We hypothesize that the decrease in [Cl-]i may activate one or several Cl--sensitive kinases, resulting in a subsequent signaling cascade. In this study we demonstrated that WNK1, a Cl--sensitive kinase, was involved in VRCC-induced proliferative signaling pathway in A10 vascular smooth muscle cells in vitro. A10 cells were exposed to a hypotonic challenge (225 mosmol·kg-1·H20), which caused significantly increase in WNK1 phosphorylation without altering WNK1 protein expression. WNK1 overexpression significantly increased hypotonic-induced A10 cell proliferation, whereas silencing of WNK1 caused an opposite action. WNK1 mutation did not affect hypotonic-induced WNK1 phosphorylation and cell proliferation. Silencing of WNK1 caused cell cycle arrest at G0/G1 phase and prevented transition from G1 to S phase, whereas the WNK1 overexpression accelerated cell cycle transition from G1 to S phase. Silencing of WNK1 significantly inhibited cyclin D1/cyclin E1 expression and increased p27kip/p21cip expression. WNK1 overexpression significantly increased cyclin D1/cyclin E1 expression and reduced p27KIP/p21CIP expression. In addition, WNK1 knockdown or overexpression significantly attenuated or increased the hypotonic-induced phosphorylation of Akt and PI3K respectively.In conclusion, the reduction in [Cl-]i caused by hypotonic challenge-induced VRCC opening evokes WNK1 phosphorylation in A10 VSMCs, which mediates cell cycle transition from G0/G1 to S phase and proliferation through the PI3K-Akt signaling pathway.
Collapse
|
25
|
Association between Cullin-3 Single-Nucleotide Polymorphism rs17479770 and Essential Hypertension in the Male Chinese Han Population. DISEASE MARKERS 2017; 2017:3062759. [PMID: 28804198 PMCID: PMC5540270 DOI: 10.1155/2017/3062759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 01/11/2023]
Abstract
Background Hypertension, including essential and secondary hypertension, is a multifactorial disease, affecting more than one billion people worldwide. Secondary hypertension can result from mutations of cullin-3 (CUL3); however, whether polymorphisms of CUL3 are associated with essential hypertension (EH) has not been reported. Here, we investigated the association between CUL3 SNPs rs17479770 and rs3738952 and EH in the Chinese Han population. Methods This case-control study investigated 520 representatives, including 259 patients with EH and 261 normotensive controls matched for age, gender, BMI, TG, TC, and HbA1c for the distribution of functional rs17479770 and rs3738952 within the CUL3 gene by using PCR and RFLP. Results Our results showed that there was no significant difference in allele and genotype distribution of rs3738952 and haplotype distribution of rs17479770 and rs3738952 between the EH group and normotensive group, whereas the rs17479770 TT genotype in male and the full data set were significantly associated with the decreased risk of EH (P = 0.050, P = 0.042), and rs17479770 allele T in male was shown to have the correlation tendency of the decreased risk of EH (P = 0.064). Conclusion Our data suggest that the CUL3 rs17479770 variant could be a protective factor in the pathogenesis of EH.
Collapse
|
26
|
The modulation of the phosphorylation status of NKCC1 in organ cultured bovine lenses: Implications for the regulation of fiber cell and overall lens volume. Exp Eye Res 2017; 165:164-174. [PMID: 28818393 DOI: 10.1016/j.exer.2017.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/25/2017] [Accepted: 08/11/2017] [Indexed: 11/24/2022]
Abstract
In previous work, we have shown the Sodium/Potassium/2 Chloride Cotransporter (NKCC1) to be a key effector of lens fiber cell volume regulation. Since others have shown that the activity of NKCC1 is regulated via its phosphorylation status, the purpose of this study was to investigate whether NKCC1 phosphorylation can be modulated in organ cultured bovine lenses, and to see how this relates to changes in lens wet weight. Western blotting was first used to confirm the expression of NKCC1, phosphorylated NKCC1 (NKCC1-P) and the regulatory kinases WNK/SPAK and phosphatases PP1/PP2A in bovine lenses at the protein level. Changes to NKCC1-P status were then assessed by organ culturing bovine lenses in either isotonic, hypertonic or hypotonic solutions in the presence or absence of the NKCC inhibitor, bumetanide, or phosphatase inhibitors okadaic acid and calyculin A. After 1-22 h of culturing, lenses were weighed, assessed for transparency and the cortical protein fractions analyzed by western blot using antibodies to detect total NKCC1 and NKCC1-P. NKCC1, NKCC1-P, SPAK, PP1 and PP2A were all detected in the membrane fraction of bovine lenses. Under hypertonic conditions, NKCC1 is phosphorylated and activated to mediate a regulatory volume increase. Finally, NKCC1-P signal increased in the presence of phosphatase inhibitors indicating that PP1/PP2A can dephosphorylate NKCC1. These results show that the phosphorylation status and hence activity of NKCC1 is dynamically regulated and that in response to hypertonic stress, NKCC1 activity is increased to effect a regulatory volume increase that limits cell shrinkage. These findings support the view that the lens dynamically regulates ion fluxes to maintain steady state lens volume, and suggest that dysfunction of this regulation maybe an initiating factor in the localized fiber cell swelling that is a characteristic of diabetic lens cataract.
Collapse
|
27
|
Zhang J, Karimy JK, Delpire E, Kahle KT. Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Expert Opin Ther Targets 2017; 21:795-804. [PMID: 28679296 PMCID: PMC6081737 DOI: 10.1080/14728222.2017.1351949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mammalian SPS1-related proline/alanine-rich serine-threonine kinase SPAK (STK39) modulates ion transport across and between epithelial cells in response to environmental stimuli such osmotic stress and inflammation. Research over the last decade has established a central role for SPAK in the regulation of ion and water transport in the distal nephron, colonic crypts, and pancreatic ducts, and has implicated deregulated SPAK signaling in NaCl-sensitive hypertension, ulcerative colitis and Crohn's disease, and cystic fibrosis. Areas covered: We review recent advances in our understanding of the role of SPAK kinase in the regulation of epithelial transport. We highlight how SPAK signaling - including its upstream Cl- sensitive activators, the WNK kinases, and its downstream ion transport targets, the cation- Cl- cotransporters contribute to human disease. We discuss prospects for the pharmacotherapeutic targeting of SPAK kinase in specific human disorders that feature impaired epithelial homeostasis. Expert opinion: The development of novel drugs that antagonize the SPAK-WNK interaction, inhibit SPAK kinase activity, or disrupt SPAK kinase activation by interfering with its binding to MO25α/β could be useful adjuncts in essential hypertension, inflammatory colitis, and cystic fibrosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - Jason K. Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiolgy, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T. Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
28
|
O'Donnell BM, Mackie TD, Subramanya AR, Brodsky JL. Endoplasmic reticulum-associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome. J Biol Chem 2017. [PMID: 28630040 DOI: 10.1074/jbc.m117.786376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Type II Bartter syndrome is caused by mutations in the renal outer medullary potassium (ROMK) channel, but the molecular mechanisms underlying this disease are poorly defined. To rapidly screen for ROMK function, we developed a yeast expression system and discovered that yeast cells lacking endogenous potassium channels could be rescued by WT ROMK but not by ROMK proteins containing any one of four Bartter mutations. We also found that the mutant proteins were significantly less stable than WT ROMK. However, their degradation was slowed in the presence of a proteasome inhibitor or when yeast cells contained mutations in the CDC48 or SSA1 gene, which is required for endoplasmic reticulum (ER)-associated degradation (ERAD). Consistent with these data, sucrose gradient centrifugation and indirect immunofluorescence microscopy indicated that most ROMK protein was ER-localized. To translate these findings to a more relevant cell type, we measured the stabilities of WT ROMK and the ROMK Bartter mutants in HEK293 cells. As in yeast, the Bartter mutant proteins were less stable than the WT protein, and their degradation was slowed in the presence of a proteasome inhibitor. Finally, we discovered that low-temperature incubation increased the steady-state levels of a Bartter mutant, suggesting that the disease-causing mutation traps the protein in a folding-deficient conformation. These findings indicate that the underlying pathology for at least a subset of patients with type II Bartter syndrome is linked to the ERAD pathway and that future therapeutic strategies should focus on correcting deficiencies in ROMK folding.
Collapse
Affiliation(s)
- Brighid M O'Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
| |
Collapse
|
29
|
Qiao Y, Badduke C, Tang F, Cowieson D, Martell S, Lewis SME, Peñaherrera MS, Robinson WP, Volchuk A, Rajcan-Separovic E. Whole exome sequencing of families with 1q21.1 microdeletion or microduplication. Am J Med Genet A 2017; 173:1782-1791. [DOI: 10.1002/ajmg.a.38247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/16/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Ying Qiao
- Department of Pathology; University of British Columbia (UBC); Vancouver British Columbia Canada
- BC Children's Hospital Research Institute; Vancouver British Columbia Canada
| | - Chansonette Badduke
- Department of Pathology; University of British Columbia (UBC); Vancouver British Columbia Canada
| | - Flamingo Tang
- Department of Pathology; University of British Columbia (UBC); Vancouver British Columbia Canada
| | - David Cowieson
- Division of Advanced Diagnostics-Metabolism Toronto General Research Institute; University Health Network; Toronto Ontario Canada
| | - Sally Martell
- Department of Pathology; University of British Columbia (UBC); Vancouver British Columbia Canada
- BC Children's Hospital Research Institute; Vancouver British Columbia Canada
| | | | - Maria S. Peñaherrera
- BC Children's Hospital Research Institute; Vancouver British Columbia Canada
- Department of Medical Genetics; UBC; Vancouver British Columbia Canada
| | - Wendy P. Robinson
- BC Children's Hospital Research Institute; Vancouver British Columbia Canada
- Department of Medical Genetics; UBC; Vancouver British Columbia Canada
| | - Allen Volchuk
- Keenan Research Centre for Biomedical Science; St. Michael's Hospital; Toronto Ontario Canada
| | - Evica Rajcan-Separovic
- Department of Pathology; University of British Columbia (UBC); Vancouver British Columbia Canada
- BC Children's Hospital Research Institute; Vancouver British Columbia Canada
| |
Collapse
|
30
|
Ding L, Zhang L, Kim M, Byzova T, Podrez E. Akt3 kinase suppresses pinocytosis of low-density lipoprotein by macrophages via a novel WNK/SGK1/Cdc42 protein pathway. J Biol Chem 2017; 292:9283-9293. [PMID: 28389565 DOI: 10.1074/jbc.m116.773739] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/24/2017] [Indexed: 01/10/2023] Open
Abstract
Fluid-phase pinocytosis of LDL by macrophages is regarded as a novel promising target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. The mechanisms of regulation of fluid-phase pinocytosis in macrophages and, specifically, the role of Akt kinases are poorly understood. We have found previously that increased lipoprotein uptake via the receptor-independent process in Akt3 kinase-deficient macrophages contributes to increased atherosclerosis in Akt3-/- mice. The mechanism by which Akt3 deficiency promotes lipoprotein uptake in macrophages is unknown. We now report that Akt3 constitutively suppresses macropinocytosis in macrophages through a novel WNK1/SGK1/Cdc42 pathway. Mechanistic studies have demonstrated that the lack of Akt3 expression in murine and human macrophages results in increased expression of with-no-lysine kinase 1 (WNK1), which, in turn, leads to increased activity of serum and glucocorticoid-inducible kinase 1 (SGK1). SGK1 promotes expression of the Rho family GTPase Cdc42, a positive regulator of actin assembly, cell polarization, and pinocytosis. Individual suppression of WNK1 expression, SGK1, or Cdc42 activity in Akt3-deficient macrophages rescued the phenotype. These results demonstrate that Akt3 is a specific negative regulator of macropinocytosis in macrophages.
Collapse
Affiliation(s)
- Liang Ding
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Lifang Zhang
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Michael Kim
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tatiana Byzova
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Eugene Podrez
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| |
Collapse
|
31
|
Karimy JK, Duran D, Hu JK, Gavankar C, Gaillard JR, Bayri Y, Rice H, DiLuna ML, Gerzanich V, Marc Simard J, Kahle KT. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 2017; 41:E10. [PMID: 27798982 DOI: 10.3171/2016.8.focus16278] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrocephalus, despite its heterogeneous causes, is ultimately a disease of disordered CSF homeostasis that results in pathological expansion of the cerebral ventricles. Our current understanding of the pathophysiology of hydrocephalus is inadequate but evolving. Over this past century, the majority of hydrocephalus cases has been explained by functional or anatomical obstructions to bulk CSF flow. More recently, hydrodynamic models of hydrocephalus have emphasized the role of abnormal intracranial pulsations in disease pathogenesis. Here, the authors review the molecular mechanisms of CSF secretion by the choroid plexus epithelium, the most efficient and actively secreting epithelium in the human body, and provide experimental and clinical evidence for the role of increased CSF production in hydrocephalus. Although the choroid plexus epithelium might have only an indirect influence on the pathogenesis of many types of pediatric hydrocephalus, the ability to modify CSF secretion with drugs newer than acetazolamide or furosemide would be an invaluable component of future therapies to alleviate permanent shunt dependence. Investigation into the human genetics of developmental hydrocephalus and choroid plexus hyperplasia, and the molecular physiology of the ion channels and transporters responsible for CSF secretion, might yield novel targets that could be exploited for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Yasar Bayri
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey; and
| | | | | | | | - J Marc Simard
- Departments of 3 Neurosurgery and.,Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kristopher T Kahle
- Departments of 1 Neurosurgery and.,Pediatrics, Cellular, and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
32
|
Zhao H, Nepomuceno R, Gao X, Foley LM, Wang S, Begum G, Zhu W, Pigott VM, Falgoust LM, Kahle KT, Yang SS, Lin SH, Alper SL, Hitchens TK, Hu S, Zhang Z, Sun D. Deletion of the WNK3-SPAK kinase complex in mice improves radiographic and clinical outcomes in malignant cerebral edema after ischemic stroke. J Cereb Blood Flow Metab 2017; 37:550-563. [PMID: 26861815 PMCID: PMC5381450 DOI: 10.1177/0271678x16631561] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The WNK-SPAK kinase signaling pathway controls renal NaCl reabsorption and systemic blood pressure by regulating ion transporters and channels. A WNK3-SPAK complex is highly expressed in brain, but its function in this organ remains unclear. Here, we investigated the role of this kinase complex in brain edema and white matter injury after ischemic stroke. Wild-type, WNK3 knockout, and SPAK heterozygous or knockout mice underwent transient middle cerebral artery occlusion. One cohort of mice underwent magnetic resonance imaging. Ex-vivo brains three days post-ischemia were imaged by slice-selective spin-echo diffusion tensor imaging magnetic resonance imaging, after which the same brain tissues were subjected to immunofluorescence staining. A second cohort of mice underwent neurological deficit analysis up to 14 days post-transient middle cerebral artery occlusion. Relative to wild-type mice, WNK3 knockout, SPAK heterozygous, and SPAK knockout mice each exhibited a >50% reduction in infarct size and associated cerebral edema, significantly less demyelination, and improved neurological outcomes. We conclude that WNK3-SPAK signaling regulates brain swelling, gray matter injury, and demyelination after ischemic stroke, and that WNK3-SPAK inhibition has therapeutic potential for treating malignant cerebral edema in the setting of middle cerebral artery stroke.
Collapse
Affiliation(s)
- Hanshu Zhao
- 1 Department of Neurology, the First Affiliated Hospital of the Harbin Medical University, Harbin, China.,2 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Rachel Nepomuceno
- 2 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Xin Gao
- 2 Department of Neurology, University of Pittsburgh, Pittsburgh, USA.,3 Department of Neurological Surgery, the Second Affiliated Hospital of the Harbin Medical University, Harbin, China
| | - Lesley M Foley
- 4 Animal Imaging Center, University of Pittsburgh, Pittsburgh, USA
| | - Shaoxia Wang
- 2 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Gulnaz Begum
- 2 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Wen Zhu
- 2 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Victoria M Pigott
- 2 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | | | - Kristopher T Kahle
- 6 Department of Neurosurgery, Yale School of Medicine, New Haven, USA.,7 Department of Pediatrics, Yale School of Medicine, New Haven, USA.,8 Yale Program on Neurogenetics, Yale School of Medicine, New Haven, USA
| | - Sung-Sen Yang
- 9 Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan.,10 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- 9 Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan.,10 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Seth L Alper
- 11 Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, USA.,12 Department of Medicine, Harvard Medical School, Boston, USA
| | - T Kevin Hitchens
- 4 Animal Imaging Center, University of Pittsburgh, Pittsburgh, USA.,5 Department of Neurobiology, University of Pittsburgh, Pittsburgh, USA
| | - Shaoshan Hu
- 3 Department of Neurological Surgery, the Second Affiliated Hospital of the Harbin Medical University, Harbin, China
| | - Zhongling Zhang
- 1 Department of Neurology, the First Affiliated Hospital of the Harbin Medical University, Harbin, China
| | - Dandan Sun
- 2 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
33
|
Udensi UK, Tchounwou PB. Potassium Homeostasis, Oxidative Stress, and Human Disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PHYSIOLOGY 2017; 4:111-122. [PMID: 29218312 PMCID: PMC5716641 DOI: 10.4103/ijcep.ijcep_43_17] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Potassium is the most abundant cation in the intracellular fluid and it plays a vital role in the maintenance of normal cell functions. Thus, potassium homeostasis across the cell membrane, is very critical because a tilt in this balance can result in different diseases that could be life threatening. Both Oxidative stress (OS) and potassium imbalance can cause life threatening health conditions. OS and abnormalities in potassium channel have been reported in neurodegenerative diseases. This review highlights the major factors involved in potassium homeostasis (dietary, hormonal, genetic, and physiologic influences), and discusses the major diseases and abnormalities associated with potassium imbalance including hypokalemia, hyperkalemia, hypertension, chronic kidney disease, and Gordon's syndrome, Bartter syndrome, and Gitelman syndrome.
Collapse
Affiliation(s)
- Udensi K. Udensi
- Molecular Toxicology Research laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, Mississippi, MS 39217, USA
- Department of Pathology & Laboratory Medicine, Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way (S-113), Seattle, WA 98108, USA
| | - Paul B. Tchounwou
- Molecular Toxicology Research laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, Mississippi, MS 39217, USA
| |
Collapse
|
34
|
Abstract
Twin studies show that about half the risk of hypertension development is inherited. Mendelian hypertension has elucidated astounding basic pathways contributing to hypertension over (presumably) dietary salt intake or directly through increased peripheral vascular resistance. The Mendelian mutations exercise large effects on blood pressure. Inversely, studying the entire human genome for sources signaling blood pressure has yielded many signals with small effects. Thus far, few loci have been validated or translated into targets. Both genetic strategies are necessary, and much remains to be done.
Collapse
Affiliation(s)
- Friedrich C Luft
- Charité Medical Faculty, Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine, Lindenbergerweg 80, Berlin 13125, Germany.
| |
Collapse
|
35
|
Abstract
The heritability of hypertension (HTN) is widely recognized and as a result, extensive studies ranging from genetic linkage analyses to genome-wide association studies are actively ongoing to elucidate the etiology of both monogenic and polygenic forms of HTN. Due to the complex nature of essential HTN, however, single genes affecting blood pressure (BP) variability remain difficult to isolate and identify and have rendered the development of single-gene targeted therapies challenging. The roles of other causative factors in modulating BP, such as gene-environment interactions and epigenetic factors, are increasingly being brought to the forefront. In this review, we discuss the various monogenic HTN syndromes and corresponding pathophysiologic mechanisms, the different methodologies employed in genetic studies of essential HTN, the mechanisms for epigenetic modulation of essential HTN, pharmacogenomics and HTN, and finally, recent advances in genetic studies of essential HTN in the pediatric population.
Collapse
Affiliation(s)
- Sun-Young Ahn
- Department of Nephrology, Children's National Health System, Washington, DC, United States.,The George Washington University School of Medicine, Washington, DC, United States
| | - Charu Gupta
- Department of Nephrology, Children's National Health System, Washington, DC, United States.,The George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
36
|
Jiang S, He H, Tan L, Wang L, Su Z, Liu Y, Zhu H, Zhang M, Hou FF, Li A. Proteomic and phosphoproteomic analysis of renal cortex in a salt-load rat model of advanced kidney damage. Sci Rep 2016; 6:35906. [PMID: 27775022 PMCID: PMC5075906 DOI: 10.1038/srep35906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022] Open
Abstract
Salt plays an essential role in the progression of chronic kidney disease and hypertension. However, the mechanisms underlying pathogenesis of salt-induced kidney damage remain largely unknown. Here, Sprague-Dawley rats, that underwent 5/6 nephrectomy (5/6Nx, a model of advanced kidney damage) or sham operation, were treated for 2 weeks with a normal or high-salt diet. We employed aTiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for proteomic and phosphoproteomic profiling of the renal cortex. We found 318 proteins differentially expressed in 5/6Nx group relative to sham group, and 310 proteins significantly changed in response to salt load in 5/6Nx animals. Totally, 1810 unique phosphopeptides corresponding to 550 phosphoproteins were identified. We identified 113 upregulated and 84 downregulated phosphopeptides in 5/6Nx animals relative to sham animals. Salt load induced 78 upregulated and 91 downregulated phosphopeptides in 5/6Nx rats. The differentially expressed phospholproteins are important transporters, structural molecules, and receptors. Protein-protein interaction analysis revealed that the differentially phosphorylated proteins in 5/6Nx group, Polr2a, Srrm1, Gsta2 and Pxn were the most linked. Salt-induced differential phosphoproteins, Myh6, Lmna and Des were the most linked. Altered phosphorylation levels of lamin A and phospholamban were validated. This study will provide new insight into pathogenetic mechanisms of chronic kidney disease and salt sensitivity.
Collapse
Affiliation(s)
- Shaoling Jiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanchang He
- The First People's Foshan Hospital, Foshan, China
| | - Lishan Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liangliang Wang
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, P.R. China
| | - Zhengxiu Su
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufeng Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongguo Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Menghuan Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Small-molecule WNK inhibition regulates cardiovascular and renal function. Nat Chem Biol 2016; 12:896-898. [PMID: 27595330 DOI: 10.1038/nchembio.2168] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/09/2016] [Indexed: 12/31/2022]
Abstract
The With-No-Lysine (K) (WNK) kinases play a critical role in blood pressure regulation and body fluid and electrolyte homeostasis. Herein, we introduce the first orally bioavailable pan-WNK-kinase inhibitor, WNK463, that exploits unique structural features of the WNK kinases for both affinity and kinase selectivity. In rodent models of hypertension, WNK463 affects blood pressure and body fluid and electro-lyte homeostasis, consistent with WNK-kinase-associated physiology and pathophysiology.
Collapse
|
38
|
Wang WH. Basolateral Kir4.1 activity in the distal convoluted tubule regulates K secretion by determining NaCl cotransporter activity. Curr Opin Nephrol Hypertens 2016; 25:429-35. [PMID: 27306796 PMCID: PMC4974141 DOI: 10.1097/mnh.0000000000000248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Renal potassium (K) secretion plays a key role in maintaining K homeostasis. The classic mechanism of renal K secretion is focused on the connecting tubule and cortical collecting duct, in which K is uptaken by basolateral Na-K-ATPase and is secreted into the lumen by apical ROMK (Kir1.1) and Ca-activated big conductance K channel. Recently, genetic studies and animal models have indicated that inwardly rectifying K channel 4.1 (Kir4.1 or Kcnj10) in the distal convoluted tubule (DCT) may play a role in the regulation of K secretion in the aldosterone-sensitive distal nephron by targeting the NaCl cotransporter (NCC). This review summarizes recent progresses regarding the role of Kir4.1 in the regulation of NCC and K secretion. RECENT FINDINGS Kir4.1 is expressed in the basolateral membrane of the DCT, and plays a predominant role in contributing to the basolateral K conductance and in participating in the generation of negative membrane potential. Kir4.1 is also the substrate of src-family tyrosine kinase and the stimulation of src-family tyrosine kinase activates Kir4.1 activity in the DCT. The genetic deletion or functional inhibition of Kir4.1 depolarizes the membrane of the DCT, inhibits ste20-proline-alanine rich kinase, and suppresses NCC activity. Moreover, the downregulation of Kir4.1 increases epithelial Na channel expression in the collecting duct and urinary K excretion. Finally, mice with low Kir4.1 activity in the DCT are hypomagnesemia and hypokalemia. SUMMARY Recent progress in exploring the regulation and the function of Kir4.1 in the DCT strongly indicates that Kir4.1plays an important role in initiating the regulation of renal K secretion by targeting NCC and it may serves as a K sensor in the kidney.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
39
|
The Role of Sodium and Chloride in Heart Failure: Does It Take Two to Tango? J Am Coll Cardiol 2016; 66:667-9. [PMID: 26248994 DOI: 10.1016/j.jacc.2015.05.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 11/20/2022]
|
40
|
Jaggi AS, Kaur A, Bali A, Singh N. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases. Curr Neuropharmacol 2016; 13:369-88. [PMID: 26411965 PMCID: PMC4812803 DOI: 10.2174/1570159x13666150205130359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases.
Collapse
Affiliation(s)
- Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala- 147002.
| | | | | | | |
Collapse
|
41
|
Wang D, Zhang Y, Han J, Pan S, Xu N, Feng X, Zhuang Z, Caroti C, Zhuang J, Hoover RS, Gu D, Zeng Q, Cai H. WNK3 Kinase Enhances the Sodium Chloride Cotransporter Expression via an ERK 1/2 Signaling Pathway. Nephron Clin Pract 2016; 133:287-95. [PMID: 27467688 DOI: 10.1159/000447717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/01/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND WNK kinase is a serine/threonine kinase that plays an important role in normal blood pressure homeostasis. WNK3 was previously found to enhance the activity of sodium chloride cotransporter (NCC) in Xenopus oocyte. However, the mechanism through which it works remains unclear. METHODS Using overexpression and siRNA knock-down techniques, the effects of WNK3 on NCC in both Cos-7 and mouse distal convoluted cells were analyzed by Western blot. RESULTS We found that WNK3 significantly increased NCC protein expression in a dose-dependent manner. NCC protein expression in Cos-7 cells was markedly decreased after 2 h treatment with protease inhibitor, cycloheximide (CHX) in the NCC alone group, but was significantly decreased after 8 h treatment of CHX in the WNK3 + NCC group. WNK3 significantly increased NCC protein expression in both NCC alone and WNK3 + NCC groups regardless the overnight treatments of bafilomycin A1, a proton pump inhibitor, suggesting that WNK3-mediated increased NCC expression is not dependent on the lysosomal pathway. We further found that WNK3 group had a quicker NCC recovery than the control group using CHX pulse assay, suggesting that WNK3 increases NCC protein synthesis. WNK3 enhanced NCC protein level while reducing ERK 1/2 phosphorylation. In addition, knock-down of ERK 1/2 expression reversed WNK3-mediated increase of NCC expression. CONCLUSION These results suggest that WNK3 enhances NCC protein expression by increasing NCC synthesis via an ERK 1/2-dependent signaling pathway.
Collapse
Affiliation(s)
- Dexuan Wang
- Department of Nephrology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dbouk HA, Huang CL, Cobb MH. Hypertension: the missing WNKs. Am J Physiol Renal Physiol 2016; 311:F16-27. [PMID: 27009339 PMCID: PMC4967160 DOI: 10.1152/ajprenal.00358.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
The With no Lysine [K] (WNK) family of enzymes are central in the regulation of blood pressure. WNKs have been implicated in hereditary hypertension disorders, mainly through control of the activity and levels of ion cotransporters and channels. Actions of WNKs in the kidney have been heavily investigated, and recent studies have provided insight into not only the regulation of these enzymes but also how mutations in WNKs and their interacting partners contribute to hypertensive disorders. Defining the roles of WNKs in the cardiovascular system will provide clues about additional mechanisms by which WNKs can regulate blood pressure. This review summarizes recent developments in the regulation of the WNK signaling cascade and its role in regulation of blood pressure.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Chou-Long Huang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
43
|
Vaduganathan M, Pallais JC, Fenves AZ, Butler J, Gheorghiade M. Serum chloride in heart failure: a salty prognosis. Eur J Heart Fail 2016; 18:669-71. [PMID: 27121684 DOI: 10.1002/ejhf.546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/18/2023] Open
Affiliation(s)
- Muthiah Vaduganathan
- Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA, USA
| | - J Carl Pallais
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Z Fenves
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Javed Butler
- Division of Cardiology, Stony Brook University, Stony Brook, NY, USA
| | - Mihai Gheorghiade
- Center for Cardiovascular Innovation, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
44
|
Kahle KT, Schmouth JF, Lavastre V, Latremoliere A, Zhang J, Andrews N, Omura T, Laganière J, Rochefort D, Hince P, Castonguay G, Gaudet R, Mapplebeck JCS, Sotocinal SG, Duan J, Ward C, Khanna AR, Mogil JS, Dion PA, Woolf CJ, Inquimbert P, Rouleau GA. Inhibition of the kinase WNK1/HSN2 ameliorates neuropathic pain by restoring GABA inhibition. Sci Signal 2016; 9:ra32. [PMID: 27025876 PMCID: PMC5723157 DOI: 10.1126/scisignal.aad0163] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HSN2is a nervous system predominant exon of the gene encoding the kinase WNK1 and is mutated in an autosomal recessive, inherited form of congenital pain insensitivity. The HSN2-containing splice variant is referred to as WNK1/HSN2. We created a knockout mouse specifically lacking theHsn2exon ofWnk1 Although these mice had normal spinal neuron and peripheral sensory neuron morphology and distribution, the mice were less susceptible to hypersensitivity to cold and mechanical stimuli after peripheral nerve injury. In contrast, thermal and mechanical nociceptive responses were similar to control mice in an inflammation-induced pain model. In the nerve injury model of neuropathic pain, WNK1/HSN2 contributed to a maladaptive decrease in the activity of the K(+)-Cl(-)cotransporter KCC2 by increasing its inhibitory phosphorylation at Thr(906)and Thr(1007), resulting in an associated loss of GABA (γ-aminobutyric acid)-mediated inhibition of spinal pain-transmitting nerves. Electrophysiological analysis showed that WNK1/HSN2 shifted the concentration of Cl(-)such that GABA signaling resulted in a less hyperpolarized state (increased neuronal activity) rather than a more hyperpolarized state (decreased neuronal activity) in mouse spinal nerves. Pharmacologically antagonizing WNK activity reduced cold allodynia and mechanical hyperalgesia, decreased KCC2 Thr(906)and Thr(1007)phosphorylation, and restored GABA-mediated inhibition (hyperpolarization) of injured spinal cord lamina II neurons. These data provide mechanistic insight into, and a compelling therapeutic target for treating, neuropathic pain after nerve injury.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA. Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02124, USA.
| | - Jean-François Schmouth
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Valérie Lavastre
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Alban Latremoliere
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Nick Andrews
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Takao Omura
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Janet Laganière
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Daniel Rochefort
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Pascale Hince
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Geneviève Castonguay
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Rébecca Gaudet
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Josiane C S Mapplebeck
- Department of Psychology and Centre for Research on Pain, McGill University, Montréal, Quebec H3A 0G1, Canada
| | - Susana G Sotocinal
- Department of Psychology and Centre for Research on Pain, McGill University, Montréal, Quebec H3A 0G1, Canada
| | - JingJing Duan
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Ward
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Arjun R Khanna
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02124, USA
| | - Jeffrey S Mogil
- Department of Psychology and Centre for Research on Pain, McGill University, Montréal, Quebec H3A 0G1, Canada
| | - Patrick A Dion
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Perrine Inquimbert
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212 Centre National de la Recherche Scientifique, and Universite de Strasbourg, 5 rue Blaise Pascal, F-67084 Strasbourg, France
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.
| |
Collapse
|
45
|
Epigenetic Modifications in Essential Hypertension. Int J Mol Sci 2016; 17:451. [PMID: 27023534 PMCID: PMC4848907 DOI: 10.3390/ijms17040451] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Essential hypertension (EH) is a complex, polygenic condition with no single causative agent. Despite advances in our understanding of the pathophysiology of EH, hypertension remains one of the world’s leading public health problems. Furthermore, there is increasing evidence that epigenetic modifications are as important as genetic predisposition in the development of EH. Indeed, a complex and interactive genetic and environmental system exists to determine an individual’s risk of EH. Epigenetics refers to all heritable changes to the regulation of gene expression as well as chromatin remodelling, without involvement of nucleotide sequence changes. Epigenetic modification is recognized as an essential process in biology, but is now being investigated for its role in the development of specific pathologic conditions, including EH. Epigenetic research will provide insights into the pathogenesis of blood pressure regulation that cannot be explained by classic Mendelian inheritance. This review concentrates on epigenetic modifications to DNA structure, including the influence of non-coding RNAs on hypertension development.
Collapse
|
46
|
Farinha CM, Swiatecka-Urban A, Brautigan DL, Jordan P. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity. Front Chem 2016; 4:1. [PMID: 26835446 PMCID: PMC4718993 DOI: 10.3389/fchem.2016.00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.
Collapse
Affiliation(s)
- Carlos M Farinha
- Faculty of Sciences, Biosystems and Integrative Sciences Institute, University of Lisboa Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Cell Biology, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Peter Jordan
- Faculty of Sciences, Biosystems and Integrative Sciences Institute, University of LisboaLisbon, Portugal; Department of Human Genetics, National Health Institute Dr Ricardo JorgeLisbon, Portugal
| |
Collapse
|
47
|
Kahle KT, Delpire E. Kinase-KCC2 coupling: Cl- rheostasis, disease susceptibility, therapeutic target. J Neurophysiol 2016; 115:8-18. [PMID: 26510764 PMCID: PMC4760510 DOI: 10.1152/jn.00865.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/25/2015] [Indexed: 01/06/2023] Open
Abstract
The intracellular concentration of Cl(-) ([Cl(-)]i) in neurons is a highly regulated variable that is established and modulated by the finely tuned activity of the KCC2 cotransporter. Despite the importance of KCC2 for neurophysiology and its role in multiple neuropsychiatric diseases, our knowledge of the transporter's regulatory mechanisms is incomplete. Recent studies suggest that the phosphorylation state of KCC2 at specific residues in its cytoplasmic COOH terminus, such as Ser940 and Thr906/Thr1007, encodes discrete levels of transporter activity that elicit graded changes in neuronal Cl(-) extrusion to modulate the strength of synaptic inhibition via Cl(-)-permeable GABAA receptors. In this review, we propose that the functional and physical coupling of KCC2 to Cl(-)-sensitive kinase(s), such as the WNK1-SPAK kinase complex, constitutes a molecular "rheostat" that regulates [Cl(-)]i and thereby influences the functional plasticity of GABA. The rapid reversibility of (de)phosphorylation facilitates regulatory precision, and multisite phosphorylation allows for the control of KCC2 activity by different inputs via distinct or partially overlapping upstream signaling cascades that may become more or less important depending on the physiological context. While this adaptation mechanism is highly suited to maintaining homeostasis, its adjustable set points may render it vulnerable to perturbation and dysregulation. Finally, we suggest that pharmacological modulation of this kinase-KCC2 rheostat might be a particularly efficacious strategy to enhance Cl(-) extrusion and therapeutically restore GABA inhibition.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, Connecticut; Yale Neurogenetics Program, Yale School of Medicine, New Haven, Connecticut; and
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
48
|
Pallagi P, Hegyi P, Rakonczay Z. The Physiology and Pathophysiology of Pancreatic Ductal Secretion: The Background for Clinicians. Pancreas 2015; 44:1211-1233. [PMID: 26465950 DOI: 10.1097/mpa.0000000000000421] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human exocrine pancreas consists of 2 main cell types: acinar and ductal cells. These exocrine cells interact closely to contribute to the secretion of pancreatic juice. The most important ion in terms of the pancreatic ductal secretion is HCO3. In fact, duct cells produce an alkaline fluid that may contain up to 140 mM NaHCO3, which is essential for normal digestion. This article provides an overview of the basics of pancreatic ductal physiology and pathophysiology. In the first part of the article, we discuss the ductal electrolyte and fluid transporters and their regulation. The central role of cystic fibrosis transmembrane conductance regulator (CFTR) is highlighted, which is much more than just a Cl channel. We also review the role of pancreatic ducts in severe debilitating diseases such as cystic fibrosis (caused by various genetic defects of cftr), pancreatitis, and diabetes mellitus. Stimulation of ductal secretion in cystic fibrosis and pancreatitis may have beneficial effects in their treatment.
Collapse
Affiliation(s)
- Petra Pallagi
- From the *First Department of Medicine, University of Szeged; and †Hungarian Academy of Sciences-University of Szeged Translational Gastroenterology Research Group, Szeged, Hungary
| | | | | |
Collapse
|
49
|
Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, Al Maskari RS, Ferryman JT, Hardege I, Yasmin, Figg NL, Enchev R, Knebel A, O'Shaughnessy KM, Kurz T. Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med 2015; 7:1285-1306. [PMID: 26286618 PMCID: PMC4604684 DOI: 10.15252/emmm.201505444] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
Deletion of exon 9 from Cullin-3 (CUL3, residues 403-459: CUL3(Δ403-459)) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin-RING-ubiquitin-ligase complexes. Bound to KLHL3, CUL3-RBX1 ubiquitylates WNK kinases, promoting their ubiquitin-mediated proteasomal degradation. Since WNK kinases activate Na/Cl co-transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin-RING-ligase formation. We report here that the PHA2E mutant, CUL3(Δ403-459), is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3(Δ403-459) auto-ubiquitylates and loses interaction with two important Cullin regulators: the COP9-signalosome and CAND1. A novel knock-in mouse model of CUL3(WT) (/Δ403-459) closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases.
Collapse
Affiliation(s)
- Frances-Rose Schumacher
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Keith Siew
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Sarah E Cleary
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Raya S Al Maskari
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - James T Ferryman
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Iris Hardege
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Yasmin
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Nichola L Figg
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Thimo Kurz
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
50
|
Zhang J, Siew K, Macartney T, O'Shaughnessy KM, Alessi DR. Critical role of the SPAK protein kinase CCT domain in controlling blood pressure. Hum Mol Genet 2015; 24:4545-4558. [PMID: 25994507 PMCID: PMC4512625 DOI: 10.1093/hmg/ddv185] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/14/2015] [Indexed: 02/05/2023] Open
Abstract
The STE20/SPS1-related proline/alanine-rich kinase (SPAK) controls blood pressure (BP) by phosphorylating and stimulating the Na-Cl (NCC) and Na-K-2Cl (NKCC2) co-transporters, which regulate salt reabsorption in the kidney. SPAK possesses a conserved carboxy-terminal (CCT) domain, which recognises RFXV/I motifs present in its upstream activator [isoforms of the With-No-lysine (K) kinases (WNKs)] as well as its substrates (NCC and NKCC2). To define the physiological importance of the CCT domain, we generated knock-in mice in which the critical CCT domain Leu502 residue required for high affinity recognition of the RFXI/V motif was mutated to Alanine. The SPAK CCT domain defective knock-in animals are viable, and the Leu502Ala mutation abolished co-immunoprecipitation of SPAK with WNK1, NCC and NKCC2. The CCT domain defective animals displayed markedly reduced SPAK activity and phosphorylation of NCC and NKCC2 co-transporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in mRNA levels. The SPAK CCT domain knock-in mice showed typical features of Gitelman Syndrome with mild hypokalaemia, hypomagnesaemia, hypocalciuria and displayed salt wasting on switching to a low-Na diet. These observations establish that the CCT domain plays a crucial role in controlling SPAK activity and BP. Our results indicate that CCT domain inhibitors would be effective at reducing BP by lowering phosphorylation as well as expression of NCC and NKCC2.
Collapse
Affiliation(s)
- Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland and
| | - Keith Siew
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland and
| | - Kevin M O'Shaughnessy
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland and
| |
Collapse
|