1
|
Versolatto S, Boccalon M, Guidolin N, Travagin F, Alessio E, Aime S, Balducci G, Giovenzana GB, Baranyai Z. [Gd(HB-DO3A)]: Equilibrium, Dissociation Kinetic and Structural Differences in a Simple Homolog of [Gd(HP-DO3A)] (Prohance ®). Chemistry 2024; 30:e202400344. [PMID: 38469901 DOI: 10.1002/chem.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
[Gd(HP-DO3A)] (gadoteridol) as an active compound of ProHance® is a widely employed contrast agent in clinical MRI scans in the last 30 years. Recent concerns about the long-term retention of gadolinium-based contrast agents (GBCAs) led to a deeper investigation of the structural features underlying the integrity of the paramagnetic metal complex. Several human and nonclinical studies have noted marked differences among the macrocyclic GBCAs, with the least retention of Gd traces and most rapid elimination consistently being reported for [Gd(HP-DO3A)]. It was deemed of interest to assess how minor structural/electronic changes associated to the ligand structure may affect basic properties of the metal complex with several [Gd(HP-DO3A)] analogues synthesized and characterized in the last years. We recently reported that the closest homolog of [Gd(HP-DO3A)], i. e.: [Gd(HB-DO3A)], in which a (±)-2-hydroxy-1-propyl pendant arm is replaced by a (±)-2-hydroxy-1-butyl moiety, showed a significantly different retention behaviour in the model interaction with collagen, despite the apparently very minor structural difference. In this paper we report a comprehensive study of the structural, thermodynamic, kinetic and relaxation properties of [Gd(HB-DO3A)], compared to the parent [Gd(HP-DO3A)] and to other closely related macrocyclic GBCAs to assess whether very minor structural changes can modulate the physico-chemical properties of Gd3+ complexes.
Collapse
Affiliation(s)
- Silvia Versolatto
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste, Piazzale Europa 1, 34127, Trieste, TS, Italy
| | - Mariangela Boccalon
- Bracco Imaging Spa, CRB Trieste, AREA Science Park, 34149, Basovizza, TS, Italy
| | - Nicol Guidolin
- Bracco Imaging Spa, CRB Trieste, AREA Science Park, 34149, Basovizza, TS, Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, Novara, NO, 28100, Italy
| | - Enzo Alessio
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste, Piazzale Europa 1, 34127, Trieste, TS, Italy
| | - Silvio Aime
- IRCCS SDN Research Institute Diagnostics and Nuclear SynLab, Via Emanuele Gianturco, 113, 80143, Napoli, NA, Italy
| | - Gabriele Balducci
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste, Piazzale Europa 1, 34127, Trieste, TS, Italy
| | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, Novara, NO, 28100, Italy
| | - Zsolt Baranyai
- Bracco Imaging Spa, CRB Trieste, AREA Science Park, 34149, Basovizza, TS, Italy
| |
Collapse
|
2
|
Coimbra S, Rocha S, Sousa NR, Catarino C, Belo L, Bronze-da-Rocha E, Valente MJ, Santos-Silva A. Toxicity Mechanisms of Gadolinium and Gadolinium-Based Contrast Agents-A Review. Int J Mol Sci 2024; 25:4071. [PMID: 38612881 PMCID: PMC11012457 DOI: 10.3390/ijms25074071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) have been used for more than 30 years to improve magnetic resonance imaging, a crucial tool for medical diagnosis and treatment monitoring across multiple clinical settings. Studies have shown that exposure to GBCAs is associated with gadolinium release and tissue deposition that may cause short- and long-term toxicity in several organs, including the kidney, the main excretion organ of most GBCAs. Considering the increasing prevalence of chronic kidney disease worldwide and that most of the complications following GBCA exposure are associated with renal dysfunction, the mechanisms underlying GBCA toxicity, especially renal toxicity, are particularly important. A better understanding of the gadolinium mechanisms of toxicity may contribute to clarify the safety and/or potential risks associated with the use of GBCAs. In this work, a review of the recent literature concerning gadolinium and GBCA mechanisms of toxicity was performed.
Collapse
Affiliation(s)
- Susana Coimbra
- 1H-TOXRUN—1H-Toxicology Research Unit, University Institute of Health Sciences, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Advanced Polytechnic and University Cooperative, CRL, 4585-116 Gandra, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Susana Rocha
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Nícia Reis Sousa
- Departamento de Ciências e Tecnologia da Saúde, Instituto Superior Politécnico de Benguela, Benguela, Angola
| | - Cristina Catarino
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Belo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Elsa Bronze-da-Rocha
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800 Copenhagen, Denmark
| | - Alice Santos-Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Padrela B, Mahroo A, Tee M, Sneve MH, Moyaert P, Geier O, Kuijer JPA, Beun S, Nordhøy W, Zhu YD, Buck MA, Hoinkiss DC, Konstandin S, Huber J, Wiersinga J, Rikken R, de Leeuw D, Grydeland H, Tippett L, Cawston EE, Ozturk-Isik E, Linn J, Brandt M, Tijms BM, van de Giessen EM, Muller M, Fjell A, Walhovd K, Bjørnerud A, Pålhaugen L, Selnes P, Clement P, Achten E, Anazodo U, Barkhof F, Hilal S, Fladby T, Eickel K, Morgan C, Thomas DL, Petr J, Günther M, Mutsaerts HJMM. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer's disease (DEBBIE-AD): a prospective observational multicohort study protocol. BMJ Open 2024; 14:e081635. [PMID: 38458785 PMCID: PMC10928768 DOI: 10.1136/bmjopen-2023-081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.
Collapse
Affiliation(s)
- Beatriz Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mervin Tee
- National University Health System, Singapore
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Paulien Moyaert
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Oliver Geier
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Joost P A Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Soetkin Beun
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Wibeke Nordhøy
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Yufei David Zhu
- Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Mareike A Buck
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | | - Simon Konstandin
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jörn Huber
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Julia Wiersinga
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Roos Rikken
- Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Lynette Tippett
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - Erin E Cawston
- The University of Auckland Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand
| | - Esin Ozturk-Isik
- Bogazici University Institute of Biomedical Engineering, Istanbul, Turkey
| | - Jennifer Linn
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz Brandt
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Betty M Tijms
- Neurology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Majon Muller
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kristine Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Patricia Clement
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Eric Achten
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Udunna Anazodo
- Lawson Health Research Institute, London, Ontario, Canada
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- University College London, London, UK
| | - Saima Hilal
- National University Health System, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Klaus Eickel
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Applied Sciences Bremerhaven, Bremerhaven, Germany
| | - Catherine Morgan
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London, London, UK
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| |
Collapse
|
4
|
Zhang X, Zhou B, Chen Y, Cai Z, Guo Y, Wei Z, Li S, Feng Y, Sedaghat S, Jang H. Evaluation of gadolinium deposition in cortical bone using three-dimensional ultrashort echo time quantitative susceptibility mapping: A preliminary study. NMR IN BIOMEDICINE 2024; 37:e5035. [PMID: 37721094 PMCID: PMC10726698 DOI: 10.1002/nbm.5035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023]
Abstract
The aim of the current study was to investigate the feasibility of three-dimensional ultrashort echo time quantitative susceptibility mapping (3D UTE-QSM) for the assessment of gadolinium (Gd) deposition in cortical bone. To this end, 40 tibial bovine cortical bone specimens were divided into five groups then soaked in phosphate-buffered saline (PBS) solutions with five different Gd concentrations of 0, 0.4, 0.8, 1.2, and 1.6 mmol/L for 48 h. Additionally, eight rabbits were randomly allocated into three groups, consisting of a normal-dose macrocyclic gadolinium-based contrast agent (GBCA) group (n = 3), a high-dose macrocyclic GBCA group (n = 3), and a control group (n = 2). All bovine and rabbit tibial bone samples underwent magnetic resonance imaging (MRI) on a 3-T clinical MR system. A 3D UTE-Cones sequence was utilized to acquire images with five different echo times (i.e., 0.032, 0.2, 0.4, 0.8, and 1.2 ms). The UTE images were subsequently processed with the morphology-enabled dipole inversion algorithm to yield a susceptibility map. The average susceptibility was calculated in three regions of interest in the middle of each specimen, and the Pearson's correlation between the estimated susceptibility and Gd concentration was calculated. The bone samples soaked in PBS with higher Gd concentrations exhibited elevated susceptibility values. A mean susceptibility value of -2.47 ± 0.23 ppm was observed for bovine bone soaked in regular PBS, while the mean QSM value increased to -1.75 ± 0.24 ppm for bone soaked in PBS with the highest Gd concentration of 1.6 mmol/L. A strong positive correlation was observed between Gd concentrations and QSM values. The mean susceptibility values of rabbit tibial specimens in the control group, normal-dose GBCA group, and high-dose GBCA group were -4.11 ± 1.52, -3.85 ± 1.33, and -3.39 ± 1.35 ppm, respectively. In conclusion, a significant linear correlation between Gd in cortical bone and QSM values was observed. The preliminary results suggest that 3D UTE-QSM may provide sensitive noninvasive assessment of Gd deposition in cortical bone.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Radiology, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- University of California, San Diego, San Diego, CA, United States
| | - Beibei Zhou
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanjun Chen
- Department of Radiology, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- University of California, San Diego, San Diego, CA, United States
| | - Zhenyu Cai
- University of California, San Diego, San Diego, CA, United States
| | - Yihao Guo
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Zhao Wei
- University of California, San Diego, San Diego, CA, United States
| | - Shisi Li
- Department of Radiology, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Sam Sedaghat
- University of California, San Diego, San Diego, CA, United States
| | - Hyungseok Jang
- University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Le Fur M, Moon BF, Zhou IY, Zygmont S, Boice A, Rotile NJ, Ay I, Pantazopoulos P, Feldman AS, Rosales IA, How IDAL, Izquierdo-Garcia D, Hariri LP, Astashkin AV, Jackson BP, Caravan P. Gadolinium-based Contrast Agent Biodistribution and Speciation in Rats. Radiology 2023; 309:e230984. [PMID: 37874235 PMCID: PMC10623187 DOI: 10.1148/radiol.230984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 10/25/2023]
Abstract
Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.
Collapse
Affiliation(s)
- Mariane Le Fur
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Brianna F. Moon
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Iris Y. Zhou
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Samantha Zygmont
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Avery Boice
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Nicholas J. Rotile
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Ilknur Ay
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Pamela Pantazopoulos
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Adam S. Feldman
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Ivy A. Rosales
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Ira Doressa Anne L. How
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - David Izquierdo-Garcia
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Lida P. Hariri
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Andrei V. Astashkin
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Brian P. Jackson
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Peter Caravan
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| |
Collapse
|
6
|
Cananau C, Forslin Y, Bergendal Å, Sjöström H, Fink K, Ouellette R, Wiberg MK, Fredrikson S, Granberg T. MRI detection of brain gadolinium retention in multiple sclerosis: Magnetization transfer vs. T1-weighted imaging. J Neuroimaging 2023; 33:247-255. [PMID: 36599653 DOI: 10.1111/jon.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Evidence of brain gadolinium retention has affected gadolinium-based contrast agent usage. It is, however, unclear to what extent macrocyclic agents are retained and whether their in vivo detection may necessitate nonconventional MRI. Magnetization transfer (MT) could prove suitable to detect gadolinium-related signal changes since dechelated gadolinium ions bind to macromolecules. Therefore, this study aimed to investigate associations of prior gadolinium administrations with MT and T1 signal abnormalities. METHODS A cohort of 23 persons with multiple sclerosis (MS) (18 females, 5 males, 57 ± 8.0 years) with multiple past gadolinium administrations (median 6, range 3-12) and 23 age- and sex-matched healthy controls underwent 1.5 Tesla MRI with MT, T1-weighted 2-dimensional spin echo, and T1-weighted 3-dimensional gradient echo. The signal intensity index was assessed by MRI in gadolinium retention predilection sites. RESULTS There were dose-dependent associations of the globus pallidus signal on gradient echo (r = .55, p < .001) and spin echo (r = .38, p = .013) T1-weighted imaging, but not on MT. Relative to controls, MS patients had higher signal intensity index in the dentate nucleus on T1-weighted gradient echo (1.037 ± 0.040 vs. 1.016 ± 0.023, p = .04) with a similar trend in the globus pallidus on T1-weighted spin echo (1.091 ± 0.034 vs. 1.076 ± 0.014, p = .06). MT detected no group differences. CONCLUSIONS Conventional T1-weighted imaging provided dose-dependent associations with gadolinium administrations in MS, while these could not be detected with 2-dimensional MT. Future studies could explore newer MT techniques like 3D and inhomogenous MT. Notably, these associations were identified with conventional MRI even though most patients had not received gadolinium administrations in the preceding 9 years, suggestive of long-term retention.
Collapse
Affiliation(s)
- Carmen Cananau
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yngve Forslin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Åsa Bergendal
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Sjöström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Katharina Fink
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Kristoffersen Wiberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sten Fredrikson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Ramalho J, Semelka R, Cruz J, Morais T, Ramalho M. T1 signal intensity in the dentate nucleus after the administration of the macrocyclic gadolinium-based contrast agent gadoterate meglumine: An observational study. RADIOLOGIA 2022; 64:397-406. [DOI: 10.1016/j.rxeng.2020.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/13/2020] [Indexed: 10/18/2022]
|
8
|
From Dose Reduction to Contrast Maximization: Can Deep Learning Amplify the Impact of Contrast Media on Brain Magnetic Resonance Image Quality? A Reader Study. Invest Radiol 2022; 57:527-535. [PMID: 35446300 DOI: 10.1097/rli.0000000000000867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate a deep learning method designed to increase the contrast-to-noise ratio in contrast-enhanced gradient echo T1-weighted brain magnetic resonance imaging (MRI) acquisitions. The processed images are quantitatively evaluated in terms of lesion detection performance. MATERIALS AND METHODS A total of 250 multiparametric brain MRIs, acquired between November 2019 and March 2021 at Gustave Roussy Cancer Campus (Villejuif, France), were considered for inclusion in this retrospective monocentric study. Independent training (107 cases; age, 55 ± 14 years; 58 women) and test (79 cases; age, 59 ± 14 years; 41 women) samples were defined. Patients had glioma, brain metastasis, meningioma, or no enhancing lesion. Gradient echo and turbo spin echo with variable flip angles postcontrast T1 sequences were acquired in all cases. For the cases that formed the training sample, "low-dose" postcontrast gradient echo T1 images using 0.025 mmol/kg injections of contrast agent were also acquired. A deep neural network was trained to synthetically enhance the low-dose T1 acquisitions, taking standard-dose T1 MRI as reference. Once trained, the contrast enhancement network was used to process the test gradient echo T1 images. A read was then performed by 2 experienced neuroradiologists to evaluate the original and processed T1 MRI sequences in terms of contrast enhancement and lesion detection performance, taking the turbo spin echo sequences as reference. RESULTS The processed images were superior to the original gradient echo and reference turbo spin echo T1 sequences in terms of contrast-to-noise ratio (44.5 vs 9.1 and 16.8; P < 0.001), lesion-to-brain ratio (1.66 vs 1.31 and 1.44; P < 0.001), and contrast enhancement percentage (112.4% vs 85.6% and 92.2%; P < 0.001) for cases with enhancing lesions. The overall image quality of processed T1 was preferred by both readers (graded 3.4/4 on average vs 2.7/4; P < 0.001). Finally, the proposed processing improved the average sensitivity of gradient echo T1 MRI from 88% to 96% for lesions larger than 10 mm (P = 0.008), whereas no difference was found in terms of the false detection rate (0.02 per case in both cases; P > 0.99). The same effect was observed when considering all lesions larger than 5 mm: sensitivity increased from 70% to 85% (P < 0.001), whereas false detection rates remained similar (0.04 vs 0.06 per case; P = 0.48). With all lesions included regardless of their size, sensitivities were 59% and 75% for original and processed T1 images, respectively (P < 0.001), and the corresponding false detection rates were 0.05 and 0.14 per case, respectively (P = 0.06). CONCLUSION The proposed deep learning method successfully amplified the beneficial effects of contrast agent injection on gradient echo T1 image quality, contrast level, and lesion detection performance. In particular, the sensitivity of the MRI sequence was improved by up to 16%, whereas the false detection rate remained similar.
Collapse
|
9
|
The Effect of Gadolinium-Based Contrast Agents on Longitudinal Changes of Magnetic Resonance Imaging Signal Intensities and Relaxation Times in the Aging Rat Brain. Invest Radiol 2022; 57:453-462. [PMID: 35125411 PMCID: PMC9172901 DOI: 10.1097/rli.0000000000000857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of the study was to investigate the possible influence of changes in the brain caused by age on relaxometric and relaxation time–weighted magnetic resonance imaging (MRI) parameters in the deep cerebellar nuclei (DCN) and the globus pallidus (GP) of Gd-exposed and control rats over the course of 1 year.
Collapse
|
10
|
Davies J, Siebenhandl-Wolff P, Tranquart F, Jones P, Evans P. Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration. Arch Toxicol 2022; 96:403-429. [PMID: 34997254 PMCID: PMC8837552 DOI: 10.1007/s00204-021-03189-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Gadolinium-based contrast agents (GBCAs) have transformed magnetic resonance imaging (MRI) by facilitating the use of contrast-enhanced MRI to allow vital clinical diagnosis in a plethora of disease that would otherwise remain undetected. Although over 500 million doses have been administered worldwide, scientific research has documented the retention of gadolinium in tissues, long after exposure, and the discovery of a GBCA-associated disease termed nephrogenic systemic fibrosis, found in patients with impaired renal function. An understanding of the pharmacokinetics in humans and animals alike are pivotal to the understanding of the distribution and excretion of gadolinium and GBCAs, and ultimately their potential retention. This has been well studied in humans and more so in animals, and recently there has been a particular focus on potential toxicities associated with multiple GBCA administration. The purpose of this review is to highlight what is currently known in the literature regarding the pharmacokinetics of gadolinium in humans and animals, and any toxicity associated with GBCA use.
Collapse
Affiliation(s)
- Julie Davies
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK.
| | | | | | - Paul Jones
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK
| | - Paul Evans
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK
| |
Collapse
|
11
|
Neal CH. Screening Breast MRI and Gadolinium Deposition: Cause for Concern? JOURNAL OF BREAST IMAGING 2022; 4:10-18. [PMID: 38422412 DOI: 10.1093/jbi/wbab074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 03/02/2024]
Abstract
Gadolinium-based contrast agents (GBCAs) have been used worldwide for over 30 years and have enabled lifesaving diagnoses. Contrast-enhanced breast MRI is frequently used as supplemental screening for women with an elevated lifetime risk of breast cancer. Data have emerged that indicate a fractional amount of administered gadolinium is retained in the bone, skin, solid organs, and brain tissues of patients with normal renal function, although there are currently no reliable data regarding the clinical or biological significance of this retention. Linear GBCAs are associated with a higher risk of gadolinium retention than macrocyclic agents. Over the course of their lives, screened women may receive high cumulative doses of GBCA. Therefore, as breast MRI screening utilization increases, thoughtful use of GBCA is indicated in this patient population.
Collapse
Affiliation(s)
- Colleen H Neal
- ProMedica Toledo Hospital, ProMedica Breast Care, Toledo, OH, USA
| |
Collapse
|
12
|
Influence of aging and gadolinium exposure on T1, T2, and T2*-relaxation in healthy women with an increased risk of breast cancer with and without prior exposure to gadoterate meglumine at 3.0-T brain MR imaging. Eur Radiol 2021; 32:331-345. [PMID: 34218287 PMCID: PMC8660719 DOI: 10.1007/s00330-021-08069-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 11/09/2022]
Abstract
Objectives We examined the effects of aging and of gadolinium-based contrast agent (GBCA) exposure on MRI measurements in brain nuclei of healthy women. Methods This prospective, IRB-approved single-center case-control study enrolled 100 healthy participants of our high-risk screening center for hereditary breast cancer, who had received at least six doses of macrocyclic GBCA (exposed group) or were newly entering the program (GBCA-naïve group). The cutoff “at least six doses” was chosen to be able to include a sufficient number of highly exposed participants. All participants underwent unenhanced 3.0-T brain MRI including quantitative T1, T2, and R2* mapping and T1- and T2-weighted imaging. The relaxation times/signal intensities were derived from region of interest measurements in the brain nuclei performed by a radiologist and a neuroradiologist, both board certified. Statistical analysis was based on descriptive evaluations and uni-/multivariable analyses. Results The participants (exposed group: 49, control group: 51) were aged 42 ± 9 years. In a multivariable model, age had a clear impact on R2* (p < 0.001–0.012), T2 (p = 0.003–0.048), and T1 relaxation times/signal intensities (p < 0.004–0.046) for the majority of deep brain nuclei, mostly affecting the substantia nigra, globus pallidus (GP), nucleus ruber, thalamus, and dentate nucleus (DN). The effect of prior GBCA administration on T1 relaxation times was statistically significant for the DN, GP, and pons (p = 0.019–0.037). Conclusions In a homogeneous group of young to middle-aged healthy females aging had an effect on T2 and R2* relaxation times and former GBCA applications influenced the measured T1 relaxation times. Key Points The quantitative T1, T2, and R2* relaxation times measured in women at high risk of developing breast cancer showed characteristic bandwidth for all brain nuclei examined at 3.0-T MRI. The effect of participant age had a comparatively strong impact on R2*, T2, and T1 relaxation times for the majority of brain nuclei examined. The effect of prior GBCA administrations on T1 relaxation times rates was comparatively less pronounced, yielding statistically significant results for the dentate nucleus, globus pallidus, and pons.
Summary statement Healthy women with and without previous GBCA-enhanced breast MRI exhibited age-related T2* and T2 relaxation alterations at 3.0 T-brain MRI. T1 relaxation alterations due to prior GBCA administration were comparatively less pronounced. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08069-4.
Collapse
|
13
|
Abstract
OBJECTIVES Quantitative T1 relaxometry is the benchmark in imaging potential gadolinium deposition and known to be superior to semiquantitative signal intensity ratio analyses. However, T1 relaxometry studies are rare, commonly limited to a few target structures, and reported results are inconsistent.We systematically investigated quantitative T1 relaxation times (qT1) of a variety of brain nuclei after serial application of gadobutrol. MATERIALS AND METHODS Retrospectively, qT1 measurements were performed in a patient cohort with a mean number of 11 gadobutrol applications (n = 46) and compared with a control group with no prior gadolinium-based contrast agent administration (n = 48). The following target structures were evaluated: dentate nucleus, globus pallidus, thalamus, hippocampus, putamen, caudate, amygdala, and different white matter areas. Subsequently, multivariate regression analysis with adjustment for age, presence of brain metastases and previous cerebral radiotherapy was performed. RESULTS No assessed site revealed a significant correlation between qT1 and number of gadobutrol administrations in multivariate regression analysis. However, a significant negative correlation between qT1 and age was found for the globus pallidus as well as anterior and lateral thalamus (P < 0.05 each). CONCLUSIONS No T1 relaxation time shortening due to gadobutrol injection was found in any of the assessed brain structures after serial administration of 11 doses of gadobutrol.
Collapse
|
14
|
Luo H, Zhang T, Gong NJ, Tamir J, Venkata SP, Xu C, Duan Y, Zhou T, Zhou F, Zaharchuk G, Xue J, Liu Y. Deep learning-based methods may minimize GBCA dosage in brain MRI. Eur Radiol 2021; 31:6419-6428. [PMID: 33735394 DOI: 10.1007/s00330-021-07848-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To evaluate the clinical performance of a deep learning (DL)-based method for brain MRI exams with reduced gadolinium-based contrast agent (GBCA) dose to provide better understanding of the readiness and limitations of this method. METHODS Eighty-three consecutive patients (from March 2019 to August 2019) who underwent brain contrast-enhanced (CE) MRI were included. Three 3D T1-weighted images with zero-dose, low-dose (10%), and full-dose (100%) GBCA were collected. The first 30 cases were used to train a DL model to synthesize the full-dose GBCA images from the zero-dose and low-dose image pairs. The remaining 53 cases were used for testing. The enhancement pattern, number, and location of enhancing lesions were recorded. Overall image quality, image signal noise ratio (SNR), lesion conspicuity, and lesion enhancement were assessed. RESULTS Lesion detection from the DL-synthesized CE-MRI image accurately matched those from the true full-dose CE-MRI images in 48 of 53 cases (90.6%). The DL method identified the lesions in 34 of 36 cases (94.4%) with a single enhanced lesion and all lesions in 3 of 6 cases (50.0%) in cases with multiple enhancing lesions. The agreement between synthesized and true full-dose CE-MRI images were 0.73, 0.63, 0.89, and 0.87 for image quality, image SNR, lesion conspicuity, and lesion enhancement, respectively. CONCLUSIONS The proposed DL method is a feasible way to minimize the dosage of GBCAs in brain MRI without sacrificing the diagnostic information. Missing enhancement of small lesions in patients with multiple lesions was observed, requiring improvements in algorithms or dosage design. KEY POINTS • This study evaluated the clinical performance of a DL-based reconstruction method for significant dose reduction in GBCA contrast-enhanced MRI exams. • The proposed DL method has the potential to satisfy the routine radiological diagnosis needs in certain clinical applications.
Collapse
Affiliation(s)
- Huanyu Luo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, the West Southern 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Tao Zhang
- Subtle Medical Inc., Menlo Park, CA, USA
| | - Nan-Jie Gong
- Vector Lab for Intelligent Medical Imaging and Neural Engineering, International Innovation Center of Tsinghua University, Shanghai, China
| | | | | | - Cheng Xu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, the West Southern 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, the West Southern 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Tao Zhou
- Department of Radiology, The Fourth People's Hospital of Shanxi Province, Xi'an, 710043, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Jing Xue
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, the West Southern 4th Ring Road, Fengtai District, Beijing, 100070, China. .,Beijing Neurosurgical Institute, Beijing, 100070, China.
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, the West Southern 4th Ring Road, Fengtai District, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
15
|
Dogra S, Borja MJ, Lui YW. Impact of Kidney Function on CNS Gadolinium Deposition in Patients Receiving Repeated Doses of Gadobutrol. AJNR Am J Neuroradiol 2021; 42:824-830. [PMID: 33632738 DOI: 10.3174/ajnr.a7031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/24/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Studies associate repeat gadolinium-based contrast agent administration with T1 shortening in the dentate nucleus and globus pallidus, indicating CNS gadolinium deposition, most strongly with linear agents but also reportedly with macrocyclics. Renal impairment effects on long-term CNS gadolinium deposition remain underexplored. We investigated the relationship between signal intensity changes and renal function in patients who received ≥10 administrations of the macrocyclic agent gadobutrol. MATERIALS AND METHODS Patients who underwent ≥10 brain MR imaging examinations with administration of intravenous gadobutrol between February 1, 2014, and January 1, 2018, were included in this retrospective study. Dentate nucleus-to-pons and globus pallidus-to-thalamus signal intensity ratios were calculated, and correlations were calculated between the estimated glomerular filtration rate (minimum and mean) and the percentage change in signal intensity ratios from the first to last scan. Partial correlations were calculated to control for potential confounders. RESULTS One hundred thirty-one patients (73 women; mean age at last scan, 55.9 years) showed a mean percentage change of the dentate nucleus-to-pons of 0.31%, a mean percentage change of the globus pallidus-to-thalamus of 0.15%, a mean minimum estimated glomerular filtration rate of 69.65 (range, 10.16-132.26), and a mean average estimated glomerular filtration rate at 89.48 (range, 38.24-145.93). No significant association was found between the estimated glomerular filtration rate and percentage change of the dentate nucleus-to-pons (minimum estimated glomerular filtration rate, r = -0.09, P = .28; average estimated glomerular filtration rate, r = -0.09, P = .30,) or percentage change of the globus pallidus-to-thalamus (r = 0.07, P = .43; r = 0.07, P = .40). When we controlled for age, sex, number of scans, and total dose, there were no significant associations between the estimated glomerular filtration rate and the percentage change of the dentate nucleus-to-pons (r = 0.16, P = .07; r = 0.15, P = .08) or percentage change of the globus pallidus-to-thalamus (r = -0.14, P = .12; r = -0.15, P = .09). CONCLUSIONS In patients receiving an average of 12 intravenous gadobutrol administrations, no correlation was found between renal function and signal intensity ratio changes, even in those with mild or moderate renal impairment.
Collapse
Affiliation(s)
- S Dogra
- From the Department of Radiology, New York University Langone Health, New York, New York
| | - M J Borja
- From the Department of Radiology, New York University Langone Health, New York, New York
| | - Y W Lui
- From the Department of Radiology, New York University Langone Health, New York, New York
| |
Collapse
|
16
|
Lattanzio SM. Toxicity associated with gadolinium-based contrast-enhanced examinations. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
17
|
Ramalho J, Semelka RC, Cruz J, Morais T, Ramalho M. T1 signal intensity in the dentate nucleus after the administration of the macrocyclic gadolinium-based contrast agent gadoterate meglumine: an observational study. RADIOLOGIA 2020; 64:S0033-8338(20)30112-0. [PMID: 33032813 DOI: 10.1016/j.rx.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION AND AIMS Contradictory results have been reported about hyperintensity of the globus pallidus and/or dentate nucleus on unenhanced T1-weighted magnetic resonance (MR) images after exposure to various gadolinium-based contrast agents. This change in signal intensity varies with different gadolinium-based contrast agents. We aimed to determine whether signal intensity in the dentate nucleus is increased in unenhanced T1-weighted images in patients who have undergone multiple studies with the macrocyclic gadolinium-based contrast agent gadoterate meglumine. We thoroughly reviewed the literature to corroborate our results. MATERIALS AND METHODS We included patients who had undergone more than 10 MR studies with gadoterate meglumine. We quantitatively analyzed the signal intensity in unenhanced T1-weighted MR images measured in regions of interest placed in the dentate nucleus and the pons, and we calculated the dentate nucleus-to-pons signal intensity ratios and the differences between the ratio in the first MR study and the last MR study. We used t-tests to evaluate whether the differences between the signal intensity ratios were different from 0. We also analyzed the subgroups of patients who had been administered<15 and ≥15 doses of gadoterate meglumine. We used Pearson correlation to determine the relationships between the differences in the signal intensity ratios and the number of doses of gadoterate meglumine administered. RESULTS The 54 patients (26 men) had received a mean of 13.8±3.47 doses (range, 10-23 doses). The difference in the dentate nucleus-pons signal intensity ratio between the first and last MR study was -0.0275±0.1917 (not significantly different from 0; p=0.2968) in the entire group, -0.0357±0.2204 (not significantly different from 0; p=0.351 in the patients who had received <15 doses (n=34), and -0.0135±0.1332 (not significantly different from 0; p=0.655) in those who had received ≥15 doses (n=20). Differences in signal intensity ratios did not correlate significantly with the accumulated dose of gadoterate meglumine (P=0.9064; ρ=-0.0164 [95%]). CONCLUSIONS Receiving more than 10 doses of gadoterate meglumine was not associated with increased signal intensity in the dentate nucleus.
Collapse
Affiliation(s)
- J Ramalho
- Departamento de Neurorradiología, Centro Hospitalar Lisboa Central, Lisboa, Portugal
| | - R C Semelka
- Dr. Richard Semelka. Empresa privada de consultoría
| | - J Cruz
- Departamento de Radiología, Hospital Garcia de Orta, EPE, Almada, Portugal; Departamento de Radiología, Hospital da Luz, Lisboa y Setúbal, Portugal
| | - T Morais
- Departamento de Neurorradiología, Centro Hospitalar Lisboa Central, Lisboa, Portugal
| | - M Ramalho
- Departamento de Radiología, Hospital Garcia de Orta, EPE, Almada, Portugal; Departamento de Radiología, Hospital da Luz, Lisboa y Setúbal, Portugal.
| |
Collapse
|
18
|
Michalik K, Beyer L, Zeman F, Wendl C, Rennert J, Fellner C, Stroszczynski C, Wiggermann P. Signal intensity in the dentate nucleus after cumulative dose of Gd-EOB-DTPA: First results of a prospective longitudinal study. Clin Hemorheol Microcirc 2020; 76:233-240. [PMID: 32925023 DOI: 10.3233/ch-209219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a hepatocyte-specific, linear ionic contrast agent for MRI. In comparison to other linear contrast agents Gd-EOB-DTPA is excreted equally through liver and kidneys. This prospective longitudinal study investigates the signal intensity (SI) in the dentate nucleus (DN) on unenhanced T1-weighted images after repetitive application of Gd-EOB-DTPA. 46 patients were included into the study and 107 MRI examinations were performed. Statistical analysis of 25 patients showed no significant correlation between cumulative dose of Gd-EOB-DTPA and SI change and between the DN/Pons ratiolast and the mean DN/Pons ratiofirst. Subgroup analysis however revealed a significant correlation for one out of two readers. Gd-EOB-DTPA deposition could not be proven in the framework of this study.
Collapse
Affiliation(s)
| | - Lukas Beyer
- Department of Radiology, Hospital Potsdam, Potsdam, Germany
| | - Florian Zeman
- Center for Clinical Trials, University Hospital Regensburg, Regensburg, Germany
| | - Christina Wendl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Janine Rennert
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Fellner
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
19
|
Rudnick MR, Wahba IM, Leonberg-Yoo AK, Miskulin D, Litt HI. Risks and Options With Gadolinium-Based Contrast Agents in Patients With CKD: A Review. Am J Kidney Dis 2020; 77:517-528. [PMID: 32861792 DOI: 10.1053/j.ajkd.2020.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/01/2020] [Indexed: 01/19/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) improve the diagnostic capabilities of magnetic resonance imaging. Although initially believed to be without major adverse effects, GBCA use in patients with severe chronic kidney disease (CKD) was demonstrated to cause nephrogenic systemic fibrosis (NSF). Restrictive policies of GBCA use in CKD and selective use of GBCAs that bind free gadolinium more strongly have resulted in the virtual elimination of NSF cases. Contemporary studies of the use of GBCAs with high binding affinity for free gadolinium in severe CKD demonstrate an absence of NSF. Despite these observations and the limitations of contemporary studies, physicians remain concerned about GBCA use in severe CKD. Concerns of GBCA use in severe CKD are magnified by recent observations demonstrating gadolinium deposition in brain and a possible systemic syndrome attributed to GBCAs. Radiologic advances have resulted in several new imaging modalities that can be used in the severe CKD population and that do not require GBCA administration. In this article, we critically review GBCA use in patients with severe CKD and provide recommendations regarding GBCA use in this population.
Collapse
Affiliation(s)
- Michael R Rudnick
- Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania, PA.
| | - Ihab M Wahba
- Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania, PA; Corporal Michael J Crescenz Philadelphia Veterans Affairs Hospital Philadelphia, PA
| | - Amanda K Leonberg-Yoo
- Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania, PA
| | - Dana Miskulin
- Division of Nephrology, Tufts University School of Medicine, Boston, MA
| | - Harold I Litt
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Benzakoun J, Robert C, Legrand L, Pallud J, Meder JF, Oppenheim C, Dhermain F, Edjlali M. Anatomical and functional MR imaging to define tumoral boundaries and characterize lesions in neuro-oncology. Cancer Radiother 2020; 24:453-462. [PMID: 32278653 DOI: 10.1016/j.canrad.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
Abstract
Neuroimaging and especially MRI has emerged as a necessary imaging modality to detect, measure, characterize and monitor brain tumours. Advanced MRI sequences such as perfusion MRI, diffusion MRI and spectroscopy as well as new post-processing techniques such as automatic segmentation of tumours and radiomics play a crucial role in characterization and follow up of brain tumours. The purpose of this review is to provide an overview on anatomical and functional MRI use for brain tumours boundaries determination and tumour characterization in the specific context of radiotherapy. The usefulness of anatomical and functional MRI on particular challenges posed by radiotherapy such as pseudo progression and pseudo esponse and new treatment strategies such as dose painting is also described.
Collapse
Affiliation(s)
- J Benzakoun
- Radiology Department, GHU de Paris, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France; Université de Paris, 85, boulevard Saint-Germain, 75006 Paris, France; Imabrain, Institut de psychiatrie et neurosciences de Paris (IPNP), 102-108, rue de la Santé, 75014 Paris, France; Inserm, U1266, 102, rue de la Santé, 75013 Paris, France.
| | - C Robert
- Medical Physics Department, Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif, France; Molecular Radiotherapy, Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif, France; Inserm, 114, rue Édouard-Vaillant, 94805 Villejuif, France; Paris-Sud University, Paris-Saclay University, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| | - L Legrand
- Radiology Department, GHU de Paris, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France; Université de Paris, 85, boulevard Saint-Germain, 75006 Paris, France; Imabrain, Institut de psychiatrie et neurosciences de Paris (IPNP), 102-108, rue de la Santé, 75014 Paris, France; Inserm, U1266, 102, rue de la Santé, 75013 Paris, France
| | - J Pallud
- Université de Paris, 85, boulevard Saint-Germain, 75006 Paris, France; Imabrain, Institut de psychiatrie et neurosciences de Paris (IPNP), 102-108, rue de la Santé, 75014 Paris, France; Inserm, U1266, 102, rue de la Santé, 75013 Paris, France; Neurosurgery Department, GHU de Paris, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - J-F Meder
- Radiology Department, GHU de Paris, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France; Université de Paris, 85, boulevard Saint-Germain, 75006 Paris, France; Imabrain, Institut de psychiatrie et neurosciences de Paris (IPNP), 102-108, rue de la Santé, 75014 Paris, France; Inserm, U1266, 102, rue de la Santé, 75013 Paris, France
| | - C Oppenheim
- Radiology Department, GHU de Paris, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France; Université de Paris, 85, boulevard Saint-Germain, 75006 Paris, France; Imabrain, Institut de psychiatrie et neurosciences de Paris (IPNP), 102-108, rue de la Santé, 75014 Paris, France; Inserm, U1266, 102, rue de la Santé, 75013 Paris, France
| | - F Dhermain
- Radiotherapy Department, Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| | - M Edjlali
- Radiology Department, GHU de Paris, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France; Université de Paris, 85, boulevard Saint-Germain, 75006 Paris, France; Imabrain, Institut de psychiatrie et neurosciences de Paris (IPNP), 102-108, rue de la Santé, 75014 Paris, France; Inserm, U1266, 102, rue de la Santé, 75013 Paris, France
| |
Collapse
|
21
|
Li X, Wang D, Liao S, Guo L, Xiao X, Liu X, Xu Y, Hua J, Pillai JJ, Wu Y. Discrimination between Glioblastoma and Solitary Brain Metastasis: Comparison of Inflow-Based Vascular-Space-Occupancy and Dynamic Susceptibility Contrast MR Imaging. AJNR Am J Neuroradiol 2020; 41:583-590. [PMID: 32139428 DOI: 10.3174/ajnr.a6466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/03/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Accurate differentiation between glioblastoma and solitary brain metastasis is of vital importance clinically. This study aimed to investigate the potential value of the inflow-based vascular-space-occupancy MR imaging technique, which has no need for an exogenous contrast agent, in differentiating glioblastoma and solitary brain metastasis and to compare it with DSC MR imaging. MATERIALS AND METHODS Twenty patients with glioblastoma and 22 patients with solitary brain metastasis underwent inflow-based vascular-space-occupancy and DSC MR imaging with a 3T clinical scanner. Two neuroradiologists independently measured the maximum inflow-based vascular-space-occupancy-derived arteriolar CBV and DSC-derived CBV values in intratumoral regions and peritumoral T2-hyperintense regions, which were normalized to the contralateral white matter (relative arteriolar CBV and relative CBV, inflow-based vascular-space-occupancy relative arteriolar CBV, and DSC-relative CBV). The intraclass correlation coefficient, Student t test, or Mann-Whitney U test and receiver operating characteristic analysis were performed. RESULTS All parameters of both regions had good or excellent interobserver reliability (0.74∼0.89). In peritumoral T2-hyperintese regions, DSC-relative CBV (P < .001), inflow-based vascular-space-occupancy arteriolar CBV (P = .001), and relative arteriolar CBV (P = .005) were significantly higher in glioblastoma than in solitary brain metastasis, with areas under the curve of 0.94, 0.83, and 0.72 for discrimination, respectively. In the intratumoral region, both inflow-based vascular-space-occupancy arteriolar CBV and relative arteriolar CBV were significantly higher in glioblastoma than in solitary brain metastasis (both P < .001), with areas under the curve of 0.91 and 0.90, respectively. Intratumoral DSC-relative CBV showed no significant difference (P = .616) between the 2 groups. CONCLUSIONS Inflow-based vascular-space-occupancy has the potential to discriminate glioblastoma from solitary brain metastasis, especially in the intratumoral region.
Collapse
Affiliation(s)
- X Li
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - D Wang
- School of Biomedical Engineering (D.W.), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - S Liao
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Division of CT and MR, Radiology Department (S.L.), First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - L Guo
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - X Xiao
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - X Liu
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Y Xu
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - J Hua
- Neurosection, Division of MR Research (J.H.)
- F.M. Kirby Research Center for Functional Brain Imaging (J.H.), Kennedy Krieger Institute, Baltimore, Maryland
| | - J J Pillai
- Division of Neuroradiology (J.P.); Russell H. Morgan Department of Radiology and Radiological Science and
- Department of Neurosurgery (J.P.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Y Wu
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
22
|
Costelloe CM, Amini B, Madewell JE. Risks and Benefits of Gadolinium-Based Contrast-Enhanced MRI. Semin Ultrasound CT MR 2020; 41:170-182. [DOI: 10.1053/j.sult.2019.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Costelloe CM, Amini B, Madewell JE. WITHDRAWN: Risks and Benefits of Gadolinium-Based Contrast Enhanced MRI. Semin Ultrasound CT MR 2020; 41:260-274. [PMID: 32446435 DOI: 10.1053/j.sult.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in [Seminars in Ultrasound, CT, and MRI, 41/2 (2020) 170–182], https://dx.doi.org/10.1053/j.sult.2019.12.005. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Colleen M Costelloe
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Behrang Amini
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - John E Madewell
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
24
|
Expert opinion: Criteria for second-line treatment failure in patients with multiple sclerosis. Mult Scler Relat Disord 2019; 36:101406. [DOI: 10.1016/j.msard.2019.101406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022]
|
25
|
Bennani-Baiti B, Krug B, Giese D, Hellmich M, Bartsch S, Helbich TH, Baltzer PAT. Evaluation of 3.0-T MRI Brain Signal after Exposure to Gadoterate Meglumine in Women with High Breast Cancer Risk and Screening Breast MRI. Radiology 2019; 293:523-530. [PMID: 31638488 DOI: 10.1148/radiol.2019190847] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Otherwise healthy women at high risk for breast cancer undergo annual contrast agent-enhanced breast MRI screening examinations, resulting in high cumulative doses of gadolinium-based contrast agents (GBCAs). Whereas the majority of studies showed no T1 signal ratio increase in deep brain nuclei after more than six doses of macrocyclic GBCA, this has not been explored in a healthy study population. Purpose To assess whether women who are administered large cumulative doses of macrocyclic GBCA with breast MRI at high-risk breast cancer screening exhibit T1 alterations in deep brain nuclei. Materials and Methods In this prospective study from November 2017 to March 2018, healthy women who were either exposed (because of high-risk breast cancer screening) or unexposed to only gadoterate meglumine underwent 3.0-T brain MRI with a dedicated head coil, including T1 mapping and magnetization-prepared rapid gradient-echo sequences. T1 times and T1 signal intensities were measured in the dentate nucleus (DN), globus pallidus (GP), crus anterior of capsula interna (CA), and pons. Ratios of DN to pons and GP to CA were calculated, and univariable Pearson correlation coefficients were calculated. Multivariable analysis included partial regression analysis. Results This study evaluated 25 women (mean age, 51 years ± 11 [standard deviation]) who were exposed to a mean GBCA dose of 129 mL (median 112 mL; range, 70-302 mL) and 16 women (mean age, 37 years ± 10) who were never exposed to any GBCA. Infratentorially, no correlation between cumulative GBCA dose and T1 times or signal intensity ratios was detected (P = .66 and .55, respectively). In partial correlation analysis by considering age as a confounder, there was a moderate negative correlation between GP-to-CA ratio and GBCA dose (r = -0.40; P = .01) but not for GP T1 times (r = 0.19; P = .24). Conclusion After administration of relatively large cumulative doses of gadoterate dimeglumine, healthy women at high risk for breast cancer who underwent annual contrast-enhanced breast MRI screening did not exhibit T1 signal increase in deep brain nuclei at 3.0-T MRI. © RSNA, 2019.
Collapse
Affiliation(s)
- Barbara Bennani-Baiti
- From the Department of Biomedical Imaging and Image-guided Therapy, Divisions of General and Pediatric Radiology (B.B.B., T.H.H., P.A.T.B.) and Neurology and Musculoskeletal Radiology (S.B.), Allgemeines Krankenhaus, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Radiology (B.K., D.G.) and Department of Medical Statistics and Bioinformatics (M.H.), University Hospital Cologne, Cologne, Germany
| | - Barbara Krug
- From the Department of Biomedical Imaging and Image-guided Therapy, Divisions of General and Pediatric Radiology (B.B.B., T.H.H., P.A.T.B.) and Neurology and Musculoskeletal Radiology (S.B.), Allgemeines Krankenhaus, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Radiology (B.K., D.G.) and Department of Medical Statistics and Bioinformatics (M.H.), University Hospital Cologne, Cologne, Germany
| | - Daniel Giese
- From the Department of Biomedical Imaging and Image-guided Therapy, Divisions of General and Pediatric Radiology (B.B.B., T.H.H., P.A.T.B.) and Neurology and Musculoskeletal Radiology (S.B.), Allgemeines Krankenhaus, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Radiology (B.K., D.G.) and Department of Medical Statistics and Bioinformatics (M.H.), University Hospital Cologne, Cologne, Germany
| | - Martin Hellmich
- From the Department of Biomedical Imaging and Image-guided Therapy, Divisions of General and Pediatric Radiology (B.B.B., T.H.H., P.A.T.B.) and Neurology and Musculoskeletal Radiology (S.B.), Allgemeines Krankenhaus, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Radiology (B.K., D.G.) and Department of Medical Statistics and Bioinformatics (M.H.), University Hospital Cologne, Cologne, Germany
| | - Sophie Bartsch
- From the Department of Biomedical Imaging and Image-guided Therapy, Divisions of General and Pediatric Radiology (B.B.B., T.H.H., P.A.T.B.) and Neurology and Musculoskeletal Radiology (S.B.), Allgemeines Krankenhaus, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Radiology (B.K., D.G.) and Department of Medical Statistics and Bioinformatics (M.H.), University Hospital Cologne, Cologne, Germany
| | - Thomas H Helbich
- From the Department of Biomedical Imaging and Image-guided Therapy, Divisions of General and Pediatric Radiology (B.B.B., T.H.H., P.A.T.B.) and Neurology and Musculoskeletal Radiology (S.B.), Allgemeines Krankenhaus, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Radiology (B.K., D.G.) and Department of Medical Statistics and Bioinformatics (M.H.), University Hospital Cologne, Cologne, Germany
| | - Pascal A T Baltzer
- From the Department of Biomedical Imaging and Image-guided Therapy, Divisions of General and Pediatric Radiology (B.B.B., T.H.H., P.A.T.B.) and Neurology and Musculoskeletal Radiology (S.B.), Allgemeines Krankenhaus, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Radiology (B.K., D.G.) and Department of Medical Statistics and Bioinformatics (M.H.), University Hospital Cologne, Cologne, Germany
| |
Collapse
|
26
|
Splendiani A, Corridore A, Torlone S, Martino M, Barile A, Di Cesare E, Masciocchi C. Visible T1-hyperintensity of the dentate nucleus after multiple administrations of macrocyclic gadolinium-based contrast agents: yes or no? Insights Imaging 2019; 10:82. [PMID: 31482392 PMCID: PMC6722174 DOI: 10.1186/s13244-019-0767-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To investigate the appearance of visible dentate nucleus (DN) T1-hyperintensity and quantify changes in DN/pons (DN/P) signal intensity (SI) ratio in MS patients after the exclusive administration of macrocyclic GBCAs. MATERIALS AND METHODS One hundred forty-nine patients with confirmed MS were evaluated. Patients received at least two administrations of gadobutrol (n = 63), gadoterate (n = 57), or both (n = 29). Two experienced neuroradiologists in consensus evaluated unenhanced T1-weighted MR images from all examinations in each patient for evidence of visible DN hyperintensity. Thereafter, SI measurements were made in the left and right DN and pons on unenhanced T1-weighted images from the first and last scans. A two-sample t test compared the DN/P SI ratios for patients with and without visible T1-hyperintensity. RESULTS Visible T1-hyperintensity was observed in 42/149 (28.2%) patients (19 after gadobutrol only, 15 after gadoterate only, 8 after both), typically at the 4th or 5th follow-up exam at 3-4 years after the initial examination. Significant increases in DN/P SI ratio from first to last examination were determined for patients with visible T1-hyperintensity (0.998 ± 0.002 to 1.153 ± 0.016, p < 0.0001 for gadobutrol; 1.003 ± 0.004 to 1.110 ± 0.014, p < 0.0001 for gadoterate; 1.004 ± 0.011 to 1.163 ± 0.032, p = 0.0004 for both) but not for patients without visible T1-hyperintensity (p > 0.05; all groups). CONCLUSION Multiple injections of gadobutrol and/or gadoterate can lead to visible and quantifiable increases in DN/P SI ratio in some patients with MS.
Collapse
Affiliation(s)
- Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Antonella Corridore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Silvia Torlone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Milvia Martino
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
27
|
Age, But Not Repeated Exposure to Gadoterate Meglumine, Is Associated With T1- and T2-Weighted Signal Intensity Changes in the Deep Brain Nuclei of Pediatric Patients. Invest Radiol 2019; 54:537-548. [DOI: 10.1097/rli.0000000000000564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Abstract
Gadolinium (Gd)-based contrast agents have been routinely used worldwide in diagnostic MRI since 1988. All routinely applied contrast agents for clinical use were considered extremely safe with regard to tolerance, adverse effects and diagnostic efficacy and when used at Food and Drug Administration-approved doses. With the identification of Gd-associated disorders, namely nephrogenic systemic fibrosis and adverse reactions, and in the longer term Gd-retention in the brain, this view changed and led to the withdrawal or restriction of approval of linear Gd chelates in Europe. Even though Gd deposition in different human body areas was described very early, recently published literature of intracerebral accumulation of contrast agents as well as deposition in bone have created surprising attention. Not only was the fact of Gd deposition in the body well known for many years, but there is currently no clinical evidence of patient symptoms and no resulting health issues of patients have been observed yet. The expression "gadolinium deposition disease" has been termed by active patient advocacy groups with an online presence with reports of individual members stating a broad spectrum of disorders yielding a large symptom complex after administration of Gd-based contrast agents without evidence of any pre-existing or otherwise underlying disease process which could explain the mentioned disorder.
Collapse
|
29
|
Gadolinium-Based MRI Contrast Agents Induce Mitochondrial Toxicity and Cell Death in Human Neurons, and Toxicity Increases With Reduced Kinetic Stability of the Agent. Invest Radiol 2019; 54:453-463. [DOI: 10.1097/rli.0000000000000567] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Melsaether AN, Kim E, Mema E, Babb J, Kim SG. Preliminary study: Breast cancers can be well seen on 3T breast MRI with a half-dose of gadobutrol. Clin Imaging 2019; 58:84-89. [PMID: 31279989 DOI: 10.1016/j.clinimag.2019.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dynamic contrast enhanced (DCE) breast MRI is highly sensitive for breast cancer and requires gadolinium-based contrast agents (GBCA)s, which have potential safety concerns. PURPOSE Test whether breast cancers imaged by 3T DCE breast MRI with 0.05 mmol/kg of gadobutrol are detectable. METHODS Analysis of 3T DCE breast MRIs with half dose of gadobutrol from patients included in an IRB-approved and HIPPA-compliant prospective study of breast PET/MRI. Between 11/7/2014 and 3/2/2018, 41 consecutive women with biopsy-proven breast cancer that was at least 2 cm, multi-focal or multi-centric, had axillary metastasis, or had skin involvement who gave informed consent were included. Two breast radiologists independently recorded lesion conspicuity on a 4-point scale (0 = not seen, 1 = questionably seen, 2 = adequately seen, 3 = certainly seen), and measured the lesion. Size was compared between radiologists and with size on available mammogram, ultrasound, MRI, and surgical pathology. Inter-reader agreement was assessed by kappa coefficient for conspicuity. Lesion size comparisons were assessed using the Spearman rank correlation. RESULTS In 40 patients (ages 28.4-80.5, 51.9 years), there were 49 cancers. 10.1% of lesions were 1 cm or less and 26.5% of lesions were 2 cm or less. Each reader detected 49/49 cancers. Conspicuity scores ranged from 2 to 3, mean 2.9/3 for both readers (p = 0.47). Size on half-dose 3T DCE-MRI correlated with size on surgical pathology (r = 0.6, p = 0.03) while size on mammogram and ultrasound did not (r = 0.25, p = 0.46; r = 0.25, p = 0.42). CONCLUSION All breast cancers in this cohort, as small as 0.4 cm, were seen on 3T DCE breast MRI with 0.05 mmol/kg dose of gadobutrol.
Collapse
Affiliation(s)
- Amy N Melsaether
- Department of Radiology, NYU School of Medicine, 160 E34th St, 3rd Floor, New York, NY 10016, United States of America.
| | - Eric Kim
- Department of Radiology, NYU School of Medicine, 160 E34th St, 3rd Floor, New York, NY 10016, United States of America.
| | - Eralda Mema
- Department of Radiology, NYU School of Medicine, 160 E34th St, 3rd Floor, New York, NY 10016, United States of America.
| | - James Babb
- NYU School of Medicine and Center for Advanced Imaging and Innovation, (CAI2R), NYU School of Medicine, 660 1st Ave, 2nd Floor, New York, NY 10016, United States of America.
| | - Sungheon Gene Kim
- NYU School of Medicine and Center for Advanced Imaging and Innovation, (CAI2R), NYU School of Medicine, 660 1st Ave, 2nd Floor, New York, NY 10016, United States of America; Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology, NYU School of Medicine, 660 1st Ave, 2nd Floor, New York, NY 10016, United States of America.
| |
Collapse
|
31
|
Forslin Y, Martola J, Bergendal Å, Fredrikson S, Wiberg MK, Granberg T. Gadolinium Retention in the Brain: An MRI Relaxometry Study of Linear and Macrocyclic Gadolinium-Based Contrast Agents in Multiple Sclerosis. AJNR Am J Neuroradiol 2019; 40:1265-1273. [PMID: 31248867 DOI: 10.3174/ajnr.a6112] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Brain gadolinium retention is consistently reported for linear gadolinium-based contrast agents, while the results for macrocyclics are contradictory and potential clinical manifestations remain controversial. Furthermore, most previous studies are based on conventional T1-weighted MR imaging. We therefore aimed to quantitatively investigate longitudinal and transversal relaxation in the brain in relation to previous gadolinium-based contrast agent administration and explore associations with disability in multiple sclerosis. MATERIALS AND METHODS Eighty-five patients with MS and 21 healthy controls underwent longitudinal and transverse relaxation rate (R1 and R2) relaxometry. Patients were divided into linear, mixed, and macrocyclic groups based on previous gadolinium-based contrast agent administration. Neuropsychological testing was performed in 53 patients. The dentate nucleus, globus pallidus, caudate nucleus, and thalamus were manually segmented. Repeatability measures were also performed. RESULTS The relaxometry was robust (2.0% scan-rescan difference) and detected higher R1 (dentate nucleus, globus pallidus, caudate nucleus, thalamus) and R2 (globus pallidus, caudate nucleus) in patients receiving linear gadolinium-based contrast agents compared with controls. The number of linear gadolinium-based contrast agent administrations was associated with higher R1 and R2 in all regions (except R2 in the thalamus). No similar differences and associations were found for the macrocyclic group. Higher relaxation was associated with lower information-processing speed (dentate nucleus, thalamus) and verbal fluency (caudate nucleus, thalamus). No associations were found with physical disability or fatigue. CONCLUSIONS Previous linear, but not macrocyclic, gadolinium-based contrast agent administration is associated with higher relaxation rates in a dose-dependent manner. Higher relaxation in some regions is associated with cognitive impairment but not physical disability or fatigue in MS. The findings should be interpreted with care but encourage studies into gadolinium retention and cognition.
Collapse
Affiliation(s)
- Y Forslin
- From the Department of Clinical Neuroscience (Y.F., J.M., Å.B., S.F., M.K.W., T.G.), Karolinska Institutet, Stockholm, Sweden .,Departments of Radiology (Y.F., J.M., M.K.W., T.G.)
| | - J Martola
- From the Department of Clinical Neuroscience (Y.F., J.M., Å.B., S.F., M.K.W., T.G.), Karolinska Institutet, Stockholm, Sweden.,Departments of Radiology (Y.F., J.M., M.K.W., T.G.)
| | - Å Bergendal
- From the Department of Clinical Neuroscience (Y.F., J.M., Å.B., S.F., M.K.W., T.G.), Karolinska Institutet, Stockholm, Sweden
| | - S Fredrikson
- From the Department of Clinical Neuroscience (Y.F., J.M., Å.B., S.F., M.K.W., T.G.), Karolinska Institutet, Stockholm, Sweden.,Neurology (S.F.), Karolinska University Hospital, Stockholm, Sweden
| | - M K Wiberg
- From the Department of Clinical Neuroscience (Y.F., J.M., Å.B., S.F., M.K.W., T.G.), Karolinska Institutet, Stockholm, Sweden.,Departments of Radiology (Y.F., J.M., M.K.W., T.G.).,Department of Medical and Health Sciences (M.K.W.), Division of Radiological Sciences, Linköping University, Linköping, Sweden
| | - T Granberg
- From the Department of Clinical Neuroscience (Y.F., J.M., Å.B., S.F., M.K.W., T.G.), Karolinska Institutet, Stockholm, Sweden.,Departments of Radiology (Y.F., J.M., M.K.W., T.G.)
| |
Collapse
|
32
|
Watanabe T, Frahm J. Gadobutrol enhances T 1-weighted MRI of nerve cells. Toxicol Lett 2019; 308:17-23. [PMID: 30902667 DOI: 10.1016/j.toxlet.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/06/2019] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
Abstract
Three-dimensional T1-weighted MRI of mouse brain in vivo (9.4 T, 80 μm isotropic resolution) identified assemblies of nerve cell bodies in the habenula, hippocampal formation, locus coeruleus, dorsal motor nucleus of vagus, and nucleus ambiguus as high signal intensities, while suppressing the signals of white matter by magnetization transfer and of extracellular water protons by saturation. These observations indicate the presence of intracellular water protons with T1 values shortened by paramagnetic ions as the source of the bright signal. One day after an intraventricular injection of gadobutrol, a macrocyclic gadolinium-based contrast agent, T1-weighted MRI signal intensities of the nerve cell assemblies in the habenula, hippocampal formation, and locus coeruleus increased significantly. With simultaneous saturation of long-T1 protons of extracellular water, this finding indicates a T1-shortening of the intracellular water protons as a result of their interaction with gadolinium ions.
Collapse
Affiliation(s)
- Takashi Watanabe
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, 37077, Göttingen, Germany.
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, 37077, Göttingen, Germany
| |
Collapse
|
33
|
Chehabeddine L, Al Saleh T, Baalbaki M, Saleh E, Khoury SJ, Hannoun S. Cumulative administrations of gadolinium-based contrast agents: risks of accumulation and toxicity of linear vs macrocyclic agents. Crit Rev Toxicol 2019; 49:262-279. [DOI: 10.1080/10408444.2019.1592109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lara Chehabeddine
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Tala Al Saleh
- Department of Physics, American University of Beirut, Beirut, Lebanon
| | - Marwa Baalbaki
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Eman Saleh
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samia J. Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
- Abu-Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
- Abu-Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
34
|
Blumfield E, Swenson DW, Iyer RS, Stanescu AL. Gadolinium-based contrast agents - review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol 2019; 49:448-457. [PMID: 30923876 DOI: 10.1007/s00247-018-4304-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/01/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022]
Abstract
Gadolinium has been used as a base for contrast agents in MRI for the last three decades. Numerous studies over the last 4 years have reported increased signal intensity in deep brain nuclei in non-contrast MRI images following gadolinium-based contrast agent (GBCA) administration. Pathology studies performed on adults and children, and rodent necropsy studies have also shown gadolinium deposition in brain and other tissues after GBCA administration. The purpose of this review was to summarize and discuss the knowledge gained from these reports and the relevance for imaging pediatric patients.
Collapse
Affiliation(s)
- Einat Blumfield
- Department of Radiology, Children's Hospital of Montefiore, Albert Einstein College of Medicine, 111E 210th St, Bronx, NY, 10461, USA.
| | - David W Swenson
- Department of Diagnostic Imaging, Alpert Medical School of Brown University, Rhode Island Hospital/Hasbro Children's Hospital, Providence, RI, USA
| | - Ramesh S Iyer
- Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, USA
| | - A Luana Stanescu
- Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
35
|
Marsault P, Ducassou S, Menut F, Bessou P, Havez-Enjolras M, Chateil JF. Diagnostic performance of an unenhanced MRI exam for tumor follow-up of the optic pathway gliomas in children. Neuroradiology 2019; 61:711-720. [DOI: 10.1007/s00234-019-02198-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
|
36
|
Schöckel L, Balzer T, Pietsch H. [Increased signal intensities and gadolinium levels in the brain after administration of gadolinium-based MR contrast agents : Clinical observations and results from preclinical research]. Radiologe 2019; 59:359-368. [PMID: 30887087 DOI: 10.1007/s00117-019-0511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Numerous clinical MRI studies have been published that describe an association between the repeated administration of (linear) gadolinium-based contrast agents and increased signal intensity in certain brain areas. In November 2017, the European Commission suspended the use of some of these contrast agents. OBJECTIVES The background for this decision, both regulatory and scientific, are presented and discussed. MATERIALS AND METHODS The regulatory decisions are evaluated and the clinical and preclinical literature is discussed. RESULTS Differences in the structure and stability of gadolinium-based contrast agent molecules explain the observed increased signal intensities in individual brain regions (e. g. dentate nucleus) after administration of multiple doses of linear contrast agents. This phenomenon was not observed after administration of multiple doses of macrocyclic contrast agents. Preclinical studies have confirmed these results. CONCLUSION To date, no clinical symptoms have been confirmed to be associated with the increased signal intensity or gadolinium presence in the brain.
Collapse
Affiliation(s)
- L Schöckel
- Pharmaceuticals Division, Medical & Clinical Affairs Radiology, Bayer AG, Berlin, Deutschland
| | - T Balzer
- Pharmaceuticals, Medical & Clinical Affairs Radiology, Bayer U.S. LLC, 100 Bayer Boulevard, 07981, Whippany, NJ, USA.
| | - H Pietsch
- Research & Development, Pharmaceuticals, MR and CT Contrast Media Research, Bayer AG, Berlin, Deutschland
| |
Collapse
|
37
|
Gadolinium Accumulation in the Deep Cerebellar Nuclei and Globus Pallidus After Exposure to Linear but Not Macrocyclic Gadolinium-Based Contrast Agents in a Retrospective Pig Study With High Similarity to Clinical Conditions. Invest Radiol 2019; 53:278-285. [PMID: 29319556 PMCID: PMC5902136 DOI: 10.1097/rli.0000000000000440] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective The aim of this retrospective study was to determine the gadolinium (Gd) concentration in different brain areas in a pig cohort that received repeated administration of Gd-based contrast agents (GBCAs) at standard doses over several years, comparable with a clinical setting. Material and Methods Brain tissue was collected from 13 Göttingen mini pigs that had received repeated intravenous injections of gadopentetate dimeglumine (Gd-DTPA; Magnevist) and/or gadobutrol (Gadovist). The animals have been included in several preclinical imaging studies since 2008 and received cumulative Gd doses ranging from 7 to 129 mmol per animal over an extended period. Two animals with no history of administration of GBCA were included as controls. Brain autopsies were performed not earlier than 8 and not later than 38 months after the last GBCA application. Tissues from multiple brain areas including cerebellar and cerebral deep nuclei, cerebellar and cerebral cortex, and pons were analyzed for Gd using inductively coupled plasma mass spectrometry. Results Of the 13 animals, 8 received up to 48 injections of gadobutrol and Gd-DTPA and 5 received up to 29 injections of gadobutrol only. In animals that had received both Gd-DTPA and gadobutrol, a median (interquartile range) Gd concentration of 1.0 nmol/g tissue (0.44-1.42) was measured in the cerebellar nuclei and 0.53 nmol/g (0.29-0.62) in the globus pallidus. The Gd concentration in these areas in gadobutrol-only animals was 50-fold lower with median concentrations of 0.02 nmol/g (0.01-0.02) for cerebellar nuclei and 0.01 nmol/g (0.01-0.01) for globus pallidus and was comparable with control animals with no GBCA history. Accordingly, in animals that received both GBCAs, the amount of residual Gd correlated with the administered dose of Gd-DTPA (P ≤ 0.002) but not with the total Gd dose, consisting of Gd-DTPA and gadobutrol. The Gd concentration in cortical tissue and in the pons was very low (≤0.07 nmol/g tissue) in all animals analyzed. Conclusion Multiple exposure to macrocyclic gadobutrol is not associated with Gd deposition in brain tissue of healthy pigs. A single additional administration of linear Gd-DTPA is sufficient for Gd accumulation in the nucleus dentatus and globus pallidus, underlining the importance of obtaining a complete GBCA history in clinical studies.
Collapse
|
38
|
The Impact of Different Magnetic Resonance Imaging Equipment and Scanning Parameters on Signal Intensity Ratio Measurements in Phantoms and Healthy Volunteers. Invest Radiol 2019; 54:169-176. [DOI: 10.1097/rli.0000000000000526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Le Fur M, Caravan P. The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists. Metallomics 2019; 11:240-254. [PMID: 30516229 PMCID: PMC6486840 DOI: 10.1039/c8mt00302e] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are widely used with clinical magnetic resonance imaging (MRI), and 10 s of millions of doses of GBCAs are administered annually worldwide. GBCAs are hydrophilic, thermodynamically stable and kinetically inert gadolinium chelates. In clinical MRI, 5-10 millimoles of Gd ion is administered intravenously and the GBCA is rapidly eliminated intact primarily through the kidneys into the urine. It is now well-established that the Gd3+ ion, in some form(s), is partially retained in vivo. In patients with advanced kidney disease, there is an association of Gd retention with nephrogenic systemic fibrosis (NSF) disease. However Gd is also retained in the brain, bone, skin, and other tissues in patients with normal renal function, and the presence of Gd can persist months to years after the last administration of a GBCA. Regulatory agencies are restricting the use of specific GBCAs and inviting health care professionals to evaluate the risk/benefit ratio prior to using GBCAs. Despite the growing number of studies investigating this issue both in animals and humans, the biological distribution and the chemical speciation of the residual gadolinium are not fully understood. Is the GBCA retained in its intact form? Is the Gd3+ ion dissociated from its chelator, and if so, what is its chemical form? Here we discuss the current state of knowledge regarding the issue of Gd retention and describe the analytical and spectroscopic methods that can be used to investigate the Gd speciation. Many of the physical methods that could be brought to bear on this problem are in the domain of bioinorganic chemistry and we hope that this review will serve to inspire this community to take up this important problem.
Collapse
Affiliation(s)
- Mariane Le Fur
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
40
|
Gaudino S, Martucci M, Botto A, Ruberto E, Leone E, Infante A, Ramaglia A, Caldarelli M, Frassanito P, Triulzi FM, Colosimo C. Brain DSC MR Perfusion in Children: A Clinical Feasibility Study Using Different Technical Standards of Contrast Administration. AJNR Am J Neuroradiol 2019; 40:359-365. [PMID: 30655255 DOI: 10.3174/ajnr.a5954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/01/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Dynamic susceptibility contrast MR perfusion imaging has limited results in children due to difficulties in reproducing technical standards derived from adults. This prospective, multicenter study aimed to determine DSC feasibility and quality in children using custom administration of a standard dose of gadolinium. MATERIALS AND METHODS Eighty-three consecutive children with brain tumors underwent DSC perfusion with a standard dose of gadobutrol administered by an automated power injector. The location and size of intravenous catheters and gadobutrol volume and flow rates were reported, and local and/or systemic adverse effects were recorded. DSC was qualitatively evaluated by CBV maps and signal intensity-time curves and quantitatively by the percentage of signal drop and full width at half-maximum, and the data were compared with the standards reported for adults. Quantitative data were grouped by flow rate, and differences among groups were assessed by analysis of covariance and tested for statistical significance with a t test. RESULTS No local or systemic adverse events were recorded independent of catheter location (63 arm, 14 hand, 6 foot), size (24-18 ga), and flow rates (1-5 mL/s). High-quality CBV maps and signal intensity-time curves were achieved in all patients, and quantitative evaluations were equal or superior to those reported for adults. No significant differences (P ≥ .05) were identified among the higher-flow-rate groups in the quantitative data. CONCLUSIONS A custom administration of a standard dose of gadobutrol allows safe and high-quality DSC MR perfusion imaging in children.
Collapse
Affiliation(s)
- S Gaudino
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
| | - M Martucci
- Operative Unit di Neuroradiologia (M.M.), Azienda Ospedaliera, Università di Padova, Padova, Italy
| | - A Botto
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
| | - E Ruberto
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
- Istituto di Radiologia (E.R., E.L., A.R., C.C), Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Università Cattolica del Sacro Cuore (E.R., E.L., A.R., C.C), Milan, Italy
| | - E Leone
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
- Istituto di Radiologia (E.R., E.L., A.R., C.C), Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Università Cattolica del Sacro Cuore (E.R., E.L., A.R., C.C), Milan, Italy
| | - A Infante
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
| | - A Ramaglia
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
- Istituto di Radiologia (E.R., E.L., A.R., C.C), Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Università Cattolica del Sacro Cuore (E.R., E.L., A.R., C.C), Milan, Italy
| | - M Caldarelli
- Neurochirurgia infantile (M.C., P.F.), Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere, Rome, Italy
| | - P Frassanito
- Neurochirurgia infantile (M.C., P.F.), Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere, Rome, Italy
| | - F M Triulzi
- Neuroradiology Unit (F.M.T.), Foundation Istituto di Ricovero e Cura a Carattere Scientifico, Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation (F.M.T.), University of Milan, Milan, Italy
| | - C Colosimo
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
- Istituto di Radiologia (E.R., E.L., A.R., C.C), Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Università Cattolica del Sacro Cuore (E.R., E.L., A.R., C.C), Milan, Italy
| |
Collapse
|
41
|
Jost G, Frenzel T, Boyken J, Lohrke J, Nischwitz V, Pietsch H. Long-term Excretion of Gadolinium-based Contrast Agents: Linear versus Macrocyclic Agents in an Experimental Rat Model. Radiology 2019; 290:340-348. [DOI: 10.1148/radiol.2018180135] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gregor Jost
- From the Department of MR and CT Contrast Media Research, Bayer, Muellerstr 178, Berlin 13353, Germany (G.J., T.F., J.L., H.P.); Institute of Physiology, Charité, Berlin, Germany (J.B.); and Forschungszentrum Juelich, Juelich, Germany (V.N.)
| | - Thomas Frenzel
- From the Department of MR and CT Contrast Media Research, Bayer, Muellerstr 178, Berlin 13353, Germany (G.J., T.F., J.L., H.P.); Institute of Physiology, Charité, Berlin, Germany (J.B.); and Forschungszentrum Juelich, Juelich, Germany (V.N.)
| | - Janina Boyken
- From the Department of MR and CT Contrast Media Research, Bayer, Muellerstr 178, Berlin 13353, Germany (G.J., T.F., J.L., H.P.); Institute of Physiology, Charité, Berlin, Germany (J.B.); and Forschungszentrum Juelich, Juelich, Germany (V.N.)
| | - Jessica Lohrke
- From the Department of MR and CT Contrast Media Research, Bayer, Muellerstr 178, Berlin 13353, Germany (G.J., T.F., J.L., H.P.); Institute of Physiology, Charité, Berlin, Germany (J.B.); and Forschungszentrum Juelich, Juelich, Germany (V.N.)
| | - Volker Nischwitz
- From the Department of MR and CT Contrast Media Research, Bayer, Muellerstr 178, Berlin 13353, Germany (G.J., T.F., J.L., H.P.); Institute of Physiology, Charité, Berlin, Germany (J.B.); and Forschungszentrum Juelich, Juelich, Germany (V.N.)
| | - Hubertus Pietsch
- From the Department of MR and CT Contrast Media Research, Bayer, Muellerstr 178, Berlin 13353, Germany (G.J., T.F., J.L., H.P.); Institute of Physiology, Charité, Berlin, Germany (J.B.); and Forschungszentrum Juelich, Juelich, Germany (V.N.)
| |
Collapse
|
42
|
Measurements of signal intensity of globus pallidus and dentate nucleus suggest different deposition characteristics of macrocyclic GBCAs in children. PLoS One 2018; 13:e0208589. [PMID: 30586415 PMCID: PMC6306250 DOI: 10.1371/journal.pone.0208589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022] Open
Abstract
Introduction The safety of using GBCAs to enhance the visibility of body structures is currently discussed due to possible gadolinium retention in brain structures. The aim of the study was to evaluate the effect of multiple exposures to macrocyclic GBCAs in children. Materials and methods This retrospective, single-center study included data from 43 patients who had received ≥4 injections of macrocyclic GBCAs during MRI examinations over performed over 8 to 84 months. Signal intensity was measured on unenhanced T1-weighted MRI, and globus pallidus to thalamus (GP/Th) and dentate nucleus to pons (DN/P) ratios were calculated. The differences in ratios were tested with the Student’s t-test or the Wilcoxon rank sum test. For categorical data, Pearson's chi-squared test was used. Relationships were analyzed with the Spearman's rank correlation coefficient. Results Patients with the mean age of 7.5 years (SD = 4.2) received 8.19 (SD = 3.63) injections of GBCAs on average. Differences in GP/Th and DN/P ratios between the first and the last measurement were insignificant. Children before the end of myelination process (≤2 years of age) had the first GP/Th ratio values significantly lower than those >2 years of age (p = 0.0284), which than increased at the final scan and reached the level similar to values obtained in the group of >2 years of age. Conclusions Maturation of the brain may affect both signal intensity of brain structures and susceptibility to GBCAs; thus, assessment of signal intensity of the brain structures should be conducted taking into account the age of a child.
Collapse
|
43
|
Lecler A, Duron L, Savatovsky J. Is the Association of Retinal Venous Malformations With Venous Malformations of the Brain Clinically Meaningful? JAMA Ophthalmol 2018; 136:1424-1425. [PMID: 30242319 DOI: 10.1001/jamaophthalmol.2018.4050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Augustin Lecler
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Loic Duron
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Julien Savatovsky
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| |
Collapse
|
44
|
Quattrocchi CC, Ramalho J, van der Molen AJ, Rovira À, Radbruch A. Standardized assessment of the signal intensity increase on unenhanced T1-weighted images in the brain: the European Gadolinium Retention Evaluation Consortium (GREC) Task Force position statement. Eur Radiol 2018; 29:3959-3967. [PMID: 30413951 DOI: 10.1007/s00330-018-5803-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/29/2018] [Accepted: 09/25/2018] [Indexed: 10/27/2022]
Abstract
After the initial report in 2014 on T1-weighted (T1w) hyperintensity of deep brain nuclei following serial injections of linear gadolinium-based contrast agents (GBCAs), a multitude of studies on the potential of the marketed GBCAs to cause T1w hyperintensity in the brain have been published. The vast majority of these studies found a signal intensity (SI) increase for linear GBCAs in the brain-first and foremost in the dentate nucleus-while no SI increase was found for macrocyclic GBCAs. However, the scientific debate about this finding is kept alive by the fact that SI differences do not unequivocally represent the amount of gadolinium retained. Since the study design of the SI measurement in various brain structures is relatively simple, MRI studies investigating gadolinium-dependent T1w hyperintensity are currently conducted at multiple institutions worldwide. However, methodological mistakes may result in flawed conclusions. In this position statement, we assess the methodological basis of the published retrospective studies and define quality standards for future studies to give guidance to the scientific community and to help identify studies with potentially flawed methodology and misleading results. KEY POINTS: • A multitude of studies has been published on the potential of the marketed GBCAs to cause T1w hyperintensity in the brain. • The gadolinium-dependent T1w hyperintensity in the brain depends on patient's history, types of GBCAs used (i.e., linear vs. macrocyclic GBCAs) and MR imaging setup and protocols. • Quality standards for the design of future studies are needed to standardize methodology and avoid potentially misleading results from retrospective studies.
Collapse
Affiliation(s)
- Carlo C Quattrocchi
- Unit of Diagnostic Imaging and Interventional Radiology, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128, Rome, Italy.
| | - Joana Ramalho
- Department of Neuroradiology, Centro Hospitalar de Lisboa Central, Alameda Santo António dos Capuchos, 1169-050, Lisbon, Portugal
| | - Aart J van der Molen
- Department of Radiology, C2-S, Leiden University Medical Center, Albinusdreef 2, NL-2333 ZA, Leiden, The Netherlands
| | - Àlex Rovira
- Section of Neuroradiology Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alexander Radbruch
- Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | |
Collapse
|
45
|
McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, Jacobs PM, Lenkinski RE, Maravilla KR, Prince MR, Rowley HA, Tweedle MF, Kressel HY. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology 2018; 289:517-534. [PMID: 30204075 PMCID: PMC6209069 DOI: 10.1148/radiol.2018181151] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) have revolutionized MRI, enabling physicians to obtain crucial life-saving medical information that often cannot be obtained with other imaging modalities. Since initial approval in 1988, over 450 million intravenous GBCA doses have been administered worldwide, with an extremely favorable pharmacologic safety profile; however, recent information has raised new concerns over the safety of GBCAs. Mounting evidence has shown there is long-term retention of gadolinium in human tissues. Further, a small subset of patients have attributed a constellation of symptoms to GBCA exposure, although the association of these symptoms with GBCA administration or gadolinium retention has not been proven by scientific investigation. Despite evidence that macrocyclic GBCAs show less gadolinium retention than linear GBCAs, the safety implications of gadolinium retention are unknown. The mechanism and chemical forms of gadolinium retention, as well as the biologic activity and clinical importance of these retained gadolinium species, remain poorly understood and underscore the need for additional research. In February 2018, an international meeting was held in Bethesda, Md, at the National Institutes of Health to discuss the current literature and knowledge gaps about gadolinium retention, to prioritize future research initiatives to better understand this phenomenon, and to foster collaborative standardized studies. The greatest priorities are to determine (a) if gadolinium retention adversely affects the function of human tissues, (b) if retention is causally associated with short- or long-term clinical manifestations of disease, and (c) if vulnerable populations, such as children, are at greater risk for experiencing clinical disease. The purpose of the research roadmap is to highlight important information that is not known and to identify and prioritize needed research. ©RSNA, 2018 Online supplemental material is available for this article .
Collapse
Affiliation(s)
- Robert J. McDonald
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Deborah Levine
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Jeffrey Weinreb
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Emanuel Kanal
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Matthew S. Davenport
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - James H. Ellis
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Paula M. Jacobs
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Robert E. Lenkinski
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Kenneth R. Maravilla
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Martin R. Prince
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Howard A. Rowley
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Michael F. Tweedle
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Herbert Y. Kressel
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| |
Collapse
|
46
|
Gadolinium Deposition in the Brain: A Systematic Review of Existing Guidelines and Policy Statement Issued by the Canadian Association of Radiologists. Can Assoc Radiol J 2018; 69:373-382. [DOI: 10.1016/j.carj.2018.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/08/2018] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence has confirmed that, following administration of a gadolinium-based contrast agent (GBCA), very small amounts of gadolinium will deposit in the brain of humans with intact blood-brain barriers. The literature is evolving rapidly and the degree to which gadolinium will deposit for a particular GBCA or class of GBCAs remains undetermined. Several studies suggest that linear GBCAs deposit more gadolinium in the brain compared with macrocyclic GBCAs; however, our understanding of the molecular composition of deposited gadolinium is preliminary, and the clinical significance of gadolinium deposition remains unknown. To date, there is no conclusive evidence linking gadolinium deposition in the brain with any adverse patient outcome. A panel of radiologists representing the Canadian Association of Radiologists was assembled to assist the Canadian medical imaging community in making informed decisions regarding the issue of gadolinium deposition in the brain. The objectives of the working group were: 1) to review the evidence from animal and human studies; 2) to systematically review existing guidelines and position statements issued by other organizations and health agencies; and 3) to formulate an evidence-based position statement on behalf of the Canadian Association of Radiologists. Based on our appraisal of the evidence and systematic review of 9 guidelines issued by other organizations, the working group established the following consensus statement. GBCA administration should be considered carefully with respect to potential risks and benefits, and only used when required. Standard dosing should be used and repeat administrations should be avoided unless necessary. Gadolinium deposition is one of several issues to consider when prescribing a particular GBCA. Currently there is insufficient evidence to recommend one class of GBCA over another. The panel considered it inappropriate to withhold a linear GBCA if a macrocyclic agent is unavailable, if hepatobiliary phase imaging is required, or if there is a history of severe allergic reaction to a macrocyclic GBCA. Further study in this area is required, and the evidence should be monitored regularly with policy statements updated accordingly.
Collapse
|
47
|
Guo BJ, Yang ZL, Zhang LJ. Gadolinium Deposition in Brain: Current Scientific Evidence and Future Perspectives. Front Mol Neurosci 2018; 11:335. [PMID: 30294259 PMCID: PMC6158336 DOI: 10.3389/fnmol.2018.00335] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/27/2018] [Indexed: 01/18/2023] Open
Abstract
In the past 4 years, many publications described a concentration-dependent deposition of gadolinium in the brain both in adults and children, seen as high signal intensities in the globus pallidus and dentate nucleus on unenhanced T1-weighted images. Postmortem human or animal studies have validated gadolinium deposition in these T1-hyperintensity areas, raising new concerns on the safety of gadolinium-based contrast agents (GBCAs). Residual gadolinium is deposited not only in brain, but also in extracranial tissues such as liver, skin, and bone. This review summarizes the current evidence on gadolinium deposition in the human and animal bodies, evaluates the effects of different types of GBCAs on the gadolinium deposition, introduces the possible entrance or clearance mechanism of the gadolinium and potential side effects that may be related to the gadolinium deposition on human or animals, and puts forward some suggestions for further research.
Collapse
Affiliation(s)
- Bang J. Guo
- Department of Medical Imaging, Jinling Hospital, Nanjing Clinical School, Southern Medical University, Nanjing, China
| | - Zhen L. Yang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Long J. Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing Clinical School, Southern Medical University, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
48
|
Leithner D, Moy L, Morris EA, Marino MA, Helbich TH, Pinker K. Abbreviated MRI of the Breast: Does It Provide Value? J Magn Reson Imaging 2018; 49:e85-e100. [PMID: 30194749 PMCID: PMC6408315 DOI: 10.1002/jmri.26291] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
MRI of the breast is the most sensitive test for breast cancer detection and outperforms conventional imaging with mammography, digital breast tomosynthesis, or ultrasound. However, the long scan time and relatively high costs limit its widespread use. Hence, it is currently only routinely implemented in the screening of women at an increased risk of breast cancer. To overcome these limitations, abbreviated dynamic contrast‐enhanced (DCE)‐MRI protocols have been introduced that substantially shorten image acquisition and interpretation time while maintaining a high diagnostic accuracy. Efforts to develop abbreviated MRI protocols reflect the increasing scrutiny of the disproportionate contribution of radiology to the rising overall healthcare expenditures. Healthcare policy makers are now focusing on curbing the use of advanced imaging examinations such as MRI while continuing to promote the quality and appropriateness of imaging. An important cornerstone of value‐based healthcare defines value as the patient's outcome over costs. Therefore, the concept of a fast, abbreviated MRI exam is very appealing, given its high diagnostic accuracy coupled with the possibility of a marked reduction in the cost of an MRI examination. Given recent concerns about gadolinium‐based contrast agents, unenhanced MRI techniques such as diffusion‐weighted imaging (DWI) are also being investigated for breast cancer diagnosis. Although further larger prospective studies, standardized imaging protocol, and reproducibility studies are necessary, initial results with abbreviated MRI protocols suggest that it seems feasible to offer screening breast DCE‐MRI to a broader population. This article aims to give an overview of abbreviated and fast breast MRI protocols, their utility for breast cancer detection, and their emerging role in the new value‐based healthcare paradigm that has replaced the fee‐for‐service model. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:e85–e100.
Collapse
Affiliation(s)
- Doris Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Linda Moy
- Department of Radiology, Center for Biomedical Imaging, NYU School of Medicine, New York, New York, USA
| | - Elizabeth A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria A Marino
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University Vienna, Vienna, Austria
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University Vienna, Vienna, Austria
| |
Collapse
|
49
|
Signal Changes in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-Weighted Magnetic Resonance Images After Intrathecal Administration of Macrocyclic Gadolinium Contrast Agent. Invest Radiol 2018; 53:535-540. [DOI: 10.1097/rli.0000000000000472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Rozenfeld MN, Podberesky DJ. Gadolinium-based contrast agents in children. Pediatr Radiol 2018; 48:1188-1196. [PMID: 30078039 DOI: 10.1007/s00247-018-4165-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/29/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are widely used in medical imaging, with greater than 300 million doses administered since their introduction. The risk of adverse reactions is very low, and GBCAs were thought to be very safe until the discovery of nephrogenic systemic fibrosis (NSF). Since that time, gadolinium has been found to deposit throughout the body, including the brain, where it is visible on non-contrast T1-weighted MR images in people with normal renal function. The clinical effects of this deposition remain unknown and may not exist. In this review the authors provide a comprehensive update on GBCAs and their potential risks, within a historical context and through the lens of a pediatric radiologist.
Collapse
Affiliation(s)
- Michael N Rozenfeld
- Department of Radiology, University of Arizona College of Medicine - Phoenix, 550 E. Van Buren St., Phoenix, AZ, 85004, USA.
| | - Daniel J Podberesky
- Nemours Children's Hospital, Nemours Children's Health System, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|