1
|
Taylor H, Spruill L, Jensen-Smith H, Rujchanarong D, Hulahan T, Ivey A, Siougiannis A, Bethard JR, Ball LE, Sandusky GE, Hollingsworth MA, Barth JL, Mehta AS, Drake RR, Marks JR, Nakshatri H, Ford M, Angel PM. Spatial localization of collagen hydroxylated proline site variation as an ancestral trait in the breast cancer microenvironment. Matrix Biol 2025; 136:71-86. [PMID: 39863086 DOI: 10.1016/j.matbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment. In the present study, we test the hypothesis that the breast cancer microenvironment presents unique PTMs of collagen, which form bioactive domains at these sites that are associated with spatial histopathological characteristics and influence breast epithelial cell signaling. Mass spectrometry imaging proteomics targeting collagens were paired with comprehensive proteomic methods to identify novel breast cancer-related collagen domains based on spatial localization and regulation in 260 breast tissue samples. As ancestry plays a significant role in breast cancer outcomes, these methods were performed on ancestry diverse breast cancer tissues. Lumpectomies from the Cancer Genome Atlas (TCGA; n=10) reported increased levels of prolyl 4-hydroxylase subunit alpha-3 (P4HA3) accompanied by spatial regulation of fibrillar collagen protein sequences. A concise set of triple negative breast cancer lumpectomies (n=10) showed spatial regulation of specific domain sites from collagen alpha-1(I) chain. Tissue microarrays identified proteomic alterations around post-translationally modified collagen sites in healthy breast (n=81) and patient matched normal adjacent (NAT; n=76) and invasive ductal carcinoma (n=83). A collagen alpha-1(I) chain domain encompassing amino acids 506-514 with site-specific proline hydroxylation reported significant alteration between patient matched normal adjacent tissue and invasive breast cancer. Functional testing of domain 506-514 on breast cancer epithelial cells showed proliferation, chemotaxis and cell signaling response dependent on site localization of proline hydroxylation within domain 506-514 variants. These findings support site localized collagen HYP forms novel bioactive domains that are spatially distributed within the breast cancer microenvironment and may play a role in ancestral traits of breast cancer.
Collapse
Affiliation(s)
- Harrison Taylor
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Heather Jensen-Smith
- Eppley Institute for Cancer Research & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Denys Rujchanarong
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Taylor Hulahan
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Ashlyn Ivey
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Alex Siougiannis
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jennifer R Bethard
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Lauren E Ball
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - George E Sandusky
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - M A Hollingsworth
- Eppley Institute for Cancer Research & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S Mehta
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey R Marks
- Department of Surgery, Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Marvella Ford
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M Angel
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
2
|
Ahmad AA, Ghim M, Kukreja G, Neishabouri A, Zhang Z, Li J, Salarian M, Toczek J, Gona K, Hedayatyanfard K, Morrison T, Zhang J, Huang YH, Liu C, Yu SM, Sadeghi MM. Collagen Hybridizing Peptide-Based Radiotracers for Molecular Imaging of Collagen Turnover in Pulmonary Fibrosis. J Nucl Med 2025; 66:425-433. [PMID: 39915119 DOI: 10.2967/jnumed.124.268832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/06/2025] [Indexed: 02/12/2025] Open
Abstract
Pulmonary fibrosis is a characteristic feature of interstitial lung disease. Current clinical diagnostic methods provide a snapshot of the lung structure without information on disease activity. Collagen hybridizing peptides offer the opportunity to detect collagen remodeling through their hybridization with denatured collagen. Here, we sought to develop a 99mTc-labeled collagen hybridizing tracer to track denatured collagen in vivo and validate it in a murine model of pulmonary fibrosis. Methods: Imaging agents consisting of a polyhistidine or a poly-histidine-glutamic acid [(HE)3] peptide connected to an N-terminal targeting moiety with 9 glycine-proline-hydroxyproline repeats [(GPO)9] through a 3-glycine linker were synthesized. After radiolabeling with 99mTc-tricarbonyl, the labeled products' purity and stability were evaluated by high-performance liquid chromatography and γ-well counting, and their biodistributions were compared in mice. To induce pulmonary fibrosis, the lungs of 8- to 10-wk-old mice were exposed to bleomycin (or saline as control). At 3 wk after induction, SPECT/CT imaging with 99mTc-(HE)3-(GPO)9 was performed 1 h after injection and was followed by tissue collection to assess 99mTc-(HE)3-(GPO)9 biodistribution by γ-well counting and to evaluate lung histology. The specificity of the tracer uptake was assessed using a scrambled homolog. A group of animals underwent serial imaging 3 and 8-10 wk after induction. Results: The specific activity of the final radiolabeled product was 70.3 ± 14.8 GBq/µmol. Radiolabeled tracers were stable in blood for at least 2 h and showed rapid blood clearance. 99mTc-(HE)3-(GPO)9 showed lower liver uptake in biodistribution studies and was selected for in vivo imaging studies. SPECT/CT imaging of bleomycin-treated mice 3 wk after induction showed higher specific 99mTc-(HE)3-(GPO)9 lung uptake than that of control mice (P < 0.01) and that of bleomycin-treated mice 8-10 wk after induction, when fibrosis was resolved (P < 0.05). There was a significant correlation between lung uptake quantified by SPECT/CT and γ-well counting (Pearson R = 0.83, P < 0.001) and significant correlations between tracer uptake and indices of tissue fibrosis. Conclusion: 99mTc-(HE)3-(GPO)9 enables SPECT imaging of collagen turnover in pulmonary fibrosis. This approach expands the scope of existing diagnostic tools in fibrosis and can lead to better patient management by monitoring the effect of antifibrotic therapies.
Collapse
Affiliation(s)
- Azmi A Ahmad
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Mean Ghim
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Gunjan Kukreja
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Afarin Neishabouri
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Zhengxing Zhang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jie Li
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Mani Salarian
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jakub Toczek
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Kiran Gona
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Keshvad Hedayatyanfard
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Tian Morrison
- Department of Biomedical Engineering and Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah; and
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Yiyun Henry Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - S Michael Yu
- Department of Biomedical Engineering and Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah; and
| | - Mehran M Sadeghi
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut;
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
3
|
Wu S, Xu T, Gao J, Zhang Q, Huang Y, Liu Z, Hao X, Yao Z, Hao X, Wu PY, Wu Y, Yin B, Tang Z. Non-invasive diagnosis of liver fibrosis via MRI using targeted gadolinium-based nanoparticles. Eur J Nucl Med Mol Imaging 2024; 52:48-61. [PMID: 39231880 DOI: 10.1007/s00259-024-06894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Accurate diagnosis of liver fibrosis is crucial for preventing cirrhosis and liver tumors. Liver fibrosis is driven by activated hepatic stellate cells (HSCs) with elevated CD44 expression. We developed hyaluronic acid (HA)-coated gadolinium-based nanoprobes to specifically target CD44 for diagnosing liver fibrosis using T1-weighted magnetic resonance imaging (MRI). MATERIALS AND METHODS NaGdF4 nanoparticles (NPs) were synthesized via thermal decomposition and modified with polyethylene glycol (PEG) to obtain non-targeting NaGdF4@PEG NPs. These were subsequently coated with HA to target HSCs, resulting in liver fibrosis-targeting NaGdF4@PEG@HA nanoprobes. Characterization includedd transmission electron microscopy and X-ray diffraction. Cell viability was assessed using the Cell Counting Kit-8 (CCK-8). Internalization of NaGdF4@PEG@HA nanoprobes by mouse HSCs JS1 cells via ligand-receptor interaction was observed using flow cytometry and confocal laser scanning microscopy (CLSM). Liver fibrosis was induced in C57BL/6 mice using a methionine-choline deficient (MCD) diet. MRI performance and nanoprobe distribution in fibrotic and normal livers were analyzed using a GE Discovery 3.0T MR 750 scanner. RESULTS NaGdF4@PEG@HA nanoprobes exhibited homogeneous morphology, low toxicity, and a high T1 relaxation rate (7.645 mM⁻¹s⁻¹). CLSM and flow cytometry demonstrated effective phagocytosis of NaGdF4@PEG@HA nanoprobes by JS1 cells compared to NaGdF4@PEG. MRI scans revealed higher T1 signals in fibrotic livers compared to normal livers after injection of NaGdF4@PEG@HA. NaGdF4@PEG@HA demonstrated higher targeting ability in fibrotic mice. CONCLUSIONS NaGdF4@PEG@HA nanoprobes effectively target HSCs with high T1 relaxation rate, facilitating efficient MRI diagnosis of liver fibrosis.
Collapse
Affiliation(s)
- Shiman Wu
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, 200040, P. R. China
| | - Tingting Xu
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jiahao Gao
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Qi Zhang
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Yuxin Huang
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Zonglin Liu
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Xiaozhu Hao
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Zhenwei Yao
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Xing Hao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Pu-Yeh Wu
- GE Healthcare, Beijing, 100176, P.R. China
| | - Yue Wu
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China.
| | - Bo Yin
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China.
| | - Zhongmin Tang
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| |
Collapse
|
4
|
Zhang C, Ma H, DeRoche D, Gale EM, Pantazopoulos P, Rotile NJ, Diyabalanage H, Humblet V, Caravan P, Zhou IY. Manganese-based type I collagen-targeting MRI probe for in vivo imaging of liver fibrosis. RESEARCH SQUARE 2024:rs.3.rs-5349052. [PMID: 39606447 PMCID: PMC11601876 DOI: 10.21203/rs.3.rs-5349052/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Liver fibrosis is a common pathway shared by all forms of progressive chronic liver disease. There is an unmet clinical need for noninvasive imaging tools to diagnose and stage fibrosis, which presently relies heavily on percutaneous liver biopsy. Here we explored the feasibility of using a novel type I collagen-targeted manganese (Mn)-based MRI probe, Mn-CBP20, for liver fibrosis imaging. In vitro characterization of Mn-CBP20 demonstrated its high binding affinity for human collagen (K d = 9.6 μM), high T1-relaxivity (48.9 mM-1s-1 at 1.4T and 27°C), and kinetic inertness to Mn release under forcing conditions. We demonstrated MRI using Mn-CBP20 performs comparably to previously reported gadolinium-based type I collagen-targeted probe EP-3533 in a mouse model of carbon tetrachloride-induced liver fibrosis, and further demonstrate efficacy to detect fibrosis in a diet-induced mouse model of metabolically-associated steatohepatitis. Biodistribution studies using the Mn-CBP20 radio-labeled with the positron-emitting 52Mn isotope demonstrate efficient clearance of Mn-CBP20 primarily via renal excretion. Mn-CBP20 represents a promising candidate that merits further evaluation and development for molecular imaging of liver fibrosis.
Collapse
Affiliation(s)
- Chunxiang Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Hua Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Daniel DeRoche
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Pamela Pantazopoulos
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | | | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
5
|
Ge M, Zou H, Chen J, Zhang Q, Li C, Yang J, Wu J, Xie X, Liu J, Lei L, Peng S, Nie H. Cellular fibronectin-targeted fluorescent aptamer probes for early detection and staging of liver fibrosis. Acta Biomater 2024:S1742-7061(24)00614-7. [PMID: 39433198 DOI: 10.1016/j.actbio.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Liver fibrosis is a key process in the progression of chronic liver disease to cirrhosis. Currently, early diagnosis and precise staging of liver fibrosis remain great challenges. Extracellular matrix (ECM) molecules expressed specifically during liver fibrosis are ideal targets for bioimaging and detection of liver fibrosis. Here, we report that fluorescent probes based on a nucleic acid aptamer (ZY-1) targeting cellular fibronectin (cFN), a critical ECM molecule significantly accumulating during liver fibrosis, are promising bioimaging agents for the staging of liver fibrosis. In the work, the outstanding binding affinity of ZY-1 to cFN was validated through an in vitro model of human-derived hepatic stellate cells (HSCs). Subsequently, we constructed different ZY-1-based fluorescent probes and explored the real-time imaging performance of these fluorescent probes in CCl4-induced mouse models of different liver fibrosis stages. The ZY-1-based fluorescent probes, for the first time, effectively identified and distinguished early-stage liver fibrosis (stage 3 of Ishak 6) from advanced liver fibrosis (stage 5 of Ishak 6). The proof-of-concept study provides compelling evidences that ZY-1-based probes are a promising tool for the early diagnosis and staging of liver fibrosis and paves the way for further development of clinical-related diagnosis strategies for fibrotic diseases of the liver and other organs. STATEMENT OF SIGNIFICANCE: Currently, early diagnosis and accurate staging of liver fibrosis continue to present significant challenges. This study demonstrates that fluorescent probes based on the nucleic acid aptamer ZY-1, which targets cellular fibronectin (cFN)-a crucial extracellular matrix (ECM) molecule that significantly accumulates during liver fibrosis-are promising bioimaging agents for staging liver fibrosis. The ZY-1-based fluorescent probes effectively identified and differentiated early-stage liver fibrosis from advanced liver fibrosis. This proof-of-concept study not only provides compelling evidence that ZY-1-based probes show promise for the early diagnosis and staging of liver fibrosis but also paves the way for further investigations into the use of ZY-1 in detecting other diseases associated with cFN.
Collapse
Affiliation(s)
- Mengjun Ge
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Haitao Zou
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiahao Chen
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Qinyao Zhang
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxing Yang
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Jiumei Wu
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xing Xie
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Lei
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China.
| | - Shaoliang Peng
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Hemin Nie
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
6
|
Chaher N, Lacerda S, Digilio G, Padovan S, Gao L, Lavin B, Stefania R, Velasco C, Cruz G, Prieto C, Botnar RM, Phinikaridou A. Non-invasive in vivo imaging of changes in Collagen III turnover in myocardial fibrosis. NPJ IMAGING 2024; 2:33. [PMID: 39301014 PMCID: PMC11408249 DOI: 10.1038/s44303-024-00037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Heart failure (HF) affects 64 million people globally with enormous societal and healthcare costs. Myocardial fibrosis, characterised by changes in collagen content drives HF. Despite evidence that collagen type III (COL3) content changes during myocardial fibrosis, in vivo imaging of COL3 has not been achieved. Here, we discovered the first imaging probe that binds to COL3 with high affinity and specificity, by screening candidate peptide-based probes. Characterisation of the probe showed favourable magnetic and biodistribution properties. The probe's potential for in vivo molecular cardiac magnetic resonance imaging was evaluated in a murine model of myocardial infarction. Using the new probe, we were able to map and quantify, previously undetectable, spatiotemporal changes in COL3 after myocardial infarction and monitor response to treatment. This innovative probe provides a promising tool to non-invasively study the unexplored roles of COL3 in cardiac fibrosis and other cardiovascular conditions marked by changes in COL3.
Collapse
Affiliation(s)
- Nadia Chaher
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans rue Charles Sadron, 45071 Orléans, France
| | - Giuseppe Digilio
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR), Molecular Biotechnology Center, Torino, Italy
| | - Ling Gao
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Rachele Stefania
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Department of Radiology, University of Michigan, Ann Arbor, MI USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- King’s BHF Centre of Excellence, Cardiovascular Division, London, UK
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- King’s BHF Centre of Excellence, Cardiovascular Division, London, UK
| |
Collapse
|
7
|
Esfahani SA, Ma H, Krishna S, Shuvaev S, Sabbagh M, Deffler C, Rotile N, Weigand-Whittier J, Zhou IY, Catana C, Catalano OA, Ting DT, Heidari P, Abston E, Lanuti M, Boland GM, Pathak P, Roberts H, Tanabe KK, Qadan M, Castillo CFD, Shih A, Parikh AR, Weekes CD, Hong TS, Caravan P. Collagen type I PET/MRI enables evaluation of treatment response in pancreatic cancer in pre-clinical and first-in-human translational studies. Theranostics 2024; 14:5745-5761. [PMID: 39346545 PMCID: PMC11426233 DOI: 10.7150/thno.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an invasive and rapidly progressive malignancy. A major challenge in patient management is the lack of a reliable imaging tool to monitor tumor response to treatment. Tumor-associated fibrosis characterized by high type I collagen is a hallmark of PDAC, and fibrosis further increases in response to neoadjuvant chemoradiotherapy (CRT). We hypothesized that molecular positron emission tomography (PET) using a type I collagen-specific imaging probe, 68Ga-CBP8 can detect and measure changes in tumor fibrosis in response to standard treatment in mouse models and patients with PDAC. Methods: We evaluated the specificity of 68Ga-CBP8 PET to tumor collagen and its ability to differentiate responders from non-responders based on the dynamic changes of fibrosis in nude mouse models of human PDAC including FOLFIRNOX-sensitive (PANC-1 and PDAC6) and FOLFIRINOX-resistant (SU.86.86). Next, we demonstrated the specificity and sensitivity of 68Ga-CBP8 to the deposited collagen in resected human PDAC and pancreas tissues. Eight male participant (49-65 y) with newly diagnosed PDAC underwent dynamic 68Ga-CBP8 PET/MRI, and five underwent follow up 68Ga-CBP8 PET/MRI after completing standard CRT. PET parameters were correlated with tumor collagen content and markers of response on histology. Results: 68Ga-CBP8 showed specific binding to PDAC compared to non-binding 68Ga-CNBP probe in two mouse models of PDAC using PET imaging and to resected human PDAC using autoradiography (P < 0.05 for all comparisons). 68Ga-CBP8 PET showed 2-fold higher tumor signal in mouse models following FOLFIRINOX treatment in PANC-1 and PDAC6 models (P < 0.01), but no significant increase after treatment in FOLFIRINOX resistant SU.86.86 model. 68Ga-CBP8 binding to resected human PDAC was significantly higher (P < 0.0001) in treated versus untreated tissue. PET/MRI of PDAC patients prior to CRT showed significantly higher 68Ga-CBP8 uptake in tumor compared to pancreas (SUVmean: 2.35 ± 0.36 vs. 1.99 ± 0.25, P = 0.036, n = 8). PET tumor values significantly increased following CRT compared to untreated tumors (SUVmean: 2.83 ± 0.30 vs. 2.25 ± 0.41, P = 0.01, n = 5). Collagen deposition significantly increased in response to CRT (59 ± 9% vs. 30 ± 9%, P=0.0005 in treated vs. untreated tumors). Tumor and pancreas collagen content showed a positive direct correlation with SUVmean (R2 = 0.54, P = 0.0007). Conclusions: This study demonstrates the specificity of 68Ga-CBP8 PET to tumor type I collagen and its ability to differentiate responders from non-responders based on the dynamic changes of fibrosis in PDAC. The results highlight the potential use of collagen PET as a non-invasive tool for monitoring response to treatment in patients with PDAC.
Collapse
Affiliation(s)
- Shadi A. Esfahani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Hua Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shriya Krishna
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sergey Shuvaev
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mark Sabbagh
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Caitlin Deffler
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Onofrio A. Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David T. Ting
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pedram Heidari
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Abston
- Division of Thoracic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Genevieve M. Boland
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Priyanka Pathak
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah Roberts
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Motaz Qadan
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Fernandez-del Castillo
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Shih
- Department of Pathology, Massachusetts General Hospital, Boston, Harvard Medical School, Massachusetts, USA
| | - Aparna R. Parikh
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Colin D. Weekes
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
8
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
9
|
Chen S, Zhuang D, Jia Q, Guo B, Hu G. Advances in Noninvasive Molecular Imaging Probes for Liver Fibrosis Diagnosis. Biomater Res 2024; 28:0042. [PMID: 38952717 PMCID: PMC11214848 DOI: 10.34133/bmr.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/08/2024] [Indexed: 07/03/2024] Open
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury, which may lead to cirrhosis and cancer. Early-stage fibrosis is reversible, and it is difficult to precisely diagnose with conventional imaging modalities such as magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and ultrasound imaging. In contrast, probe-assisted molecular imaging offers a promising noninvasive approach to visualize early fibrosis changes in vivo, thus facilitating early diagnosis and staging liver fibrosis, and even monitoring of the treatment response. Here, the most recent progress in molecular imaging technologies for liver fibrosis is updated. We start by illustrating pathogenesis for liver fibrosis, which includes capillarization of liver sinusoidal endothelial cells, cellular and molecular processes involved in inflammation and fibrogenesis, as well as processes of collagen synthesis, oxidation, and cross-linking. Furthermore, the biological targets used in molecular imaging of liver fibrosis are summarized, which are composed of receptors on hepatic stellate cells, macrophages, and even liver collagen. Notably, the focus is on insights into the advances in imaging modalities developed for liver fibrosis diagnosis and the update in the corresponding contrast agents. In addition, challenges and opportunities for future research and clinical translation of the molecular imaging modalities and the contrast agents are pointed out. We hope that this review would serve as a guide for scientists and students who are interested in liver fibrosis imaging and treatment, and as well expedite the translation of molecular imaging technologies from bench to bedside.
Collapse
Affiliation(s)
- Shaofang Chen
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Danping Zhuang
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qingyun Jia
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application,
Harbin Institute of Technology, Shenzhen 518055, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
10
|
Zhang X, Yang Q, Zhou S, Li C, Jiang X. Dynamic monitoring of the fibrosis disease by a collagen targeting near infrared probe. Biomater Sci 2024; 12:1924-1931. [PMID: 38437021 DOI: 10.1039/d3bm01926h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The deposition of the extracellular matrix, especially collagen, and the elevated expression levels of reactive oxygen species, including H2O2, are the main features of fibrosis. Fibrosis can occur in many tissues, such as tumor and liver tissues. The deposition of collagen in the location of lesions not only leads to immunological rejection and supports liver fibrosis and tumor progression, but also provides unique physiological signals with the progression of fibrosis and tumor. However, at present, the detection of fibrosis, especially real time detection, is greatly difficult, making it important to develop noninvasive probes for the dynamic monitoring of fibrosis progression. Herein, we propose a H2O2 responsive macromolecular probe for collagen imaging with high sensitivity and specificity. This probe consists of a collagen-targeting peptide and a H2O2-sensitive and near-infrared (NIR)-emitting macromolecular optical probe, which could effectively bind to collagen both in vitro and in vivo in the region of tumor or fibrotic liver tissues, allowing for high sensitivity and noninvasive visualization of fibrotic tissues and real time monitoring of collagen degradation after anti-fibrotic drug treatment.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qianwen Yang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Sensen Zhou
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Cheng Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Li D, Kirberger M, Qiao J, Gui Z, Xue S, Pu F, Jiang J, Xu Y, Tan S, Salarian M, Ibhagui O, Hekmatyar K, Yang JJ. Protein MRI Contrast Agents as an Effective Approach for Precision Molecular Imaging. Invest Radiol 2024; 59:170-186. [PMID: 38180819 DOI: 10.1097/rli.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
ABSTRACT Cancer and other acute and chronic diseases are results of perturbations of common molecular determinants in key biological and signaling processes. Imaging is critical for characterizing dynamic changes in tumors and metastases, the tumor microenvironment, tumor-stroma interactions, and drug targets, at multiscale levels. Magnetic resonance imaging (MRI) has emerged to be a primary imaging modality for both clinical and preclinical applications due to its advantages over other modalities, including sensitivity to soft tissues, nondepth limitations, and the use of nonionizing radiation. However, extending the application of MRI to achieve both qualitative and quantitative precise molecular imaging with the capability to quantify molecular biomarkers for early detection, staging, and monitoring therapeutic treatment requires the capacity to overcome several major challenges including the trade-off between metal-binding affinity and relaxivity, which is an issue frequently associated with small chelator contrast agents. In this review, we will introduce the criteria of ideal contrast agents for precision molecular imaging and discuss the relaxivity of current contrast agents with defined first shell coordination water molecules. We will then report our advances in creating a new class of protein-targeted MRI contrast agents (ProCAs) with contributions to relaxivity largely derived from the secondary sphere and correlation time. We will summarize our rationale, design strategy, and approaches to the development and optimization of our pioneering ProCAs with desired high relaxivity, metal stability, and molecular biomarker-targeting capability, for precision MRI. From first generation (ProCA1) to third generation (ProCA32), we have achieved dual high r1 and r2 values that are 6- to 10-fold higher than clinically approved contrast agents at magnetic fields of 1.5 T, and their relaxivity values at high field are also significantly higher, which enables high resolution during small animal imaging. Further engineering of multiple targeting moieties enables ProCA32 agents that have strong biomarker-binding affinity and specificity for an array of key molecular biomarkers associated with various chronic diseases, while maintaining relaxation and exceptional metal-binding and selectivity, serum stability, and resistance to transmetallation, which are critical in mitigating risks associated with metal toxicity. Our leading product ProCA32.collagen has enabled the first early detection of liver metastasis from multiple cancers at early stages by mapping the tumor environment and early stage of fibrosis from liver and lung in vivo, with strong translational potential to extend to precision MRI for preclinical and clinical applications for precision diagnosis and treatment.
Collapse
Affiliation(s)
- Dongjun Li
- From the Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Department of Chemistry, Georgia State University, Atlanta, GA (D.L., M.K., J.Q., Z.G., S.X., P.F., J.J., S.T., M.S., O.I., K.H., J.J.Y.); and InLighta BioSciences, LLC, Marietta, GA (Y.X., J.J.Y)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Talebloo N, Bernal MAO, Kenyon E, Mallett CL, Fazleabas A, Moore A. Detection of Endometriosis Lesions Using Gd-Based Collagen I Targeting Probe in Murine Models of Endometriosis. Mol Imaging Biol 2023; 25:833-843. [PMID: 37418136 PMCID: PMC10598151 DOI: 10.1007/s11307-023-01833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Endometriosis is a chronic condition characterized by high fibrotic content and affecting about 10% of women during their reproductive years. Yet, no clinically approved agents are available for non-invasive endometriosis detection. The purpose of this study was to investigate the utility of a gadolinium-based collagen type I targeting probe (EP-3533) to non-invasively detect endometriotic lesions using magnetic resonance imaging (MRI). Previously, this probe has been used for detection and staging of fibrotic lesions in the liver, lung, heart, and cancer. In this study we evaluate the potential of EP-3533 for detecting endometriosis in two murine models and compare it with a non-binding isomer (EP-3612). PROCEDURES For imaging, we utilized two GFP-expressing murine models of endometriosis (suture model and injection model) injected intravenously with EP3533 or EP-33612. Mice were imaged before and after bolus injection of the probes. The dynamic signal enhancement of MR T1 FLASH images was analyzed, normalized, and quantified, and the relative location of lesions was validated through ex vivo fluorescence imaging. Subsequently, the harvested lesions were stained for collagen, and their gadolinium content was quantified by inductively coupled plasma optical emission spectrometry (ICP-OES). RESULTS We showed that EP-3533 probe increased the signal intensity in T1-weighted images of endometriotic lesions in both models of endometriosis. Such enhancement was not detected in the muscles of the same groups or in endometriotic lesions of mice injected with EP-3612 probe. Consequentially, control tissues had significantly lower gadolinium content, compared to the lesions in experimental groups. Probe accumulation was similar in endometriotic lesions of either model. CONCLUSIONS This study provides evidence for feasibility of targeting collagen type I in the endometriotic lesions using EP3533 probe. Our future work includes investigation of the utility of this probe for therapeutic delivery in endometriosis to inhibit signaling pathways that cause the disease.
Collapse
Affiliation(s)
- Nazanin Talebloo
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Maria Ariadna Ochoa Bernal
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503, USA
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing, MI, 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Christiane L Mallett
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA.
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
13
|
Mik P, Barannikava K, Surkova P. Biased Quantification of Rat Liver Fibrosis-Meta-Analysis with Practical Recommendations and Clinical Implications. J Clin Med 2023; 12:5072. [PMID: 37568474 PMCID: PMC10420125 DOI: 10.3390/jcm12155072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
For liver fibrosis assessment, the liver biopsy is usually stained with Masson's trichrome (MT) or picrosirius red (PSR) to quantify liver connective tissue (LCT) for fibrosis scoring. However, several concerns of such semiquantitative assessments have been raised, and when searching for data on the amount of LCT in healthy rats, the results vastly differ. Regarding the ongoing reproducibility crisis in science, it is necessary to inspect the results and methods, and to design an unbiased and reproducible method of LCT assessment. We searched the Medline database using search terms related to liver fibrosis, LCT and collagen, rat strains, and staining methods. Our search identified 74 eligible rat groups in 57 studies. We found up to 170-fold differences in the amount of LCT among healthy Wistar and Sprague-Dawley rats, with significant differences even within individual studies. Biased sampling and quantification probably caused the observed differences. In addition, we also found incorrect handling of liver fibrosis scoring. Assessment of LCT using stereological sampling methods (such as systematic uniform sampling) would provide us with unbiased data. Such data could eventually be used not only for the objective assessment of liver fibrosis but also for validation of noninvasive methods of the assessment of early stages of liver fibrosis.
Collapse
Affiliation(s)
- Patrik Mik
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Biomedical Center and Department of Histology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Katsiaryna Barannikava
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Polina Surkova
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
14
|
Ibhagui O, Li D, Han H, Peng G, Meister ML, Gui Z, Qiao J, Salarian M, Dong B, Yuan Y, Xu Y, Yang H, Tan S, Satyanarayana G, Xue S, Turaga RC, Sharma M, Hai Y, Meng Y, Hekmatyar K, Sun P, Sica G, Ji X, Liu ZR, Yang JJ. Early Detection and Staging of Lung Fibrosis Enabled by Collagen-Targeted MRI Protein Contrast Agent. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:268-285. [PMID: 37388961 PMCID: PMC10302889 DOI: 10.1021/cbmi.3c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 07/01/2023]
Abstract
Chronic lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), are major leading causes of death worldwide and are generally associated with poor prognoses. The heterogeneous distribution of collagen, mainly type I collagen associated with excessive collagen deposition, plays a pivotal role in the progressive remodeling of the lung parenchyma to chronic exertional dyspnea for both IPF and COPD. To address the pressing need for noninvasive early diagnosis and drug treatment monitoring of pulmonary fibrosis, we report the development of human collagen-targeted protein MRI contrast agent (hProCA32.collagen) to specifically bind to collagen I overexpressed in multiple lung diseases. When compared to clinically approved Gd3+ contrast agents, hProCA32.collagen exhibits significantly better r1 and r2 relaxivity values, strong metal binding affinity and selectivity, and transmetalation resistance. Here, we report the robust detection of early and late-stage lung fibrosis with stage-dependent MRI signal-to-noise ratio (SNR) increase, with good sensitivity and specificity, using a progressive bleomycin-induced IPF mouse model. Spatial heterogeneous mapping of usual interstitial pneumonia (UIP) patterns with key features closely mimicking human IPF, including cystic clustering, honeycombing, and traction bronchiectasis, were noninvasively detected by multiple MR imaging techniques and verified by histological correlation. We further report the detection of fibrosis in the lung airway of an electronic cigarette-induced COPD mouse model, using hProCA32.collagen-enabled precision MRI (pMRI), and validated by histological analysis. The developed hProCA32.collagen is expected to have strong translational potential for the noninvasive detection and staging of lung diseases, and facilitating effective treatment to halt further chronic lung disease progression.
Collapse
Affiliation(s)
- Oluwatosin
Y. Ibhagui
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Dongjun Li
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hongwei Han
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Guangda Peng
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Maureen L. Meister
- Department
of Nutrition, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zongxiang Gui
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jingjuan Qiao
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
- InLighta
Biosciences, Atlanta, Georgia 30303, United States
| | - Mani Salarian
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bin Dong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yi Yuan
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yiting Xu
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hua Yang
- Department
of Ophthalmology, Emory University, Atlanta, Georgia 30322, United States
| | - Shanshan Tan
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ganesh Satyanarayana
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Shenghui Xue
- InLighta
Biosciences, Atlanta, Georgia 30303, United States
| | - Ravi Chakra Turaga
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Malvika Sharma
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yan Hai
- Department
of Statistics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuguang Meng
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
- Emory
National Primate Research Center, Emory
University, Atlanta, Georgia 30329, United States
| | - Khan Hekmatyar
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Phillip Sun
- Emory
National Primate Research Center, Emory
University, Atlanta, Georgia 30329, United States
| | - Gabriel Sica
- Winship
Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Xiangming Ji
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhi-ren Liu
- Department
of Nutrition, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jenny J. Yang
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
- InLighta
Biosciences, Atlanta, Georgia 30303, United States
| |
Collapse
|
15
|
Zhang J, Ning Y, Zhu H, Rotile NJ, Wei H, Diyabalanage H, Hansen EC, Zhou IY, Barrett SC, Sojoodi M, Tanabe KK, Humblet V, Jasanoff A, Caravan P, Bawendi MG. Fast detection of liver fibrosis with collagen-binding single-nanometer iron oxide nanoparticles via T1-weighted MRI. Proc Natl Acad Sci U S A 2023; 120:e2220036120. [PMID: 37094132 PMCID: PMC10161015 DOI: 10.1073/pnas.2220036120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/13/2023] [Indexed: 04/26/2023] Open
Abstract
SNIO-CBP, a single-nanometer iron oxide (SNIO) nanoparticle functionalized with a type I collagen-binding peptide (CBP), was developed as a T1-weighted MRI contrast agent with only endogenous elements for fast and noninvasive detection of liver fibrosis. SNIO-CBP exhibits 6.7-fold higher relaxivity compared to a molecular gadolinium-based collagen-binding contrast agent CM-101 on a per CBP basis at 4.7 T. Unlike most iron oxide nanoparticles, SNIO-CBP exhibits fast elimination from the bloodstream with a 5.7 min half-life, high renal clearance, and low, transient liver enhancement in healthy mice. We show that a dose of SNIO-CBP that is 2.5-fold lower than that for CM-101 has comparable imaging efficacy in rapid (within 15 min following intravenous injection) detection of hepatotoxin-induced liver fibrosis using T1-weighted MRI in a carbon tetrachloride-induced mouse liver injury model. We further demonstrate the applicability of SNIO-CBP in detecting liver fibrosis in choline-deficient L-amino acid-defined high-fat diet mouse model of nonalcoholic steatohepatitis. These results provide a platform with potential for the development of high relaxivity, gadolinium-free molecular MRI probes for characterizing chronic liver disease.
Collapse
Affiliation(s)
- Juanye Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Yingying Ning
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - Hua Zhu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - He Wei
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | | | - Eric C. Hansen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - Stephen C. Barrett
- Division of Gastrointestinal and Oncological Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncological Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncological Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | | | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - Moungi G. Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
16
|
Nelson MS, Liu Y, Wilson HM, Li B, Rosado-Mendez IM, Rogers JD, Block WF, Eliceiri KW. Multiscale Label-Free Imaging of Fibrillar Collagen in the Tumor Microenvironment. Methods Mol Biol 2023; 2614:187-235. [PMID: 36587127 DOI: 10.1007/978-1-0716-2914-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With recent advances in cancer therapeutics, there is a great need for improved imaging methods for characterizing cancer onset and progression in a quantitative and actionable way. Collagen, the most abundant extracellular matrix protein in the tumor microenvironment (and the body in general), plays a multifaceted role, both hindering and promoting cancer invasion and progression. Collagen deposition can defend the tumor with immunosuppressive effects, while aligned collagen fiber structures can enable tumor cell migration, aiding invasion and metastasis. Given the complex role of collagen fiber organization and topology, imaging has been a tool of choice to characterize these changes on multiple spatial scales, from the organ and tumor scale to cellular and subcellular level. Macroscale density already aids in the detection and diagnosis of solid cancers, but progress is being made to integrate finer microscale features into the process. Here we review imaging modalities ranging from optical methods of second harmonic generation (SHG), polarized light microscopy (PLM), and optical coherence tomography (OCT) to the medical imaging approaches of ultrasound and magnetic resonance imaging (MRI). These methods have enabled scientists and clinicians to better understand the impact collagen structure has on the tumor environment, at both the bulk scale (density) and microscale (fibrillar structure) levels. We focus on imaging methods with the potential to both examine the collagen structure in as natural a state as possible and still be clinically amenable, with an emphasis on label-free strategies, exploiting intrinsic optical properties of collagen fibers.
Collapse
Affiliation(s)
- Michael S Nelson
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Helen M Wilson
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Bin Li
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Ivan M Rosado-Mendez
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy D Rogers
- Morgridge Institute for Research, Madison, WI, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Walter F Block
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA. .,Morgridge Institute for Research, Madison, WI, USA. .,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA. .,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
17
|
Cheng HLM. Emerging MRI techniques for molecular and functional phenotyping of the diseased heart. Front Cardiovasc Med 2022; 9:1072828. [PMID: 36545017 PMCID: PMC9760746 DOI: 10.3389/fcvm.2022.1072828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Recent advances in cardiac MRI (CMR) capabilities have truly transformed its potential for deep phenotyping of the diseased heart. Long known for its unparalleled soft tissue contrast and excellent depiction of three-dimensional (3D) structure, CMR now boasts a range of unique capabilities for probing disease at the tissue and molecular level. We can look beyond coronary vessel blockages and detect vessel disease not visible on a structural level. We can assess if early fibrotic tissue is being laid down in between viable cardiac muscle cells. We can measure deformation of the heart wall to determine early presentation of stiffening. We can even assess how cardiomyocytes are utilizing energy, where abnormalities are often precursors to overt structural and functional deficits. Finally, with artificial intelligence gaining traction due to the high computing power available today, deep learning has proven itself a viable contender with traditional acceleration techniques for real-time CMR. In this review, we will survey five key emerging MRI techniques that have the potential to transform the CMR clinic and permit early detection and intervention. The emerging areas are: (1) imaging microvascular dysfunction, (2) imaging fibrosis, (3) imaging strain, (4) imaging early metabolic changes, and (5) deep learning for acceleration. Through a concerted effort to develop and translate these areas into the CMR clinic, we are committing ourselves to actualizing early diagnostics for the most intractable heart disease phenotypes.
Collapse
Affiliation(s)
- Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, ON, Canada
| |
Collapse
|
18
|
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev 2022; 189:114504. [PMID: 35998825 DOI: 10.1016/j.addr.2022.114504] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is emerging as one of the primary barriers in cancer therapy. Cancer-associated fibroblasts (CAF) are a common inhabitant of the TME in several tumor types and play a critical role in tumor progression and drug resistance via different mechanisms such as desmoplasia, angiogenesis, immune modulation, and cancer metabolism. Due to their abundance and significance in pro-tumorigenic mechanisms, CAF are gaining attention as a diagnostic target as well as to improve the efficacy of cancer therapy by their modulation. In this review, we highlight existing imaging techniques that are used for the visualization of CAF and CAF-induced fibrosis and provide an overview of compounds that are known to modulate CAF activity. Subsequently, we also discuss CAF-targeted and CAF-modulating nanocarriers. Finally, our review addresses ongoing challenges and provides a glimpse into the prospects that can spearhead the transition of CAF-targeted therapies from opportunity to reality.
Collapse
Affiliation(s)
- Rahul Rimal
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Aisa Hosseinnejad
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Section: Engineered Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Balachandran YL, Wang W, Yang H, Tong H, Wang L, Liu F, Chen H, Zhong K, Liu Y, Jiang X. Heterogeneous Iron Oxide/Dysprosium Oxide Nanoparticles Target Liver for Precise Magnetic Resonance Imaging of Liver Fibrosis. ACS NANO 2022; 16:5647-5659. [PMID: 35312295 DOI: 10.1021/acsnano.1c10618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Challenges remain in precisely diagnosing the progress of liver fibrosis in a noninvasive way. We here synthesized small (4 nm) heterogeneous iron oxide/dysprosium oxide nanoparticles (IO-DyO NPs) as a contrast agent (CA) for magnetic resonance imaging (MRI) to precisely diagnose liver fibrosis in vivo at both 7.0 and 9.4 T field strength. Our IO-DyO NPs can target the liver and show an increased T2 relaxivity along with an increase of magnetic field strength. At a ultrahigh magnetic field, IO-DyO NPs can significantly improve spatial/temporal image resolution and signal-to-noise ratio of the liver and precisely distinguish the early and moderate liver fibrosis stages. Our IO-DyO NP-based MRI diagnosis can exactly match biopsy (a gold standard for liver fibrosis diagnosis in the clinic) but avoid the invasiveness of biopsy. Moreover, our IO-DyO NPs show satisfactory biosafety in vitro and in vivo. This work illustrates an advanced T2 CA used in ultrahigh-field MRI (UHFMRI) for the precise diagnosis of liver fibrosis via a noninvasive means.
Collapse
Affiliation(s)
- Yekkuni L Balachandran
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Wei Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| | - Hongyi Yang
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Haiyang Tong
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lulu Wang
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Feng Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| | - Hongsong Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| | - Kai Zhong
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
20
|
Kwan JM, Oikonomou EK, Henry ML, Sinusas AJ. Multimodality Advanced Cardiovascular and Molecular Imaging for Early Detection and Monitoring of Cancer Therapy-Associated Cardiotoxicity and the Role of Artificial Intelligence and Big Data. Front Cardiovasc Med 2022; 9:829553. [PMID: 35369354 PMCID: PMC8964995 DOI: 10.3389/fcvm.2022.829553] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer mortality has improved due to earlier detection via screening, as well as due to novel cancer therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitions. However, similarly to older cancer therapies such as anthracyclines, these therapies have also been documented to cause cardiotoxic events including cardiomyopathy, myocardial infarction, myocarditis, arrhythmia, hypertension, and thrombosis. Imaging modalities such as echocardiography and magnetic resonance imaging (MRI) are critical in monitoring and evaluating for cardiotoxicity from these treatments, as well as in providing information for the assessment of function and wall motion abnormalities. MRI also allows for additional tissue characterization using T1, T2, extracellular volume (ECV), and delayed gadolinium enhancement (DGE) assessment. Furthermore, emerging technologies may be able to assist with these efforts. Nuclear imaging using targeted radiotracers, some of which are already clinically used, may have more specificity and help provide information on the mechanisms of cardiotoxicity, including in anthracycline mediated cardiomyopathy and checkpoint inhibitor myocarditis. Hyperpolarized MRI may be used to evaluate the effects of oncologic therapy on cardiac metabolism. Lastly, artificial intelligence and big data of imaging modalities may help predict and detect early signs of cardiotoxicity and response to cardioprotective medications as well as provide insights on the added value of molecular imaging and correlations with cardiovascular outcomes. In this review, the current imaging modalities used to assess for cardiotoxicity from cancer treatments are discussed, in addition to ongoing research on targeted molecular radiotracers, hyperpolarized MRI, as well as the role of artificial intelligence (AI) and big data in imaging that would help improve the detection and prognostication of cancer-treatment cardiotoxicity.
Collapse
Affiliation(s)
- Jennifer M. Kwan
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Evangelos K. Oikonomou
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Mariana L. Henry
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
21
|
Weinsaft JW, Kim J. Beyond the Mitral Valve: Myocardial Fibrosis for Therapeutic Decision-Making and Prognostication of Degenerative Mitral Regurgitation. JACC Cardiovasc Imaging 2021; 15:237-239. [PMID: 34656464 DOI: 10.1016/j.jcmg.2021.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Affiliation(s)
| | - Jiwon Kim
- Division of Cardiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
22
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
23
|
Abstract
Early diagnosis of hepatic fibrosis (HF) is pivotal for management to cease progression to cirrhosis and hepatocellular carcinoma. HF is the telltale sign of chronic liver disease, and confirmed by liver biopsy, which is an invasive technique and inclined to sampling errors. The morphologic parameters of cirrhosis are assessed on conventional imaging such as on ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI). Newer imaging modalities such as magnetic resonance elastography and US elastography are reliable and accurate. More research studies on novel imaging modalities such as MRI with diffusion weighted imaging, enhancement by hepatobiliary contrast agents, and CT using perfusion are essential for earlier diagnosis, surveillance and accurate management. The purpose of this article is to discuss non-invasive CT, MRI, and US imaging modalities for diagnosis and stratify HF.
Collapse
Affiliation(s)
- Mayur Virarkar
- Department of Neuroradiology, The University of Texas Health Science Center, Houston, TX.
| | - Ajaykumar C Morani
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Melissa W Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Priya Bhosale
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
24
|
Angel PM, Rujchanarong D, Pippin S, Spruill L, Drake R. Mass Spectrometry Imaging of Fibroblasts: Promise and Challenge. Expert Rev Proteomics 2021; 18:423-436. [PMID: 34129411 PMCID: PMC8717608 DOI: 10.1080/14789450.2021.1941893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Fibroblasts maintain tissue and organ homeostasis through output of extracellular matrix that affects nearby cell signaling within the stroma. Altered fibroblast signaling contributes to many disease states and extracellular matrix secreted by fibroblasts has been used to stratify patient by outcome, recurrence, and therapeutic resistance. Recent advances in imaging mass spectrometry allow access to single cell fibroblasts and their ECM niche within clinically relevant tissue samples. AREAS COVERED We review biological and technical challenges as well as new solutions to proteomic access of fibroblast expression within the complex tissue microenvironment. Review topics cover conventional proteomic methods for single fibroblast analysis and current approaches to accessing single fibroblast proteomes by imaging mass spectrometry approaches. Strategies to target and evaluate the single cell stroma proteome on the basis of cell signaling are presented. EXPERT OPINION The promise of defining proteomic signatures from fibroblasts and their extracellular matrix niches is the discovery of new disease markers and the ability to refine therapeutic treatments. Several imaging mass spectrometry approaches exist to define the fibroblast in the setting of pathological changes from clinically acquired samples. Continued technology advances are needed to access and understand the stromal proteome and apply testing to the clinic.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Sarah Pippin
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| |
Collapse
|
25
|
Quantitative, noninvasive MRI characterization of disease progression in a mouse model of non-alcoholic steatohepatitis. Sci Rep 2021; 11:6105. [PMID: 33731798 PMCID: PMC7971064 DOI: 10.1038/s41598-021-85679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/28/2021] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is an increasing cause of chronic liver disease characterized by steatosis, inflammation, and fibrosis which can lead to cirrhosis, hepatocellular carcinoma, and mortality. Quantitative, noninvasive methods for characterizing the pathophysiology of NASH at both the preclinical and clinical level are sorely needed. We report here a multiparametric magnetic resonance imaging (MRI) protocol with the fibrogenesis probe Gd-Hyd to characterize fibrotic disease activity and steatosis in a common mouse model of NASH. Mice were fed a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) to induce NASH with advanced fibrosis. Mice fed normal chow and CDAHFD underwent MRI after 2, 6, 10 and 14 weeks to measure liver T1, T2*, fat fraction, and dynamic T1-weighted Gd-Hyd enhanced imaging of the liver. Steatosis, inflammation, and fibrosis were then quantified by histology. NASH and fibrosis developed quickly in CDAHFD fed mice with strong correlation between morphometric steatosis quantification and liver fat estimated by MRI (r = 0.90). Sirius red histology and collagen quantification confirmed increasing fibrosis over time (r = 0.82). Though baseline T1 and T2* measurements did not correlate with fibrosis, Gd-Hyd signal enhancement provided a measure of the extent of active fibrotic disease progression and correlated strongly with lysyl oxidase expression. Gd-Hyd MRI accurately detects fibrogenesis in a mouse model of NASH with advanced fibrosis and can be combined with other MR measures, like fat imaging, to more accurately assess disease burden.
Collapse
|
26
|
Abstract
Molecular magnetic resonance (MR) imaging utilizes molecular probes to provide added biochemical or cellular information to what can already be achieved with anatomical and functional MR imaging. This review provides an overview of molecular MR and focuses specifically on molecular MR contrast agents that provide contrast by shortening the T1 time. We describe the requirements for a successful molecular MR contrast agent and the challenges for clinical translation. The review highlights work from the last 5 years and places an emphasis on new contrast agents that have been validated in multiple preclinical models. Applications of molecular MR include imaging of inflammation, fibrosis, fibrogenesis, thromboembolic disease, and cancers. Molecular MR is positioned to move beyond detection of disease to the quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | | | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
27
|
Zhou IY, Montesi SB, Akam EA, Caravan P. Molecular Imaging of Fibrosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Molecular Magnetic Resonance Imaging of Fibrin Deposition in the Liver as an Indicator of Tissue Injury and Inflammation. Invest Radiol 2020; 55:209-216. [PMID: 31895219 DOI: 10.1097/rli.0000000000000631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Liver inflammation is associated with nonalcoholic steatohepatitis and other pathologies, but noninvasive methods to assess liver inflammation are limited. Inflammation causes endothelial disruption and leakage of plasma proteins into the interstitial space and can result in extravascular coagulation with fibrin deposition. Here we assess the feasibility of using the established fibrin-specific magnetic resonance probe EP-2104R for the noninvasive imaging of fibrin as a marker of liver inflammation. METHODS Weekly 100 mg/kg diethylnitrosamine (DEN) dosing was used to generate liver fibrosis in male rats; control animals received vehicle. Magnetic resonance imaging at 1.5 T with EP-2104R, a matched non-fibrin-binding control linear peptide, or the collagen-specific probe EP-3533 was performed at 1 day or 7 days after the last DEN administration. Imaging data were compared with quantitative histological measures of fibrosis and inflammation. RESULTS After 4 or 5 DEN administrations, the liver becomes moderately fibrotic, and fibrosis is the same if the animal is killed 1 day (Ishak score, 3.62 ± 0.31) or 7 days (Ishak score, 3.82 ± 0.25) after the last DEN dose, but inflammation is significantly higher at 1 day compared with 7 days after the last DEN dose (histological activity index from 0-4, 3.54 ± 0.14 vs 1.61 ± 0.16, respectively; P < 0.0001). Peak EP-2104R signal enhancement was significantly higher in animals imaged at 1 day post-DEN compared with 7 days post-DEN or control rats (29.0% ± 3.2% vs 22.4% ± 2.0% vs 17.0% ± 0.2%, respectively; P = 0.017). Signal enhancement with EP-2104R was significantly higher than control linear peptide at 1 day post-DEN but not at 7 days post-DEN indicating specific fibrin binding during the inflammatory phase. Collagen molecular magnetic resonance with EP-3533 showed equivalent T1 change when imaging rats 1 day or 7 days post-DEN, consistent with equivalent fibrosis. CONCLUSIONS EP-2104R can specifically detect fibrin associated with inflammation in a rat model of liver inflammation and fibrosis.
Collapse
|
29
|
Ezeani M, Hagemeyer CE, Lal S, Niego B. Molecular imaging of atrial myopathy: Towards early AF detection and non-invasive disease management. Trends Cardiovasc Med 2020; 32:20-31. [DOI: 10.1016/j.tcm.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
|
30
|
Kennedy P, Bane O, Hectors SJ, Fischman A, Schiano T, Lewis S, Taouli B. Noninvasive imaging assessment of portal hypertension. Abdom Radiol (NY) 2020; 45:3473-3495. [PMID: 32926209 PMCID: PMC10124623 DOI: 10.1007/s00261-020-02729-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/16/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Portal hypertension (PH) is a spectrum of complications of chronic liver disease (CLD) and cirrhosis, with manifestations including ascites, gastroesophageal varices, splenomegaly, hypersplenism, hepatic hydrothorax, hepatorenal syndrome, hepatopulmonary syndrome and portopulmonary hypertension. PH can vary in severity and is diagnosed via invasive hepatic venous pressure gradient measurement (HVPG), which is considered the reference standard. Accurate diagnosis of PH and assessment of severity are highly relevant as patients with clinically significant portal hypertension (CSPH) are at higher risk for developing acute variceal bleeding and mortality. In this review, we discuss current and upcoming noninvasive imaging methods for diagnosis and assessment of severity of PH.
Collapse
|
31
|
Taouli B, Alves FC. Imaging biomarkers of diffuse liver disease: current status. Abdom Radiol (NY) 2020; 45:3381-3385. [PMID: 32583139 DOI: 10.1007/s00261-020-02619-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
We are happy to introduce this special issue of Abdominal Radiology on "diffuse liver disease". We have invited imaging experts to discuss various topics pertaining to diffuse liver disease, covering a vast array of imaging techniques including ultrasound (US), CT, MRI and new molecular imaging agents. Below, we briefly discussed the current status, limitations, and future directions of imaging biomarkers of diffuse liver disease.
Collapse
Affiliation(s)
- Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine At Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine At Mount Sinai, New York, NY, USA.
| | | |
Collapse
|
32
|
Zhou IY, Tanabe KK, Fuchs BC, Caravan P. Collagen-targeted molecular imaging in diffuse liver diseases. Abdom Radiol (NY) 2020; 45:3545-3556. [PMID: 32737546 DOI: 10.1007/s00261-020-02677-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is a common pathway shared by all progressive chronic liver diseases (CLD) regardless of the underlying etiologies. With liver biopsy being the gold standard in assessing fibrosis degree, there is a large unmet clinical need to develop non-invasive imaging tools that can directly and repeatedly quantify fibrosis throughout the liver for a more accurate assessment of disease burden, progression, and treatment response. Type I collagen is a particularly attractive target for molecular imaging as its excessive deposition is specific to fibrosis, and it is present in concentrations suitable for many imaging modalities. Novel molecular MRI contrast agents designed to bind with collagen provide direct quantification of collagen deposition, which have been validated across animal species and liver injury models. Collagen-targeted molecular imaging probes hold great promise not only as a tool for initial staging and surveillance of fibrosis progression, but also as a marker of fibrosis regression in drug trials.
Collapse
Affiliation(s)
- Iris Y Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Harvard Medical School, 149 13th St, Boston, MA, 02129, USA
- Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.
- Harvard Medical School, 149 13th St, Boston, MA, 02129, USA.
- Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
33
|
Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases. J Hepatol 2020; 73:1241-1254. [PMID: 32585160 PMCID: PMC7572718 DOI: 10.1016/j.jhep.2020.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
MRI has emerged as the most comprehensive non-invasive diagnostic tool for liver diseases. In recent years, the value of MRI in hepatology has been significantly enhanced by a wide range of contrast agents, both clinically available and under development, that add functional information to anatomically detailed morphological images, or increase the distinction between normal and pathological tissues by targeting molecular and cellular events. Several classes of contrast agents are available for contrast-enhanced hepatic MRI, including i) conventional non-specific extracellular fluid contrast agents for assessing tissue perfusion; ii) hepatobiliary-specific contrast agents that are taken up by functioning hepatocytes and excreted through the biliary system for evaluating hepatobiliary function; iii) superparamagnetic iron oxide particles that accumulate in Kupffer cells; and iv) novel molecular contrast agents that are biochemically targeted to specific molecular/cellular processes for staging liver diseases or detecting treatment responses. The use of different functional and molecular MRI methods enables the non-invasive assessment of disease burden, progression, and treatment response in a variety of liver diseases. A high diagnostic performance can be achieved with MRI by combining imaging biomarkers.
Collapse
Affiliation(s)
- Iris Y Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Onofrio A Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
34
|
Le Fur M, Zhou IY, Catalano O, Caravan P. Toward Molecular Imaging of Intestinal Pathology. Inflamm Bowel Dis 2020; 26:1470-1484. [PMID: 32793946 PMCID: PMC7500524 DOI: 10.1093/ibd/izaa213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is defined by a chronic relapsing and remitting inflammation of the gastrointestinal tract, with intestinal fibrosis being a major complication. The etiology of IBD remains unknown, but it is thought to arise from a dysregulated and excessive immune response to gut luminal microbes triggered by genetic and environmental factors. To date, IBD has no cure, and treatments are currently directed at relieving symptoms and treating inflammation. The current diagnostic of IBD relies on endoscopy, which is invasive and does not provide information on the presence of extraluminal complications and molecular aspect of the disease. Cross-sectional imaging modalities such as computed tomography enterography (CTE), magnetic resonance enterography (MRE), positron emission tomography (PET), single photon emission computed tomography (SPECT), and hybrid modalities have demonstrated high accuracy for the diagnosis of IBD and can provide both functional and morphological information when combined with the use of molecular imaging probes. This review presents the state-of-the-art imaging techniques and molecular imaging approaches in the field of IBD and points out future directions that could help improve our understanding of IBD pathological processes, along with the development of efficient treatments.
Collapse
Affiliation(s)
- Mariane Le Fur
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Iris Y Zhou
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Onofrio Catalano
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA,The Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, MA, USA,Address correspondence to: Peter Caravan, PhD, The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown 02129, MA, USA. E-mail:
| |
Collapse
|
35
|
Erstad DJ, Sojoodi M, Taylor MS, Jordan VC, Farrar CT, Axtell AL, Rotile NJ, Jones C, Graham-O'Regan KA, Ferreira DS, Michelakos T, Kontos F, Chawla A, Li S, Ghoshal S, Chen YCI, Arora G, Humblet V, Deshpande V, Qadan M, Bardeesy N, Ferrone CR, Lanuti M, Tanabe KK, Caravan P, Fuchs BC. Fibrotic Response to Neoadjuvant Therapy Predicts Survival in Pancreatic Cancer and Is Measurable with Collagen-Targeted Molecular MRI. Clin Cancer Res 2020; 26:5007-5018. [PMID: 32611647 DOI: 10.1158/1078-0432.ccr-18-1359] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/05/2019] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate the prognostic value of posttreatment fibrosis in human PDAC patients, and to compare a type I collagen targeted MRI probe, CM-101, to the standard contrast agent, Gd-DOTA, for their abilities to identify FOLFIRINOX-induced fibrosis in a murine model of PDAC. EXPERIMENTAL DESIGN Ninety-three chemoradiation-treated human PDAC samples were stained for fibrosis and outcomes evaluated. For imaging, C57BL/6 and FVB mice were orthotopically implanted with PDAC cells and FOLFIRINOX was administered. Mice were imaged with Gd-DOTA and CM-101. RESULTS In humans, post-chemoradiation PDAC tumor fibrosis was associated with longer overall survival (OS) and disease-free survival (DFS) on multivariable analysis (OS P = 0.028, DFS P = 0.047). CPA increased the prognostic accuracy of a multivariable logistic regression model comprised of previously established PDAC risk factors [AUC CPA (-) = 0.76, AUC CPA (+) = 0.82]. In multiple murine orthotopic PDAC models, FOLFIRINOX therapy reduced tumor weight (P < 0.05) and increased tumor fibrosis by collagen staining (P < 0.05). CM-101 MR signal was significantly increased in fibrotic tumor regions. CM-101 signal retention was also increased in the more fibrotic FOLFIRINOX-treated tumors compared with untreated controls (P = 0.027), consistent with selective probe binding to collagen. No treatment-related differences were observed with Gd-DOTA imaging. CONCLUSIONS In humans, post-chemoradiation tumor fibrosis is associated with OS and DFS. In mice, our MR findings indicate that translation of collagen molecular MRI with CM-101 to humans might provide a novel imaging technique to monitor fibrotic response to therapy to assist with prognostication and disease management.
Collapse
Affiliation(s)
- Derek J Erstad
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Mozhdeh Sojoodi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Veronica Clavijo Jordan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Christian T Farrar
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Andrea L Axtell
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicholas J Rotile
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Chloe Jones
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Katherine A Graham-O'Regan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Diego S Ferreira
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Akhil Chawla
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shen Li
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarani Ghoshal
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yin-Ching Iris Chen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Gunisha Arora
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nabeel Bardeesy
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael Lanuti
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kenneth K Tanabe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Peter Caravan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Bryan C Fuchs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
36
|
Gupta A, Caravan P, Price WS, Platas-Iglesias C, Gale EM. Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorg Chem 2020; 59:6648-6678. [PMID: 32367714 DOI: 10.1021/acs.inorgchem.0c00510] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is an indispensable tool for diagnostic medicine. However, safety concerns related to gadolinium in commercial MRI contrast agents have emerged in recent years. For patients suffering from severe renal impairment, there is an important unmet medical need to perform contrast-enhanced MRI without gadolinium. There are also concerns over the long-term effects of retained gadolinium within the general patient population. Demand for gadolinium-free MRI contrast agents is driving a new wave of inorganic chemistry innovation as researchers explore paramagnetic transition-metal complexes as potential alternatives. Furthermore, advances in personalized care making use of molecular-level information have motivated inorganic chemists to develop MRI contrast agents that can detect pathologic changes at the molecular level. Recent studies have highlighted how reaction-based modulation of transition-metal paramagnetism offers a highly effective mechanism to achieve MRI contrast enhancement that is specific to biochemical processes. This Viewpoint highlights how recent advances in transition-metal chemistry are leading the way for a new generation of MRI contrast agents.
Collapse
Affiliation(s)
- Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | | | - William S Price
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia 15071, Spain
| | | |
Collapse
|
37
|
Zhou IY, Clavijo Jordan V, Rotile NJ, Akam E, Krishnan S, Arora G, Krishnan H, Slattery H, Warner N, Mercaldo N, Farrar CT, Wellen J, Martinez R, Schlerman F, Tanabe KK, Fuchs BC, Caravan P. Advanced MRI of Liver Fibrosis and Treatment Response in a Rat Model of Nonalcoholic Steatohepatitis. Radiology 2020; 296:67-75. [PMID: 32343209 DOI: 10.1148/radiol.2020192118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Liver biopsy is the reference standard to diagnose nonalcoholic steatohepatitis (NASH) but is invasive with potential complications. Purpose To evaluate molecular MRI with type 1 collagen-specific probe EP-3533 and allysine-targeted fibrogenesis probe Gd-Hyd, MR elastography, and native T1 to characterize fibrosis and to assess treatment response in a rat model of NASH. Materials and Methods MRI was performed prospectively (June-November 2018) in six groups of male Wistar rats (a) age- and (b) weight-matched animals received standard chow (n = 12 per group); (c) received choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) for 6 weeks or (d) 9 weeks (n = 8 per group); (e) were fed 6 weeks of CDAHFD and switched to standard chow for 3 weeks (n = 12); (f) were fed CDAHFD for 9 weeks with daily treatment of elafibranor beginning at week 6 (n = 14). Differences in imaging measurements and tissue analyses among groups were tested with one-way analysis of variance. The ability of each imaging measurement to stage fibrosis was quantified by using area under the receiver operating characteristic curve (AUC) with quantitative digital pathology (collagen proportionate area [CPA]) as reference standard. Optimal cutoff values for distinguishing advanced fibrosis were used to assess treatment response. Results AUC for distinguishing fibrotic (CPA >4.8%) from nonfibrotic (CPA ≤4.8%) livers was 0.95 (95% confidence interval [CI]: 0.91, 1.00) for EP-3533, followed by native T1, Gd-Hyd, and MR elastography with AUCs of 0.90 (95% CI: 0.83, 0.98), 0.84 (95% CI: 0.74, 0.95), and 0.65 (95% CI: 0.51, 0.79), respectively. AUCs for discriminating advanced fibrosis (CPA >10.3%) were 0.86 (95% CI: 0.76, 0.97), 0.96 (95% CI: 0.90, 1.01), 0.84 (95% CI: 0.70, 0.98), and 0.74 (95% CI: 0.63, 0.86) for EP-3533, Gd-Hyd, MR elastography, and native T1, respectively. Gd-Hyd MRI had the highest accuracy (24 of 26, 92%; 95% CI: 75%, 99%) in identifying responders and nonresponders in the treated groups compared with MR elastography (23 of 26, 88%; 95% CI: 70%, 98%), EP-3533 (20 of 26, 77%; 95% CI: 56%, 91%), and native T1 (14 of 26, 54%; 95% CI: 33%, 73%). Conclusion Collagen-targeted molecular MRI most accurately detected early onset of fibrosis, whereas the fibrogenesis probe Gd-Hyd proved most accurate for detecting treatment response. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Iris Y Zhou
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Veronica Clavijo Jordan
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Nicholas J Rotile
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Eman Akam
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Smitha Krishnan
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Gunisha Arora
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Hema Krishnan
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Hannah Slattery
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Noah Warner
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Nathaniel Mercaldo
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Christian T Farrar
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Jeremy Wellen
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Robert Martinez
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Franklin Schlerman
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Kenneth K Tanabe
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Bryan C Fuchs
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| | - Peter Caravan
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (I.Y.Z., V.C.J., N.J.R., E.A., H.K., H.S., N.W., C.T.F., P.C.), Division of Surgical Oncology (S.K., G.A., K.K.T., B.C.F.), and Institute for Technology Assessment, Department of Radiology (N.M.), Massachusetts General Hospital and Harvard Medical School, Charlestown, 149 13th St, Boston, MA 02129; and Pfizer, Cambridge, Mass (J.W., R.M., F.S.)
| |
Collapse
|
38
|
Abstract
A novel MRI gadolinium-based contrast agent designed to bind with collagen, a key component in liver fibrosis progression, provides direct quantification of collagen deposition in several preclinical liver disease models. This tool could have large implications in clinical diagnosis and in drug trials.
Collapse
Affiliation(s)
- Paul Kennedy
- BioMedical Engineering and Imaging Institute and Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute and Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA,
| |
Collapse
|
39
|
Angel PM, Bruner E, Bethard J, Clift CL, Ball L, Drake RR, Feghali-Bostwick C. Extracellular matrix alterations in low-grade lung adenocarcinoma compared with normal lung tissue by imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4450. [PMID: 31654589 PMCID: PMC7145762 DOI: 10.1002/jms.4450] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 05/04/2023]
Abstract
Lung adenocarcinoma (LUAD) is the second most common cancer, affecting both men and women. Fibrosis is a hallmark of LUAD occurring throughout progression with excess production of extracellular matrix (ECM) components that lead to metastatic cell processes. Understanding the ECM cues that drive LUAD progression has been limited due to a lack of tools that can access and report on ECM components within the complex tumor microenvironment. Here, we test whether low-grade LUAD can be distinguished from normal lung tissue using a novel ECM imaging mass spectrometry (ECM IMS) approach. ECM IMS analysis of a tissue microarray with 20 low-grade LUAD tissues and 20 normal lung samples from 10 patients revealed 25 peptides that could discriminate between normal and low-grade LUAD using area under the receiver-operating curve (AUC) ≥0.7, P value ≤.001. Principal component analysis demonstrated that 62.4% of the variance could be explained by sample origin from normal or low-grade tumor tissue. Additional work performed on a wedge resection with moderately differentiated LUAD demonstrated that the ECM IMS analytical approach could distinguish LUAD spectral features from spectral features of normal adjacent lung tissue. Conventional liquid chromatography with tandem mass spectrometry (LC-MS/MS) proteomics demonstrated that specific sites of hydroxylation of proline (HYP) were a main collagen post translational modification that was readily detected in LUAD. A distinct peptide from collagen 3A1 modified by HYP was increased 3.5 fold in low-grade LUAD compared with normal lung tissue (AUC 0.914, P value <.001). This suggests that regulation of collagen proline hydroxylation could be an important process during early LUAD fibrotic deposition. ECM IMS is a useful tool that may be used to define fibrotic deposition in low-grade LUAD.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Evelyn Bruner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Jennifer Bethard
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Cassandra L. Clift
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Lauren Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | | |
Collapse
|
40
|
Salarian M, Ibhagui OY, Yang JJ. Molecular imaging of extracellular matrix proteins with targeted probes using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1622. [PMID: 32126587 DOI: 10.1002/wnan.1622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/04/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) consists of proteins and carbohydrates that supports different biological structures and processes such as tissue development, elasticity, and preservation of organ structure. Diseases involving inflammation, fibrosis, tumor invasion, and injury are all attributed to the transition of the ECM from homeostasis to remodeling, which can significantly change the biochemical and biomechanical features of ECM components. While contrast agents have played an indispensable role in facilitating clinical diagnosis of diseases using magnetic resonance imaging (MRI), there is a strong need to develop novel biomarker-targeted imaging probes for in vivo visualization of biological processes and pathological alterations at a cellular and molecular level, for both early diagnosis and monitoring drug treatment. Herein, we will first review the pathological accumulation and characterization of ECM proteins recognized as important molecular features of diseases. Developments in MRI probes targeting ECM proteins such as collagen, fibronectin, and elastin via conjugation of existing contrast agents to targeting moieties and their applications to various diseases, are also reviewed. We have also reviewed our progress in the development of collagen-targeted protein MRI contrast agent with significant improvement in relaxivity and metal binding specificity, and their applications in early detection of fibrosis and metastatic cancer. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Biology-Inspired Nanomaterials > Peptide-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mani Salarian
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | | | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
41
|
Mass Spectrometry Imaging of atherosclerosis-affine Gadofluorine following Magnetic Resonance Imaging. Sci Rep 2020; 10:79. [PMID: 31919465 PMCID: PMC6952459 DOI: 10.1038/s41598-019-57075-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Molecular imaging of atherosclerosis by Magnetic Resonance Imaging (MRI) has been impaired by a lack of validation of the specific substrate responsible for the molecular imaging signal. We therefore aimed to investigate the additive value of mass spectrometry imaging (MSI) of atherosclerosis-affine Gadofluorine P for molecular MRI of atherosclerotic plaques. Atherosclerotic Ldlr−/− mice were investigated by high-field MRI (7 T) at different time points following injection of atherosclerosis-affine Gadofluorine P as well as at different stages of atherosclerosis formation (4, 8, 16 and 20 weeks of HFD). At each imaging time point mice were immediately sacrificed after imaging and aortas were excised for mass spectrometry imaging: Matrix Assisted Laser Desorption Ionization (MALDI) Imaging and Laser Ablation – Inductively Coupled Plasma – Mass Spectrometry (LA-ICP-MS) imaging. Mass spectrometry imaging allowed to visualize the localization and measure the concentration of the MR imaging probe Gadofluorine P in plaque tissue ex vivo with high spatial resolution and thus adds novel and more target specific information to molecular MR imaging of atherosclerosis.
Collapse
|
42
|
Baranyai Z, Tircsó G, Rösch F. The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zsolt Baranyai
- Bracco Research Centre Bracco Imaging spa Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Gyula Tircsó
- Department of Physical Chemistry Faculty of Science and Technology University of Debrecen Egyetem tér 1 Debrecen 4032 Hungary
| | - Frank Rösch
- Institute of Nuclear Chemistry Johannes Gutenberg‐University of Mainz Fritz‐Strassmann‐Weg 2 55128 Mainz Germany
| |
Collapse
|
43
|
Dong J, He F, Wang L, Yue Z, Wen T, Wang R, Liu F. Iodine density Changes in Hepatic and Splenic Parenchyma in Liver Cirrhosis with Dual Energy CT (DECT): A Preliminary Study. Acad Radiol 2019; 26:872-877. [PMID: 30262328 DOI: 10.1016/j.acra.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the hemodynamic changes in liver cirrhosis by comparing iodine density in hepatic and splenic parenchyma with 8 cm detector dual energy CT (DECT). MATERIALS AND METHODS Forty-six consecutive patients with liver cirrhosis and 22 healthy volunteers were recruited in this study, and they were all performed contrast enhanced examination with 8 cm detector DECT. All raw data were reconstructed with 1.25 mm slice thickness, Iodine density (in milligrams per milliliter) were measured on iodine-based material decomposition images. Quantitative indices of iodine density (ID), including normalized ID of liver parenchyma for arterial phase (NIDLAP), ID of liver parenchyma for venous phase (IDLVP), ID of splenic parenchyma for arterial phase (IDSAP), ID of splenic parenchyma for venous phase (IDSVP), ID of portal vein in venous phase (IDPVP) and Liver arterial iodine density fraction (AIF) were measured and compared between two groups. The correlation between Child-Pugh grade and other quantitative indices were calculated, with statistical significance as P<0.05. RESULTS For all 46 liver cirrhosis patients, 10 were classified in grade A, 24 in Grade B and 12 in Grade C. Compared with control group, patients with liver cirrhosis showed (1) no statistical difference in general data (age, gender, height and weight) (all P>0.05), (2) higher iodine density of NIDLAP, IDSVP, IDPVP and AIF, and lower NIDSAP (all P<0.01), (3) NIDLAP, AIF, IDSVP and IDPVP in grade A were all lower than Grade B and C (all P<0.01). (4) AIF and NIDLAP showed positive correlation with Child-Pugh grade, with coefficient of R = 0.71 and R = 0.46, respectively. CONCLUSION Based on iodine density measurement in DECT, it is possible to evaluate the hemodynamic changes in liver and spleen parenchyma in liver cirrhosis. Quantitative indices of AIF and NIDLAP demonstrate positive correlation with Child-Pugh grade, which accommodates potential possibility for DECT as a noninvasive tool in assessing the severity of liver cirrhosis.
Collapse
Affiliation(s)
- Jian Dong
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi St, Haidian District, Beijing 100038, China
| | - Fuliang He
- Department of Interventional Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- Department of Interventional Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhendong Yue
- Department of Interventional Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tingguo Wen
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi St, Haidian District, Beijing 100038, China
| | - Rengui Wang
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi St, Haidian District, Beijing 100038, China.
| | - Fuquan Liu
- Department of Interventional Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res 2019; 209:105-120. [PMID: 31082371 PMCID: PMC6553637 DOI: 10.1016/j.trsl.2019.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is a useful biomarker for diagnosis and guidance of therapeutic interventions of chronic kidney disease (CKD), a worldwide disease that affects more than 10% of the population and is one of the major causes of death. Currently, tissue biopsy is the gold standard for assessment of renal fibrosis. However, it is invasive, and prone to sampling error and observer variability, and may also result in complications. Recent advances in diagnostic imaging techniques, including magnetic resonance imaging (MRI) and ultrasonography, have shown promise for noninvasive assessment of renal fibrosis. These imaging techniques measure renal fibrosis by evaluating its impacts on the functional, mechanical, and molecular properties of the kidney, such as water mobility by diffusion MRI, tissue hypoxia by blood oxygenation level dependent MRI, renal stiffness by MR and ultrasound elastography, and macromolecule content by magnetization transfer imaging. Other MR techniques, such as T1/T2 mapping and susceptibility-weighted imaging have also been explored for measuring renal fibrosis. Promising findings have been reported in both preclinical and clinical studies using these techniques. Nevertheless, limited specificity, sensitivity, and practicality in these techniques may hinder their immediate application in clinical routine. In this review, we will introduce methodologies of these techniques, outline their applications in fibrosis imaging, and discuss their limitations and pitfalls.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
45
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 939] [Impact Index Per Article: 156.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
46
|
Li S, Sun X, Chen M, Ying Z, Wan Y, Pi L, Ren B, Cao Q. Liver Fibrosis Conventional and Molecular Imaging Diagnosis Update. JOURNAL OF LIVER 2019; 8:236. [PMID: 31341723 PMCID: PMC6653681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liver fibrosis is a serious, life-threatening disease with high morbidity and mortality that result from diverse causes. Liver biopsy, considered the "gold standard" to diagnose, grade, and stage liver fibrosis, has limitations in terms of invasiveness, cost, sampling variability, inter-observer variability, and the dynamic process of fibrosis. Compelling evidence has demonstrated that all stages of fibrosis are reversible if the injury is removed. There is a clear need for safe, effective, and reliable non-invasive assessment modalities to determine liver fibrosis in order to manage it precisely in personalized medicine. However, conventional imaging methods used to assess morphological and structural changes related to liver fibrosis, including ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI), are only useful in assessing advanced liver disease, including cirrhosis. Functional imaging techniques, including MR elastography (MRE), US elastography, and CT perfusion are useful for assessing moderate to advanced liver fibrosis. MRE is considered the most accurate noninvasive imaging technique, and US elastography is currently the most widely used noninvasive means. However, these modalities are less accurate in early-stage liver fibrosis and some factors affect the accuracy of these techniques. Molecular imaging is a target-specific imaging mechanism that has the potential to accurately diagnose early-stage liver fibrosis. We provide an overview of recent advances in molecular imaging for the diagnosis and staging of liver fibrosis which will enable clinicians to monitor the progression of disease and potentially reverse liver fibrosis. We compare the promising technologies with conventional and functional imaging and assess the utility of molecular imaging in precision and personalized clinical medicine in the early stages of liver fibrosis.
Collapse
Affiliation(s)
- Shujing Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Radiology, The first affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei province, P.R.China
| | - Xicui Sun
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Minjie Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhekang Ying
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yamin Wan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan province, P.R.China
| | - Liya Pi
- Department of Pediatrics in the College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Bin Ren
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Alabama, USA
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Montesi SB, Désogère P, Fuchs BC, Caravan P. Molecular imaging of fibrosis: recent advances and future directions. J Clin Invest 2019; 129:24-33. [PMID: 30601139 DOI: 10.1172/jci122132] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis, the progressive accumulation of connective tissue that occurs in response to injury, causes irreparable organ damage and may result in organ failure. The few available antifibrotic treatments modify the rate of fibrosis progression, but there are no available treatments to reverse established fibrosis. Thus, more effective therapies are urgently needed. Molecular imaging is a promising biomedical methodology that enables noninvasive visualization of cellular and subcellular processes. It provides a unique means to monitor and quantify dysregulated molecular fibrotic pathways in a noninvasive manner. Molecular imaging could be used for early detection, disease staging, and prognostication, as well as for assessing disease activity and treatment response. As fibrotic diseases are often molecularly heterogeneous, molecular imaging of a specific pathway could be used for patient stratification and cohort enrichment with the goal of improving clinical trial design and feasibility and increasing the ability to detect a definitive outcome for new therapies. Here we review currently available molecular imaging probes for detecting fibrosis and fibrogenesis, the active formation of new fibrous tissue, and their application to models of fibrosis across organ systems and fibrotic processes. We provide our opinion as to the potential roles of molecular imaging in human fibrotic diseases.
Collapse
Affiliation(s)
| | - Pauline Désogère
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging and.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Caravan
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging and.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Expression, purification, and evaluation of in vivo anti-fibrotic activity for soluble truncated TGF-β receptor II as a cleavable His-SUMO fusion protein. World J Microbiol Biotechnol 2018; 34:181. [PMID: 30474742 DOI: 10.1007/s11274-018-2565-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/21/2018] [Indexed: 01/15/2023]
Abstract
Excessive production of transforming growth factor-β1 (TGF-β1) and its binding to transforming growth factor-β receptor type II (TGF-βRII) promotes fibrosis by activation of the TGF-β1-mediated signaling pathway. Thus, the truncated extracellular domain of TGF-βRII (tTβRII) is a promising anti-fibrotic candidate, as it lacks the signal transduction domain. In this work, the native N-terminal tTβRII was prepared as a His-SUMO fusion protein (termed His-SUMO-tTβRII) in Escherichia coli strain BL21 (DE3). His-SUMO-tTβRII was expressed as a soluble protein under optimal conditions (6 h of induction with 0.5 mM IPTG at 37 °C). His-SUMO-tTβRII was purified by Ni-NTA resin chromatography, and then cleaved with SUMO protease to release native tTβRII, which was re-purified using a Ni-NTA column. Approximately 12 mg of native tTβRII was obtained from a one liter fermentation culture with no less than 95% purity. In vivo studies demonstrated that tTβRII prevented CCl4-induced liver fibrosis, as evidenced by the inhibition of fibrosis-related Col I and α-SMA protein expression in C57BL/6 mice. In addition, tTβRII downregulated phosphorylation of SMAD2/3, which partly repressed TGF-β1-mediated signaling. These data indicate that the His-SUMO expression system is an efficient approach for preparing native tTβRII that possesses anti-liver fibrotic activity, allowing for the large-scale production of tTβRII, which potentially could serve as an anti-fibrotic candidate for treatment of TGF-β1-related diseases.
Collapse
|
49
|
The Role of Radiologic Modalities in Diagnosing Nonalcoholic Steatohepatitis (NASH) and Fibrosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11901-018-0421-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Erstad DJ, Sojoodi M, Taylor MS, Ghoshal S, Razavi AA, Graham-O'Regan KA, Bardeesy N, Ferrone CR, Lanuti M, Caravan P, Tanabe KK, Fuchs BC. Orthotopic and heterotopic murine models of pancreatic cancer and their different responses to FOLFIRINOX chemotherapy. Dis Model Mech 2018; 11:dmm.034793. [PMID: 29903803 PMCID: PMC6078400 DOI: 10.1242/dmm.034793] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022] Open
Abstract
Syngeneic, immunocompetent allograft tumor models recapitulate important aspects of the tumor microenvironment and have short tumor latency with predictable growth kinetics, making them useful for trialing novel therapeutics. Here, we describe surgical techniques for orthotopic and heterotopic pancreatic ductal adenocarcinoma (PDAC) tumor implantation and characterize phenotypes based on implantation site.Mice (n=8 per group) were implanted with 104 cells in the pancreas or flank. Hy15549 and Han4.13 cell lines were derived from primary murine PDAC (Ptf1-Cre; LSL-KRAS-G12D; Trp53 Lox/+) on C57BL/6 and FVB strains, respectively. Single-cell suspension and solid tumor implants were compared. Tumors were treated with two intravenous doses of FOLFIRINOX and responses evaluated.All mice developed pancreatic tumors within 7 days. Orthotopic tumors grew faster and larger than heterotopic tumors. By 3 weeks, orthotopic mice began losing weight, and showed declines in body condition requiring euthanasia starting at 4 weeks. Single-cell injection into the pancreas had near 100% engraftment, but solid tumor implant engraftment was ∼50% and was associated with growth restriction. Orthotopic tumors were significantly more responsive to intravenous FOLFIRINOX compared with heterotopic tumors, with greater reductions in size and increased apoptosis. Heterotopic tumors were more desmoplastic and hypovascular. However, drug uptake into tumor tissue was equivalent regardless of tumor location or degree of fibrosis, indicating that microenvironment differences between heterotopic and orthotopic tumors influenced response to therapy.Our results show that orthotopic and heterotopic allograft locations confer unique microenvironments that influence growth kinetics, desmoplastic response and angiogenesis. Tumor location influences chemosensitivity to FOLFIRINOX and should inform future preclinical trials.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Derek J Erstad
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Mozhdeh Sojoodi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Sarani Ghoshal
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Allen A Razavi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Katherine A Graham-O'Regan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Nabeel Bardeesy
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Michael Lanuti
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Peter Caravan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Kenneth K Tanabe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Bryan C Fuchs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|