2
|
Jiaxuan Peng, Zheng G, Hu M, Zhang Z, Yuan Z, Xu Y, Shao Y, Zhang Y, Sun X, Han L, Gu X, Zhenyu Shu. White matter structure and derived network properties are used to predict the progression from mild cognitive impairment of older adults to Alzheimer's disease. BMC Geriatr 2024; 24:691. [PMID: 39160467 PMCID: PMC11331623 DOI: 10.1186/s12877-024-05293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVE To identify white matter fiber injury and network changes that may lead to mild cognitive impairment (MCI) progression, then a joint model was constructed based on neuropsychological scales to predict high-risk individuals for Alzheimer's disease (AD) progression among older adults with MCI. METHODS A total of 173 MCI patients were included from the Alzheimer's Disease Neuroimaging Initiative(ADNI) database and randomly divided into training and testing cohorts. Forty-five progressed to AD during a 4-year follow-up period. Diffusion tensor imaging (DTI) techniques extracted relevant DTI quantitative features for each patient. In addition, brain networks were constructed based on white matter fiber bundles to extract network property features. Ensemble dimensionality reduction was applied to reduce both DTI quantitative features and network features from the training cohort, and machine learning algorithms were added to construct white matter signature. In addition, 52 patients from the National Alzheimer's Coordinating Center (NACC) database were used for external validation of white matter signature. A joint model was subsequently generated by combining with scale scores, and its performance was evaluated using data from the testing cohort. RESULTS Based on multivariate logistic regression, clinical dementia rating and Alzheimer's disease assessment scales (CDRS and ADAS, respectively) were selected as independent predictive factors. A joint model was constructed in combination with the white matter signature. The AUC, sensitivity, and specificity in the training cohort were 0.938, 0.937, and 0.91, respectively, and the AUC, sensitivity, and specificity in the test cohort were 0.905, 0.923, and 0.872, respectively. The Delong test showed a statistically significant difference between the joint model and CDRS or ADAS scores (P < 0.05), yet no significant difference between the joint model and the white matter signature (P = 0.341). CONCLUSION The present results demonstrate that a joint model combining neuropsychological scales can be constructed by using machine learning and DTI technology to identify MCI patients who are at high-risk of progressing to AD.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Guangying Zheng
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Mengmeng Hu
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Zihan Zhang
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhongyu Yuan
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuyun Xu
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yuan Shao
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yang Zhang
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xiaojun Sun
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Lu Han
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Xiaokai Gu
- Zhejiang University of Technology, Zhejiang Province, Hangzhou, China
| | - Zhenyu Shu
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Ali M, Archer DB, Gorijala P, Western D, Timsina J, Fernández MV, Wang TC, Satizabal CL, Yang Q, Beiser AS, Wang R, Chen G, Gordon B, Benzinger TLS, Xiong C, Morris JC, Bateman RJ, Karch CM, McDade E, Goate A, Seshadri S, Mayeux RP, Sperling RA, Buckley RF, Johnson KA, Won HH, Jung SH, Kim HR, Seo SW, Kim HJ, Mormino E, Laws SM, Fan KH, Kamboh MI, Vemuri P, Ramanan VK, Yang HS, Wenzel A, Rajula HSR, Mishra A, Dufouil C, Debette S, Lopez OL, DeKosky ST, Tao F, Nagle MW, Hohman TJ, Sung YJ, Dumitrescu L, Cruchaga C. Large multi-ethnic genetic analyses of amyloid imaging identify new genes for Alzheimer disease. Acta Neuropathol Commun 2023; 11:68. [PMID: 37101235 PMCID: PMC10134547 DOI: 10.1186/s40478-023-01563-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Amyloid PET imaging has been crucial for detecting the accumulation of amyloid beta (Aβ) deposits in the brain and to study Alzheimer's disease (AD). We performed a genome-wide association study on the largest collection of amyloid imaging data (N = 13,409) to date, across multiple ethnicities from multicenter cohorts to identify variants associated with brain amyloidosis and AD risk. We found a strong APOE signal on chr19q.13.32 (top SNP: APOE ɛ4; rs429358; β = 0.35, SE = 0.01, P = 6.2 × 10-311, MAF = 0.19), driven by APOE ɛ4, and five additional novel associations (APOE ε2/rs7412; rs73052335/rs5117, rs1081105, rs438811, and rs4420638) independent of APOE ɛ4. APOE ɛ4 and ε2 showed race specific effect with stronger association in Non-Hispanic Whites, with the lowest association in Asians. Besides the APOE, we also identified three other genome-wide loci: ABCA7 (rs12151021/chr19p.13.3; β = 0.07, SE = 0.01, P = 9.2 × 10-09, MAF = 0.32), CR1 (rs6656401/chr1q.32.2; β = 0.1, SE = 0.02, P = 2.4 × 10-10, MAF = 0.18) and FERMT2 locus (rs117834516/chr14q.22.1; β = 0.16, SE = 0.03, P = 1.1 × 10-09, MAF = 0.06) that all colocalized with AD risk. Sex-stratified analyses identified two novel female-specific signals on chr5p.14.1 (rs529007143, β = 0.79, SE = 0.14, P = 1.4 × 10-08, MAF = 0.006, sex-interaction P = 9.8 × 10-07) and chr11p.15.2 (rs192346166, β = 0.94, SE = 0.17, P = 3.7 × 10-08, MAF = 0.004, sex-interaction P = 1.3 × 10-03). We also demonstrated that the overall genetic architecture of brain amyloidosis overlaps with that of AD, Frontotemporal Dementia, stroke, and brain structure-related complex human traits. Overall, our results have important implications when estimating the individual risk to a population level, as race and sex will needed to be taken into account. This may affect participant selection for future clinical trials and therapies.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Derek B Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Daniel Western
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Maria V Fernández
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Ting-Chen Wang
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | | | - Gengsheng Chen
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Brian Gordon
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Tammie L S Benzinger
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Randall J Bateman
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Department of Neurology, Washington University, St Louis, MO, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
| | - Eric McDade
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Alison Goate
- Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Richard P Mayeux
- The Department of Neurology, Columbia University, New York, NY, USA
| | - Reisa A Sperling
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel F Buckley
- Brigham and Women's Hospital and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Hee Won
- Department of Digital Health, Samsung Medical Center, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Department of Digital Health, Samsung Medical Center, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hang-Rai Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Digital Health, Samsung Medical Center, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, 6027, Australia
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, MN, 55905, USA
| | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN, 55905, USA
| | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Allen Wenzel
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Hema Sekhar Reddy Rajula
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
| | - Aniket Mishra
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
| | - Carole Dufouil
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
| | - Stephanie Debette
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA, 2115, USA
- Department of Neurology, CHU de Bordeaux, 33000, Bordeaux, France
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Feifei Tao
- Neurogenomics, Genetics-Guided Dementia Discovery, Eisai, Inc, Cambridge, MA, USA
| | - Michael W Nagle
- Neurogenomics, Genetics-Guided Dementia Discovery, Eisai, Inc, Cambridge, MA, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA.
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA.
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA.
- Hope Center for Neurologic Diseases, Washington University, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|