1
|
Biscaldi T, L'Huillier R, Milot L, N'Djin WA. Interstitial Dual-Mode Ultrasound With a 3-mm MR-Compatible Catheter for Image-Guided HIFU and Directional In Vitro Tissue Ablations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1588-1605. [PMID: 39259638 DOI: 10.1109/tuffc.2024.3458067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Current interstitial techniques of tumor ablation face challenges that ultrasound (US) technologies could meet. The ablation radius and directionality of the US beam could improve the efficiency and precision. Here, a nine-gauge magnetic resonance (MR)-compatible dual-mode US catheter prototype was experimentally evaluated for ultrasound image-guided high-intensity focused ultrasound (USgHIFU) conformal ablations. The prototype consisted of 64 piezocomposite linear-array elements and was driven by an open research programmable dual-mode US platform. After verifying the US image guidance capabilities of the prototype, the high-intensity focused US (HIFU) output performances (dynamic focusing and HIFU intensities) were quantitatively characterized, together with the associated 3-D HIFU-induced thermal heating in tissue phantoms [using MR thermometry (MRT)]. Finally, the ability to produce robustly HIFU-induced thermal ablations in in vitro liver was studied experimentally and compared to numerical modeling. Investigations of several HIFU dynamic focusing allowed overcoming the challenges of miniaturizing the device: monofocal focusing maximized deep energy deposition, while multifocal strategies eliminated grating lobes. The linear-array design of the prototype made it possible to produce interstitial US images of tissue and tumor mimics in situ. Multifocal pressure fields were generated without grating lobes and transducer surface intensities reached up to . Seventeen elementary thermal ablations were performed in vitro. Rotation of the catheter proved the directionality of ablation, sparing nontargeted tissue. This experimental proof of concept demonstrates the feasibility of treating volumes comparable to those of primary solid tumors with a miniaturized USgHIFU catheter whose dimensions are close to those of tools traditionally used in interventional radiology while offering new functionalities.
Collapse
|
2
|
Ivanovski F, Meško M, Lebar T, Rupnik M, Lainšček D, Gradišek M, Jerala R, Benčina M. Ultrasound-mediated spatial and temporal control of engineered cells in vivo. Nat Commun 2024; 15:7369. [PMID: 39191796 DOI: 10.1038/s41467-024-51620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Remote regulation of cells in deep tissue remains a significant challenge. Low-intensity pulsed ultrasound offers promise for in vivo therapies due to its non-invasive nature and precise control. This study uses pulsed ultrasound to control calcium influx in mammalian cells and engineers a therapeutic cellular device responsive to acoustic stimulation in deep tissue without overexpressing calcium channels or gas vesicles. Pulsed ultrasound parameters are established to induce calcium influx in HEK293 cells. Additionally, cells are engineered to express a designed calcium-responsive transcription factor controlling the expression of a selected therapeutic gene, constituting a therapeutic cellular device. The engineered sonogenetic system's functionality is demonstrated in vivo in mice, where an implanted anti-inflammatory cytokine-producing cellular device effectively alleviates acute colitis, as shown by improved colonic morphology and histopathology. This approach provides a powerful tool for precise, localized control of engineered cells in deep tissue, showcasing its potential for targeted therapeutic delivery.
Collapse
Affiliation(s)
- Filip Ivanovski
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- Interfaculty Doctoral Study of Biomedicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Maja Meško
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Marko Rupnik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Miha Gradišek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
- CTGCT, Centre of Technology of Gene and Cell Therapy, Hajdrihova 19, Ljubljana, Slovenia.
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
- CTGCT, Centre of Technology of Gene and Cell Therapy, Hajdrihova 19, Ljubljana, Slovenia.
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Morabito R, Cammaroto S, Militi A, Smorto C, Anfuso C, Lavano A, Tomasello F, Di Lorenzo G, Brigandì A, Sorbera C, Bonanno L, Ielo A, Vatrano M, Marino S, Cacciola A, Cerasa A, Quartarone A. The Role of Treatment-Related Parameters and Brain Morphology in the Lesion Volume of Magnetic-Resonance-Guided Focused Ultrasound Thalamotomy in Patients with Tremor-Dominant Neurological Conditions. Bioengineering (Basel) 2024; 11:373. [PMID: 38671794 PMCID: PMC11047844 DOI: 10.3390/bioengineering11040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
PURPOSE To determine the best predictor of lesion volume induced by magnetic resonance (MR)-guided focused ultrasound (MRgFUS) thalamotomy in patients with tremor-dominant symptoms in Parkinson's disease (PD) and essential tremor (ET) patients. METHODS Thirty-six neurological patients with medication-refractory tremor (n°19 PD; n°17 ET) were treated using a commercial MRgFUS brain system (Exablate Neuro 4000, Insightec) integrated with a 1.5 T MRI unit (Sigma HDxt; GE Medical System). Linear regression analysis was used to determine how the demographic, clinical, radiological (Fazekas scale), volumetric (total GM/WM/CSF volume, cortical thickness), and MRgFUS-related parameters [Skull Density Ratio (SDR), n° of transducer elements, n° of sonications, skull area, maximal energy delivered (watt), maximal power delivered (joule), maximal sonication time delivered, maximal mean temperature reached (T°C_max), accumulated thermal dose (ATD)] impact on ventral intermediate (VIM)-thalamotomy-related 3D volumetric lesions of necrosis and edema. RESULTS The VIM thalamotomy was clinically efficacious in improving the tremor symptoms of all the patients as measured at 1 week after treatment. Multiple regression analysis revealed that T°C_max and n° of transducer elements were the best predictors of the necrosis and edema volumes. Moreover, total WM volume also predicted the size of necrosis. CONCLUSIONS Our study provides new insights into the clinical MRgFUS procedures that can be used to forecast brain lesion size and improve treatment outcomes.
Collapse
Affiliation(s)
- Rosa Morabito
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | - Simona Cammaroto
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | - Annalisa Militi
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | - Chiara Smorto
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | - Carmelo Anfuso
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | - Angelo Lavano
- Mater Domini University Hospital, Magna Graecia University, 88100 Catanzaro, Italy;
| | | | - Giuseppe Di Lorenzo
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | - Amelia Brigandì
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | - Chiara Sorbera
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | - Lilla Bonanno
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | - Augusto Ielo
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | | | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98122 Messina, Italy;
| | - Antonio Cerasa
- S. Anna Institute, 88900 Crotone, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Arcavacata, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (R.M.); (S.C.); (A.M.); (C.S.); (C.A.); (A.B.); (C.S.); (L.B.); (A.I.); (S.M.)
| |
Collapse
|
4
|
Yeo SY, Bratke G, Knöll P, Walter S, Maintz D, Grüll H. Case Report: Desmoid tumor response to magnetic resonance-guided high intensity focused ultrasound over 4 years. Front Oncol 2023; 13:1124244. [PMID: 37361566 PMCID: PMC10289281 DOI: 10.3389/fonc.2023.1124244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Desmoid tumors are a rare form of cancer, which show locally aggressive invasion of surrounding tissues and may occur anywhere in the body. Treatment options comprise conservative watch and wait strategies as tumors may show spontaneous regression as well as surgical resection, radiation therapy, nonsteroidal anti-inflammatory drugs (NSAID), chemotherapy, or local thermoablative approaches for progressive disease. The latter comprises cryotherapy, radiofrequency, microwave ablation, or thermal ablation with high intensity focused ultrasound (HIFU) as the only entirely non-invasive option. This report presents a case where a desmoid tumor at the left dorsal humerus was 2 times surgically resected and, after recurrence, thermally ablated with HIFU under magnetic resonance image-guidance (MR-HIFU). In our report, we analyze tumor volume and/or pain score during standard of care (2 years) and after HIFU treatment over a 4-year follow-up period. Results showed MR-HIFU treatment led to complete tumor remission and pain response.
Collapse
Affiliation(s)
- Sin Yuin Yeo
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Grischa Bratke
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Peter Knöll
- Department of Orthopedic Surgery and Traumatology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Sebastian Gottfried Walter
- Department of Orthopedic Surgery and Traumatology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - David Maintz
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Odéen H, Hofstetter LW, Payne AH, Guiraud L, Dumont E, Parker DL. Simultaneous proton resonance frequency T 1 - MR shear wave elastography for MR-guided focused ultrasound multiparametric treatment monitoring. Magn Reson Med 2023; 89:2171-2185. [PMID: 36656135 PMCID: PMC10940047 DOI: 10.1002/mrm.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE To develop an efficient MRI pulse sequence to simultaneously measure multiple parameters that have been shown to correlate with tissue nonviability following thermal therapies. METHODS A 3D segmented EPI pulse sequence was used to simultaneously measure proton resonance frequency shift (PRFS) MR thermometry (MRT), T1 relaxation time, and shear wave velocity induced by focused ultrasound (FUS) push pulses. Experiments were performed in tissue mimicking gelatin phantoms and ex vivo bovine liver. Using a carefully designed FUS triggering scheme, a heating duty cycle of approximately 65% was achieved by interleaving FUS ablation pulses with FUS push pulses to induce shear waves in the tissue. RESULTS In phantom studies, temperature increases measured with PRFS MRT and increases in T1 correlated with decreased shear wave velocity, consistent with material softening with increasing temperature. During ablation in ex vivo liver, temperature increase measured with PRFS MRT initially correlated with increasing T1 and decreasing shear wave velocity, and after tissue coagulation with decreasing T1 and increasing shear wave velocity. This is consistent with a previously described hysteresis in T1 versus PRFS curves and increased tissue stiffness with tissue coagulation. CONCLUSION An efficient approach for simultaneous and dynamic measurements of PRSF, T1 , and shear wave velocity during treatment is presented. This approach holds promise for providing co-registered dynamic measures of multiple parameters, which correlates to tissue nonviability during and following thermal therapies, such as FUS.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Lorne W. Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Allison H. Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | | | - Dennis L. Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Abedi MH, Yao MS, Mittelstein DR, Bar-Zion A, Swift MB, Lee-Gosselin A, Barturen-Larrea P, Buss MT, Shapiro MG. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat Commun 2022; 13:1585. [PMID: 35332124 PMCID: PMC8948203 DOI: 10.1038/s41467-022-29065-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022] Open
Abstract
Rapid advances in synthetic biology are driving the development of genetically engineered microbes as therapeutic agents for a multitude of human diseases, including cancer. The immunosuppressive microenvironment of solid tumors, in particular, creates a favorable niche for systemically administered bacteria to engraft and release therapeutic payloads. However, such payloads can be harmful if released outside the tumor in healthy tissues where the bacteria also engraft in smaller numbers. To address this limitation, we engineer therapeutic bacteria to be controlled by focused ultrasound, a form of energy that can be applied noninvasively to specific anatomical sites such as solid tumors. This control is provided by a temperature-actuated genetic state switch that produces lasting therapeutic output in response to briefly applied focused ultrasound hyperthermia. Using a combination of rational design and high-throughput screening we optimize the switching circuits of engineered cells and connect their activity to the release of immune checkpoint inhibitors. In a clinically relevant cancer model, ultrasound-activated therapeutic microbes successfully turn on in situ and induce a marked suppression of tumor growth. This technology provides a critical tool for the spatiotemporal targeting of potent bacterial therapeutics in a variety of biological and clinical scenarios.
Collapse
Affiliation(s)
- Mohamad H Abedi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Biochemistry, Institute for Protein Design and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Michael S Yao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David R Mittelstein
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Margaret B Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Pierina Barturen-Larrea
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Marjorie T Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
7
|
Shi J, Fu C, Su X, Feng S, Wang S. Ultrasound-Stimulated Microbubbles Inhibit Aggressive Phenotypes and Promotes Radiosensitivity of esophageal squamous cell carcinoma. Bioengineered 2021; 12:3000-3013. [PMID: 34180353 PMCID: PMC8806926 DOI: 10.1080/21655979.2021.1931641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ultrasound (US) is reported to improve the delivery efficiency of drugs loading onto large nanoparticles due to the sonoporation effect. Microbubbles (MBs) can be used as contrast agents of US expanding and contracting under low-amplitude US pressure waves. Ultrasound-stimulated microbubbles (USMBs) therapy is a promising option for the treatment of various cancers as a radiosensitizer. However, its role in esophageal squamous cell carcinoma (ESCC) remains unknown. In our study, human ESCC cell lines (KYSE-410, KYSE-1140) were treated with radiation solely, US alone, or radiation in combination with US or USMBs. The migration and invasion abilities of ESCC cells were examined by wound healing and Transwell assays. ESCC cell apoptosis was assessed using flow cytometry analysis and TUNEL assays. The levels of proteins associated with cell apoptosis and angiogenesis were measured by western blot analysis. A tube formation assay was performed to detect the ESCC cell angiogenesis. We found that USMBs at high levels most effectively most efficiently enhanced the effect of radiation, and significant changes in the viability (48%-51%), proliferation (1%), migration (63%-71%), invasion (52%) and cell apoptosis (31%-50%) of ESCC cells were observed compared with the control group in vitro. The ESCC angiogenesis was inhibited by US or radiation treatment and further inhibited by a combination of radiation and US or USMBs. USMBs at high levels most effectively enhanced the inhibitory effect of radiotherapy on ESCC cell apoptosis. Overall, USMBs enhanced the radiosensitivity of esophageal squamous cell carcinoma cells.Graphical abstractUSMBs treatment enhanced the anti-tumor effect of radiation on ESCC cell proliferation, migration, invasion, angiogenesis and apoptosis in vitro.1USMBs enhance the radiation-induced inhibition on ESCC cell growth2USMBs promote the radiation effect on ESCC cell apoptosis3USMBs enhance radiation-caused suppression on ESCC cell migration and invasion4USMBs enhance the suppression of radiation on ESCC angiogenesis[Figure: see text].
Collapse
Affiliation(s)
- Jinjun Shi
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing Jiangsu, China
| | - Chenchun Fu
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiangyu Su
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shicheng Feng
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Sheng Wang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Cheng B, Bing C, Staruch RM, Shaikh S, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch TW, Chopra R. The effect of injected dose on localized tumor accumulation and cardiac uptake of doxorubicin in a Vx2 rabbit tumor model using MR-HIFU mild hyperthermia and thermosensitive liposomes. Int J Hyperthermia 2021; 37:1052-1059. [PMID: 32892667 DOI: 10.1080/02656736.2020.1812737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE When doxorubicin (DOX) is administered via lyso-thermosensitive liposomes (LTLD), mild hyperthermia enhances localized delivery to heated vs. unheated tumors. The optimal LTLD dose and the impact of different doses on systemic drug distribution are unknown. Materials and methods: In this study, we evaluated local and systemic DOX delivery with three LTLD doses (0.1, 0.5, and 2.5 mg/kg) in a Vx2 rabbit tumor model. Temporally and spatially accurate controlled hyperthermia was achieved using a clinical MR-HIFU system for the intended heating duration (40 min). Results: DOX concentration in tissues delivered from LTLD combined with MR-HIFU mild hyperthermia are dose-dependent, including heated/unheated tumor, heart, and other healthy organs. Higher DOX accumulation and tumor-to-heart drug concentration ratio, defined as the ratio of DOX delivered into the tumor vs the heart, were observed in heated tumors compared to unheated tumors in all three tested doses. The DOX uptake efficiency for each mg/kg of LTLD injected IV of heated tumor was significantly higher than that of unheated tumor and heart within the tested dose range (0.1-2.5 mg/kg). The DOX uptake for the heart linearly scaled up as a function of dose while that for the heated tumor showed some evidence of saturation at the high dose of 2.5 mg/kg. Conclusions: These results provide guidance on clinical protocol design of hyperthermia-triggered drug delivery.
Collapse
Affiliation(s)
- Bingbing Cheng
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Robert M Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Profound Medical, Mississauga, Canada
| | - Sumbul Shaikh
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Theodore W Laetsch
- Children's Health, Dallas, TX, USA.,Department of Pediatrics, Division of Hematology-Oncology and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Daunizeau L, Nguyen A, Le Garrec M, Chapelon JY, N'Djin WA. Robot-assisted ultrasound navigation platform for 3D HIFU treatment planning: Initial evaluation for conformal interstitial ablation. Comput Biol Med 2020; 124:103941. [PMID: 32818742 DOI: 10.1016/j.compbiomed.2020.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Interstitial Ultrasound-guided High Intensity Focused Ultrasound (USgHIFU) therapy has the potential to deliver ablative treatments which conform to the target tumor. In this study, a robot-assisted US-navigation platform has been developed for 3D US guidance and planning of conformal HIFU ablations. The platform was used to evaluate a conformal therapeutic strategy associated with an interstitial dual-mode USgHIFU catheter prototype (64 elements linear-array, measured central frequency f = 6.5 MHz), developed for the treatment of HepatoCellular Carcinoma (HCC). The platform included a 3D navigation environment communicating in real-time with an open research dual-mode US scanner/HIFU generator and a robotic arm, on which the USgHIFU catheter was mounted. 3D US-navigation was evaluated in vitro for guiding and planning conformal HIFU ablations using a tumor-mimic model in porcine liver. Tumor-mimic volumes were then used as targets for evaluating conformal HIFU treatment planning in simulation. Height tumor-mimics (ovoid- or disc-shaped, sizes: 3-29 cm3) were created and visualized in liver using interstitial 2D US imaging. Robot-assisted spatial manipulation of these images and real-time 3D navigation allowed reconstructions of 3D B-mode US images for accurate tumor-mimic volume estimation (relative error: 4 ± 5%). Sectorial and full-revolution HIFU scanning (angular sectors: 88-360°) could both result in conformal ablations of the tumor volumes, as soon as their radii remained ≤ 24 mm. The presented US navigation-guided HIFU procedure demonstrated advantages for developing conformal interstitial therapies in standard operative rooms. Moreover, the modularity of the developed platform makes it potentially useful for developing other HIFU approaches.
Collapse
Affiliation(s)
- L Daunizeau
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France.
| | - A Nguyen
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - M Le Garrec
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - J Y Chapelon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - W A N'Djin
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| |
Collapse
|
10
|
Abstract
Genetically engineered T-cells are being developed to perform a variety of therapeutic functions. However, no robust mechanisms exist to externally control the activity of T-cells at specific locations within the body. Such spatiotemporal control could help mitigate potential off-target toxicity due to incomplete molecular specificity in applications such as T-cell immunotherapy against solid tumors. Temperature is a versatile external control signal that can be delivered to target tissues in vivo using techniques such as focused ultrasound and magnetic hyperthermia. Here, we test the ability of heat shock promoters to mediate thermal actuation of genetic circuits in primary human T-cells in the well-tolerated temperature range of 37-42 °C, and introduce genetic architectures enabling the tuning of the amplitude and duration of thermal activation. We demonstrate the use of these circuits to control the expression of chimeric antigen receptors and cytokines, and the killing of target tumor cells. This technology provides a critical tool to direct the activity of T-cells after they are deployed inside the body.
Collapse
|
11
|
Jones RM, Kamps S, Huang Y, Scantlebury N, Lipsman N, Schwartz ML, Hynynen K. Accumulated thermal dose in MRI-guided focused ultrasound for essential tremor: repeated sonications with low focal temperatures. J Neurosurg 2020; 132:1802-1809. [PMID: 31075781 PMCID: PMC7139920 DOI: 10.3171/2019.2.jns182995] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/22/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The object of this study was to correlate lesion size with accumulated thermal dose (ATD) in transcranial MRI-guided focused ultrasound (MRgFUS) treatments of essential tremor with focal temperatures limited to 50°C-54°C. METHODS Seventy-five patients with medically refractory essential tremor underwent MRgFUS thalamotomy at the authors' institution. Intraoperative MR thermometry was performed to measure the induced temperature and thermal dose distributions (proton resonance frequency shift coefficient = -0.00909 ppm/°C). In 19 patients, it was not possible to raise the focal temperature above 54°C because of unfavorable skull characteristics and/or the pain associated with cranial heating. In this patient subset, sonications with focal temperatures between 50°C and 54°C were repeated (5.1 ± 1.5, mean ± standard deviation) to accumulate a sufficient thermal dose for lesion formation. The ATD profile sizes (17, 40, 100, 200, and 240 cumulative equivalent minutes at 43°C [CEM43]) calculated by combining axial MR thermometry data from individual sonications were correlated with the corresponding lesion sizes measured on axial T1-weighted (T1w) and T2-weighted (T2w) MR images acquired 1 day posttreatment. Manual corrections were applied to the MR thermometry data prior to thermal dose accumulation to compensate for off-resonance-induced spatial-shifting artifacts. RESULTS Mean lesion sizes measured on T2w MRI (5.0 ± 1.4 mm) were, on average, 28% larger than those measured on T1w MRI (3.9 ± 1.4 mm). The ATD thresholds found to provide the best correlation with lesion sizes measured on T2w and T1w MRI were 100 CEM43 (regression slope = 0.97, R2 = 0.66) and 200 CEM43 (regression slope = 0.98, R2 = 0.89), respectively, consistent with data from a previous study of MRgFUS thalamotomy via repeated sonications at higher focal temperatures (≥ 55°C). Two-way linear mixed-effects analysis revealed that dominant tremor subscores on the Fahn-Tolosa-Marin Clinical Rating Scale for Tremor (CRST) were statistically different from baseline at 3 months and 1 year posttreatment in both low-temperature (50°C-54°C) and high-temperature (≥ 55°C) patient cohorts. No significant fixed effect on the dominant tremor scores was found for the temperature cohort factor. CONCLUSIONS In transcranial MRgFUS thalamotomy for essential tremor, repeated sonications with focal temperatures between 50°C and 54°C can accumulate a sufficient thermal dose to generate lesions for clinically relevant tremor suppression up to 1 year posttreatment, and the ATD can be used to predict the size of the resulting ablation zones measured on MRI. These data will serve to guide future clinical MRgFUS brain procedures, particularly those in which focal temperatures are limited to below 55°C.
Collapse
Affiliation(s)
- Ryan M. Jones
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
| | - Shona Kamps
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
| | - Yuexi Huang
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
| | - Nadia Scantlebury
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Michael L. Schwartz
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| |
Collapse
|
12
|
Lu A, Woodrum DA, Felmlee JP, Favazza CP, Gorny KR. Improved MR-thermometry during hepatic microwave ablation by correcting for intermittent electromagnetic interference artifacts. Phys Med 2020; 71:100-107. [PMID: 32114323 DOI: 10.1016/j.ejmp.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/01/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
MRI-guided microwave ablation (MWA) is a minimally invasive treatment for localized cancer. MR thermometry has been shown to be able to provide vital information for monitoring the procedure in real-time. However, MRI during active MWA can suffer from image quality degradation due to intermittent electromagnetic interference (EMI). A novel approach to correct for EMI-contaminated images is presented here to improve MR thermometry during clinical hepatic MWA. The method was applied to MR-thermometry images acquired during four MR-guided hepatic MWA treatments using a commercially available MRI-configured microwave generator system. During the treatments MR thermometry data acquisition was synchronized to respiratory cycle to minimize the impact of motion. EMI was detected and corrected using uncontaminated k-space data from nearby frames in k-space. Substantially improved temperature and thermal damage maps have been obtained and the treatment zone can be better visualized. Our ex vivo tissue sample study shows the correction introduced minimal errors to the temperature maps and thermal damage maps.
Collapse
Affiliation(s)
- Aiming Lu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States.
| | - David A Woodrum
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States
| | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States
| | | | - Krzysztof R Gorny
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
13
|
Liang R, Yu H, Wang L, Lin L, Wang N, Naveed KUR. Highly Tough Hydrogels with the Body Temperature-Responsive Shape Memory Effect. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43563-43572. [PMID: 31656069 DOI: 10.1021/acsami.9b14756] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shape memory hydrogels (SMHs), a promising class of smart materials for biomedical applications, have attracted increasing research attention owing to their tissue-like water-rich network structure. However, preparing SMHs with high mechanical strength and body temperature-responsiveness has proven to be an extreme challenge. This study presents a facile and scalable methodology to prepare highly tough hydrogels with a body temperature-responsive shape memory effect based on synergetic hydrophobic interactions and hydrogen bonding. 2-Phenoxyethyl acrylate (PEA) and acrylamide were chosen as the hydrophobic monomer and the hydrophilic hydrogen bonding monomer, respectively. The prepared hydrogels exhibited a maximum tensile strength of 5.1 ± 0.16 MPa with satisfactory stretchability, and the mechanical strength showed a strong dependence on temperature. Besides, the hydrogel with 60 mol % PEA shows an excellent body temperature-responsive shape memory behavior with almost 100% shape fixity and shape recovery. Furthermore, we applied the hydrogels as a shape memory embolization plug for simulating vascular occlusion, and the embolism performance was preliminarily explored in vitro.
Collapse
Affiliation(s)
- Ruixue Liang
- State Key Laboratory of Chemical Engineering, Institute of Polymer and Polymerization Engineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang , China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, Institute of Polymer and Polymerization Engineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang , China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, Institute of Polymer and Polymerization Engineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang , China
| | - Long Lin
- Department of Colour Science , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , West Yorkshire , U.K
| | - Nan Wang
- State Key Laboratory of Chemical Engineering, Institute of Polymer and Polymerization Engineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang , China
| | - Kaleem-Ur-Rahman Naveed
- State Key Laboratory of Chemical Engineering, Institute of Polymer and Polymerization Engineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang , China
| |
Collapse
|
14
|
Liu X, Ellens N, Williams E, Burdette EC, Karmarkar P, Weiss CR, Kraitchman D, Bottomley PA. High-resolution intravascular MRI-guided perivascular ultrasound ablation. Magn Reson Med 2019; 83:240-253. [PMID: 31402512 DOI: 10.1002/mrm.27932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop and test in animal studies ex vivo and in vivo, an intravascular (IV) MRI-guided high-intensity focused ultrasound (HIFU) ablation method for targeting perivascular pathology with minimal injury to the vessel wall. METHODS IV-MRI antennas were combined with 2- to 4-mm diameter water-cooled IV-ultrasound ablation catheters for IV-MRI on a 3T clinical MRI scanner. A software interface was developed for monitoring thermal dose with real-time MRI thermometry, and an MRI-guided ablation protocol developed by repeat testing on muscle and liver tissue ex vivo. MRI thermal dose was measured as cumulative equivalent minutes at 43°C (CEM43 ). The IV-MRI IV-HIFU protocol was then tested by targeting perivascular ablations from the inferior vena cava of 2 pigs in vivo. Thermal dose and lesions were compared by gross and histological examination. RESULTS Ex vivo experiments yielded a 6-min ablation protocol with the IV-ultrasound catheter coolant at 3-4°C, a 30 mL/min flow rate, and 7 W ablation power. In 8 experiments, 5- to 10-mm thick thermal lesions of area 0.5-2 cm2 were produced that spared 1- to 2-mm margins of tissue abutting the catheters. The radial depths, areas, and preserved margins of ablation lesions measured from gross histology were highly correlated (r ≥ 0.79) with those measured from the CEM43 = 340 necrosis threshold determined by MRI thermometry. The psoas muscle was successfully targeted in the 2 live pigs, with the resulting ablations controlled under IV-MRI guidance. CONCLUSION IV-MRI-guided, IV-HIFU has potential as a precision treatment option that could preserve critical blood vessel wall during ablation of nonresectable perivascular tumors or other pathologies.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland.,Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Nicholas Ellens
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland.,Acertara Acoustic Laboratories, Longmont, Colorado
| | | | | | - Parag Karmarkar
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Clifford R Weiss
- Division of Interventional Radiology, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Dara Kraitchman
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Paul A Bottomley
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland.,Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
15
|
Magnetic resonance imaging-guided transurethral ultrasound ablation of prostate tissue in patients with localized prostate cancer: single-center evaluation of 6-month treatment safety and functional outcomes of intensified treatment parameters. World J Urol 2019; 38:343-350. [DOI: 10.1007/s00345-019-02784-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022] Open
|
16
|
Hofstetter LW, Odéen H, Bolster BD, Mueller A, Christensen DA, Payne A, Parker DL. Efficient shear wave elastography using transient acoustic radiation force excitations and MR displacement encoding. Magn Reson Med 2019; 81:3153-3167. [PMID: 30663806 PMCID: PMC6414262 DOI: 10.1002/mrm.27647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/21/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE To present a novel MR shear wave elastography (MR-SWE) method that efficiently measures the speed of propagating wave packets generated using acoustic radiation force (ARF) impulses. METHODS ARF impulses from a focused ultrasound (FUS) transducer were applied sequentially to a preselected set of positions and motion encoded MRI was used to acquire volumetric images of the propagating shear wavefront emanating from each point. The wavefront position at multiple propagation times was encoded in the MR phase image using a train of motion encoding gradient lobes. Generating a transient propagating wavefront at multiple spatial positions and sampling each at multiple time-points allowed for shear wave speed maps to be efficiently created. MR-SWE was evaluated in tissue mimicking phantoms and ex vivo bovine liver tissue before and after ablation. RESULTS MR-SWE maps, covering an in-plane area of ~5 × 5 cm, were acquired in 12 s for a single slice and 144 s for a volumetric scan. MR-SWE detected inclusions of differing stiffness in a phantom experiment. In bovine liver, mean shear wave speed significantly increased from 1.65 ± 0.18 m/s in normal to 2.52 ± 0.18 m/s in ablated region (n = 581 pixels; P-value < 0.001). CONCLUSION MR-SWE is an elastography technique that enables precise targeting and excitation of the desired tissue of interest. MR-SWE may be particularly well suited for treatment planning and endpoint assessment of MR-guided FUS procedures because the same device used for therapy can be used as an excitation source for tissue stiffness quantification.
Collapse
Affiliation(s)
- Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | | | - Alexander Mueller
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
17
|
Bing C, Patel P, Staruch RM, Shaikh S, Nofiele J, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch T, Chopra R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int J Hyperthermia 2018; 36:196-203. [PMID: 30541350 PMCID: PMC6430695 DOI: 10.1080/02656736.2018.1550815] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022] Open
Abstract
Thermosensitive liposomal doxorubicin (LTSL-Dox) combined with mild hyperthermia enhances the localized delivery of doxorubicin (Dox) within a heated region. The optimal heating duration and the impact of extended heating on systemic drug distribution are unknown. Here we evaluated local and systemic Dox delivery with two different mild hyperthermia durations (42 °C for 10 or 40 minutes) in a Vx2 rabbit tumor model. We hypothesized that longer duration of hyperthermia would increase Dox concentration in heated tumors without increasing systemic exposure. Temporally and spatially accurate controlled hyperthermia was achieved using a clinical MR-HIFU system for the prescribed heating durations. Forty-minutes of heating resulted in a nearly 6-fold increase in doxorubicin concentration in heated vs unheated tumors in the same animals. Therapeutic ratio, defined as the ratio of Dox delivered into the heated tumor vs the heart, increased from 1.9-fold with 10 minutes heating to 4.4-fold with 40 minutes heating. MR-HIFU can be used to guide, deliver and monitor mild hyperthermia of a Vx2 tumor model in a rabbit model, and an increased duration of heating leads to higher Dox deposition from LTSL-Dox in a target tumor without a concomitant increase in systemic exposure. Results from this preclinical study can be used to help establish clinical treatment protocols for hyperthermia mediated drug delivery.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Profound Medical, Mississauga, ON, Canada
| | - Sumbul Shaikh
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joris Nofiele
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Theodore Laetsch
- Children’s Health, Dallas, TX, USA
- Department of Pediatrics, Division of Hematology-Oncology and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Crake C, Papademetriou IT, Zhang Y, Vykhodtseva N, McDannold NJ, Porter TM. Simultaneous Passive Acoustic Mapping and Magnetic Resonance Thermometry for Monitoring of Cavitation-Enhanced Tumor Ablation in Rabbits Using Focused Ultrasound and Phase-Shift Nanoemulsions. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2609-2624. [PMID: 30201425 PMCID: PMC6215518 DOI: 10.1016/j.ultrasmedbio.2018.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/01/2018] [Accepted: 07/24/2018] [Indexed: 05/19/2023]
Abstract
Thermal ablation of solid tumors via focused ultrasound (FUS) is a non-invasive image-guided alternative to conventional surgical resection. However, the usefulness of the technique is limited in vascularized organs because of convection of heat, resulting in long sonication times and unpredictable thermal lesion formation. Acoustic cavitation has been found to enhance heating but requires use of exogenous nuclei and sufficient acoustic monitoring. In this study, we employed phase-shift nanoemulsions (PSNEs) to promote cavitation and incorporated passive acoustic mapping (PAM) alongside conventional magnetic resonance imaging (MRI) thermometry within the bore of a clinical MRI scanner. Simultaneous PAM and MRI thermometry were performed in an in vivo rabbit tumor model, with and without PSNE to promote cavitation. Vaporization and cavitation of the nanoemulsion could be detected using PAM, which led to accelerated heating, monitored with MRI thermometry. The maximum heating assessed from MRI was well correlated with the integrated acoustic emissions, illustrating cavitation-enhanced heating. Examination of tissue revealed thermal lesions that were larger in the presence of PSNE, in agreement with the thermometry data. Using fixed exposure conditions over 94 sonications in multiple animals revealed an increase in the mean amplitude of acoustic emissions and resulting temperature rise, but with significant variability between sonications, further illustrating the need for real-time monitoring. The results indicate the utility of combined PAM and MRI for monitoring of tumor ablation and provide further evidence for the ability of PSNEs to promote cavitation-enhanced lesioning.
Collapse
Affiliation(s)
- Calum Crake
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalia Vykhodtseva
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan J McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tyrone M Porter
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA; Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Odéen H, de Bever J, Hofstetter LW, Parker DL. Multiple-point magnetic resonance acoustic radiation force imaging. Magn Reson Med 2018; 81:1104-1117. [PMID: 30257059 PMCID: PMC6642829 DOI: 10.1002/mrm.27477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE To implement and evaluate an efficient multiple-point MR acoustic radiation force imaging pulse sequence that can volumetrically measure tissue displacement and evaluate tissue stiffness using focused ultrasound (FUS) radiation force. METHODS Bipolar motion-encoding gradients were added to a gradient-recalled echo segmented EPI pulse sequence with both 2D and 3D acquisition modes. Multiple FUS-ON images (FUS power > 0 W) were interleaved with a single FUS-OFF image (FUS power = 0 W) on the TR level, enabling simultaneous measurements of volumetric tissue displacement (by complex subtraction of the FUS-OFF image from the FUS-ON images) and proton resonance frequency shift MR thermometry (from the OFF image). Efficiency improvements included partial Fourier acquisition, parallel imaging, and encoding up to 4 different displacement positions into a single image. Experiments were performed in homogenous and dual-stiffness phantoms, and in ex vivo porcine brain. RESULTS In phantoms, 16-point multiple-point magnetic resonance acoustic radiation force imaging maps could be acquired in 5 s to 10 s for a 2D slice, and 60 s for a 3D volume, using parallel imaging and encoding 2 displacement positions/image. In ex vivo porcine brain, 16-point multiple-point magnetic resonance acoustic radiation force imaging maps could be acquired in 20 s for a 3D volume, using partial Fourier and parallel imaging and encoding 4 displacement positions/image. In 1 experiment it was observed that tissue displacement in ex vivo brain decreased by approximately 22% following FUS ablation. CONCLUSION With the described efficiency improvements it is possible to acquire volumetric multiple-point magnetic resonance acoustic radiation force imaging maps, with simultaneous proton resonance frequency shift MR thermometry maps, in clinically acceptable times.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Joshua de Bever
- Department of Radiology, Stanford University, Palo Alto, California
| | - Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
20
|
Huang Y, Lipsman N, Schwartz ML, Krishna V, Sammartino F, Lozano AM, Hynynen K. Predicting lesion size by accumulated thermal dose in MR-guided focused ultrasound for essential tremor. Med Phys 2018; 45:4704-4710. [PMID: 30098027 DOI: 10.1002/mp.13126] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 07/23/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To correlate the accumulated thermal dose (ATD) with lesion size in magnetic resonance (MR)-guided focused ultrasound (MRgFUS) thalamotomy to help guide future clinical treatments. MATERIALS AND METHODS Thirty-six patients with medication-refractory essential tremor were treated using a commercial MRgFUS brain system (ExAblate 4000, InSightec) in a 3T MR scanner (MR750, GE Healthcare). Intraoperative MR-thermometry was performed to measure the induced temperature and thermal dose distributions (thermal coefficient = -0.00909 ppm/°C). The ATD was calculated over multiple sonications with appropriate corrections for spatial-shifting artifacts. The ATD profile sizes obtained for dose values of 17, 40, 100, 200, and 240 cumulative equivalent minutes at 43°C (CEM) were correlated with the corresponding lesion sizes measured via axial T1- and T2-weighted MR images acquired 1 day post-treatment. RESULTS Of a total of 232 included sonications, 83 required corrections for off-resonance-induced spatial-shifting artifacts (correction range = [1.1,2.2] mm). The mean lesion sizes measured on T2-weighted MR images (6.2 ± 1.3 mm, mean ± SD) were 15% larger than those measured on corresponding T1-weighted MR images (5.3 ± 1.2 mm, mean ± SD). The ATD values that provided the best correlations with the measured lesion sizes on T2- and T1-weighted MR images were 100 and 200 CEM, respectively. CONCLUSION The ATD was correlated with lesion size measured 1 day following MRgFUS thalamotomy for essential tremor. These data provide useful information for predicting brain lesion size and determining treatment endpoints in future clinical MRgFUS procedures.
Collapse
Affiliation(s)
- Yuexi Huang
- Physical Sciences, Sunnybrook Research Institute, 2075, Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, 2075, Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Michael L Schwartz
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, 2075, Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Vibhor Krishna
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada
| | - Francesco Sammartino
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, 2075, Bayview Avenue, Toronto, ON M4N 3M5, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
21
|
Computational modelling of drug delivery to solid tumour: Understanding the interplay between chemotherapeutics and biological system for optimised delivery systems. Adv Drug Deliv Rev 2018; 132:81-103. [PMID: 30059703 DOI: 10.1016/j.addr.2018.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 01/10/2023]
Abstract
Drug delivery to solid tumour involves multiple physiological, biochemical and biophysical processes taking place across a wide range of length and time scales. The therapeutic efficacy of anticancer drugs is influenced by the complex interplays among the intrinsic properties of tumours, biophysical aspects of drug transport and cellular uptake. Mathematical and computational modelling allows for a well-controlled study on the individual and combined effects of a wide range of parameters on drug transport and therapeutic efficacy, which would not be possible or economically viable through experimental means. A wide spectrum of mathematical models has been developed for the simulation of drug transport and delivery in solid tumours, including PK/PD-based compartmental models, microscopic and macroscopic transport models, and molecular dynamics drug loading and release models. These models have been used as a tool to identify the limiting factors and for optimal design of efficient drug delivery systems. This article gives an overview of the currently available computational models for drug transport in solid tumours, together with their applications to novel drug delivery systems, such as nanoparticle-mediated drug delivery and convection-enhanced delivery.
Collapse
|
22
|
Bonekamp D, Wolf MB, Roethke MC, Pahernik S, Hadaschik BA, Hatiboglu G, Kuru TH, Popeneciu IV, Chin JL, Billia M, Relle J, Hafron J, Nandalur KR, Staruch RM, Burtnyk M, Hohenfellner M, Schlemmer HP. Twelve-month prostate volume reduction after MRI-guided transurethral ultrasound ablation of the prostate. Eur Radiol 2018; 29:299-308. [PMID: 29943185 DOI: 10.1007/s00330-018-5584-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/08/2018] [Accepted: 06/01/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE To quantitatively assess 12-month prostate volume (PV) reduction based on T2-weighted MRI and immediate post-treatment contrast-enhanced MRI non-perfused volume (NPV), and to compare measurements with predictions of acute and delayed ablation volumes based on MR-thermometry (MR-t), in a central radiology review of the Phase I clinical trial of MRI-guided transurethral ultrasound ablation (TULSA) in patients with localized prostate cancer. MATERIALS AND METHODS Treatment day MRI and 12-month follow-up MRI and biopsy were available for central radiology review in 29 of 30 patients from the published institutional review board-approved, prospective, multi-centre, single-arm Phase I clinical trial of TULSA. Viable PV at 12 months was measured as the remaining PV on T2-weighted MRI, less 12-month NPV, scaled by the fraction of fibrosis in 12-month biopsy cores. Reduction of viable PV was compared to predictions based on the fraction of the prostate covered by the MR-t derived acute thermal ablation volume (ATAV, 55°C isotherm), delayed thermal ablation volume (DTAV, 240 cumulative equivalent minutes at 43°C thermal dose isocontour) and treatment-day NPV. We also report linear and volumetric comparisons between metrics. RESULTS After TULSA, the median 12-month reduction in viable PV was 88%. DTAV predicted a reduction of 90%. Treatment day NPV predicted only 53% volume reduction, and underestimated ATAV and DTAV by 36% and 51%. CONCLUSION Quantitative volumetry of the TULSA phase I MR and biopsy data identifies DTAV (240 CEM43 thermal dose boundary) as a useful predictor of viable prostate tissue reduction at 12 months. Immediate post-treatment NPV underestimates tissue ablation. KEY POINTS • MRI-guided transurethral ultrasound ablation (TULSA) achieved an 88% reduction of viable prostate tissue volume at 12 months, in excellent agreement with expectation from thermal dose calculations. • Non-perfused volume on immediate post-treatment contrast-enhanced MRI represents only 64% of the acute thermal ablation volume (ATAV), and reports only 60% (53% instead of 88% achieved) of the reduction in viable prostate tissue volume at 12 months. • MR-thermometry-based predictions of 12-month prostate volume reduction based on 240 cumulative equivalent minute thermal dose volume are in excellent agreement with reduction in viable prostate tissue volume measured on pre- and 12-month post-treatment T2w-MRI.
Collapse
Affiliation(s)
- David Bonekamp
- Department of Radiology (E010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - M B Wolf
- Department of Radiology (E010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - M C Roethke
- Department of Radiology (E010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - S Pahernik
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - B A Hadaschik
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - G Hatiboglu
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - T H Kuru
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - I V Popeneciu
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - J L Chin
- Department of Urology, University of Western Ontario (UWO), London Health Sciences Center, Victoria Hospital, London, ON, Canada
| | - M Billia
- Department of Urology, University of Western Ontario (UWO), London Health Sciences Center, Victoria Hospital, London, ON, Canada
| | - J Relle
- Department of Urology, Beaumont Health System, Royal Oak, MI, USA
| | - J Hafron
- Department of Urology, Beaumont Health System, Royal Oak, MI, USA
| | - K R Nandalur
- Department of Radiology, Beaumont Health System, Royal Oak, MI, USA
| | - R M Staruch
- Clinical Science, Profound Medical Inc., Toronto, ON, Canada
| | - M Burtnyk
- Clinical Science, Profound Medical Inc., Toronto, ON, Canada
| | - M Hohenfellner
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - H-P Schlemmer
- Department of Radiology (E010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
Jang KW, Tu TW, Nagle ME, Lewis BK, Burks SR, Frank JA. Molecular and histological effects of MR-guided pulsed focused ultrasound to the rat heart. J Transl Med 2017; 15:252. [PMID: 29237455 PMCID: PMC5729396 DOI: 10.1186/s12967-017-1361-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Image-guided high intensity focused ultrasound has been used as an extracorporeal cardiac pacing tool and to enhance homing of stem cells to targeted tissues. However, molecular changes in the myocardium after sonication have not been widely investigated. Magnetic-resonance (MR)-guided pulsed focused ultrasound (pFUS) was targeted to the rat myocardium over a range of pressures and the microenvironmental and histological effects were evaluated over time. METHODS Eight-to-ten-week-old Sprague-Dawley rats received T2-weighted MR images to target pFUS to the left ventricular and septum without cardiac or respiratory gating. Rats were sonicated through the thoracic wall at peak negative pressures (PNP) from 1 to 8 MPa at a center frequency of 1 MHz, 10 ms pulse duration and 1 Hz pulse repetition frequency for 100 pulses per focal target. Following pFUS, myocardium was harvested over 24 h and subjected to imaging, proteomic, and histological measurements. RESULTS pFUS to the myocardium increased expression of cytokines, chemokines, and trophic factors characterized by an initial increase in tumor necrosis factor (TNF)-α followed by increases in pro- and anti-inflammatory factors that returned to baseline by 24 h. Immediately after pFUS, there was a transient (< 1 h) increase in N-terminal pro b-type natriuretic peptide (NT-proBNP) without elevation of other cardiac injury markers. A relationship between PNP and expression of TNF-α and NT-proBNP was observed with significant changes (p < 0.05 ANOVA) ≥ 4 MPa compared to untreated controls. Contrast-enhanced ex vivo T1-weighted MRI revealed vascular leakage in sonicated myocardium that was accompanied by the presence of albumin upon immunohistochemistry. Histology revealed infiltration of neutrophils and macrophages without morphological myofibril changes in sonicated tissue accompanied by pulmonary hemorrhage at PNP > 4 MPa. CONCLUSIONS MR-guided pFUS to myocardium induced transient proteomic and histological changes. The temporal proteomic changes in the myocardium indicate a short-lived sterile inflammatory response consistent with ischemia or contusion. Further study of myocardial function and strain is needed to determine if pFUS could be developed as an experimental model of cardiac injury and chest trauma.
Collapse
Affiliation(s)
- Kee W Jang
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA.
| | - Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Matthew E Nagle
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Bobbi K Lewis
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Federau C, Goubran M, Rosenberg J, Henderson J, Halpern CH, Santini V, Wintermark M, Butts Pauly K, Ghanouni P. Transcranial MRI-guided high-intensity focused ultrasound for treatment of essential tremor: A pilot study on the correlation between lesion size, lesion location, thermal dose, and clinical outcome. J Magn Reson Imaging 2017; 48:58-65. [PMID: 29076274 DOI: 10.1002/jmri.25878] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Transcranial MR-guided high-intensity focused ultrasound (tcMRgFUS) is a promising noninvasive method to treat medication-refractory essential tremor. PURPOSE/HYPOTHESIS To define the correlation between lesion size after ablation, thermal dose, and clinical outcome in tcMRgFUS treatment of essential tremor. STUDY TYPE Retrospective. POPULATION/SUBJECTS/PHANTOM/SPECIMEN/ANIMAL MODEL Eight patients with medication-refractory essential tremor were treated using a tcMRgFUS system at 3T. FIELD STRENGTH/SEQUENCE T2 -weighted images were acquired immediately and at 1 year posttreatment at 3T. ASSESSMENT An atlas of the thalamic nuclei and dose maps were warped to the posttreatment images. The thermal dose, the immediate posttreatment lesion volume and 1-year final lesion volume, and the volumes confined inside the ventral division of the ventral lateral posterior thalamic nucleus (VLpv) were correlated to clinical outcome at 1 month and 1 year using Pearson's coefficient. The spatial region of treatment correlating with maximal clinical outcome was derived in a normalized space from average maps of clinical tremor score improvement at 1 year. STATISTICAL TESTS Statistical significance was assessed using the Wilcoxon two-tailed rank test. RESULTS The correlations between thermal dose, lesion volume posttreatment and at 1 year, and outcome at 1 year were good (r = 0.73, 0.65, 0.73, respectively), and were slightly better than at 1 month (r = 0.57, 0.49, 0.65). Reducing the measurement to include only the portion within the VLpv did not significantly modify the correlations (P = 0.09). The center of the spatial region of treatment was found in the anterior commissure - posterior commissure plane, 14.3 mm lateral from the midline, and 8.3 mm rostral to the posterior commissure. DATA CONCLUSION In this pilot study a good correlation was found between the size of the lesion, the thermal dose, and the clinical outcome in patients treated for essential tremor with ablation of the VLpv with tcMRgFUS. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2017.
Collapse
Affiliation(s)
- Christian Federau
- University of Basle, Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, Petersgraben, Basle, Switzerland.,Stanford University Medical Center, Department of Radiology, Neuroradiology Division, Stanford, California, USA
| | - Maged Goubran
- Stanford University Medical Center, Department of Radiology, Stanford, California, USA
| | - Jarrett Rosenberg
- Stanford University Medical Center, Department of Radiology, Stanford, California, USA
| | - Jaimie Henderson
- Stanford University Medical Center, Department of Neurosurgery, Stanford, California, USA
| | - Casey H Halpern
- Stanford University Medical Center, Department of Neurosurgery, Stanford, California, USA
| | - Veronica Santini
- Stanford University Medical Center, Department of Neurology, Stanford, California, USA
| | - Max Wintermark
- Stanford University Medical Center, Department of Radiology, Neuroradiology Division, Stanford, California, USA
| | - Kim Butts Pauly
- Stanford University Medical Center, Department of Radiology, Stanford, California, USA
| | - Pejman Ghanouni
- Stanford University Medical Center, Department of Radiology, Stanford, California, USA
| |
Collapse
|
25
|
MacLellan CJ, Fuentes D, Prabhu S, Rao G, Weinberg JS, Hazle JD, Stafford RJ. A methodology for thermal dose model parameter development using perioperative MRI. Int J Hyperthermia 2017; 34:687-696. [PMID: 28830311 DOI: 10.1080/02656736.2017.1363418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Post-treatment imaging is the principal method for evaluating thermal lesions following image-guided thermal ablation procedures. While real-time temperature feedback using magnetic resonance temperature imaging (MRTI) is a complementary tool that can be used to optimise lesion size throughout the procedure, a thermal dose model is needed to convert temperature-time histories to estimates of thermal damage. However, existing models rely on empirical parameters derived from laboratory experiments that are not direct indicators of post-treatment radiologic appearance. In this work, we investigate a technique that uses perioperative MR data to find novel thermal dose model parameters that are tailored to the appearance of the thermal lesion on post-treatment contrast-enhanced imaging. Perioperative MR data were analysed for five patients receiving magnetic resonance-guided laser-induced thermal therapy (MRgLITT) for brain metastases. The characteristic enhancing ring was manually segmented on post-treatment T1-weighted imaging and registered into the MRTI geometry. Post-treatment appearance was modelled using a coupled Arrhenius-logistic model and non-linear optimisation techniques were used to find the maximum-likelihood kinetic parameters and dose thresholds that characterise the inner and outer boundary of the enhancing ring. The parameter values and thresholds were consistent with previous investigations, while the average difference between the predicted and segmented boundaries was on the order of one pixel (1 mm). The areas predicted using the optimised model parameters were also within 1 mm of those predicted by clinically utilised dose models. This technique makes clinically acquired data available for investigating new thermal dose model parameters driven by clinically relevant endpoints.
Collapse
Affiliation(s)
- Christopher J MacLellan
- a Department of Imaging Physics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - David Fuentes
- a Department of Imaging Physics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Sujit Prabhu
- c Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ganesh Rao
- c Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jeffrey S Weinberg
- c Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - John D Hazle
- a Department of Imaging Physics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - R Jason Stafford
- a Department of Imaging Physics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
26
|
Crake C, Meral FC, Burgess MT, Papademetriou IT, McDannold NJ, Porter TM. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy. Phys Med Biol 2017; 62:6144-6163. [PMID: 28590938 DOI: 10.1088/1361-6560/aa77df] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.
Collapse
Affiliation(s)
- Calum Crake
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, United States of America
| | | | | | | | | | | |
Collapse
|
27
|
Devarakonda SB, Myers MR, Lanier M, Dumoulin C, Banerjee RK. Assessment of Gold Nanoparticle-Mediated-Enhanced Hyperthermia Using MR-Guided High-Intensity Focused Ultrasound Ablation Procedure. NANO LETTERS 2017; 17:2532-2538. [PMID: 28287747 DOI: 10.1021/acs.nanolett.7b00272] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
High-intensity focused ultrasound (HIFU) has gained increasing popularity as a noninvasive therapeutic procedure to treat solid tumors. However, collateral damage due to the use of high acoustic powers during HIFU procedures remains a challenge. The objective of this study is to assess the utility of using gold nanoparticles (gNPs) during HIFU procedures to locally enhance heating at low powers, thereby reducing the likelihood of collateral damage. Phantoms containing tissue-mimicking material (TMM) and physiologically relevant concentrations (0%, 0.0625%, and 0.125%) of gNPs were fabricated. Sonications at acoustic powers of 10, 15, and 20 W were performed for a duration of 16 s using an MR-HIFU system. Temperature rises and lesion volumes were calculated and compared for phantoms with and without gNPs. For an acoustic power of 10 W, the maximum temperature rise increased by 32% and 43% for gNPs concentrations of 0.0625% and 0.125%, respectively, when compared to the 0% gNPs concentration. For the power of 15 W, a lesion volume of 0, 44.5 ± 7, and 63.4 ± 32 mm3 was calculated for the gNPs concentration of 0%, 0.0625%, and 0.125%, respectively. For a power of 20 W, it was found that the lesion volume doubled and tripled for concentrations of 0.0625% and 0.125% gNPs, respectively, when compared to the concentration of 0% gNPs. We conclude that gNPs have the potential to locally enhance the heating and reduce damage to healthy tissue during tumor ablation using HIFU.
Collapse
Affiliation(s)
- Surendra B Devarakonda
- Department of Mechanical, Materials Engineering College of Engineering and Applied Science, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | - Matthew R Myers
- Division of Solid and Fluid Mechanics Center for Devices and Radiological Health, U.S. Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Mathew Lanier
- Department of Radiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio 45221, United States
| | - Charles Dumoulin
- Department of Radiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio 45221, United States
| | - Rupak K Banerjee
- Department of Mechanical, Materials Engineering College of Engineering and Applied Science, University of Cincinnati , Cincinnati, Ohio 45221, United States
| |
Collapse
|
28
|
Kujawska T, Secomski W, Byra M, Postema M, Nowicki A. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals. ULTRASONICS 2017; 76:92-98. [PMID: 28086110 DOI: 10.1016/j.ultras.2016.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
A technique using pulsed High Intensity Focused Ultrasound (HIFU) to destroy deep-seated solid tumors is a promising noninvasive therapeutic approach. A main purpose of this study was to design and test a HIFU transducer suitable for preclinical studies of efficacy of tested, anti-cancer drugs, activated by HIFU beams, in the treatment of a variety of solid tumors implanted to various organs of small animals at the depth of the order of 1-2cm under the skin. To allow focusing of the beam, generated by such transducer, within treated tissue at different depths, a spherical, 2-MHz, 29-mm diameter annular phased array transducer was designed and built. To prove its potential for preclinical studies on small animals, multiple thermal lesions were induced in a pork loin ex vivo by heating beams of the same: 6W, or 12W, or 18W acoustic power and 25mm, 30mm, and 35mm focal lengths. Time delay for each annulus was controlled electronically to provide beam focusing within tissue at the depths of 10mm, 15mm, and 20mm. The exposure time required to induce local necrosis was determined at different depths using thermocouples. Location and extent of thermal lesions determined from numerical simulations were compared with those measured using ultrasound and magnetic resonance imaging techniques and verified by a digital caliper after cutting the tested tissue samples. Quantitative analysis of the results showed that the location and extent of necrotic lesions on the magnetic resonance images are consistent with those predicted numerically and measured by caliper. The edges of lesions were clearly outlined although on ultrasound images they were fuzzy. This allows to conclude that the use of the transducer designed offers an effective noninvasive tool not only to induce local necrotic lesions within treated tissue without damaging the surrounding tissue structures but also to test various chemotherapeutics activated by the HIFU beams in preclinical studies on small animals.
Collapse
Affiliation(s)
- Tamara Kujawska
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Wojciech Secomski
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Michał Byra
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Michiel Postema
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Andrzej Nowicki
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| |
Collapse
|
29
|
Han Y, Wang S, Payen T, Konofagou E. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo. Phys Med Biol 2017; 62:3111-3123. [PMID: 28323638 DOI: 10.1088/1361-6560/aa6024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2 = 0.81, slope = 0.90), width (r 2 = 0.85, slope = 1.12) and area (r 2 = 0.58, slope = 0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.
Collapse
Affiliation(s)
- Yang Han
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | | | | | | |
Collapse
|
30
|
Dey N, Ashour AS, Althoupety AS. Thermal Imaging in Medical Science. RECENT ADVANCES IN APPLIED THERMAL IMAGING FOR INDUSTRIAL APPLICATIONS 2017. [DOI: 10.4018/978-1-5225-2423-6.ch004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Thermal imaging is a non-destructive, non-contact and rapid system. It reports temperature through measuring infrared radiation emanated by an object/ material surface. Automated thermal imaging system involves thermal camera equipped with infrared detectors, signal processing unit and image acquisition system supported by computer. It is elaborated in wide domains applications. Extensive focus is directed to the thermal imaging in the medical domain especially breast cancer detection. This chapter provided the main concept and the different applications of thermal imaging. It explores and analyses several works in the light of studding the thermograph. It is an effective screening tool for breast cancer prediction. Studies justify that thermography can be considered a complementary tool to detect breast diseases. The current chapter reviews many usages and limitations of thermography in biomedical field. Extensive recommendations for future directions are summarized to provide a structured vision of breast thermography.
Collapse
|
31
|
Staruch RM, Nofiele J, Walker J, Bing C, Madhuranthakam AJ, Bailey A, Kim YS, Chhabra A, Burns D, Chopra R. Assessment of acute thermal damage volumes in muscle using magnetization-prepared 3D T 2 -weighted imaging following MRI-guided high-intensity focused ultrasound therapy. J Magn Reson Imaging 2017; 46:354-364. [PMID: 28067975 DOI: 10.1002/jmri.25605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate magnetization-prepared 3D T2 -weighted magnetic resonance imaging (MRI) measurements of acute tissue changes produced during ablative MR high-intensity focused ultrasound (MR-HIFU) exposures. MATERIALS AND METHODS A clinical MR-HIFU system (3T) was used to generate thermal lesions (n = 24) in the skeletal muscles of three pigs. T1 -weighted, 2D T2 -weighted, and magnetization-prepared 3D T2 -weighted sequences were acquired before and after therapy to evaluate tissue changes following ablation. Tissues were harvested shortly after imaging, fixed in formalin, and gross-sectioned. Select lesions were processed into whole-mount sections. Lesion dimensions for each imaging sequence (length, width) and for gross sections (diameter of lesion core and rim) were assessed by three physicists. Contrast-to-background ratio between lesions and surrounding muscle was compared. RESULTS Lesion dimensions on T1 and 2D T2 -weighted imaging sequences were well correlated (R2 ∼0.7). The contrast-to-background ratio between lesion and surrounding muscle was 7.4 ± 2.4 for the magnetization-prepared sequence versus 1.7 ± 0.5 for a conventional 2D T2 -weighted acquisition, and 7.0 ± 2.9 for a contrast-enhanced T1 -weighted sequence. Compared with diameter measured on gross pathology, all imaging sequences overestimated the lesion core by 22-33%, and underestimated the lesion rim by 6-13%. CONCLUSION After MR-HIFU exposures, measurements of the acute thermal damage patterns in muscle using a magnetization-prepared 3D T2 -weighted imaging sequence correlate with 2D T2 -weighted and contrast-enhanced T1 -weighted imaging, and all agree well with histology. The magnetization-prepared sequence offers positive tissue contrast and does not require IV contrast agents, and may provide a noninvasive imaging evaluation of the region of acute thermal injury at multiple times during HIFU procedures. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:354-364.
Collapse
Affiliation(s)
- Robert M Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA.,Clinical Sites Research Program, Philips Research North America, Cambridge, Massachusetts, USA
| | - Joris Nofiele
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jamie Walker
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ananth J Madhuranthakam
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - April Bailey
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Young-Sun Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dennis Burns
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
32
|
Patel NV, Mian M, Stafford RJ, Nahed BV, Willie JT, Gross RE, Danish SF. Laser Interstitial Thermal Therapy Technology, Physics of Magnetic Resonance Imaging Thermometry, and Technical Considerations for Proper Catheter Placement During Magnetic Resonance Imaging–Guided Laser Interstitial Thermal Therapy. Neurosurgery 2016; 79 Suppl 1:S8-S16. [DOI: 10.1227/neu.0000000000001440] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Laser-induced thermal therapy has become a powerful tool in the neurosurgical armamentarium. The physics of laser therapy are complex, but a sound understanding of this topic is clinically relevant, as many centers have incorporated it into their treatment algorithm, and educated patients are demanding consideration of its use for their disease. Laser ablation has been used for a wide array of intracranial lesions. Laser catheter placement is guided by stereotactic planning; however, as the procedure has popularized, the number of ways in which the catheter can be inserted has also increased. There are many technical nuances for laser placement, and, to date, there is not a clear understanding of whether any one technique is better than the other. In this review, we describe the basic physics of magnetic resonance–guided laser-induced thermal therapy and describe the several common techniques for accurate Visualase laser catheter placement in a stepwise fashion.
Collapse
Affiliation(s)
- Nitesh V. Patel
- Department of Neurosurgery, Rutgers University, New Jersey Medical School, Newark, New Jersey
- Section of Neurosurgery, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Matthew Mian
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - R. Jason Stafford
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Brian V. Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jon T. Willie
- Department of Neurosurgery, Emory University Hospital, Atlanta, Georgia
| | - Robert E. Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, Georgia
| | - Shabbar F. Danish
- Section of Neurosurgery, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
33
|
Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat Chem Biol 2016; 13:75-80. [PMID: 27842069 DOI: 10.1038/nchembio.2233] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Abstract
Temperature is a unique input signal that could be used by engineered microbial therapeutics to sense and respond to host conditions or spatially targeted external triggers such as focused ultrasound. To enable these possibilities, we present two families of tunable, orthogonal, temperature-dependent transcriptional repressors providing switch-like control of bacterial gene expression at thresholds spanning the biomedically relevant range of 32-46 °C. We integrate these molecular bioswitches into thermal logic circuits and demonstrate their utility in three in vivo microbial therapy scenarios, including spatially precise activation using focused ultrasound, modulation of activity in response to a host fever, and self-destruction after fecal elimination to prevent environmental escape. This technology provides a critical capability for coupling endogenous or applied thermal signals to cellular function in basic research, biomedical and industrial applications.
Collapse
|
34
|
Odéen H, Almquist S, de Bever J, Christensen DA, Parker DL. MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling. J Ther Ultrasound 2016; 4:23. [PMID: 27688881 PMCID: PMC5032243 DOI: 10.1186/s40349-016-0067-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
Background A major challenge in using magnetic resonance temperature imaging (MRTI) to monitor focused ultrasound (FUS) applications is achieving high spatio-temporal resolution over a large field of view (FOV). This is important to accurately monitor all ultrasound (US) power depositions. Magnetic resonance (MR) subsampling in conjunction with thermal model-based reconstruction of the MRTI utilizing Pennes bioheat transfer equation (PBTE) is one promising approach. The thermal properties used in the thermal model are often estimated from a pre-treatment, low-power sonication. Methods In this proof-of-concept study we investigate the use of US simulations computed using the hybrid angular spectrum (HAS) method to estimate the US power deposition density Q, thereby avoiding the pre-treatment sonication and any potential tissue damage. MRTI reconstructions are performed using a thermal model-based reconstruction method called model predictive filtering (MPF). Experiments are performed in a homogeneous gelatin phantom and in a gelatin phantom with embedded plastic skull. MPF reconstructions are compared to separate sonications imaged with fully sampled data over a smaller FOV. Temperature root-mean-square errors (RMSE) and focal spot positions and shapes are evaluated. Results HAS simulations accurately predict the location of the focal spot (to within 1 mm) in both phantoms. Accurate temperature maps (RMSE below 1 °C), where the location of the focal spot agrees well with fully sampled “truth” (to within 1 mm), are also achieved in both phantoms. Conclusions HAS simulations can be used to accurately predict the focal spot location in homogeneous media and when focusing through an aberrating plastic skull. The HAS simulated power deposition (Q) patterns can be used in the MPF thermal model-based reconstruction to obtain accurate temperature maps with high spatio-temporal resolution over large FOVs.
Collapse
Affiliation(s)
- Henrik Odéen
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT USA
| | - Scott Almquist
- School of Computing, University of Utah, Salt Lake City, UT USA
| | - Joshua de Bever
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT USA
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT USA ; Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT USA
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT USA
| |
Collapse
|
35
|
Zhang Y, Tan H, Bertram EH, Aubry JF, Lopes MB, Roy J, Dumont E, Xie M, Zuo Z, Klibanov AL, Lee KS, Wintermark M. Non-Invasive, Focal Disconnection of Brain Circuitry Using Magnetic Resonance-Guided Low-Intensity Focused Ultrasound to Deliver a Neurotoxin. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2261-2269. [PMID: 27260243 DOI: 10.1016/j.ultrasmedbio.2016.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Disturbances in the function of neuronal circuitry contribute to most neurologic disorders. As knowledge of the brain's connectome continues to improve, a more refined understanding of the role of specific circuits in pathologic states will also evolve. Tools capable of manipulating identified circuits in a targeted and restricted manner will be essential not only to expand our understanding of the functional roles of such circuits, but also to therapeutically disconnect critical pathways contributing to neurologic disease. This study took advantage of the ability of low-intensity focused ultrasound (FUS) to transiently disrupt the blood-brain barrier (BBB) to deliver a neurotoxin with poor BBB permeability (quinolinic acid [QA]) in a guided manner to a target region in the brain parenchyma. Ten male Sprague-Dawley rats were divided into two groups receiving the following treatments: (i) magnetic resonance-guided FUS + microbubbles + saline (n = 5), or (ii) magnetic resonance-guided FUS + microbubbles + QA (n = 5). Systemic administration of QA was well tolerated. However, when QA and microbubbles were systemically administered in conjunction with magnetic resonance-guided FUS, the BBB was disrupted and primary neurons were destroyed in the targeted subregion of the hippocampus in all QA-treated animals. Administration of vehicle (saline) together with microbubbles and FUS also disrupted the BBB but did not produce neuronal injury. These findings indicate the feasibility of non-invasively destroying a targeted region of the brain parenchyma using low-intensity FUS together with systemic administration of microbubbles and a neurotoxin. This approach could be of therapeutic value in various disorders in which disturbances of neural circuitry contribute to neurologic disease.
Collapse
Affiliation(s)
- Yanrong Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Radiology, Neuroradiology Division, University of Virginia, Charlottesville, Virginia, USA
| | - Hongying Tan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Edward H Bertram
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Jean-François Aubry
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia, USA; ESPCI ParisTech, PSL Research University, Institut Langevin, Paris, France; CNRS, Institut Langevin, Paris, France; INSERM, Institut Langevin, Paris, France
| | - Maria-Beatriz Lopes
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Roy
- Department of Radiology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Alexander L Klibanov
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Kevin S Lee
- Departments of Neuroscience and Neurosurgery, and Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, USA.
| | - Max Wintermark
- Department of Radiology, Neuroradiology Division, University of Virginia, Charlottesville, Virginia, USA; Department of Radiology, Neuroradiology Section, Stanford University, Palo Alto, California, USA.
| |
Collapse
|
36
|
Ellens N, Hynynen K. Frequency considerations for deep ablation with high-intensity focused ultrasound: A simulation study. Med Phys 2016; 42:4896-10. [PMID: 26233216 DOI: 10.1118/1.4927060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The objective of this study was to explore frequency considerations for large-volume, deep thermal ablations with focused ultrasound. Though focal patterns, focal steering rate, and the size of focal clusters have all been explored in this context, frequency studies have generally explored shallower depths and hyperthermia applications. This study examines both treatment efficiency and near-field heating rate as functions of frequency and depth. METHODS Flat, 150 mm transducer arrays were simulated to operate at frequencies of 250, 500, 750, 1000, 1250, and 1500 kHz. Each array had λ2 interelement spacing yielding arrays of 2000-70 000 piston-shaped elements arranged in concentric rings. Depths of 50, 100, and 150 mm were explored, with attenuation (α) values of 2.5-10 (Np/m)/MHz. Ultrasound propagation was simulated with the Rayleigh-Sommerfeld integral over a volume of homogeneous simulated tissue. Absorbed power density was determined from the acoustic pressure which, in turn, was modeled with the Pennes bioheat transfer equation. Using this knowledge of temperature over time, thermal dose function of Sapareto and Dewey was used to model the resulting bioeffect of each simulated sonication. Initially, single foci at each depth, frequency, and α were examined with either fixed peak temperatures or fixed powers. Based on the size of the resulting, single foci lesions, larger compound sonications were designed with foci packed together in multiple layers and rings. For each depth, focal patterns were chosen to produce a similar total ablated volume for each frequency. These compound sonications were performed with a fixed peak temperature at each focus. The resulting energy efficiency (volume ablated per acoustic energy applied), near-field heating rate (temperature increase in the anterior third of the simulation space per unit volume ablated), and near- and far-field margins were assessed. RESULTS Lesions of comparable volume were created with different frequencies at different depths. The results reflect the interconnected nature of frequency as it effects focal size (decreasing with frequency), peak pressure (generally increasing with frequency), and attenuation (also increasing with frequency). The ablation efficiency was the highest for α = 5 (Np/m)/MHz at a frequency of 750 kHz at each depth. For α = 10 (Np/m)/MHz, efficiency was the highest at 750 kHz for a depth of 50 mm, and 500 kHz at depths of 100 and 150 mm. At all sonication depths, near-field heating was minimized with lower frequencies of 250 and 500 kHz. CONCLUSIONS Large-volume ablations are most efficient at frequencies of 500-750 kHz at depths of 100-150 mm. When one considers that near-field heat accumulation tends to be the rate limiting factor in large-volume ablations like uterine fibroid surgery, the results show that frequencies as low as 500 kHz are favored for their ability to reduce heating in the near-field.
Collapse
Affiliation(s)
- Nicholas Ellens
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
37
|
Cheng CC, Mei CS, Duryea J, Chung HW, Chao TC, Panych LP, Madore B. Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 265:177-87. [PMID: 26923150 PMCID: PMC4818735 DOI: 10.1016/j.jmr.2016.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
PURPOSE To present a dual-pathway multi-echo steady state sequence and reconstruction algorithm to capture T2, T2(∗) and field map information. METHODS Typically, pulse sequences based on spin echoes are needed for T2 mapping while gradient echoes are needed for field mapping, making it difficult to jointly acquire both types of information. A dual-pathway multi-echo pulse sequence is employed here to generate T2 and field maps from the same acquired data. The approach might be used, for example, to obtain both thermometry and tissue damage information during thermal therapies, or susceptibility and T2 information from a same head scan, or to generate bonus T2 maps during a knee scan. RESULTS Quantitative T2, T2(∗) and field maps were generated in gel phantoms, ex vivo bovine muscle, and twelve volunteers. T2 results were validated against a spin-echo reference standard: A linear regression based on ROI analysis in phantoms provided close agreement (slope/R(2)=0.99/0.998). A pixel-wise in vivo Bland-Altman analysis of R2=1/T2 showed a bias of 0.034 Hz (about 0.3%), as averaged over four volunteers. Ex vivo results, with and without motion, suggested that tissue damage detection based on T2 rather than temperature-dose measurements might prove more robust to motion. CONCLUSION T2, T2(∗) and field maps were obtained simultaneously, from the same datasets, in thermometry, susceptibility-weighted imaging and knee-imaging contexts.
Collapse
Affiliation(s)
- Cheng-Chieh Cheng
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jeffrey Duryea
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Tzu-Cheng Chao
- Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Lawrence P Panych
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruno Madore
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Sun XR, Patel NV, Danish SF. Tissue Ablation Dynamics During Magnetic Resonance-Guided, Laser-Induced Thermal Therapy. Neurosurgery 2016; 77:51-8; discussion 58. [PMID: 26086908 DOI: 10.1227/neu.0000000000000732] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided, laser-induced thermal therapy is a real-time magnetic resonance thermometry-guided, minimally invasive procedure used in the treatment of intracranial tumors, epilepsy, and pain. Little is known about its dynamics and the effects of various pathologies on overall ablation. OBJECTIVE To determine the relationship between thermal energy delivery and the time to maximal estimated thermal damage and whether differences exist between various intracranial pathologies. METHODS We used real-time ablation data from 28 patients across 5 unique intracranial pathologies. All ablations were performed using the Visualase Thermal Therapy System (Medtronic, Inc, Minneapolis, Minnesota), which uses a 980-nm diffusing tip diode laser. The thermal damage area was plotted against time for each ablation. We then estimated the duration of time required to reach 50% (t50) and 97% (t97) of maximal damage. Comparisons were then made between different intracranial pathologies. RESULTS The duration required to reach maximal thermal damage estimate (TDE) among all ablations was 159 ± 62 seconds, and the t50 and t97 were 43 ± 21 and 136 ± 57 seconds, respectively, where t97 was reached at an average of 23 seconds before the maximal TDE. The t97 was shorter in the recurrent metastasis/radiation necrosis and epilepsy groups compared with the previously untreated glioblastoma multiforme group. CONCLUSION The optimal duration can be estimated by the t97, which can be achieved in less than 3 minutes and differs across ablation targets. TDE expansion decelerates with prolonged ablation. Future studies are needed to examine the radiographic and clinical outcomes as well as the effects of ablation power, irrigation speed, and the effect of previous therapies on ablation dynamics.
Collapse
Affiliation(s)
- Xiaonan R Sun
- *Division of Neurosurgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, New Jersey; ‡Department of Neurological Surgery, Rutgers University, New Jersey Medical School, Newark, New Jersey
| | | | | |
Collapse
|
39
|
Ramaekers P, de Greef M, van Breugel JMM, Moonen CTW, Ries M. Increasing the HIFU ablation rate through an MRI-guided sonication strategy using shock waves: feasibility in thein vivoporcine liver. Phys Med Biol 2016; 61:1057-77. [DOI: 10.1088/0031-9155/61/3/1057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Copelan A, Hartman J, Chehab M, Venkatesan AM. High-Intensity Focused Ultrasound: Current Status for Image-Guided Therapy. Semin Intervent Radiol 2015; 32:398-415. [PMID: 26622104 PMCID: PMC4640913 DOI: 10.1055/s-0035-1564793] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Image-guided high-intensity focused ultrasound (HIFU) is an innovative therapeutic technology, permitting extracorporeal or endocavitary delivery of targeted thermal ablation while minimizing injury to the surrounding structures. While ultrasound-guided HIFU was the original image-guided system, MR-guided HIFU has many inherent advantages, including superior depiction of anatomic detail and superb real-time thermometry during thermoablation sessions, and it has recently demonstrated promising results in the treatment of both benign and malignant tumors. HIFU has been employed in the management of prostate cancer, hepatocellular carcinoma, uterine leiomyomas, and breast tumors, and has been associated with success in limited studies for palliative pain management in pancreatic cancer and bone tumors. Nonthermal HIFU bioeffects, including immune system modulation and targeted drug/gene therapy, are currently being explored in the preclinical realm, with an emphasis on leveraging these therapeutic effects in the care of the oncology patient. Although still in its early stages, the wide spectrum of therapeutic capabilities of HIFU offers great potential in the field of image-guided oncologic therapy.
Collapse
Affiliation(s)
- Alexander Copelan
- Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, Michigan
| | - Jason Hartman
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Monzer Chehab
- Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, Michigan
| | - Aradhana M. Venkatesan
- Section of Abdominal Imaging, Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
41
|
An Ultrasound Image-Based Dynamic Fusion Modeling Method for Predicting the Quantitative Impact of In Vivo Liver Motion on Intraoperative HIFU Therapies: Investigations in a Porcine Model. PLoS One 2015; 10:e0137317. [PMID: 26398366 PMCID: PMC4580572 DOI: 10.1371/journal.pone.0137317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/15/2015] [Indexed: 11/19/2022] Open
Abstract
Organ motion is a key component in the treatment of abdominal tumors by High Intensity Focused Ultrasound (HIFU), since it may influence the safety, efficacy and treatment time. Here we report the development in a porcine model of an Ultrasound (US) image-based dynamic fusion modeling method for predicting the effect of in vivo motion on intraoperative HIFU treatments performed in the liver in conjunction with surgery. A speckle tracking method was used on US images to quantify in vivo liver motions occurring intraoperatively during breathing and apnea. A fusion modeling of HIFU treatments was implemented by merging dynamic in vivo motion data in a numerical modeling of HIFU treatments. Two HIFU strategies were studied: a spherical focusing delivering 49 juxtapositions of 5-second HIFU exposures and a toroidal focusing using 1 single 40-second HIFU exposure. Liver motions during breathing were spatially homogenous and could be approximated to a rigid motion mainly encountered in the cranial-caudal direction (f = 0.20 Hz, magnitude > 13 mm). Elastic liver motions due to cardiovascular activity, although negligible, were detectable near millimeter-wide sus-hepatic veins (f = 0.96 Hz, magnitude < 1 mm). The fusion modeling quantified the deleterious effects of respiratory motions on the size and homogeneity of a standard "cigar-shaped" millimetric lesion usually predicted after a 5-second single spherical HIFU exposure in stationary tissues (Dice Similarity Coefficient: DSC < 45%). This method assessed the ability to enlarge HIFU ablations during respiration, either by juxtaposing "cigar-shaped" lesions with spherical HIFU exposures, or by generating one large single lesion with toroidal HIFU exposures (DSC > 75%). Fusion modeling predictions were preliminarily validated in vivo and showed the potential of using a long-duration toroidal HIFU exposure to accelerate the ablation process during breathing (from 0.5 to 6 cm3 · min(-1)). To improve HIFU treatment control, dynamic fusion modeling may be interesting for assessing numerically focusing strategies and motion compensation techniques in more realistic conditions.
Collapse
|
42
|
Bitton RR, Webb TD, Pauly KB, Ghanouni P. Improving thermal dose accuracy in magnetic resonance-guided focused ultrasound surgery: Long-term thermometry using a prior baseline as a reference. J Magn Reson Imaging 2015; 43:181-9. [PMID: 26119129 DOI: 10.1002/jmri.24978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/01/2015] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To investigate thermal dose volume (TDV) and non-perfused volume (NPV) of magnetic resonance-guided focused ultrasound (MRgFUS) treatments in patients with soft tissue tumors, and describe a method for MR thermal dosimetry using a baseline reference. MATERIALS AND METHODS Agreement between TDV and immediate post treatment NPV was evaluated from MRgFUS treatments of five patients with biopsy-proven desmoid tumors. Thermometry data (gradient echo, 3T) were analyzed over the entire course of the treatments to discern temperature errors in the standard approach. The technique searches previously acquired baseline images for a match using 2D normalized cross-correlation and a weighted mean of phase difference images. Thermal dose maps and TDVs were recalculated using the matched baseline and compared to NPV. RESULTS TDV and NPV showed between 47%-91% disagreement, using the standard immediate baseline method for calculating TDV. Long-term thermometry showed a nonlinear local temperature accrual, where peak additional temperature varied between 4-13°C (mean = 7.8°C) across patients. The prior baseline method could be implemented by finding a previously acquired matching baseline 61% ± 8% (mean ± SD) of the time. We found 7%-42% of the disagreement between TDV and NPV was due to errors in thermometry caused by heat accrual. For all patients, the prior baseline method increased the estimated treatment volume and reduced the discrepancies between TDV and NPV (P = 0.023). CONCLUSION This study presents a mismatch between in-treatment and post treatment efficacy measures. The prior baseline approach accounts for local heating and improves the accuracy of thermal dose-predicted volume.
Collapse
Affiliation(s)
- Rachel R Bitton
- School of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
| | - Taylor D Webb
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- School of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
| | - Pejman Ghanouni
- School of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
43
|
Konh B, Datla NV, Hutapea P. Feasibility of Shape Memory Alloy Wire Actuation for an Active Steerable Cannula. J Med Device 2015. [DOI: 10.1115/1.4029557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Needle insertion is used in many diagnostic and therapeutic percutaneous medical procedures such as brachytherapy, thermal ablations, and breast biopsy. Insufficient accuracy using conventional surgical cannulas motivated researchers to provide actuation forces to the cannula's body for compensating the possible errors of surgeons/physicians. In this study, we present the feasibility of using shape memory alloy (SMA) wires as actuators for an active steerable surgical cannula. A three-dimensional (3D) finite element (FE) model of the active steerable cannula was developed to demonstrate the feasibility of using SMA wires as actuators to bend the surgical cannula. The material characteristics of SMAs were simulated by defining multilinear elastic isothermal stress–strain curves that were generated through a matlab code based on the Brinson model. Rigorous experiments with SMA wires were done to determine the material properties as well as to show the capability of the code to predict a stabilized SMA transformation behavior with sufficient accuracy. In the FE simulation, birth and death method was used to achieve the prestrain condition on SMA wire prior to actuation. This numerical simulation was validated with cannula deflection experiments with developed prototypes of the active cannula. Several design parameters affecting the cannula's deflection such as the cannula's Young's modulus, the SMA's prestrain, and its offset from the neutral axis of the cannula were studied using the FE model. Real-time experiments with different prototypes showed that the quickest response and the maximum deflection were achieved by the cannula with two sections of actuation compared to a single section of actuation. The numerical and experimental studies showed that a highly maneuverable active cannulas can be achieved using the actuation of multiple SMA wires in series.
Collapse
Affiliation(s)
- Bardia Konh
- Department of Mechanical Engineering of Temple University, 1947 North 12th Street, Philadelphia, PA 19122 e-mail:
| | - Naresh V. Datla
- Department of Mechanical Engineering of Temple University, 1947 North 12th Street, Philadelphia, PA 19122 e-mail:
| | - Parsaoran Hutapea
- Associate Professor Department of Mechanical Engineering of Temple University, 1947 North 12th Street, Philadelphia, PA 19122 e-mail:
| |
Collapse
|
44
|
Konh B, Honarvar M, Hutapea P. Design optimization study of a shape memory alloy active needle for biomedical applications. Med Eng Phys 2015; 37:469-77. [DOI: 10.1016/j.medengphy.2015.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/05/2015] [Accepted: 02/28/2015] [Indexed: 11/15/2022]
|
45
|
Ebbini ES, ter Haar G. Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperthermia 2015; 31:77-89. [PMID: 25614047 DOI: 10.3109/02656736.2014.995238] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This paper reviews ultrasound imaging methods for the guidance of therapeutic focused ultrasound (USgFUS), with emphasis on real-time preclinical methods. Guidance is interpreted in the broadest sense to include pretreatment planning, siting of the FUS focus, real-time monitoring of FUS-tissue interactions, and real-time control of exposure and damage assessment. The paper begins with an overview and brief historical background of the early methods used for monitoring FUS-tissue interactions. Current imaging methods are described, and discussed in terms of sensitivity and specificity of the localisation of the FUS effects in both therapeutic and sub-therapeutic modes. Thermal and non-thermal effects are considered. These include cavitation-enhanced heating, tissue water boiling and cavitation. Where appropriate, USgFUS methods are compared with similar methods implemented using other guidance modalities, e.g. magnetic resonance imaging. Conclusions are drawn regarding the clinical potential of the various guidance methods, and the feasibility and current status of real-time implementation.
Collapse
Affiliation(s)
- Emad S Ebbini
- Electrical and Computer Engineering, University of Minnesota Twin Cities , Minneapolis, Minnesota , USA and
| | | |
Collapse
|
46
|
Zhang Y, Aubry JF, Zhang J, Wang Y, Roy J, Mata JF, Miller W, Dumont E, Xie M, Lee K, Zuo Z, Wintermark M. Defining the optimal age for focal lesioning in a rat model of transcranial HIFU. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:449-55. [PMID: 25542495 DOI: 10.1016/j.ultrasmedbio.2014.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 05/17/2023]
Abstract
This study aimed at determining the optimal age group for high-intensity focused ultrasound (HIFU) experiments for producing lesions in rats. Younger rats have thinner skulls, allowing for the acoustic waves to propagate easily through the skull without causing burns of the skin and brain surface. Younger rats however, have a smaller brain that can make HIFU focusing in the brain parenchyma challenging because of the focus size. In this study, we conducted transcranial HIFU sonications in rat pups of different ages (from 9 to 43 d) with a 1.5MHz MR compatible transducer. The electric power was selected to always reach a target temperature of at least 50°C in the parenchyma. The thickness of the skull and of the brain parenchyma was measured using T2-weighted MR imaging. Results showed that the thickness of the brain parenchyma increased quickly from P9 to P12, reaching 8.5 mm at P16, and then increasing gradually along with age. The skull thickness increased gradually from P9 to P26, and then more quickly after P30. The ratio between brain parenchyma thickness and skull thickness decreased gradually with age. For the pups at 30 d, the temperature in the brain tissue adjacent to the skull increased to 48.9°C, and those from the rodents older than 33 d reached 60°C or higher, which can produce undesired irreversible damage in this location. We conclude that young rats aged 16-26 d are optimal for experiments producing transcranial HIFU lesions in rats with an intact skull.
Collapse
Affiliation(s)
- Yanrong Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Neuroradiology Division, Department of Radiology, University of Virginia, Charlottesville, VA, USA
| | - Jean-François Aubry
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; ESPCI ParisTech, PSL Research University, Institut Langevin, Paris, France; CNRS, Institut Langevin, Paris, France; INSERM, Institut Langevin, Paris, France
| | - Junfeng Zhang
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA; Department of Anesthesiology, Shanghai Sixth Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yi Wang
- Departments of Neuroscience and Neurologic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Jack Roy
- Department of Radiology, University of Virginia, Charlottesville, VA, USA
| | - Jaime F Mata
- Department of Radiology, University of Virginia, Charlottesville, VA, USA
| | - Wilson Miller
- Department of Radiology, University of Virginia, Charlottesville, VA, USA
| | | | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kevin Lee
- Departments of Neuroscience and Neurologic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Max Wintermark
- Neuroradiology Division, Department of Radiology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
47
|
Staruch RM, Hynynen K, Chopra R. Hyperthermia-mediated doxorubicin release from thermosensitive liposomes using MR-HIFU: Therapeutic effect in rabbit Vx2 tumours. Int J Hyperthermia 2015; 31:118-33. [DOI: 10.3109/02656736.2014.992483] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
de Bever J, Todd N, Payne A, Christensen DA, Roemer RB. Adaptive model-predictive controller for magnetic resonance guided focused ultrasound therapy. Int J Hyperthermia 2014; 30:456-70. [DOI: 10.3109/02656736.2014.968223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Freyhardt P, Heckmann L, Beck A, Stolzenburg N, Schnorr J, Kamp J, Rinnenthal JL, Hamm B, Günther RW, Streitparth F. MR-guided high-focused ultrasound for renal sympathetic denervation-a feasibility study in pigs. J Ther Ultrasound 2014; 2:12. [PMID: 25232481 PMCID: PMC4160576 DOI: 10.1186/2050-5736-2-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Background Renal sympathetic denervation has recently gained clinical relevance for the treatment of therapy-resistant hypertension. Denervation is currently mainly performed using catheter-based transarterial radiofrequency ablation of periarterial sympathetic nerve fibers. Since this approach has numerous limitations, we conducted a study to evaluate the feasibility, safety, and efficacy of magnetic resonance-guided high-focused ultrasound (MRgHiFUS) for renal sympathetic denervation in pigs as an alternative to catheter-based ablation. Methods Renal periarterial MRgHiFUS was performed under general anesthesia in ten pigs. Blood pressure measurements and magnetic resonance imaging (MRI) of the kidneys, renal arteries, and surrounding structures were obtained immediately before and after the interventions and after 4 weeks. Histological examinations of periarterial tissues and determination of renal norepinephrine (NE) concentration were performed to assess treatment efficacy. Results and discussion In each pig, 9.8 ± 2.6 sonications with a mean energy deposition of 2,670 ± 486 J were performed. The procedure was well tolerated by all pigs. No major complications occurred. MRgHiFUS induced periarterial edema in three pigs, but only one pig showed corresponding histological changes. The NE level of the treated kidney was lower in five pigs (-8% to -38%) compared to the untreated side. Overall, there was no significant difference between the NE values of both kidneys in any of the treated pigs. Postinterventional MRI indicated absorption of ultrasound energy at the transverse process and fascia. Conclusion MRgHiFUS had some thermal periarterial effects but failed to induce renal denervation. Insufficient energy deposition is most likely attributable to a small acoustic window with beam path impediment in the porcine model. Since HiFUS treatment in humans is expected to be easier to perform due to better access to renal sympathetic nerves, further studies of this method are desirable to investigate the potential of MRgHiFUS as an alternative for patients not suitable for catheter-based renal sympathicolysis.
Collapse
Affiliation(s)
- Patrick Freyhardt
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Lilian Heckmann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Alexander Beck
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Nicola Stolzenburg
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Julia Kamp
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Jan L Rinnenthal
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Rolf W Günther
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Florian Streitparth
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| |
Collapse
|
50
|
Dillon CR, Payne A, Christensen DA, Roemer RB. The accuracy and precision of two non-invasive, magnetic resonance-guided focused ultrasound-based thermal diffusivity estimation methods. Int J Hyperthermia 2014; 30:362-71. [PMID: 25198092 DOI: 10.3109/02656736.2014.945497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The use of correct tissue thermal diffusivity values is necessary for making accurate thermal modelling predictions during magnetic resonance-guided focused ultrasound (MRgFUS) treatment planning. This study evaluates the accuracy and precision of two non-invasive thermal diffusivity estimation methods, a Gaussian temperature method and a Gaussian specific absorption rate (SAR) method. MATERIALS AND METHODS Both methods utilise MRgFUS temperature data obtained during cooling following a short (<25 s) heating pulse. The Gaussian SAR method can also use temperatures obtained during heating. Experiments were performed at low heating levels (ΔT∼10 °C) in ex vivo pork muscle and in vivo rabbit back muscle. The non-invasive MRgFUS thermal diffusivity estimates were compared with measurements from two standard invasive methods. RESULTS Both non-invasive methods accurately estimated thermal diffusivity when using MR temperature cooling data (overall ex vivo error <6%, in vivo <12%). Including heating data in the Gaussian SAR method further reduced errors (ex vivo error <2%, in vivo <3%). The significantly lower standard deviation values (p < 0.03) of the Gaussian SAR method indicated that it had better precision than the Gaussian temperature method. CONCLUSIONS With repeated sonications, either MR-based method could provide accurate thermal diffusivity values for MRgFUS therapies. Fitting to more data simultaneously likely made the Gaussian SAR method less susceptible to noise, and using heating data helped it converge more consistently to the FUS fitting parameters and thermal diffusivity. These effects led to the improved precision of the Gaussian SAR method.
Collapse
|