1
|
Zhang F, Hu J, Xiao Z, Lin C, Huang Z, Wang N, Liu Y. Spinal cord cross sign: a potential marker for hereditary spastic paraplegia type 5. Neuroradiology 2025; 67:1081-1090. [PMID: 39853345 DOI: 10.1007/s00234-025-03543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
PURPOSE Spastic paraplegia type 5 (SPG5) is a rare neurodegenerative disease diagnosed primarily through genetic testing.We identified a specific spinal cord sign on conventional MR imaging to help narrow the scope of genetic screening. METHODS In 25 patients with SPG5 and 21 healthy controls (HCs), the spinal cord cross sign was evaluated on T2*-weighted imaging. The morphological and signal characteristics of the dorsal column (DC), ventral funiculi (VF), dorsal horn (DH), ventral horn (VH), and intermediate zone (IMZ) were assessed. Differences in fractional anisotropy (FA) values within specific regions between HC and SPG5 were tested using Student's t-test. Spearman correlation was used to evaluate associations between cross-sign scores, FA values, and clinical indicators. RESULTS The cross sign was detected in the cervical spinal cord of all SPG5 patients. The occurrence of T2 hyperintensity in the DC, VF and IMZ was 100%,100% and 88%,respectively. Bilateral VH morphology was normal in 14.4% of cases, blurred in 49.6%, and absent in 36%.Bilateral DH morphology was normal in 13.6%, blurred in 56%, and absent in 30.4%. FA values were reduced in these spinal cord regions. Cross-sign scores were negatively correlated with FA values in both grey (r = -0.70~-0.37) and white matter (r = -0.78~-0.70). Cross-sign scores were positively correlated with Spastic Paraplegia Rating Scale (r = 0.57) and disease duration (r = 0.42). CONCLUSION The spinal cord cross sign was a potential imaging marker for SPG5. Cross-sign scores were associated with disease duration and severity in SPG5 patients. TRIAL REGISTRATION A Registered Cohort Study on Spastic Paraplegia,NCT04006418 Registered 1 July 2019, https://clinicaltrials.gov/study/NCT04006418 .
Collapse
Affiliation(s)
- Fan Zhang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Rd., Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Jianping Hu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Rd., Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chenlin Lin
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Rd., Taijiang District, Fuzhou, 350005, Fujian, China
| | - Zhuoting Huang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Rd., Taijiang District, Fuzhou, 350005, Fujian, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of The First Affiliated, Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ying Liu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Rd., Taijiang District, Fuzhou, 350005, Fujian, China.
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China.
| |
Collapse
|
2
|
Al-Shaari H, Fulford J, Heales CJ. Diffusion tensor imaging within the healthy cervical spinal cord: Within- participants reliability and measurement error. Magn Reson Imaging 2024; 109:56-66. [PMID: 38458552 DOI: 10.1016/j.mri.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is a promising technique for the visualization of the cervical spinal cord (CSC) in vivo. It provides information about the tissue structure of axonal white matter, and it is thought to be more sensitive than other MR imaging techniques for the evaluation of damage to tracts in the spinal cord. AIM The purpose of this study was to determine the within-participants reliability and error magnitude of measurements of DTI metrics in healthy human CSC. METHODS A total of twenty healthy controls (10 male, mean age: 33.9 ± 3.5 years, 10 females, mean age: 47.5 ± 14.4 years), with no family history of any neurological disorders or a contraindication to MRI scanning were recruited over a period of two months. Each participant was scanned twice with an MRI 3 T scanner using standard DTI sequences. Spinal Cord Toolbox (SCT) software was used for image post-processing. Data were first corrected for motion artefact, then segmented, registered to a template, and then the DTI metrics were computed. The within-participants coefficients of variation (CV%), the single and average within-participants intraclass correlation coefficients (ICC) and Bland-Altman plots for WM, VC, DC and LC fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were determined for the cervical spinal cord (between the 2nd and 5th cervical vertebrae). RESULTS DTI metrics showed poor to excellent within-participants reliability for both single and average ICC and moderate to high reproducibility for CV%, all variation dependent on the location of the ROI. The BA plots showed good within-participants agreement between the scan-rescan values. CONCLUSION Results from this reliability study demonstrate that clinical trials using the DTI technique are feasible and that DTI, in particular regions of the cord is suitable for use for the monitoring of degenerative WM changes.
Collapse
Affiliation(s)
- Hussein Al-Shaari
- Diagnostic Radiology Department, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; Department of Medical Imaging, Faculty of Health and Life Sciences, The University of Exeter, South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter EX1 2LU, UK.
| | - Jon Fulford
- Department of Medical Imaging, Faculty of Health and Life Sciences, The University of Exeter, South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter EX1 2LU, UK.
| | - C J Heales
- Department of Medical Imaging, Faculty of Health and Life Sciences, The University of Exeter, South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter EX1 2LU, UK.
| |
Collapse
|
3
|
Schilling KG, Combes AJE, Ramadass K, Rheault F, Sweeney G, Prock L, Sriram S, Cohen-Adad J, Gore JC, Landman BA, Smith SA, O'Grady KP. Influence of preprocessing, distortion correction and cardiac triggering on the quality of diffusion MR images of spinal cord. Magn Reson Imaging 2024; 108:11-21. [PMID: 38309376 PMCID: PMC11218893 DOI: 10.1016/j.mri.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/05/2024]
Abstract
Diffusion MRI of the spinal cord (SC) is susceptible to geometric distortion caused by field inhomogeneities, and prone to misalignment across time series and signal dropout caused by biological motion. Several modifications of image acquisition and image processing techniques have been introduced to overcome these artifacts, but their specific benefits are largely unproven and warrant further investigations. We aim to evaluate two specific aspects of image acquisition and processing that address image quality in diffusion studies of the spinal cord: susceptibility corrections to reduce geometric distortions, and cardiac triggering to minimize motion artifacts. First, we evaluate 4 distortion preprocessing strategies on 7 datasets of the cervical and lumbar SC and find that while distortion correction techniques increase geometric similarity to structural images, they are largely driven by the high-contrast cerebrospinal fluid, and do not consistently improve the geometry within the cord nor improve white-to-gray matter contrast. We recommend at a minimum to perform bulk-motion correction in preprocessing and posit that improvements/adaptations are needed for spinal cord distortion preprocessing algorithms, which are currently optimized and designed for brain imaging. Second, we design experiments to evaluate the impact of removing cardiac triggering. We show that when triggering is foregone, images are qualitatively similar to triggered sequences, do not have increased prevalence of artifacts, and result in similar diffusion tensor indices with similar reproducibility to triggered acquisitions. When triggering is removed, much shorter acquisitions are possible, which are also qualitatively and quantitatively similar to triggered sequences. We suggest that removing cardiac triggering for cervical SC diffusion can be a reasonable option to save time with minimal sacrifice to image quality.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Anna J E Combes
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karthik Ramadass
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Francois Rheault
- Medical Imaging and Neuroinformatic (MINi) Lab, Department of Computer Science, University of Sherbrooke, Canada
| | - Grace Sweeney
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Logan Prock
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Subramaniam Sriram
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montreal, QC, Canada; Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - John C Gore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kristin P O'Grady
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Thygesen MM, Entezari S, Houlind N, Nielsen TH, Olsen NØ, Nielsen TD, Skov M, Borgstedt-Bendixen J, Tankisi A, Rasmussen M, Einarsson HB, Agger P, Orlowski D, Dyrskog SE, Thorup L, Pedersen M, Rasmussen MM. A 72-h sedated porcine model of traumatic spinal cord injury. BRAIN & SPINE 2024; 4:102813. [PMID: 38681174 PMCID: PMC11052900 DOI: 10.1016/j.bas.2024.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 05/01/2024]
Abstract
Introduction There is an increasing focus on the prevention of secondary injuries following traumatic spinal cord injury (TSCI), especially through improvement of spinal cord perfusion and immunological modulation. Such therapeutic strategies require translational and controlled animal models of disease progression of the acute phases of human TSCI. Research question Is it possible to establish a 72-h sedated porcine model of incomplete thoracic TSCI, enabling controlled use of continuous, invasive, and non-invasive modalities during the entire sub-acute phase of TSCI? Material and methods A sham-controlled trial was conducted to establish the model, and 10 animals were assigned to either sham or TSCI. All animals underwent a laminectomy, and animals in the TSCI group were subjected to a weight-drop injury. Animals were then kept sedated for 72 h. The amount of injury was assessed by ex-vivo measures MRI-based fiber tractography, histology and immunohistochemistry. Results In all animals, we were successful in maintaining sedation for 72 h without comprising vital physiological parameters. The MRI-based fiber tractography showed that all TSCI animals revealed a break in the integrity of spinal neurons, whereas histology demonstrated no transversal sections of the spine with complete injury. Notably, some animals displayed signs of secondary ischemic tissue in the cranial and caudal sections. Discussion and conclusions This study succeeded in producing a porcine model of incomplete TSCI, which was physiologically stable up to 72 h. We believe that this TSCI model will constitute a potential translational model to study the pathophysiology secondary to TSCI in humans.
Collapse
Affiliation(s)
- Mathias Møller Thygesen
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Seyar Entezari
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Nanna Houlind
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Teresa Haugaard Nielsen
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Nicholas Østergaard Olsen
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Tim Damgaard Nielsen
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Mathias Skov
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | | | - Alp Tankisi
- Department of Anesthesiology, Aarhus University Hospital, Denmark
| | - Mads Rasmussen
- Department of Anesthesiology, Aarhus University Hospital, Denmark
| | | | - Peter Agger
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | | | | | - Line Thorup
- Department of Intensive Care, Aarhus University Hospital, Denmark
| | - Michael Pedersen
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Mikkel Mylius Rasmussen
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
| |
Collapse
|
5
|
Talbott JF, Shah V, Ye AQ. Diffusion Imaging of the Spinal Cord: Clinical Applications. Radiol Clin North Am 2024; 62:273-285. [PMID: 38272620 DOI: 10.1016/j.rcl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Spinal cord pathologic condition often presents as a neurologic emergency where timely and accurate diagnosis is critical to expedite appropriate treatment and minimize severe morbidity and even mortality. MR imaging is the gold standard imaging technique for diagnosing patients with suspected spinal cord pathologic condition. This review will focus on the basic principles of diffusion imaging and how spinal anatomy presents technical challenges to its application. Both the promises and shortcomings of spinal diffusion imaging will then be explored in the context of several clinical spinal cord pathologies for which diffusion has been evaluated.
Collapse
Affiliation(s)
- Jason F Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Avenue, Room 1X57, San Francisco, CA 94110, USA; Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital.
| | - Vinil Shah
- Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, 505 Parnassus Avenue, #M-391, San Francisco, CA 94143, USA
| | - Allen Q Ye
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Avenue, Room 1X57, San Francisco, CA 94110, USA; Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, 505 Parnassus Avenue, #M-391, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Xu H, Zhou J, Ling C, Xu Y, Tang Z, Cai Y, Li J, Hu Z, Qiu Y, Zhu Z, Liu Z. Potential impairment of spinal cord around the apical vertebral level in hyperkyphotic patients: findings from diffusion tensor imaging. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1256-1264. [PMID: 38340177 DOI: 10.1007/s00586-024-08144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE To evaluate the neuronal metrics/microstructure of the spinal cord around apical region in patients with hyperkyphosis using diffusion tensor imaging (DTI). METHODS Thirty-seven patients with hyperkyphosis aged 45.5 ± 19.6 years old who underwent 3.0 T magnetic resonance imaging (MRI) examination with DTI sequence were prospectively enrolled from July 2022 to July 2023. Patients were divided into three groups according to spinal cord/ cerebrospinal fluid (CSF) architecture on sagittal-T2 MRI of the thoracic apex (the axial spinal cord classification): Group A-circular cord with visible CSF, Group B-circular cord without visible CSF at apical dorsal, and Group C-spinal cord deformed without intervening CSF. The fractional anisotropy (FA) values acquired from DTI were compared among different groups. Correlations between DTI parameters and global kyphosis (GK)/sagittal deformity angular ratio (sagittal DAR) were evaluated using Pearson correlation coefficients. RESULTS In all patients, FA values were significantly lower at apical level as compared with those at one level above or below the apex (0.548 ± 0.070 vs. 0.627 ± 0.056 versus 0.624 ± 0.039, P < 0.001). At the apical level, FA values were significantly lower in Group C than those in Group B (0.501 ± 0.052 vs. 0.598 ± 0.061, P < 0.001) and Group A (0.501 ± 0.052 vs. 0.597 ± 0.019, P < 0.001). Moreover, FA values were significantly lower in symptomatic group than those in non-symptomatic group (0.498 ± 0.049 v. 0.578 ± 0.065, P < 0.001). Pearson correlation analysis showed that GK (r2 = 0.3945, P < 0.001) and sagittal DAR (r2 = 0.3079, P < 0.001) were significantly correlation with FA values at apical level. CONCLUSION In patients with hyperkyphosis, the FA of spinal cord at apical level was associated with the neuronal metrics/microstructure of the spinal cord. Furthermore, the DTI parameter of FA at apical level was associated with GK and sagittal DAR. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Hui Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jin Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Ling
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yanjie Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ziyang Tang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yinqi Cai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zongshan Hu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Fournel J, Hermier M, Martin A, Gamondès D, Tommasino E, Broussolle T, Morgado A, Baassiri W, Cotton F, Berthezène Y, Bani-Sadr A. It Looks Like a Spinal Cord Tumor but It Is Not. Cancers (Basel) 2024; 16:1004. [PMID: 38473365 DOI: 10.3390/cancers16051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Differentiating neoplastic from non-neoplastic spinal cord pathologies may be challenging due to overlapping clinical and radiological features. Spinal cord tumors, which comprise only 2-4% of central nervous system tumors, are rarer than non-tumoral myelopathies of inflammatory, vascular, or infectious origins. The risk of neurological deterioration and the high rate of false negatives or misdiagnoses associated with spinal cord biopsies require a cautious approach. Facing a spinal cord lesion, prioritizing more common non-surgical myelopathies in differential diagnoses is essential. A comprehensive radiological diagnostic approach is mandatory to identify spinal cord tumor mimics. The diagnostic process involves a multi-step approach: detecting lesions primarily using MRI techniques, precise localization of lesions, assessing lesion signal intensity characteristics, and searching for potentially associated anomalies at spinal cord and cerebral MRI. This review aims to delineate the radiological diagnostic approach for spinal cord lesions that may mimic tumors and briefly highlight the primary pathologies behind these lesions.
Collapse
Affiliation(s)
- Julien Fournel
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Marc Hermier
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Anna Martin
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Delphine Gamondès
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Emanuele Tommasino
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Théo Broussolle
- Department of Spine and Spinal Cord Neurosurgery, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Alexis Morgado
- Department of Spine and Spinal Cord Neurosurgery, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Wassim Baassiri
- Department of Spine and Spinal Cord Neurosurgery, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Francois Cotton
- CREATIS Laboratory, CNRS UMR 5220, INSERM U1294, Claude Bernard Lyon I University, 7 Avenue Jean Capelle, 69100 Villeurbanne, France
- Department of Radiology, South Lyon Hospital, Hospices Civils de Lyon, 165 Chemin du Grand Revoyet, 69495 Pierre-Bénite, France
| | - Yves Berthezène
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
- CREATIS Laboratory, CNRS UMR 5220, INSERM U1294, Claude Bernard Lyon I University, 7 Avenue Jean Capelle, 69100 Villeurbanne, France
| | - Alexandre Bani-Sadr
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
- CREATIS Laboratory, CNRS UMR 5220, INSERM U1294, Claude Bernard Lyon I University, 7 Avenue Jean Capelle, 69100 Villeurbanne, France
| |
Collapse
|
8
|
Atchut KA, Shetty L, Ravichandran K. Role of diffusion tensor imaging in stenotic and non-stenotic spinal canal. J Med Imaging Radiat Sci 2023; 54:699-706. [PMID: 37891147 DOI: 10.1016/j.jmir.2023.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND AND PURPOSE Cervical Spondylotic Myelopathy (CSM) is a gradually escalating spinal cord disturbance set in motion by the degenerative narrowing of the vertebral canal. Routine MRI may fail to detect the subtle early alterations of the cord. MRI Diffusion Tensor Imaging (DTI) possesses the potential to detect these changes. This study intends to estimate the potential of the DTI technique in non-stenotic & stenotic spinal canals in individuals affected with CSM. METHODOLOGY Sixty-four subjects who met the requirements of the inclusion criteria were incorporated into the investigation. All subjects underwent routine MRI sequences in addition to DTI of the cervical spine region. Scalars such as Fractional Anisotropy (FA), besides Apparent Diffusion Coefficient (ADC), were computed at each cervical intervertebral fibrocartilaginous disc level for all subjects. DTI fiber tractography was then performed to qualitatively assess the microstructural integrity of the tracts. RESULTS A noteworthy difference (p<0.05) was seen in the FA parameter and ADC parameter values between the stenotic and non-stenotic groups, with the non-stenotic group having a higher mean FA and a lower ADC than the stenotic group (at the level of stenosis). A significant difference in age was seen between both groups, with most of the patients in the stenotic group belonging to 40 years and above. Tractography helped in demonstrating the morphology of the fiber tracts. CONCLUSION DTI parameters, namely FA and ADC, are sensitive to damage to the white matter and can be used to detect microstructural changes in the cord. However, standardization of the protocol is necessary when imaging the spinal canal.
Collapse
Affiliation(s)
- Kauthankar Akshada Atchut
- Department of Radiodiagnosis and Imaging, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Lathika Shetty
- Department of Radiodiagnosis and Imaging, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Kayalvizhi Ravichandran
- Medical Imaging Technology, Department of Radiodiagnosis and Imaging, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India.
| |
Collapse
|
9
|
Porcine Model of the Growing Spinal Cord-Changes in Diffusion Tensor Imaging Parameters. Animals (Basel) 2023; 13:ani13040565. [PMID: 36830353 PMCID: PMC9951717 DOI: 10.3390/ani13040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging (MRI) technique that has promising applications for the objective assessment of the microstructure of the spinal cord. This study aimed to verify the parameters obtained using DTI change during the growth process. We also wanted to identify if the DTI values change on the course of the spinal cord. The model organism was a healthy growing porcine spinal cord (19 pigs, Polish White, weight 24-120 kg, mean 48 kg, median 48 kg, age 2.5-11 months, mean 5 months, median 5.5 months). DTI parameters were measured in three weight groups: up to 29 kg (five pigs), 30-59 kg (six pigs), and from 60 kg up (eight pigs). DTI was performed with a 1.5 Tesla magnetic resonance scanner (Philips, Ingenia). Image post-processing was done using the Fiber Track package (Philips Ingenia workstation) by manually drawing the regions of interest (nine ROIs). The measurements were recorded for three sections: the cervical, thoracolumbar and lumbar segments of the spinal cord at the C4/C5, Th13/L1, and L4/L5 vertebrae levels. In each case, one segment was measured cranially and one caudally from the above-mentioned places. The values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were obtained for each ROIs and compared. It is shown that there is a correlation between age, weight gain, and change in FA and ADC parameters. Moreover, it is noted that, with increasing weight and age, the FA parameter increases and ADC decreases, whereas the FA and ADC measurement values did not significantly change between the three sections of the spinal cord. These findings could be useful in determining the reference values for the undamaged spinal cords of animals and growing humans.
Collapse
|
10
|
Martín-Noguerol T, Barousse R, Wessell DE, Rossi I, Luna A. A handbook for beginners in skeletal muscle diffusion tensor imaging: physical basis and technical adjustments. Eur Radiol 2022; 32:7623-7631. [PMID: 35554647 DOI: 10.1007/s00330-022-08837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) of skeletal muscle is routinely performed using morphological sequences to acquire anatomical information. Recently, there is an increasing interest in applying advanced MRI techniques that provide pathophysiologic information for skeletal muscle evaluation to complement standard morphologic information. Among these advanced techniques, diffusion tensor imaging (DTI) has emerged as a potential tool to explore muscle microstructure. DTI can noninvasively assess the movement of water molecules in well-organized tissues with anisotropic diffusion, such as skeletal muscle. The acquisition of DTI studies for skeletal muscle assessment requires specific technical adjustments. Besides, knowledge of DTI physical basis and skeletal muscle physiopathology facilitates the evaluation of this advanced sequence and both image and parameter interpretation. Parameters derived from DTI provide a quantitative assessment of muscle microstructure with potential to become imaging biomarkers of normal and pathological skeletal muscle. KEY POINTS: • Diffusion tensor imaging (DTI) allows to evaluate the three-dimensional movement of water molecules inside biological tissues. • The skeletal muscle structure makes it suitable for being evaluated with DTI. • Several technical adjustments have to be considered for obtaining robust and reproducible DTI studies for skeletal muscle assessment, minimizing potential artifacts.
Collapse
Affiliation(s)
- Teodoro Martín-Noguerol
- MRI Section, Radiology Department, SERCOSA, HT Médica, Carmelo Torres 2, 23007, Jaén, Spain.
| | | | | | | | - Antonio Luna
- MRI Section, Radiology Department, SERCOSA, HT Médica, Carmelo Torres 2, 23007, Jaén, Spain
| |
Collapse
|
11
|
Joers JM, Adanyeguh IM, Deelchand DK, Hutter DH, Eberly LE, Iltis I, Bushara KO, Lenglet C, Henry PG. Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun 2022; 4:fcac246. [PMID: 36300142 PMCID: PMC9581897 DOI: 10.1093/braincomms/fcac246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/04/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023] Open
Abstract
Friedreich ataxia is the most common hereditary ataxia. Atrophy of the spinal cord is one of the hallmarks of the disease. MRI and magnetic resonance spectroscopy are powerful and non-invasive tools to investigate pathological changes in the spinal cord. A handful of studies have reported cross-sectional alterations in Friedreich ataxia using MRI and diffusion MRI. However, to our knowledge no longitudinal MRI, diffusion MRI or MRS results have been reported in the spinal cord. Here, we investigated early-stage cross-sectional alterations and longitudinal changes in the cervical spinal cord in Friedreich ataxia, using a multimodal magnetic resonance protocol comprising morphometric (anatomical MRI), microstructural (diffusion MRI), and neurochemical (1H-MRS) assessments.We enrolled 28 early-stage individuals with Friedreich ataxia and 20 age- and gender-matched controls (cross-sectional study). Disease duration at baseline was 5.5 ± 4.0 years and Friedreich Ataxia Rating Scale total neurological score at baseline was 42.7 ± 13.6. Twenty-one Friedreich ataxia participants returned for 1-year follow-up, and 19 of those for 2-year follow-up (cohort study). Each visit consisted in clinical assessments and magnetic resonance scans. Controls were scanned at baseline only. At baseline, individuals with Friedreich ataxia had significantly lower spinal cord cross-sectional area (-31%, P = 8 × 10-17), higher eccentricity (+10%, P = 5 × 10-7), lower total N-acetyl-aspartate (tNAA) (-36%, P = 6 × 10-9) and higher myo-inositol (mIns) (+37%, P = 2 × 10-6) corresponding to a lower ratio tNAA/mIns (-52%, P = 2 × 10-13), lower fractional anisotropy (-24%, P = 10-9), as well as higher radial diffusivity (+56%, P = 2 × 10-9), mean diffusivity (+35%, P = 10-8) and axial diffusivity (+17%, P = 4 × 10-5) relative to controls. Longitudinally, spinal cord cross-sectional area decreased by 2.4% per year relative to baseline (P = 4 × 10-4), the ratio tNAA/mIns decreased by 5.8% per year (P = 0.03), and fractional anisotropy showed a trend to decrease (-3.2% per year, P = 0.08). Spinal cord cross-sectional area correlated strongly with clinical measures, with the strongest correlation coefficients found between cross-sectional area and Scale for the Assessment and Rating of Ataxia (R = -0.55, P = 7 × 10-6) and between cross-sectional area and Friedreich ataxia Rating Scale total neurological score (R = -0.60, P = 4 × 10-7). Less strong but still significant correlations were found for fractional anisotropy and tNAA/mIns. We report here the first quantitative longitudinal magnetic resonance results in the spinal cord in Friedreich ataxia. The largest longitudinal effect size was found for spinal cord cross-sectional area, followed by tNAA/mIns and fractional anisotropy. Our results provide direct evidence that abnormalities in the spinal cord result not solely from hypoplasia, but also from neurodegeneration, and show that disease progression can be monitored non-invasively in the spinal cord.
Collapse
Affiliation(s)
- James M Joers
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Isaac M Adanyeguh
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Diane H Hutter
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isabelle Iltis
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Khalaf O Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Nanda G, Jain P, Suman A, Mahajan H. Role of diffusion tensor imaging and tractography in spinal cord injury. J Clin Orthop Trauma 2022; 33:101997. [PMID: 36118562 PMCID: PMC9475303 DOI: 10.1016/j.jcot.2022.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Spinal cord injuries pose grave medical and socioeconomic burdens warranting measures for early diagnosis, triaging, prognostication and therapeutics. Imaging has since long played a pivotal role in this regard, with continuing research and technological advancements opening newer frontiers. One such advanced Magnetic resonance (MR) technique is Diffusion tensor imaging (DTI) which assesses cord microstructure by tracking the movement of water molecules in biological tissues. DTI utilizes the principle of anisotropy exhibited by the normal compact white matter (WM) tracts of the cord, in which direction-dependent water molecular motion is seen along the axonal axis. Disruption of this complex structure in response to injury alters the movement of these molecules, interrupting anisotropy and thereby DTI metrics. Evaluation of DTI images can be done both by quantitative indices, of which fractional anisotropy (FA) and mean diffusivity (MD) are the most commonly used and by qualitative fiber tracking (tractography) methods in which three-dimensional WM tracts are reconstructed by algorithmic post-processing. Reduced FA is consistently seen at injury sites as a direct consequence of disturbance of anisotropy. Diffusivity values are however more variable with both high and low values recorded across studies. 3D tractography images allow visual assessment of cord integrity, morphology, and orientation. Significant correlation is found between DTI parameters and various spinal injury scores. Furthermore, DTI also helps in accurate lesion mapping and in assessing cord changes distant from injury epicenter providing a holistic evaluation. From its inception, consistent progress in the understanding and application of DTI has effectuated its clinical utility and impact. Incorporation into day-to-day diagnostics is however still challenging, due to suboptimal image acquisition, difficult post-processing, and lack of standardized protocols & image interpretation guidelines. Further research with technical validation, development of normative and disease data sets, and histological confirmation will help establish this novel technique in routine diagnostics.
Collapse
Affiliation(s)
| | - Pooja Jain
- Mahajan Imaging, C6/8 SDA, New Delhi, India
| | | | | |
Collapse
|
13
|
Park GS, Kim TU, Lee SJ, Hyun JK, Kim SY. Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography. Ann Rehabil Med 2022; 46:172-184. [PMID: 36070999 PMCID: PMC9452286 DOI: 10.5535/arm.22053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To investigate the clinical usefulness of diffusion tensor imaging (DTI) and tractography in the prediction of outcomes after traumatic cervical spinal cord injury (SCI) and to assess whether the predictability is different between DTI and tractography administered before and after surgery. Methods Sixty-one subjects with traumatic cervical SCI were randomly assigned to preop or postop groups and received DTI accordingly. Among the patients who had DTI before surgery, we assigned 10 patients who had received repeated DTI examinations at 8 weeks after injury to the follow-up group. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were obtained from DTI, and imaginary fiber and crossing fiber numbers were calculated from the tractography. Neurological status and functional status were assessed at 4 and 8 weeks after SCI. Results The neurologic and functional statuses of both groups improved after 4 weeks. Out of the initial 61 patients who were enrolled in the study, the failure rate of DTI image analysis was significantly higher in the postop group (n=17, 41.5%) than in the preop group (n=6, 20%). The FA values and fiber numbers in the preop group tended to be higher than those in the postop group, whereas ADC values were lower in the preop group. When comparing the tractographic findings in the follow-up group, imaginary fiber numbers at the C6 and C7 levels and crossing fiber numbers from the C3 to C6 levels were significantly decreased after surgery. Several DTI and tractographic parameters (especially the ADC value at the C4 level and imaginary fiber numbers at the C6 level) showed significant correlations with neurologic and functional statuses in both the preop and postop groups. These findings were most prominent when DTI and physical examination were simultaneously performed. Conclusion Preoperative DTI and tractography demonstrated better FA and ADC values with lower interpretation failure rates than those obtained after surgery, whereas postoperative data significantly reflected the patient’s clinical state at the time of evaluation. Therefore, DTI and tractography could be useful in predicting clinical outcomes after traumatic cervical SCI and should be interpreted separately before and after spine surgery.
Collapse
|
14
|
Alami Marrouni K, Duquette P. Clinical insights on the spasticity-plus syndrome in multiple sclerosis. Front Neurol 2022; 13:958665. [PMID: 35989901 PMCID: PMC9390998 DOI: 10.3389/fneur.2022.958665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kanza Alami Marrouni
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Pierre Duquette
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurology, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
- *Correspondence: Pierre Duquette
| |
Collapse
|
15
|
The Value of DTI Parameters in Predicting Postoperative Spinal Cord Function Fluctuations in Patients with High Cervical Disc Tumors. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4957275. [PMID: 35345520 PMCID: PMC8957441 DOI: 10.1155/2022/4957275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
Objective To explore the characteristics of magnetic resonance diffusion tensor imaging (DTI) parameters in patients with high cervical spinal myeloma and the evaluation of postoperative spinal cord function. Methods In recent years, 42 patients with high cervical spine myeloma were selected as the observation group, and 42 healthy volunteers were selected as the control group during the same period. The apparent dispersion coefficient (ADC), the fractional anisotropy (FA), the number of fiber bundles (FT), and the fiber bundle ratio (FTR) were compared between the two groups. The correlation between the ADC, FA, FT, FTR, and the International Standard for Neurological Classification of Spinal Cord Injury (ISNCSCI) score in the observation group were analyzed. Spinal cord function was evaluated using the Japanese Orthopaedic Association Score (JOA). Logistic regression model was used to analyze the factors affecting the recovery of spinal cord function after surgery. The receiver operating characteristic curve (ROC) was used to analyze the value of ADC, FA, FT, FTR1, and FTR2 in predicting the recovery of spinal cord function. Results The ADCs of the lesion layer and lower layer of the observation group were higher than the middle and lower layers of the control group, the FA and FT were lower than the middle and lower layers of the control group, and FTR1 and FTR2 were lower than those of the control group (P < 0.05). The ADC of the lesion layer in the observation group was negatively correlated with ISNCSCI score, and the FA, FT, FTR1, FTR2, and ISNCSCI scores were positively correlated (P < 0.05). Three months after the operation, JOA was used to evaluate the spinal cord function, which was excellent in 23 cases and poor in 19 cases. Logistic regression model analysis showed that after the ISNCSCI score was controlled, the increase in ADC and the decrease in FA, FT, FTR1, and FTR2 of the lesion layer were independent risk factors for poor postoperative body function recovery (P < 0.05). ROC analysis showed that the combination of ADC, FA, FT, FTR1, and FTR2 of the lesion layer predicted the AUC of spinal cord functional recovery was 0.941, which was better than the single prediction (P < 0.05). Conclusion The abnormal DTI parameter values of patients with high cervical spinal myeloma can better reflect the lack of spinal cord function, and they can effectively predict the recovery of the patient's body function after surgery, providing a reference for clinical diagnosis and treatment.
Collapse
|
16
|
Martín-Noguerol T, Barousse R, Luna A, Socolovsky M, Górriz JM, Gómez-Río M. New insights into the evaluation of peripheral nerves lesions: a survival guide for beginners. Neuroradiology 2022; 64:875-886. [PMID: 35212785 DOI: 10.1007/s00234-022-02916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE To perform a review of the physical basis of DTI and DCE-MRI applied to Peripheral Nerves (PNs) evaluation with the aim of providing readers the main concepts and tools to acquire these types of sequences for PNs assessment. The potential added value of these advanced techniques for pre-and post-surgical PN assessment is also reviewed in diverse clinical scenarios. Finally, a brief introduction to the promising applications of Artificial Intelligence (AI) for PNs evaluation is presented. METHODS We review the existing literature and analyze the latest evidence regarding DTI, DCE-MRI and AI for PNs assessment. This review is focused on a practical approach to these advanced sequences providing tips and tricks for implementing them into real clinical practice focused on imaging postprocessing and their current clinical applicability. A summary of the potential applications of AI algorithms for PNs assessment is also included. RESULTS DTI, successfully used in central nervous system, can also be applied for PNs assessment. DCE-MRI can help evaluate PN's vascularization and integrity of Blood Nerve Barrier beyond the conventional gadolinium-enhanced MRI sequences approach. Both approaches have been tested for PN assessment including pre- and post-surgical evaluation of PNs and tumoral conditions. AI algorithms may help radiologists for PN detection, segmentation and characterization with promising initial results. CONCLUSION DTI, DCE-MRI are feasible tools for the assessment of PN lesions. This manuscript emphasizes the technical adjustments necessary to acquire and post-process these images. AI algorithms can also be considered as an alternative and promising choice for PN evaluation with promising results.
Collapse
Affiliation(s)
| | - Rafael Barousse
- Peripheral Nerve and Plexus Department, Centro Rossi, Sánchez de Loria 117, C1173 AAC, Buenos Aires, Argentina
| | - Antonio Luna
- MRI unit, Radiology Department, HT Medica, Carmelo Torres 2, 23007, Jaén, Spain
| | - Mariano Socolovsky
- Nerve & Plexus Surgery Program, Division of Neurosurgery, Hospital de Clínicas, University of Buenos Aires School of Medicine, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Juan M Górriz
- Department of Signal Theory, Networking and Communications, University of Granada, Avenida de Fuente Nueva, s/n, 18071, Granada, Spain.,Department of Psychiatry, University of Cambridge, Cambridge, CB21TN, UK
| | - Manuel Gómez-Río
- Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Av. de las Fuerzas Armadas, 2, 18014, Granada, Spain.,IBS Granada Bio-Health Research Institute, Av. de Madrid, 15, 18012, Granada, Spain
| |
Collapse
|
17
|
Liu Y, Ye Z, Hu J, Xiao Z, Zhang F, Yang X, Chen W, Fu Y, Cao D. White Matter Alterations in Spastic Paraplegia Type 5: A Multiparametric Structural MRI Study and Correlations with Biochemical Measurements. AJNR Am J Neuroradiol 2022; 43:56-62. [PMID: 34794945 PMCID: PMC8757563 DOI: 10.3174/ajnr.a7344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE In spastic paraplegia type 5, spinal cord atrophy and white matter signal abnormalities in the brain are the main MR imaging alterations. However, the specific mechanism remains unclear. We explored the microstructural changes occurring in spastic paraplegia type 5 and assessed the relation between MR imaging and clinical data. MATERIALS AND METHODS Seventeen patients with spastic paraplegia type 5 and 17 healthy controls were scanned with DTI and T1 mapping on a 3T MR imaging scanner. Fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, and T1 values were obtained using Tract-Based Spatial Statistics and the Spinal Cord Toolbox. Neurofilament light and myelin basic protein in the CSF were measured. The differences in MR imaging and biochemical data between patients with spastic paraplegia type 5 and healthy controls were compared using the Student t test. RESULTS A widespread reduction of fractional anisotropy values and an elevation of mean diffusivity, T1, and radial diffusivity values were found in most cervical, T4, and T5 spinal cords; corona radiata; optic radiations; and internal capsules in spastic paraplegia type 5. A variation in axial diffusivity values was shown only in C2, C6, and the corona radiata but not in the gray matter. The levels of neurofilament light and myelin basic protein were higher in those with spastic paraplegia type 5 than in healthy controls (myelin basic protein, 3507 [SD, 2291] versus 127 [SD, 219] pg/mL; neurofilament light, 617 [SD, 207] versus 265 [SD, 187] pg/mL; P < .001). No correlation was found between the clinical data and MR imaging-derived measures. CONCLUSIONS Multiparametric MR imaging and biochemical indicators demonstrated that demyelination (mainly) and axonal loss led to the white matter integrity loss without gray matter injury in spastic paraplegia type 5.
Collapse
Affiliation(s)
- Y. Liu
- From the Departments of Radiology (Y.L., J.H., F.Z., X.Y., D.C.),Department of Medical Imaging Technology (Y.L.), College of Medical Technology and Engineering
| | - Z. Ye
- Neurology and Institute of Neurology (Z.Y., W.C., Y.F.),Department of Neurology and Institute of Neurology (Z.Y., W.C., Y.F.)
| | - J. Hu
- From the Departments of Radiology (Y.L., J.H., F.Z., X.Y., D.C.)
| | - Z. Xiao
- Department of Biomedical Sciences (Z.X.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - F. Zhang
- From the Departments of Radiology (Y.L., J.H., F.Z., X.Y., D.C.)
| | - X. Yang
- From the Departments of Radiology (Y.L., J.H., F.Z., X.Y., D.C.)
| | - W. Chen
- Neurology and Institute of Neurology (Z.Y., W.C., Y.F.),Department of Neurology and Institute of Neurology (Z.Y., W.C., Y.F.),Fujian Key Laboratory of Molecular Neurology (W.C.), Fujian Medical University, Fuzhou, China
| | - Y. Fu
- Neurology and Institute of Neurology (Z.Y., W.C., Y.F.),Department of Neurology and Institute of Neurology (Z.Y., W.C., Y.F.)
| | - D. Cao
- From the Departments of Radiology (Y.L., J.H., F.Z., X.Y., D.C.),Key Laboratory of Radiation Biology of Fujian Higher Education Institutions (D.C.), First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Omar MKM, Abd Allah AEKH, Maghrabi MG, Mohamed MZ. The value of quantitative diffusion tensor imaging indices of spinal cord disorders. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Different lesions affecting the spinal cord can lead to myelopathy. Diffusion tensor imaging (DTI) is widely used to predict the degree of spinal cord microstructure affection and to assess axonal integrity and diffusion directionality. We hypothesized that not all DTI parameters have the same affection with different spinal cord pathologies. The purpose of this study is to assess the value of the quantitative diffusion tensor imaging indices in different spinal cord lesions.
Results
There is highly statistically significant difference of the fractional anisotropy (FA), relative anisotropy (RA), volume ratio (VR) and secondary eigenvector values (E2 and E3) between various studied cord lesions and control levels. There is no statistically significant difference of the apparent diffusion coefficient (ADC) and the primary eigenvector value (E1) (ANOVA test). The ROC curve analysis showed the higher sensitivity and accuracy were ‘88% and 62.5%, respectively,’ with FA cutoff value about 0.380.
Conclusion
The resulted quantitative DTI indices ‘fractional anisotropy, relative anisotropy, volume ratio and secondary eigenvalues’ work as a numerical in vivo marker of overall tissue injury in different pathologies affecting the spinal cord.
Collapse
|
19
|
Martín-Noguerol T, Montesinos P, Barousse R, Luna A. RadioGraphics Update: Functional MR Neurography in Evaluation of Peripheral Nerve Trauma and Postsurgical Assessment. Radiographics 2021; 41:E40-E44. [PMID: 33646898 DOI: 10.1148/rg.2021200190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Editor's Note.-Articles in the RadioGraphics Update section provide current knowledge to supplement or update information found in full-length articles previously published in RadioGraphics. Authors of the previously published article provide a brief synopsis that emphasizes important new information such as technological advances, revised imaging protocols, new clinical guidelines involving imaging, or updated classification schemes. Articles in this section are published solely online and are linked to the original article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Teodoro Martín-Noguerol
- From the MRI Section, Department of Radiology, Clinica Las Nieves, HTmedica, Carmelo Torres 2, 23007 Jaén, Spain (T.M.N., A.L.); Philips Iberia, Madrid, Spain (P.M.); and Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.)
| | - Paula Montesinos
- From the MRI Section, Department of Radiology, Clinica Las Nieves, HTmedica, Carmelo Torres 2, 23007 Jaén, Spain (T.M.N., A.L.); Philips Iberia, Madrid, Spain (P.M.); and Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.)
| | - Rafael Barousse
- From the MRI Section, Department of Radiology, Clinica Las Nieves, HTmedica, Carmelo Torres 2, 23007 Jaén, Spain (T.M.N., A.L.); Philips Iberia, Madrid, Spain (P.M.); and Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.)
| | - Antonio Luna
- From the MRI Section, Department of Radiology, Clinica Las Nieves, HTmedica, Carmelo Torres 2, 23007 Jaén, Spain (T.M.N., A.L.); Philips Iberia, Madrid, Spain (P.M.); and Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.)
| |
Collapse
|
20
|
Ibrahim I, Škoch A, Herynek V, Jírů F, Tintěra J. Magnetic resonance tractography of the lumbosacral plexus: Step-by-step. Medicine (Baltimore) 2021; 100:e24646. [PMID: 33578590 PMCID: PMC10545402 DOI: 10.1097/md.0000000000024646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT MR tractography of the lumbosacral plexus (LSP) is challenging due to the difficulty of acquiring high quality data and accurately estimating the neuronal tracts. We proposed an algorithm for an accurate visualization and assessment of the major LSP bundles using the segmentation of the cauda equina as seed points for the initial starting area for the fiber tracking algorithm.Twenty-six healthy volunteers underwent MRI examinations on a 3T MR scanner using the phased array coils with optimized measurement protocols for diffusion-weighted images and coronal T2 weighted 3D short-term inversion recovery sampling perfection with application optimized contrast using varying flip angle evaluation sequences used for LSP fiber reconstruction and MR neurography (MRN).The fiber bundles reconstruction was optimized in terms of eliminating the muscle fibers contamination using the segmentation of cauda equina, the effects of the normalized quantitative anisotropy (NQA) and angular threshold on reconstruction of the LSP. In this study, the NQA parameter has been used for fiber tracking instead of fractional anisotropy (FA) and the regions of interest positioning was precisely adjusted bilaterally and symmetrically in each individual subject.The diffusion data were processed in individual L3-S2 nerve fibers using the generalized Q-sampling imaging algorithm. Data (mean FA, mean diffusivity, axial diffusivity and radial diffusivity, and normalized quantitative anisotropy) were statistically analyzed using the linear mixed-effects model. The MR neurography was performed in MedINRIA and post-processed using the maximum intensity projection method to demonstrate LSP tracts in multiple planes.FA values significantly decreased towards the sacral region (P < .001); by contrast, mean diffusivity, axial diffusivity, radial diffusivity and NQA values significantly increased towards the sacral region (P < .001).Fiber tractography of the LSP was feasible in all examined subjects and closely corresponded with the nerves visible in the maximum intensity projection images of MR neurography. Usage of NQA instead of FA in the proposed algorithm enabled better separation of muscle and nerve fibers.The presented algorithm yields a high quality reconstruction of the LSP bundles that may be helpful both in research and clinical practice.
Collapse
Affiliation(s)
- Ibrahim Ibrahim
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, MR Unit
| | - Antonín Škoch
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, MR Unit
| | - Vít Herynek
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Jírů
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, MR Unit
| | - Jaroslav Tintěra
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, MR Unit
| |
Collapse
|
21
|
Dauleac C, Frindel C, Mertens P, Jacquesson T, Cotton F. Overcoming challenges of the human spinal cord tractography for routine clinical use: a review. Neuroradiology 2020; 62:1079-1094. [DOI: 10.1007/s00234-020-02442-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
|
22
|
Smith SA. Invited Commentary on "Optimizing Diffusion-Tensor Imaging Acquisition for Spinal Cord Assessment," with Response from Dr Martín Noguerol et al. Radiographics 2020; 40:428-431. [PMID: 32125962 DOI: 10.1148/rg.2020190214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seth A Smith
- Vanderbilt University Institute of Imaging Science and Department of Radiology and Radiological Sciences and Department of Biomedical Engineering, Vanderbilt University Medical Center Nashville, Tennessee
| |
Collapse
|